2 T(x - v τ) i ix T(x + v τ) i ix x T = ((dt/dx),, ) ( q = c T (x i ) v i ( ) ) dt v ix τ v i dx i i ( (dt = cτ ) ) v 2 dx ix,, () i x = const. FIG. 2



Similar documents
I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT

30

24.15章.微分方程式

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5.

A A. ω ν = ω/π E = hω. E

IA

1.1 ft t 2 ft = t 2 ft+ t = t+ t d t 2 t + t 2 t 2 = lim t 0 t = lim t 0 = lim t 0 t 2 + 2t t + t 2 t 2 t + t 2 t 2t t + t 2 t 2t + t = lim t 0

h = h/2π 3 V (x) E ψ = sin kxk = 2π/λ λ = h/p p = h/λ = kh/2π = k h 5 2 ψ = e ax2 ガウス 型 関 数 関 数 値

I ( ) 2019

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H

1 180m g 10m/s v 0 (t=0) z max t max t z = z max 1 2 g(t t max) 2 (6) r = (x, y, z) e x, e y, e z r = xe x + ye y + ze z. (7) v =

03J_sources.key

C el = 3 2 Nk B (2.14) c el = 3k B C el = 3 2 Nk B

0.,,., m Euclid m m. 2.., M., M R 2 ψ. ψ,, R 2 M.,, (x 1 (),, x m ()) R m. 2 M, R f. M (x 1,, x m ), f (x 1,, x m ) f(x 1,, x m ). f ( ). x i : M R.,,


A B 5 C mm, 89 mm 7/89 = 3.4. π 3 6 π 6 6 = 6 π > 6, π > 3 : π > 3

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0

36 th IChO : - 3 ( ) , G O O D L U C K final 1


C:/KENAR/0p1.dvi

chap1.dvi

1 1 H Li Be Na M g B A l C S i N P O S F He N Cl A e K Ca S c T i V C Mn Fe Co Ni Cu Zn Ga Ge As Se B K Rb S Y Z Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb T e

pdf


1 9 v.0.1 c (2016/10/07) Minoru Suzuki T µ 1 (7.108) f(e ) = 1 e β(e µ) 1 E 1 f(e ) (Bose-Einstein distribution function) *1 (8.1) (9.1)

基礎数学I

熊本県数学問題正解

. ev=,604k m 3 Debye ɛ 0 kt e λ D = n e n e Ze 4 ln Λ ν ei = 5.6π / ɛ 0 m/ e kt e /3 ν ei v e H + +e H ev Saha x x = 3/ πme kt g i g e n

S = k B (N A n c A + N B n c B ) (83) [ ] B A (N A N B ) G = N B µ 0 B (T,P)+N Aψ(T,P)+N A k B T n N A en B (84) 2 A N A 3 (83) N A N B µ B = µ 0 B(T,

1.2 y + P (x)y + Q(x)y = 0 (1) y 1 (x), y 2 (x) y 1 (x), y 2 (x) (1) y(x) c 1, c 2 y(x) = c 1 y 1 (x) + c 2 y 2 (x) 3 y 1 (x) y 1 (x) e R P (x)dx y 2

ma22-9 u ( v w) = u v w sin θê = v w sin θ u cos φ = = 2.3 ( a b) ( c d) = ( a c)( b d) ( a d)( b c) ( a b) ( c d) = (a 2 b 3 a 3 b 2 )(c 2 d 3 c 3 d

( ) ( 40 )+( 60 ) Schrödinger 3. (a) (b) (c) yoshioka/education-09.html pdf 1

4 2 Rutherford 89 Rydberg λ = R ( n 2 ) n 2 n = n +,n +2, n = Lyman n =2 Balmer n =3 Paschen R Rydberg R = cm 896 Zeeman Zeeman Zeeman Lorentz

i


m(ẍ + γẋ + ω 0 x) = ee (2.118) e iωt P(ω) = χ(ω)e = ex = e2 E(ω) m ω0 2 ω2 iωγ (2.119) Z N ϵ(ω) ϵ 0 = 1 + Ne2 m j f j ω 2 j ω2 iωγ j (2.120)

,..,,.,,.,.,..,,.,,..,,,. 2

振動と波動

2011de.dvi


W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2)

example2_time.eps

Maxwell ( H ds = C S rot H = j + D j + D ) ds (13.5) (13.6) Maxwell Ampère-Maxwell (3) Gauss S B 0 B ds = 0 (13.7) S div B = 0 (13.8) (4) Farad

1 1 u m (t) u m () exp [ (cπm + (πm κ)t (5). u m (), U(x, ) f(x) m,, (4) U(x, t) Re u k () u m () [ u k () exp(πkx), u k () exp(πkx). f(x) exp[ πmxdx

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2


Maxwell

FORES II [フォレスII]

ii


(w) F (3) (4) (5)??? p8 p1w Aさんの 背 中 が 壁 を 押 す 力 垂 直 抗 力 重 力 静 止 摩 擦 力 p8 p

2 N(ε 1 ) N(ε 2 ) ε 1 ε 2 α ε ε 2 1 n N(ɛ) N ɛ ɛ- (1.1.3) n > N(ɛ) a n α < ɛ n N(ɛ) a n

2 7 V 7 {fx fx 3 } 8 P 3 {fx fx 3 } 9 V 9 {fx fx f x 2fx } V {fx fx f x 2fx + } V {{a n } {a n } a n+2 a n+ + a n n } 2 V 2 {{a n } {a n } a n+2 a n+

I.2 z x, y i z = x + iy. x, y z (real part), (imaginary part), x = Re(z), y = Im(z). () i. (2) 2 z = x + iy, z 2 = x 2 + iy 2,, z ± z 2 = (x ± x 2 ) +

ω 0 m(ẍ + γẋ + ω0x) 2 = ee (2.118) e iωt x = e 1 m ω0 2 E(ω). (2.119) ω2 iωγ Z N P(ω) = χ(ω)e = exzn (2.120) ϵ = ϵ 0 (1 + χ) ϵ(ω) ϵ 0 = 1 +

ssp2_fixed.dvi

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4

Andreev Josephson Night Club

m dv = mg + kv2 dt m dv dt = mg k v v m dv dt = mg + kv2 α = mg k v = α 1 e rt 1 + e rt m dv dt = mg + kv2 dv mg + kv 2 = dt m dv α 2 + v 2 = k m dt d

untitled


2 G(k) e ikx = (ik) n x n n! n=0 (k ) ( ) X n = ( i) n n k n G(k) k=0 F (k) ln G(k) = ln e ikx n κ n F (k) = F (k) (ik) n n= n! κ n κ n = ( i) n n k n

H1-H4

all.dvi

2 Chapter 4 (f4a). 2. (f4cone) ( θ) () g M. 2. (f4b) T M L P a θ (f4eki) ρ H A a g. v ( ) 2. H(t) ( )

A. Fresnel) (M. Planck) 1905 (A. Einstein) X (A. Ampère) (M. Faraday) 1864 (C. Maxwell) 1871 (H. R. Hertz) (G. Galilei)

5. [1 ] 1 [], u(x, t) t c u(x, t) x (5.3) ξ x + ct, η x ct (5.4),u(x, t) ξ, η u(ξ, η), ξ t,, ( u(ξ,η) ξ η u(x, t) t ) u(x, t) { ( u(ξ, η) c t ξ ξ { (

1 4 1 ( ) ( ) ( ) ( ) () 1 4 2

( )

B ver B

untitled

入試の軌跡

QMI_10.dvi

QMI_10.dvi

QMI_09.dvi

phs.dvi

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α


genron-3

RN201602_cs5_0122.indd

2 (f4eki) ρ H A a g. v ( ) 2. H(t) ( ) Chapter 5 (f5meanfp) ( ( )? N [] σ e = 8π ( ) e mc 2 = cm 2 e m c (, Thomson cross secion). Cha

dvipsj.4131.dvi

n Y 1 (x),..., Y n (x) 1 W (Y 1 (x),..., Y n (x)) 0 W (Y 1 (x),..., Y n (x)) = Y 1 (x)... Y n (x) Y 1(x)... Y n(x) (x)... Y n (n 1) (x) Y (n 1)




II

untitled

3 3.1 R r r + R R r Rr [ ] ˆn(r) = ˆn(r + R) (3.1) R R = r ˆn(r) = ˆn(0) r 0 R = r C nn (r, r ) = C nn (r + R, r + R) = C nn (r r, 0) (3.2) ( 2.2 ) C



(1) + b = b +, (2) b = b, (3) + 0 =, (4) 1 =, (5) ( + b) + c = + (b + c), (6) ( b) c = (b c), (7) (b + c) = b + c, (8) ( + b)c = c + bc (9

案内最終.indd

x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y)

Fourier (a) C, (b) C, (c) f 2 (a), (b) (c) (L 2 ) (a) C x : f(x) = a (a n cos nx + b n sin nx). ( N ) a 0 f(x) = lim N 2 + (a n cos nx + b n sin

E 1/2 3/ () +3/2 +3/ () +1/2 +1/ / E [1] B (3.2) F E 4.1 y x E = (E x,, ) j y 4.1 E int = (, E y, ) j y = (Hall ef

esba.dvi


Transcription:

Y. Kondo Department of Physics, Kinki University, Higashi-Osaka, Japan (Dated: September 3, 27) [] PACS numbers: I. m cm 3 24 e =.62 9 As m = 9.7 3 kg A. Drude-orentz Drude orentz N. i v i j = N q i v i = i= N ( e) v i () i= v i E Newton m d v i dt = e E (2) t v i e E t () j = ne2 m E t (3) n = N/ ( )τ t = τ (3) j σ j = σ E (4) σ = ne2 τ m (5) 2. FIG. : Drude-orentz UR: http://www.phys.kindai.ac.jp/kondo; Electronic address: kondo@phys.kindai.ac.jp i E i () q = N E i v i (6) i=

2 T(x - v τ) i ix T(x + v τ) i ix x T = ((dt/dx),, ) ( q = c T (x i ) v i ( ) ) dt v ix τ v i dx i i ( (dt = cτ ) ) v 2 dx ix,, () i x = const. FIG. 2: x = const. E i T E i = ct (7) c q = x (dt/dx) x = x i x = x i τ v ix x = x i + v ix τ E + i E + i = ct (x i + v ix τ) ( = c T (x i ) + ( dt ) dx )v ixτ (8) E i ( E i = c T (x i ) ( dt ) dx )v ixτ (9) x = x i q = N E i v i i= = ct (x i v i τ) v i i = ( c T (x i ) T ) v i τ v i () i N i= i v ix, v iy, v iz v 2 ix = v 2 iy = v 2 iz (2) i v 2 ix = 2cT 3m N (3) E i = ct ( ) dt q x = κ dx κ κ = 2nc2 T τ 3m 3. Wiedelmann-Franz (4) (5) σ κ Wiedelmann Franz σ/(κt ) Wiedelmann-Franz κ/(σt ) 2 8 WK 2 σ κ κ σt = 3 2 ( kb e ) 2 (6) c = 3 2 k B Wiedelmann-Franz κ/(σt ). 8 WK 2 B. 2 k BT x, y, z v x, v y, v z 3 2 mv2 x = 2 mv2 x = 2 mv2 x = 2 k BT (7)

3 k B =.38 23 J/K x, y, z x, y, z 2 k BT N E = 3 C ( 2 k BT ) N = 3 2 Nk BT (8) C = de dt = 3Nk BT (9) C. Drude-orentz 9 II. A. Schrödinger Schrödinger V ( r, t) Schrödinger ψ( r, t) i = 2 t 2m 2 ψ( r, t) + V ( r, t)ψ( r, t) (2) Ĥ = 2 2m 2 + V ( r, t) (2) (Hamiltonian ) i ψ t = Ĥψ (22) 2 ψ( r, t) 2 t r ψ( r, t) 2 d r = (23) A  Âψ = aψ, (24) A a a a  ψ  ˆp = i B. t ˆp = i x i x ϕ(x) = pϕ k (x) (25) ϕ k (x) e ikx (26) p = k ψ(x) ϕ k (x) ψ(x) = c k e ikx dk (27) c k e ikx ψ(x) Fourier e ikx C. () Hamiltonian Ĥ = 2 2m 2 (28) ϕ() = ϕ() = ϕ k (x) sin kx (29) sin k = (3)

4 2 k k = nπ (3) 2 ϕ k (x) = sin kx (32) E k = 2 k 2 2m = 2 π 2 n 2 2m 2 (33) D. (2) ϕ(x) = ϕ(x + ) ϕ k (x) = e ikx (34) k k = 2πn/ E k = 2 k 2 2m = 2 2 π 2 n 2 m 2 (35) E E + E k E + E = 2 (k + k) 2 2m E = 2 k k (36) m lim k E 2 m k k = k = 2mE/ k k = 2m 2m 2m 2 E = k 2 E = 2mE E E k k + k k 2π/ = m E (37) π 2E ±k 2 N = D(E) E (38) ( ) m D(E) = 2 = 2m (39) π 2E π E D(E) III. A.. Coulomb 3 = x, y, z Hamiltonian Ĥ = 2 2m 2 (4) x, y, z ψ(x, y, z) = ψ(x +, y, z) = ψ(x, y +, z) = ψ(x, y, z + ) (4) Hamiltonian 4 ψ k (r) = e ık r (42) k x = 2π n, k y = 2π n 2, k z = 2π n 3 (43) n, n 2, n 3 k E k = 2 2m (k2 x + k 2 y + k 2 z) = 2 2m (2π )2 (n 2 + n 2 2 + n 2 3) (44) k k 2π/ (2π/) 3 = (2π) 3 / (2π) 3 (45) E E + E k 2 2 2m = E (k + k) 2 2 2m = E + E

5 k, k + k k 4πk 2 k 2π/ (2π) 3 4πk2 k (46) D(E) E D(E) D(E) = 4π 2 (2m 2 )3/2 E (47) D(E) k, k E 2 k k/m = E, k = 2mE/ 2. up,down k k F N e N e = 4π 3 k3 F (2π) 3 2 (48) (2π) 2 3 Fermi Fermi Fermi k F Fermi Fermi Fermi cm 24 Fermi 3 8 cm Fermi v F k F /m 3 8 cm/s Pauli 3. Fermi Fermi f (E) 2k B T T = E F FIG. 3: Fermi T = f(e) E f(e) = { E < EF E > E F (49) 3 T k B T Fermi k B T Pauli Fermi k B T Fermi Pauli Fermi k B T k B T Fermi k B T 3 f(e) = e (E µ)/k BT + E (5) Fermi µ N e D(E) N e = 2 de (5) e (E µ)/k BT + µ τ ϵ τ n τ {n τ } = (n, n 2, ) N = τ n τ E N = τ ϵ τ n τ Z N = {n τ } e β P τ ϵ τ n τ

6 Ξ = = e βnµ Z N N= e βnµ N= {n τ } = = τ N= {n τ } n τ e β P τ ϵτ nτ e β P τ (µ ϵτ )nτ e β(µ ϵτ )nτ Fermi n τ =, n τ e β(µ ϵ)nτ = + e β(µ ϵ) Ξ = τ { + e β(µ ϵτ ) } τ n τ P r (n τ ) P r (n τ ) = eβ(µ ϵτ )nτ σ = eβ(µ ϵτ )nτ + e β(µ ϵτ ) {n σ } eβ(µ ϵσ)nσ Ξ σ σ τ n τ n τ = n τ P r (n τ ) = n τ =, e β(ϵτ µ) + Fermi p27 4. 3k B T/2 Fermi k B T 2D(E F )k B T k B T 2D(E F )(k B T ) 2 T C e 4D(E F )k 2 BT Fermi D(E F ) D(E F ) = 4π 2 (2m 2 )3/2 ( 2 kf 2 N e 2m )/2 = 3 (52) 4 E F C e 3N e k B k B T E F (53) k BT E F k B T E F E F k B 4 4 K (54) 3 K IV. A.. NaCl 4 2. 3. 5 a b 5 P R P R P = ma + nb (55)

7 (a) (b) (c) (a') (b') (c') FIG. 4: (a) (b) (c) (a ),(b ) (c ) (a),(b) (c) b a 2 3 4 5 6 7 b' a' FIG. 5: B. X X X. X a k = 2π/λ X X Ae ıωt FIG. 6: X Ae ı(ωt 2ka)... Ae ıωt { + e 2ıka + e 4ıka + e 6ıka + } { ıωt e2nıka Ae for e = 2ıka e 2ıka NAe ıωt for e 2ıka = (56) e 2ıka e 2ıka =

8 X λ ke 2ıka = a 2. 3. A a = 2π A b = A c = B b = 2π B a = B c = C c = 2π C b = C a = (62) X Ae ı(ωt k r) e ıωt R i Ae ık R i (57) R A e ık R i e ık (R R i ) (58) A, B, C K = k k Bragg X G k G k G k = k k k = k X k' k G -k' A e ık R i e ık R i (59) K = k k A 59 FIG. 7: Bragg A e ık R l e ı(k a)l m e ı(k b)m n e ı(k c)n (6) 4. K K e ı(k a) = e ı(k b) = e ı(k c) = K a = 2πp, K b = 2πq, K c = 2πr, (6) p, q, r : integer X Bragg A b = A c = A b c A = α(b c) (63) a 2π A a = α(b c) a = 2π (64) α b c A = 2π a (b c) (65) A a (b c) B, C

9 V. A.. V (x) = n v(x R n ) (69) R n = na Coulomb Coulomb R i v(r R i ) V (r) = i v(r R i ) (66) V (r) = V (r + R) (67) R = la + mb + nc P R P' [ 2 d 2 + V (x)]ϕ(x) = Eϕ(x) (7) 2m dx2 = Na N ϕ(x) = ϕ(x + ) (7) V (x) = ϕ k (x) = e ıkx, k = 2π m (72) v(x) 72 72 ϕ(x) = c k e ıkx (73) ϕ(x) 73 7 [E k c k + c k V (x)]e ık x = Ec k e ık x k k E k = 2 k 2 2m /2 e ıkx x k E k c k k + c k k = Ec k k e ı(k k)x dx V (x)e ı(k k)x dx e ı(k k)x dx FIG. 8: P P [ 2 2m 2 + V (r)]ϕ(r) = Eϕ(r) (68) 2. a k k e ı(k k)x dx = e ı(2π/)(m m)x dx [ ] = e ı(2π/)(m m)x ı(2π/)(m m) = k = k Dirac δ e ı(k k)x dx = δ(k k) (74)

ϕ k (x) E k c k + k c k V (x)e ı(k k)x dx = Ec k 2 69 = n V (x)e ı(k k)x dx v(x R n )e ı(k k)x dx = Rn e ı(k k)r n n R n v(x )e ı(k k)x dx x R n x v(x ) x ( R n, R n ) (, ) n n e ı(k k)r n = n N n= e ı(k k)na k k = (2π/a)m m N k k (2π/a)m N n= e ı(k k)na = = = e ı(k k)na e ı(k k)a e ı 2π(n n) e ı(k k)a e ı2π(n n) e ı(k k)a = N 2 k = k + G m G m = (2π/a)m m (E k E)c k + m Na v Gm c k+gm = (75) v G v G = v(x)e ıgx dx (76) a 7 k E = E 3. 3 3 ϕ k (r) = e ık r, k = 2π (l, m, n) (77) ϕ(r) = c k e ık r (78) e ı(k k) r d 3 r = δ(k k) (79) V (r)e ı(k k) r d 3 r = v G δ(k k G) (8) v G = v(r)e ıg r d 3 r (8) G (E k E)c k + G k v G c k+g = (82) B.. Nearly Free Electron k c k c k 75 c k+gm (E k+gm E)c k+gm + m v Gm c k+gm +G m = (83) G m = G m E E k c k+gm v Gm E k E k+gm c k (84) 75 c k+gm G m = [E k + v + m v Gm 2 E k E k+gm E]c k = (85)

v G = vg ) c k [ E E k + v + m ] v Gm 2 E k E k+gm (86) E 84 73 φ k (x) = e ıkx c k [ + v Gm e ıgmx ] (87) E k E k+gm m G m Nearly Free Electron Approximation NFE 2. 84 E k = E k+gm c k+gm c k k 2 = (k + G m ) 2, (k = G m /2) NFE k G m 75 (E k + v E)c k +... +v Gm c k+gm + v Gm c k+gm + v Gm+ c k+gm+ + = c k c k+gm (E k+gm + v E)c k+gm +... +v G m c k+g + v G m c k + v G m+ c k+g + = c k c k+gm (E k + v E)c k + v Gm c k+gm = (88) (E k+gm + v E)c k+gm + v Gm c k = E k + v E v Gm E k+gm + v E = (89) v Gm E = 2 (E k + E k+gm ) + v ± 2 (Ek E k+gm ) 2 + 4 v Gm 2 (9) k = G m /2 E k = G m /2 E = E Gm /2 + v ± v Gm (9) E 9 G m = ±(2π/a)m m k = ± π a, ±2π a, (92) 2 v Gm -2p/a -p/a Energy Gap Energy Gap p/a 2p/a FIG. 9: Nearly Free Electron Approximation NFE 3. k = G m /2(m 2 v Gm k = G m /2 Bragg G m = 2π/a φ + (x) cos( πx a ), φ (x) sin( πx a ) (93) a/2 k potential FIG. : (a) (b) (a) (b) 4. Bragg (a) (b)

2 2 2m k 2 = 2 2m k + G 2 k ( G G ) = 2 G (94) G G k G C. Brillouin zone Brillouin zone Brillouin zone Brillouin zone 4 3 4 4 3 4 2 2 4 3 2 2 3 FIG. : 2 Brillouin zone Brillouin zone 2Brillouin zone 2 Brillouin zone 3Brillouin zone 3 2Brillouin zone 4 5 Brillouin zone Brillouin zone (2π) n / unit cell 2π/a simple cubic (2π) 3 /a 3 Brillouin zone dim : 3 dim : 2π 2π a = a = N (95) (2π) 3 (2π)3 = = N 2 4 4 3 4 N Brillouin zone Brillouin zone 2 D. Bloch k p = k k p = (k + G m ) k. k k φ k (x) = c k+gm e ı(k+gm)x, (96) m G m = ± 2π a m m k 2π/a k Brillouin zone 2π/a Brillouin zone 96 φ k (x) = e ıkx u k (x) (97) u k (x) = c k+gm e ıgmx (98) m u k (x) a u k (x + a) = c k+gm e ıgm(x+a) m = c k+gm e ıg mx m = u k (x) (99) e ıg ma = φ k (x) φ k (x + R n ) = e ıkr n φ k (x), R n = na () Bloch Bloch k 2

3 u k (r) exp(ıkr) ) FIG. 2: Bloch E. Tight Binding. NFE NFE 3s 3s NFE NFE NFE 2. Bloch k Brillouin zone k u k (x) unit cell 3 2. Tight Binding NFE N NFE ψ(r) = i c i ϕ(r R i ) () -p/a E Energy Gap p/a Energy Gap k ϕ(r) R i i c i ± Bloch c i e ık R i ψ k (r) = e ık Ri ϕ(r R i ) (2) N i Bloch ψ k (r + R) = e ık R i ϕ(r R i + R) N i = e ık (Rj+R) ϕ(r R j ) = e ık R ψ(3) k (r) N j R i R R j 3. FIG. 3: Brillouin zone NFE 3. Hamiltonian ψ k (x) = e ıkrn ϕ(x R n ), (4) N Hamiltonian n d 2 Ĥ = 2 + V (x) (5) 2m dx2

4 V (x) 69 k Ẽk Ẽ k = = N ψ k (x)ĥψ k(x)dx ψ k (x)ψ k(x)dx ψ k(x)ψ k (x)dx n n exp( ık(r n R n )) ϕ(x R n )ϕ(x R n )dx (6) ϕ(x) n = n ϕ(x) ϕ(x) ϕ(x R n ) 2 dx = ϕ(x ) 2 dx = ϕ(x) a (, ) (, ) n n ϕ(x) x = R n R n ϕ(x R n ) ϕ(x R n ) n = n ± = ϕ(x R n± )ϕ(x R n )dx ϕ(x a)ϕ(x )dx S (7) S ψ k(x)ψ k (x)dx = { N }{{} +S( }{{} e ıka + } e ıka {{ } )} n n =n n =n n =n+ = + 2S cos ka (8) 6 = N ψ k(x)ĥψ k(x)dx n n exp( ık(r n R n )) ϕ(x R n )Ĥϕ(x R n)dx n = n, n = n ± E = = E = = ϕ(x R n )Ĥϕ(x R n)dx ϕ(x)ĥϕ(x)dx (9) ϕ(x R n± )Ĥϕ(x R n)dx ϕ(x )Ĥϕ(x)dx () ψ k(x)ĥψ k(x)dx = { E +E N }{{} ( }{{} e ıka + e } ıka {{ } )} n n =n n =n n =n+ = E + 2E cos ka () 8 6 S S E Ẽ k = E + 2(E E S) cos ka (2) simple cubic ϕ(r) s Ẽ k = E + 2(E E S)(cos k x a + cos k y a + cos k x a) (3) Tight Binding 4. NFE Tight Binding k 2 NFE k k 2 Brillouin zone NFE ϵ k k 2 ka 2 Ẽ k = const. (E E S)a 2 k 2 (4) m 2 m = 2(E E S)a 2 (5) Ẽ k const + 2 k 2 2m (6)

5 simple cubic Ẽ k const + 2 k 2 2m (7) NFE p p 4 E E S 2 E E S E S 5. TB TB NFE e ık r u k (r) Bloch ϕ k (r) 8 Bloch ṽ kk = ϕ k (r)v(r) ϕ k (r)d 3 r (9) v(r) ϕ k (r) ϕ k (r) Bloch NFE G.. v ev Bloch ψ(x) = ϕ(k)e ık(x x) dk (2) F. Coulomb /r Coulomb Coulomb NFE TB Bloch k v kk = }{{} matrix element ϕ k (r) } {{ } v(r) }{{} ϕ k (r) } {{ } creation interaction annihilation d 3 r (8) k v(r) k v kk Bloch V D ϕ(k) k = k δk δk k φ(x) x δx /δk 2 t = t = t ψ(x, t) = ϕ(k)e ı[k(x x) Ekt/ ] dk (2) E k k E k E k + ( de k dk ) k (k k ) (22) t = t ψ(x, t) e ı[e k ( de k dk ) k k ]t/ ϕ(k)e ık[(x x ) ( de k dk ) k t/ ] dk (23) e t = x t = t x + (de k dk ) k t (24) v = (de k dk ) k (25) E k / = ω k e ı(kx ω kt) ω k /k dω k /dk

6 k v k = de k k = dk }{{} m E k = 2 k 2 /2m (26) E empty states k v = p/m filled states 2. Bloch Bloch m v k = k m (27) (a) (b) (c) FIG. 4: (a) (b) (c) 3. δt E δe = ee }{{} v k δt }{{} force distance (28) k k + δk δe = de k δk (29) dk δk = e d( k) Eδt = ee (3) dt ṗ = ee Bloch ection H. Bloch 2N 4 J = e k v k δt (e/ )Eδt 5(b) E G ω ω I. Fermi Brillouin zone Fermi 4 Fermi Fermi Fermi i, Na, K, Rb, Cs Brillouin zone Fermi NFE

7 E Energy Gap E G (a) (b) (c) k -p/a (a) p/a filled states empty states E Energy Gap E G (b') (c') k -p/a (a2) E p/a Energy Gap FIG. 6: (a) Brillouin zone Fermi Brillouin zone Brillouin zone 2π/a (b) Brillouin zone (c) Brillouin zone (b ) Fermi (b) (c ) Fermi (b ) E G J. -p/a (b) p/a 2p/a FIG. 5: (a) (a2) (b) k k + 2π/a Be, Mg, Ca, Sr, Ba 6 Chapter 9 in Solid State Physics, Saunders College, by Ashcroft and Mermin, ISBN # - 3-49346-3 Fermi Al Cu, Ag, Au d k. K Ge E G = 4.3 ev Si E G = 4. ev GaAs InAs CdS 3k B.7 ev n e n e e E G/k B T (3)

8 σ σ e E G/k B T (32) E G 2. Ge As As As + Ge Ge Ge As As + Coulomb m Coulomb As + e 2 /ϵr a B = ϵ 2 m e 2 = m m ϵa B (33) Eg = m e 4 2ϵ 2 2 = m ϵ 2 m E g hydrogen (34) m.25m ϵ = 6 a B 6a B / E g. ev.7 ev Ge As donner Ga Ga acceptor K. VI. A.. N n R n u n U(R) R n n + U((R n+ + u n+ ) (R n + u n )) = U(a + u n+ u n ) U(a) + 2 K(u n+ u n ) 2 (35) u n+ u n a K R = a U(x) u n+ u n U T = NU(a) + N n= u N+ = u 2 K(u n+ u n ) 2 (36) FIG. 7: n M 2 t 2 u n N n = U T u n = K(u n u n ) + K(u n+ u n ) = K( u n + 2u n u n+ ) (37)

9 37 M 2 t 2 Q q u n (t) = Q q (t)e ıqr n (38) = K( e ıqa + 2 e ıqa )Q q = 4K sin 2 ( qa 2 )Q q (39) u n+n = u n q = 2π n (4) = Na 37 Q q 39 4K ω = ± M sin(qa ) (4) 2 q u n (t) = Q q e ı(qr n ωt) (42) q 8 Brillouin zone π/a < q < π/a q /a K ω ±c q, c = M a (43) c w p/a FIG. 8: q 2. q = q = 9 q = q = (a) (b) FIG. 9: q = (a) (b) 3. 3N (n + /2) ω ω/2 n ω phonon photon Brillouin zone ω D k B T ω D k B T

2 3N C C = 3Nk B Dulong-Petit Debye θ D = ω D k B (44) T θ D θ D K T θ D k B T ω ω > k B T ω < k B T q ω = cq q < k B T/ c ( ) 3 4π kb T (2π) 3 3 (45) 3 c 3 () (2) k B /2 C k B ( kb T c ) 3 (46) T 3 Debye B.. n R n u n V (x) = N v(x R n ) (47) n= Ṽ (x) = N v(x R n u n ) (48) n= V (x) δv (x) N δv (x) = Ṽ (x) V (x) = v (x R n )u n (49) n= v (x) v(x) u n = q 5 49 δv (x) = q N Q q n= Q q e ıqrn (5) v (x R n )e ıqr n (5) k Bloch k Bloch [δv ] k k = φ k (x)δv (x)φ k(x)dx (52) [δv ] k k = q = q N Q q n= e ıqr n N Q q e ı(q k +k)r n n= } {{ } Nδ(q k +k G m ) v k k = a v (x R n )e ı(k k)x dx v (x )e ı(k k)x dx } {{ } v k k /N (53) v (x)e ı(k k )x dx (54) n G m (2π/a)m [δv ] k k = v k kq q δ(q k + k G m ) (55) 55 k k q = k k + G m ω q q ω q q 55 k q = k k + G m k k q = k k+g m k 2 q = k k + G m G m

2 (a) k' k q (b) k' k -q FIG. 2: D. Coulomb ξ aξ ξ 2 k, k, q Brillouin zone k, q Brillouin zone k Brillouin zone k 2. C. Tight Binding Model Coulomb polaron ϵ = aξ + 2 bξ2 (56) ϵ min ϵ min = a2 2b at ξ = a b (57) 2ϵ min ϵ = 2aξ + 2 bξ2 (58) ϵ ϵ min = 2a2 b at ξ = 2a b (59) ϵ min < 2ϵ min 2 k k' k - q q k' + q FIG. 2: E.

22 k k W k k W k k v k 2 k Q q 2 (6) E k k = q + G (6) dk E k E k = ± ω q (62) Pauli k τ τ = k W k k (63) x δt x k x k x + δk, δk = e Eδt (64) δk k x v kx v kx + v kx k x δk (65) v kx = k x /m v kx v kx ee δt (66) m m n J = e k (v kx ee m δt) = ne2 E δt (67) m 22 τ 67 δt τ J = σe (68) σ = ne2 τ m (69) FIG. 22: τ Q q 2 T τ T σ T (7) VII. BOSE-EINSTEIN CONDENSATION A. Bose-Einstein Condensation 997 5 Bose-Einstein condensation Bose

23 µ 23 2. Bose BEC BEC Bose p de Broglie λ = h/p T < p > mk B T de Broglie λ db h mkb T (72) de Broglie BEC FIG. 23: Bose T > T c T T c T < T c) Taken from http://amo.phy.gasou.edu/bec.html. n λ 3 db (73) 3. 4. Bose BEC Bose Bose Bose p Bose-Einstein < n p >= exp[(ϵ p µ)/k B T ] (7) µ µ k B T Bose Boltzmann µ k B T condensation 4 K 2 K Bose 4 2 BEC B. 9 eiden Kamerlingh Onnes n n n. e p e p e p FIG. 24: Bose T µ ) T µ )T = K Bose p = ϵ p = Fermi Fermi K Meissner effect H c

24 Hc(T), in gauss 9 6 3 In Hg Sn Pb Tl 2 4 6 8 Temperature, in K Cooper Fermi Bose Bose BEC K Fermi sea Fermi sea Pauli ψ (r, r 2 ) = k g k e ık r e ık r 2 (74) FIG. 25: 26 siglet 74 ψ (r r 2 ) = (α β 2 β α 2 ) k g k cos k (r r 2 ) (75) Hc - 4 p M Hc Applied Magnetic Field Ba Hc - 4 p M Hc Hc Applied Magnetic Field Ba FIG. 26: H c Mesissner type I type II H c Meissner type I H c2 vortex type II H c type I Hc2 α up spin β down spin triplet singlet singlet r r 2 Schrödinder E Eg k = 2ϵ k g k + k >k F V kk g k (76) 2 2 2ϵ k V kk = V (r)e ı(k k) r dr (77) r 76 g k E < 2E F V (r) { V ϵk E V kk = F < ω c (78) otherwise 2. Cooper 956 Coper Cooper Cooper Fermi sea gk g k = V 2ϵ k E (79) 79 k g k V = k>k F (2ϵ k E) (8)

25 V EF + ω c = N() dϵ E F 2ϵ E = 2 N() ln(2e F E + 2 ω c ) (8) 2E F E N()V E 2E F 2 ω c e 2/N()V < 2E F (82) Fermi sea 2E F 2E F V = 75 79 ψ (r) = (α β 2 β α 2 ) k cos k r 2ξ k + E (83) ξ k = ϵ k E F and E = 2E F E > (84) 83 k ξ k < E Fermi ξ k N()V E = 2 ω c e 2/N()V ω c ω c 78 E p v F Cooper x h/ p hv F /E T c E E k B T c Cooper ξ hv F /k B T c ae F /k B T C a 3. Coulomb 2 K C. BCS Cooper Fermi sea Fermi sea BCS [].