E F = q b E (2) E q a r q a q b N/C q a (electric flux line) q a E r r r E 4πr 2 E 4πr 2 = k q a r 2 4πr2 = 4πkq a (3) 4πkq a 1835 4πk 1 ɛ 0 ɛ 0 (perm



Similar documents
Maxwell ( H ds = C S rot H = j + D j + D ) ds (13.5) (13.6) Maxwell Ampère-Maxwell (3) Gauss S B 0 B ds = 0 (13.7) S div B = 0 (13.8) (4) Farad

i I

1.3 (heat transfer with phase change) (phase change) (evaporation) (boiling) (condensation) (melting) (solidification) 1.4 (thermal radiation)

96 7 1m = N 1A a C (1) I (2) A C I A A a A a A A a C C C 7.2: C A C A = = µ 0 2π (1) A C 7.2 AC C A 3 3 µ0 I 2 = 2πa. (2) A C C 7.2 A A

1 180m g 10m/s v 0 (t=0) z max t max t z = z max 1 2 g(t t max) 2 (6) r = (x, y, z) e x, e y, e z r = xe x + ye y + ze z. (7) v =


0.,,., m Euclid m m. 2.., M., M R 2 ψ. ψ,, R 2 M.,, (x 1 (),, x m ()) R m. 2 M, R f. M (x 1,, x m ), f (x 1,, x m ) f(x 1,, x m ). f ( ). x i : M R.,,

4 2 Rutherford 89 Rydberg λ = R ( n 2 ) n 2 n = n +,n +2, n = Lyman n =2 Balmer n =3 Paschen R Rydberg R = cm 896 Zeeman Zeeman Zeeman Lorentz

A. Fresnel) (M. Planck) 1905 (A. Einstein) X (A. Ampère) (M. Faraday) 1864 (C. Maxwell) 1871 (H. R. Hertz) (G. Galilei)

(Blackbody Radiation) (Stefan-Boltzmann s Law) (Wien s Displacement Law)

QMI_10.dvi

24.15章.微分方程式

h = h/2π 3 V (x) E ψ = sin kxk = 2π/λ λ = h/p p = h/λ = kh/2π = k h 5 2 ψ = e ax2 ガウス 型 関 数 関 数 値

PDF

18 2 F 12 r 2 r 1 (3) Coulomb km Coulomb M = kg F G = ( ) ( ) ( ) 2 = [N]. Coulomb

(w) F (3) (4) (5)??? p8 p1w Aさんの 背 中 が 壁 を 押 す 力 垂 直 抗 力 重 力 静 止 摩 擦 力 p8 p

untitled

E B m e ( ) γma = F = e E + v B a m = 0.5MeV γ = E e m =957 E e GeV v β = v SPring-8 γ β γ E e [GeV] [ ] NewSUBARU SPring


A A. ω ν = ω/π E = hω. E

1.1 ft t 2 ft = t 2 ft+ t = t+ t d t 2 t + t 2 t 2 = lim t 0 t = lim t 0 = lim t 0 t 2 + 2t t + t 2 t 2 t + t 2 t 2t t + t 2 t 2t + t = lim t 0

128 3 II S 1, S 2 Φ 1, Φ 2 Φ 1 = { B( r) n( r)}ds S 1 Φ 2 = { B( r) n( r)}ds (3.3) S 2 S S 1 +S 2 { B( r) n( r)}ds = 0 (3.4) S 1, S 2 { B( r) n( r)}ds

日本内科学会雑誌第101巻第12号



I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT

phs.dvi


i

I.2 z x, y i z = x + iy. x, y z (real part), (imaginary part), x = Re(z), y = Im(z). () i. (2) 2 z = x + iy, z 2 = x 2 + iy 2,, z ± z 2 = (x ± x 2 ) +

q π =0 Ez,t =ε σ {e ikz ωt e ikz ωt } i/ = ε σ sinkz ωt 5.6 x σ σ *105 q π =1 Ez,t = 1 ε σ + ε π {e ikz ωt e ikz ωt } i/ = 1 ε σ + ε π sinkz ωt 5.7 σ

. ev=,604k m 3 Debye ɛ 0 kt e λ D = n e n e Ze 4 ln Λ ν ei = 5.6π / ɛ 0 m/ e kt e /3 ν ei v e H + +e H ev Saha x x = 3/ πme kt g i g e n

光害対策ガイドライン平成18年12月改訂版

t = h x z z = h z = t (x, z) (v x (x, z, t), v z (x, z, t)) ρ v x x + v z z = 0 (1) 2-2. (v x, v z ) φ(x, z, t) v x = φ x, v z


有機性産業廃棄物の連続炭化装置の開発

Note.tex 2008/09/19( )

2 (f4eki) ρ H A a g. v ( ) 2. H(t) ( ) Chapter 5 (f5meanfp) ( ( )? N [] σ e = 8π ( ) e mc 2 = cm 2 e m c (, Thomson cross secion). Cha

Part. 4. () 4.. () Part ,

2 N(ε 1 ) N(ε 2 ) ε 1 ε 2 α ε ε 2 1 n N(ɛ) N ɛ ɛ- (1.1.3) n > N(ɛ) a n α < ɛ n N(ɛ) a n

基礎数学I

2 p T, Q

chap03.dvi

IA

日本内科学会雑誌第98巻第3号

: =, >, < π dθ = dφ = K = 1/R 2 rdr + udu = 0 dr 2 + du 2 = dr 2 + r2 1 R 2 r 2 dr2 = 1 r 2 /R 2 = 1 1 Kr 2 (4.3) u iu,r ir K = 1/R 2 r R

() () () 15%85% ( 10 9 kg m 3 ) (10 21 kg m 3 ) C C C C... () Instroduction : 15 2

1 Visible spectroscopy for student Spectrometer and optical spectrum phys/ishikawa/class/index.html


1. 4cm 16 cm 4cm 20cm 18 cm L λ(x)=ax [kg/m] A x 4cm A 4cm 12 cm h h Y 0 a G 0.38h a b x r(x) x y = 1 h 0.38h G b h X x r(x) 1 S(x) = πr(x) 2 a,b, h,π

80 4 r ˆρ i (r, t) δ(r x i (t)) (4.1) x i (t) ρ i ˆρ i t = 0 i r 0 t(> 0) j r 0 + r < δ(r 0 x i (0))δ(r 0 + r x j (t)) > (4.2) r r 0 G i j (r, t) dr 0

第85 回日本感染症学会総会学術集会後抄録(I)

1 2 2 (Dielecrics) Maxwell ( ) D H

1 1 ( ) ( % mm % A B A B A 1


2 X-ray 6 gamma-ray :38m 0:77m nm 17.2 Hz Hz 1 E p E E = h = ch= (17.2) p = E=c = h=c = h= (17.3) continuum continuous spectrum line spectru

NumRu::GPhys::EP Flux 2 2 NumRu::GPhys::EP Flux EP

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5.

2 1 x 1.1: v mg x (t) = v(t) mv (t) = mg 0 x(0) = x 0 v(0) = v 0 x(t) = x 0 + v 0 t 1 2 gt2 v(t) = v 0 gt t x = x 0 + v2 0 2g v2 2g 1.1 (x, v) θ

IV.dvi

日本内科学会雑誌第102巻第10号

The Physics of Atmospheres CAPTER :

A B 5 C mm, 89 mm 7/89 = 3.4. π 3 6 π 6 6 = 6 π > 6, π > 3 : π > 3

I ( ) 2019

EndoPaper.pdf

Untitled

ELECTRONIC IMAGING IN ASTRONOMY Detectors and Instrumentation 5 Instrumentation and detectors

平成18年度弁理士試験本試験問題とその傾向

OHO.dvi

( ) ± = 2018

最 新 測 量 学 ( 第 3 版 ) サンプルページ この 本 の 定 価 判 型 などは, 以 下 の URL からご 覧 いただけます. このサンプルページの 内 容 は, 第 3 版 1 刷 発 行 時 の

C:/KENAR/0p1.dvi

0.1 I I : 0.2 I

4

untitled

2 T(x - v τ) i ix T(x + v τ) i ix x T = ((dt/dx),, ) ( q = c T (x i ) v i ( ) ) dt v ix τ v i dx i i ( (dt = cτ ) ) v 2 dx ix,, () i x = const. FIG. 2

Copyrght 7 Mzuho-DL Fnancal Technology Co., Ltd. All rghts reserved.

m(ẍ + γẋ + ω 0 x) = ee (2.118) e iωt P(ω) = χ(ω)e = ex = e2 E(ω) m ω0 2 ω2 iωγ (2.119) Z N ϵ(ω) ϵ 0 = 1 + Ne2 m j f j ω 2 j ω2 iωγ j (2.120)


esba.dvi

(a) (b) X Ag + + X AgX F < Cl < Br < I Li + + X LiX F > Cl > Br > I (a) (b) (c)

(C) Kazutaka Takahashi 2018



No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2


第85 回日本感染症学会総会学術集会後抄録(III)

untitled


振動と波動

「数列の和としての積分 入門」

2 2. : ( Wikipedia ) photoelectric effect photoelectron ν E = hν h ν > ν E = hν hν W = hν

Gauss Gauss ɛ 0 E ds = Q (1) xy σ (x, y, z) (2) a ρ(x, y, z) = x 2 + y 2 (r, θ, φ) (1) xy A Gauss ɛ 0 E ds = ɛ 0 EA Q = ρa ɛ 0 EA = ρea E = (ρ/ɛ 0 )e

pdf

all.dvi


CRA3689A

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C602E646F63>

(interval estimation) 3 (confidence coefficient) µ σ/sqrt(n) 4 P ( (X - µ) / (σ sqrt N < a) = α a α X α µ a σ sqrt N X µ a σ sqrt N 2

基礎地学I.ppt

Transcription:

1 1.1 18 (static electricity) 20 (electric charge) A,B q a, q b r F F = k q aq b r 2 (1) k q b F F q a r?? 18 (Coulomb) 1 N C r 1m 9 10 9 N 1C k 9 10 9 Nm 2 /C 2 1 k q a r 2 (Electric Field) 1

E F = q b E (2) E q a r q a q b N/C q a (electric flux line) q a E r r r E 4πr 2 E 4πr 2 = k q a r 2 4πr2 = 4πkq a (3) 4πkq a 1835 4πk 1 ɛ 0 ɛ 0 (permittivity) q a ɛ0 4πr 2 E = q a E = ɛ 0 q a 4πr 2 ɛ 0 (4) q a 4πr (electric flux density)d 2 D = ɛ 0 E (5) 2

ɛ 0 C 2 /Nm 2 E N/C C/m 2 q b q a W?? W = F r W = F r = q b Er (6) = q b q a 4πrɛ 0 Er (electric potential) (difference of potential) (power voltage)v 1.2 N S A,B p n, p s r F F = k p np s r 2 (7) k C Wb r 1m 107 (4π) = 6.33 10 4 N 2 1Wb k 6.33 10 4 Nm 2 /Wb 2 (magnetic field)h p n, p s (magnetic flux line) 3

N S H 1820 (Ørsted) (Ampère) I H H = I 2πr (8) I A H A/m I r H r r s H = I s 4πr 2 (9) 4

E ɛ D H (magnetic permeability)µ 0 (magnetic flux density)b B = µ 0 H (10) Wb/m 2 µ 0 N/A 2 4π 10 7 N/A 2 1.3 (electrical current) 1A 1 1C ρ v S I I = ρvsq (11) v m α F = ma 2 F = qe α = qe m v T v = qe m T 11 I = ρ qe m Sq E I = ρq2 S m E (12) I V R I = V R (13) 12 E V 1 R 5

1.4 1.4.1 B I F F B I F = (I B)l (14) l F I B F B I 1.4.2 6

(Faraday) 1831 (electromagnetic induction) V φ t V = φ t (15) φ B S IH(Induction Heating) 1.5 (Maxwell) 1864 1.5.1 4 4πr 2 E = qa ɛ 0 r r a q a ɛ0 b 0 7

q a n E θ S E a S E E θ E cos θ n E n E n = E n cos θ n = 1 4 s E nds = q a ɛ 0 (16) (electric charge density)ρ q a = ρdv v ɛ 0 E nds = ρdv (17) s v 1.5.2 N N S H 0 H µ 0 H nds = 0 s B nds = 0 (18) s 8

1.5.3 8 H = I 2πr B B = µ 0I 2πr 2πrB = µ 0 I Bdr = µ 0 I (19) j S I = jds Bdr = µ 0 s jds (20) de/dt B S I de dt de s dt ds de ɛ 0 s dt ds 20 ( ) de Bdr = µ 0 j + ɛ 0 ds (21) dt s Bdr = µ 0 s ( ) E j + ɛ 0 nds (22) t 9

1.5.4 15 V = φ t V 6 E r E r V = E r V = Edr φ E r V φ B S φ = BdS s Edr = d dt s BdS (23) B Edr = nds (24) s t 1.5.5 17 22 18 24 ɛ 0 E nds = ρdv s v ( ) E Bdr = µ 0 j + ɛ 0 nds s t B nds = 0 s Edr = s B t nds 10

E = ρ (25) ɛ 0 ( ) E B = µ 0 j + ɛ 0 (26) t B = 0 (27) E = B t (28) 2 2.1 (electromagnetic waves) (wave length)λ c (period)t (frequency)ν T c = λ/t ν 1 ν = 1/T c = νλ 10 5 10 22 Hz 0.4 0.7µm 0.1nm 10nm 1µm 100µm 10mm 1m 100m 10km γ X 11

0.3 0.4µm 0.4 0.7µm 0.7 14µm 1mm 1m 2.2 E = 0 E B = µ 0 ɛ 0 t H = 0 (29) E = 0 (30) E H = ɛ 0 t H E = µ 0 t B H 31 32 (31) (32) f() z t f() v t 0 z 0 t z 1 v z 0 = z 1 v t 12

x t f(z 1 -vt 1 ) t 1 t f(z 0 -vt 0 ) z t 0 v t z 0 z 1 z f(z vt) f(z 1 vt 1 ) = f(z 1 v(t 0 + t)) = f(z 1 vt 0 v t) z 0 = z 1 v t = f(z 0 vt 0 ) (33) f(z 1 vt 1 ) = f(z 0 vt 0 ) f(z vt) f() f(z + vt) (sine wave) sin sin x 2π λ a u(z, t) u(z, t) = a sin 2π (z vt) (34) λ T v λ = vt u(z, t) = a sin 2π( z λ t T ) (35) 2π 2π λ (wave number) k T ω u(z, t) = a sin(kz ωt) (36) (plane wave) k k = (k x, k y, k z ) x r k n z y 13

k n r n r u(r, t) = a sin(k r ωt) = a sin(k x x + k y y + k z z ωt) (37)?? π 2 u(r, t) = ae i(k r ωt) (38) i u(r, t) = a cos(k r ωt) + i sin(k r ωt) (39) z xz yz x H y E x z y z E x H y E x = E 0 sin(kz ωt) (40) H y = H 0 sin(kz ωt) (41) 31 z H y z = ɛ E x 0 t 32 (42) E x z = µ H y 0 t 42 z (43) 2 H y z 2 = ɛ 0 E x t H y z = ɛ 0 µ 0 2 H y t 2 43 (44) 14

(wave equation) 43 z 2 E x z 2 = µ 0 H y t E x z = ɛ 0 µ 0 2 E x t 2 42 (45) (wave equation) 45 40 2 (E 0 sin(kz ωt)) z 2 = ɛ 0 µ 0 2 (E 0 sin(kz ωt)) t 2 k (E 0 cos(kz ωt)) (E 0 cos(kz ωt)) = ωɛ 0 µ 0 z t k 2 (E 0 sin(kz ωt)) = ω 2 ɛ 0 µ 0 (E 0 sin(kz ωt)) k 2 = ω 2 ɛ 0 µ 0 k 2 ω 2 = ɛ 0µ 0 (46) k = 2π 2π λ ω = T v = λ T v = ω k c c c = ω λ = 1 ɛ0 µ 0 (47) c ɛ 0 µ 0 x v 2 y x 2 = 1 v 2 2 y t 2 (48) E H S S = E H (49) S (pointing vector) E H 40 41 42 43 kh 0 cos(kz ωt) = ɛ 0 ωe 0 cos(kz ωt) (50) ke 0 cos(kz ωt) = µ 0 ωh 0 cos(kz ωt) (51) 15

k ω k ω = ɛ E 0 cos(kz ωt) 0 H 0 cos(kz ωt) k ω = µ H 0 cos(kz ωt) 0 E 0 cos(kz ωt) (52) (53) µ 0 {H 0 cos(kz ωt)} 2 = ɛ 0 {E 0 cos(kz ωt)} 2 {H 0 cos(kz ωt)} 2 = ɛ 0 µ 0 {E 0 cos(kz ωt)} 2 H0 2 = ɛ 0 E0 2 µ 0 ɛ0 H 0 = E 0 (54) µ 0 E H ν 0 ɛ 0 H 0 E 0 3 3.1 zx yz ɛ 1 µ 1 ɛ 2 µ 2 E vi E vr E hi Ehr x x ε 1, µ 1 θ i θ r z ε 1, µ 1 θ i θ r z ε 2, µ 2 θ t Y ε 2, µ 2 θ t Y E ht E vt zx E vi E vt E vr θ i θ t θ r x 16

zx E hi E ht E hr E iv e i(k1n r ωt) n (sin θ i, cos θ i ) r zx (z, x) u iv (z, x, t) k 1 u iv (z, x, t) = E iv e i(k1z sin θi k1x cos θi ωt) (55) z E ivz E ivz = E iv cos θ i n E y y y 54 y H ivy H ivy = ɛ1 µ 1 E iv y z x { Eivz = E iv cos θ i H ivy = ɛ1 (56) µ 1 E iv sinθ i E iv H iv cosθ i sinθ i x cosθ i H ih E ih sinθi sinθ i x cosθ i n θ i cosθ i n θ i z z y E ihy E ihy = E hi H ih n E z H iz H ihz = ɛ1 µ 1 E ih cos θ i { Eihy = E ih H ihz = ɛ1 (57) µ 1 E ih cos θ i u rv (z, x, t) u rv (z, x, t) = E rv e i(k1z sin θr k1x cos θr ωt) (58) 17

z E rvz y H rvy { Ervz = E rv cos θ r H rvy = ɛ1 (59) µ 1 E rv E rv sinθ r x cosθ H r rv cosθ r n x cosθ r E rh cosθ r sinθ r H rh n θ r sinθ r θ r sinθ r z z y E rhy z H rhz { Erhy = E rh H rhz = ɛ1 (60) µ 1 E rh u tv (z, x, t) k 2 u tv (z, x, t) = E tv e i(k 2z sin θ r k 2 x cos θ t ωt) (61) z E tvz y H tvy { Etvz = E tv cos θ t H tvy = ɛ2 (62) µ 2 E tv x z x z sinθ t θ E tv t H tv cosθ t cosθ t H th E th sinθ t sinθ t sinθ t cosθ t n cosθ t n y E thy 18

z H thz { Ethy = E th H thz = ɛ2 (63) µ 2 E th 55 58 61 z x = 0 ωt { E ivz e ik1z sin θi ik1z sin θr ik2z sin θt + E rvz e = E tvz e E ihy e ik 1z sin θ i + E rhy e ik 1z sin θ r = E thy e ik 2z sin θ t (64) z k 1 sin θ i = k 1 sin θ r = k 2 sin θ t (65) θ i = θ r k 1 sin θ r = k 2 sin θ t k 1, k 2 ɛ2 k 1 = ω ɛ1 µ 1, k 2 = ω µ 2 64 { E ivz + E rvz = E tvz (66) E ihy + E rhy = E thy { H ivy + H rvy = H tvy H ihz + H rhz = H thz (67) 56 57 59 60 62 63 E iv cos θ i E rv cos θ r = E tv cos θ t E ih E rh = E th ɛ1 ɛ1 ɛ1 µ 1 E iv + µ 1 E rv = µ 1 E ih cos θ i + ɛ1 µ 1 E rh = ɛ2 µ 2 E tv ɛ2 µ 2 E th (68) n n = ɛ2 µ 2 / ɛ1 E rv E iv µ 1 = cos θ i n cos θ t cos θ i + n cos θ t (69) E rh E ih = n cos θ i cos θ t n cos θ i + cos θ t (70) 19

E tv 2 cos θ i = (71) E iv cos θ i + n cos θ t E th 2 cos θ i = (72) E ih n cos θ i + cos θ t 69 72 θ i 0 (Brewster s angle) (polarisation) 3.2 (radiation) (radiant energy) (J) (J/s) (radiant flux) (W) (lm) (radiant exitance) (irradiance) M e Φ S M e = dφ ds (W/m 2 ) (lx = lm/m 2 ) (radiant intensity) (73) 20

I dω Φ I e Φ Ω I e = dφ dω I e (W/sr) (cd = lm/sr) α (74) S α r Ω S r Ω = S r 2 (75) sr 4πr 2 4π(sr) ds θ ds cos θ ds cos θ θ ds (radiance) L e I e L e = di e ds cos θ I e = dφ dω L e = d 2 Φ dωds cos θ (76) (77) 21

(W/sr m 2 ) (cd/cm 2 ) 3.3 3.3.1 (radiation) (heat radiation) (black body) (black body radiation) 1859 (Kirchhoff) λ T (Planck) 1900 T < E > < E >= 1 2kT k E P (E) P (E) = Ae E kt (78) A e?? E E = nhν h ν n n 0, 1, 2, n = 0, 1, 2, P (0), P (1), P (2), 0hνP (0) + 1hνP (1hν) + 2hνP (2hν) + (79) 22

< E > = = 0hνP (0) + 1hνP (1hν) + 2hνP (2hν) + P (0) + P (1hν) + P (2hν) + hν(0 + e hν kt e 0 + e hν kt + 2e 2hν kt + + e 2hν kt + = hν 0 + x + 2x2 + 1 + x + x 2 + x = hν 1 x = hν x 1 hν = e hν kt 1 x = e hν kt M e (λ, T ) c c = νλ M e (λ, T ) = 2πhc2 λ 5 1 e hc kλt 1 T =300[K] 5000[K] (80) (81) 10 14 10 12 10 10 10 8 10 6 5000(K) 1000(K) 600(K) 300(K) 10 4 10 2 0.1µm 1µm 10µm 100µm 1mm 5900[K] M e L e B B(λ, T ) = 2hc2 λ 5 1 e hc kλt 1 (82) 23

hν kt 1 e hν kt 1 e hν kt B(λ, T ) = 2hc2 λ 5 1 e hc kλt (83) (Wien) λ 0.9 10µm T 3200 hν kt hν 1 e kt 1 hν kt B(λ, T ) = 2c kt (84) λ4 (Rayleigh-Jeans) λ = 3mm 30mm 3.3.2 (vacuum discharge) 1913 (Bohr) 3 2 E 2 E 1 1 2 1 2 1 (energy level) 2 E 2 1 E 1 1 E 2 E 1 (radiation) 24

(Excitation) (absorption) 1890 (Rydberg) n m λ ν 1 λ = ν ( 1 c = R n 2 1 ) m 2 R E E = hc λ (85) = hν (86) E = nhν 1905 (Einstein) (photon) 4 4.1 0.5µm 10µm 3µm 0.7 3µm 4.1.1 25

aerosol N 2 O 2 CO 2 O 3 N 2 O 2 Ar (Rayleigh scattering) (Mie scattering) I s α θ λ I i dω dω ( ) 128π 5 I s = 3λ 4 α2 /dω 3 4 (I i + cos 2 θ) dω 4π 1/10 ρ N γ (extinction coefficient)k λ K λ = 8π3 (γ 2 1) 2 3λ 4 Nρ λ 4 b K() ( ) 2πb K λ = πb 2 K λ, γ (87) (88) (89) 4.1.2 (extinction) 26

(emission) λ j λ k λ jλ k λ = B(λ, T ) (90) I λ ds ρ di λ di λ = k λ ρi λ ds (91) di λ = j λ ρds (92) 90 j λ = k λ B(λ, T ) J λ j λ = k λ J λ di λ = k λ ρi λ ds + j λ ρds = k λ ρi λ ds + k λ J λ ρds di λ ρk λ ds = I λ + J λ (93) LOWTRAN AFGL Air Force Geophisics Laboratory MODTRAN 6s(Second Simulation of the Satellite Signal in the Solar Spectrum) 4.1.3 0 1 27

1 60 50 40 30 20 10 0 0.5 0.7 1.0 2.0 3.0 µ ) 4.2 3 14µm 28

4.3 θ φ = 2k h cos θ < π 2 h < λ 8 cos θ (94) λ h k(= 2π/λ) Φ π/2 φ = 2k h cos θ < π 8 λ h < 32 cos θ (95) σ σi = P r(4π) 3 R 4 P t G 2 λ 2 (96) P t λ R G P r 29

A σ 0 = σ i /A i backscattering coefficient 30