27 1: Lewis $Le_{i}$ $\mathrm{c}\mathrm{h}_{4}$ CO $\mathrm{c}\mathrm{o}_{2}$ $\mathrm{h}_{2}$ $\mathrm{h}_{2}\mathrm{o}$ $\mathrm{n}_{2}$ O2 $Le_{i}$



Similar documents
Effect of Radiation on a Spray Jet Flame Ryoichi KUROSE and Satoru KOMORI Engineering Research Laboratory, Central Research Institute of Electric Powe

$\hat{\grave{\grave{\lambda}}}$ $\grave{\neg}\backslash \backslash ^{}4$ $\approx \mathrm{t}\triangleleft\wedge$ $10^{4}$ $10^{\backslash }$ $4^{\math

(Mamoru Tanahashi) Department of Mechanical and Aerospaoe Engineering Tokyo Institute of Technology ,,., ,, $\sim$,,

60 1: (a) Navier-Stokes (21) kl) Fourier 2 $\tilde{u}(k_{1})$ $\tilde{u}(k_{4})$ $\tilde{u}(-k_{1}-k_{4})$ 2 (b) (a) 2 $C_{ijk}$ 2 $\tilde{u}(k_{1})$

: u i = (2) x i Smagorinsky τ ij τ [3] ij u i u j u i u j = 2ν SGS S ij, (3) ν SGS = (C s ) 2 S (4) x i a u i ρ p P T u ν τ ij S c ν SGS S csgs

44 $d^{k}$ $\alpha^{k}$ $k,$ $k+1$ k $k+1$ dk $d^{k}=- \frac{1}{h^{k}}\nabla f(x)k$ (2) $H^{k}$ Hesse k $\nabla^{2}f(x^{k})$ $ff^{k+1}=h^{k}+\triangle

多孔質弾性体と流体の連成解析 (非線形現象の数理解析と実験解析)

106 (2 ( (1 - ( (1 (2 (1 ( (1(2 (3 ( - 10 (2 - (4 ( 30 (? (5 ( 48 (3 (6 (

(Kazuo Iida) (Youichi Murakami) 1,.,. ( ).,,,.,.,.. ( ) ( ),,.. (Taylor $)$ [1].,.., $\mathrm{a}1[2]$ Fermigier et $56\mathrm{m}

42 1 ( ) 7 ( ) $\mathrm{s}17$ $-\supset$ 2 $(1610?\sim 1624)$ 8 (1622) (3 ), 4 (1627?) 5 (1628) ( ) 6 (1629) ( ) 8 (1631) (2 ) $\text{ }$ ( ) $\text{

20 $P_{S}=v_{0}\tau_{0}/r_{0}$ (3) $v_{0}$ $r_{0}$ $l(r)$ $l(r)=p_{s}r$ $[3 $ $1+P_{s}$ $P_{s}\ll 1$ $P_{s}\gg 1$ ( ) $P_{s}$ ( ) 2 (2) (2) $t=0$ $P(t

チャネル乱流における流体線の伸長

128 Howarth (3) (4) 2 ( ) 3 Goldstein (5) 2 $(\theta=79\infty^{\mathrm{o}})$ : $cp_{n}=0$ : $\Omega_{m}^{2}=1$ $(_{\theta=80}62^{\mathrm{o}})$

90 2 3) $D_{L} \frac{\partial^{4}w}{\mathrm{a}^{4}}+2d_{lr}\frac{\partial^{4}w}{\ ^{2}\Phi^{2}}+D_{R} \frac{\partial^{4}w}{\phi^{4}}+\phi\frac{\partia

133 1.,,, [1] [2],,,,, $[3],[4]$,,,,,,,,, [5] [6],,,,,, [7], interface,,,, Navier-Stokes, $Petr\dot{o}$v-Galerkin [8], $(,)$ $()$,,

Title 改良型 S 字型風車についての数値シミュレーション ( 複雑流体の数理とシミュレーション ) Author(s) 桑名, 杏奈 ; 佐藤, 祐子 ; 河村, 哲也 Citation 数理解析研究所講究録 (2007), 1539: Issue Date URL

Title 地球シミュレータによる地球環境シミュレーション ( 複雑流体の数理解析と数値解析 ) Author(s) 大西, 楢平 Citation 数理解析研究所講究録 (2011), 1724: Issue Date URL

カルマン渦列の消滅と再生成 (乱流研究 次の10年 : 乱流の動的構造の理解へ向けて)

圧縮性LESを用いたエアリード楽器の発音機構の数値解析 (数値解析と数値計算アルゴリズムの最近の展開)

A Numerical Study on Early Stage of Flame Kernel Development in Spark Ignition Process for Methane/Air Combustible Mixtures Shinji NAKAYA*6, Kazuo HAT

カルマン渦列の発生の物理と数理 (オイラー方程式の数理 : カルマン渦列と非定常渦運動100年)


ワークショップ

液相化学反応を伴う乱流拡散の研究名城大学理工学部研究報告 No.5 21 R 6 R S 1) B 6 2 M =1 Nozzle ID =1.2 OD = x mm 6 mm 6 mm 2 mm M = 1 mm mm 1.5 mm x 1 x = 1 m

$arrow$ $\yen$ T (Yasutala Nagano) $arrow$ $\yen$ ?,,?,., (1),, (, ).,, $\langle$2),, (3),.., (4),,,., CFD ( ),,., CFD,.,,,

MD $\text{ }$ (Satoshi Yukawa)* (Nobuyasu Ito) Department of Applied Physics, School of Engineering, The University of Tokyo Lennar

40 $\mathrm{e}\mathrm{p}\mathrm{r}$ 45

Microsoft Word - 158前刷.doc

[15] 1970 Chiu [16, 17] [18-22] [20] Chiu [23] [24] [25] Chiu [16, 17] Chiu G 2

FS_handbook.indd

110 $\ovalbox{\tt\small REJECT}^{\mathrm{i}}1W^{\mathrm{p}}\mathrm{n}$ 2 DDS 2 $(\mathrm{i}\mathrm{y}\mu \mathrm{i})$ $(\mathrm{m}\mathrm{i})$ 2

音響問題における差分法を用いたインパルス応答解析予測手法の検討 (非線形波動現象の数理と応用)

,,, 2 ( ), $[2, 4]$, $[21, 25]$, $V$,, 31, 2, $V$, $V$ $V$, 2, (b) $-$,,, (1) : (2) : (3) : $r$ $R$ $r/r$, (4) : 3

316 on One Hundred Years of Boundary Layer Research, Proceedings of the IUTAM Symposium held at DLR-Göttingen, Germany, 2004, (eds. G. E. A. Meier and

広報さがみはら第1242号

福岡大学人文論叢47-3

$/\mathrm{t}\mathrm{a}\mathrm{k}\mathrm{a}\mathrm{y}\mathrm{a}$ MIYANO E mail: hirosaki-u.ac.jp 1 ( ) ( ) 1980

Effects of Pressure on Unstretched Laminar Burning Velocity, Markstein Length and Cellularity of Propagating Spherical Laminar Flames Toshiaki KITAGAW

原著_十河.indd

溝乱流における外層の乱れの巨視的構造に関するモデル Titleシミュレーション ( 乱れの発生, 維持機構および統計法則の数理 ) Author(s) 奥田, 貢 ; 辻本, 公一 ; 三宅, 裕 Citation 数理解析研究所講究録 (2002), 1285: Issue Date

$\mathrm{v}$ ( )* $*1$ $\ovalbox{\tt\small REJECT}*2$ \searrow $\mathrm{b}$ $*3$ $*4$ ( ) [1] $*5$ $\mathrm{a}\mathrm{c}

Journal of the Combustion Society of Japan Vol.58 No.185 (2016) ORIGINAL PAPER 火災旋風近傍の流れに関する研究 Flow Around a Fire Whirl *

工学的な設計のための流れと熱の数値シミュレーション

1 1 Emmons (1) 2 (2) 102

腎不全-第22回.indd

$\Downarrow$ $\Downarrow$ Cahn-Hilliard (Daisuke Furihata) (Tomohiko Onda) 1 (Masatake Mori) Cahn-Hilliard Cahn-Hilliard ( ) $[1]^{1

Title Compactification theorems in dimens Topology and Related Problems) Author(s) 木村, 孝 Citation 数理解析研究所講究録 (1996), 953: Issue Date URL

Title 半線形波動方程式系の解の爆発 ( 非線型双曲型方程式系の解の挙動に関する研究 ) Author(s) 太田, 雅人 Citation 数理解析研究所講究録 (2003), 1331: Issue Date URL

Archimedean Spiral 1, ( ) Archimedean Spiral Archimedean Spiral ( $\mathrm{b}.\mathrm{c}$ ) 1 P $P$ 1) Spiral S

Title 非線形シュレディンガー方程式に対する3 次分散項の効果 ( 流体における波動現象の数理とその応用 ) Author(s) 及川, 正行 Citation 数理解析研究所講究録 (1993), 830: Issue Date URL

空力騒音シミュレータの開発


mains.dvi

[7,8] ([2]) [cm/s] 1 1 Ω i (i = 1, 2, 3, 4, 5) 1: Geological features and permeability coefficient ([2]) (cm/s) Ω Ω 3 1

(Koji Kawasaki) Department of Civil Engineering, Graduate School of Engineering Nagoya University 1.,.,,,,,.,,,,,,,.,,,,.,,,,., (19

\mathrm{n}\circ$) (Tohru $\mathrm{o}\mathrm{k}\mathrm{u}\mathrm{z}\circ 1 $(\mathrm{f}_{\circ \mathrm{a}}\mathrm{m})$ ( ) ( ). - $\


2 q effective mean dynamic pressure [Pa] q cr critical value of dynamic pressure [Pa] q CW heat flux for cold wall [J/m 2 ] r th throat radius [m] x a

空間多次元 Navier-Stokes 方程式に対する無反射境界条件

$\mathrm{c}_{j}$ $u$ $u$ 1: (a) (b) (c) $y$ ($y=0$ ) (a) (c) $i$ (soft-sphere) ( $m$:(mj) $\sigma$:(\sigma j) $i$ $(r_{1j}.$ $j$ $r_{i}$ $r_{j}$ $=r:-

$\sim 22$ *) 1 $(2R)_{\text{}}$ $(2r)_{\text{}}$ 1 1 $(a)$ $(S)_{\text{}}$ $(L)$ 1 ( ) ( 2:1712 ) 3 ( ) 1) 2 18 ( 13 :

Title ゾウリムシの生物対流実験 ( 複雑流体の数理とその応用 ) Author(s) 狐崎, 創 ; 小森, 理絵 ; 春本, 晃江 Citation 数理解析研究所講究録 (2006), 1472: Issue Date URL

Fig. 2 Pressure-temperature diagram of pure substance and mixed thel consisting of n-tridecane and n-pentane Fig. 1 Schematic of present model

76 20 ( ) (Matteo Ricci ) Clavius 34 (1606) 1607 Clavius (1720) ( ) 4 ( ) \sim... ( 2 (1855) $-$ 6 (1917)) 2 (1866) $-4$ (1868)

NUMERICAL CALCULATION OF TURBULENT OPEN-CHANNEL FLOWS BY USING A MODIFIED /g-e TURBULENCE MODEL By Iehisa NEZU and Hiroji NAKAGA WA Numerical calculat

Fig. 1 Experimental apparatus.

,.,.,,. [15],.,.,,., , 1., , 1., 1,., 1,,., 1. i

14 6. $P179$ 1984 r ( 2 $arrow$ $arrow$ F 7. $P181$ 2011 f ( 1 418[? [ 8. $P243$ ( $\cdot P260$ 2824 F ( 1 151? 10. $P292

$\mathbb{h}_{1}^{3}(-c^{2})$ 12 $([\mathrm{a}\mathrm{a}1 [\mathrm{a}\mathrm{a}3])$ CMC Kenmotsu-Bryant CMC $\mathrm{l}^{3}$ Minkowski $H(\neq 0)$ Kenm

) [9] DNS DNS Westbrook and Dryer[10] ( ) [11] DNS Markstein Markstein Markstein Markstein Markstein [12,13] Markstein Markstein Marks

第86回日本感染症学会総会学術集会後抄録(II)

Title DEA ゲームの凸性 ( 数理最適化から見た 凸性の深み, 非凸性の魅惑 ) Author(s) 中林, 健 ; 刀根, 薫 Citation 数理解析研究所講究録 (2004), 1349: Issue Date URL

$\ovalbox{\tt\small REJECT}$ SDE 1 1 SDE ;1) SDE 2) Burgers Model SDE $([4],[5],[7], [8])$ 1.1 SDE SDE (cf.[4],[5]) SDE $\{$ : $dx_

(6) (111) (148) (129) (169) CAPCOM ANNUAL REPORT

112 Landau Table 1 Poiseuille Rayleigh-Benard Rayleigh-Benard Figure 1; 3 19 Poiseuille $R_{c}^{-1}-R^{-1}$ $ z ^{2}$ 3 $\epsilon^{2}=r_{\mathrm{c}}^{

Report of Special Research from the National Institute for Environmental Studies, Japan NATIONAL INSTITUTE FOR ENVIRONMENTAL STUDIES

(PML) Perfectly Matched Layer for Numerical Method in Unbounded Region ( ( M2) ) 1,.., $\mathrm{d}\mathrm{t}\mathrm{n}$,.,, Diri

,, Mellor 1973),, Mellor and Yamada 1974) Mellor 1973), Mellor and Yamada 1974) 4 2 3, 2 4,

$\mathrm{i}\mathrm{d}$ 15 ) Authorization ( ) Accounting ( ) UNIX Authentication ID Authorization Accounting $\sim-$ UNIX Authentication BSD Flat Data

(Nobumasa SUGIMOTO) (Masatomi YOSHIDA) Graduate School of Engineering Science, Osaka University 1., [1].,., 30 (Rott),.,,,. [2].

A MATLAB Toolbox for Parametric Rob TitleDesign based on symbolic computatio Design of Algorithms, Implementatio Author(s) 坂部, 啓 ; 屋並, 仁史 ; 穴井, 宏和 ; 原

『赤すぐ』『妊すぐ』<出産・育児トレンド調査2003>

30

untitled

2 (March 13, 2010) N Λ a = i,j=1 x i ( d (a) i,j x j ), Λ h = N i,j=1 x i ( d (h) i,j x j ) B a B h B a = N i,j=1 ν i d (a) i,j, B h = x j N i,j=1 ν i

untitled

7 OpenFOAM 6) OpenFOAM (Fujitsu PRIMERGY BX9, TFLOPS) Fluent 8) ( ) 9, 1) 11 13) OpenFOAM - realizable k-ε 1) Launder-Gibson 15) OpenFOAM 1.6 CFD ( )

1 食品安全を主な目的とする取組

2

% 32.3 DI DI





„´™Ÿ/’£flö

A03-2.dvi



カルマン渦列の消滅と再生成のメカニズム

D v D F v/d F v D F η v D (3.2) (a) F=0 (b) v=const. D F v Newtonian fluid σ ė σ = ηė (2.2) ė kl σ ij = D ijkl ė kl D ijkl (2.14) ė ij (3.3) µ η visco

Transcription:

1413 2005 26-35 26 (Naoto YOKOYAMA)1 (Kana SAITO) (Jiro MIZUSHIMA) 1 (Peters 1984) (Kida and Goto 2002) (Donbar et al 2001) ( 2002) Navier-Stokes (Nada et al 2004) Everest et al (1995) Rayleigh - 2 (1998) Skeletal (2004) / - $k-\epsilon$ Large Eddy Simulation 6 4 le-mail:nyokoyam@maildoshishaacjp

27 1: Lewis $Le_{i}$ $\mathrm{c}\mathrm{h}_{4}$ CO $\mathrm{c}\mathrm{o}_{2}$ $\mathrm{h}_{2}$ $\mathrm{h}_{2}\mathrm{o}$ $\mathrm{n}_{2}$ O2 $Le_{i}$ 097 110 139 030 083 10 111 2 Dufour ( ) Soret ( ) $\rho$ $u$ $T$ $Y_{i}$ $\frac{\partial\rho}{\partial t}+\nabla\cdot(\rho u)=0$ (1a) $\frac{\partial(\rho u)}{\partial t}+\nabla\cdot(\rho uu)=-\nabla p+\nabla\cdot\tau$ (1b) $\frac{\partial(\rho T)}{\partial t}+\nabla\cdot(\rho ut)-\nabla\cdot(\lambda\nabla T)=-\sum_{i}1\underline{1}h_{i}\omega_{i}\overline{\overline{c_{p}}}\overline{c_{\mathrm{p}}}$ (1c) $\frac{\partial(\rho Y_{i})}{\partial t}+\nabla\cdot(\rho uy_{i})-\nabla\cdot(\rho D_{i}\nabla Y_{i})=\omega_{i}$ $(1\mathrm{d})$ $p$ $R$ $W_{i}$ $p=$ $\tau$ $\rho RT\sum_{i}Y_{i}/W_{i}$ $I$ $\tau=\mu(\nabla u+$ $(\nabla u)^{t}-2/3(\nabla\cdot u)i)$ $= \sum_{i}y_{i}c_{\mathrm{p}i}$ $h_{i}$ $h_{i}=h_{i}^{0}+ \int_{t^{0}}^{t}c_{pi}(t)dt$ $\omega_{i}$ CHEMKIN(Kee et al 1996) $\lambda$ $D_{i}$ $\mu$ (Smooke et al 1991) $=A(T/T_{0})^{07}$ $\rho D_{i}=Le_{i}^{-1}(\lambda/\overline{\%})$ $\mu=pr(\lambda/\overline{c_{p}})$ V $A=258\cross 10^{-5}\mathrm{k}\mathrm{g}/(\mathrm{m}\cdot\sec)$ Prandtl $Pr=075$ Lewis 1 $Le_{i}$ 6 4 (Jones and Lindstedt 1988) $\mathrm{c}\mathrm{h}_{4}+\frac{1}{2}\mathrm{o}_{2}arrow \mathrm{c}\mathrm{o}+2\mathrm{h}_{2}$ $\mathrm{c}\mathrm{h}_{4}+\mathrm{h}_{2}\mathrm{o}arrow \mathrm{c}\mathrm{o}+3\mathrm{h}_{2}$ (2a) (2b) $\mathrm{h}_{2}+\frac{1}{2}\mathrm{o}_{2}=\mathrm{h}_{2}\mathrm{o}$ (2c) $\mathrm{c}\mathrm{o}+\mathrm{h}_{2}\mathrm{o}=\mathrm{c}\mathrm{o}_{2}+\mathrm{h}_{2}$ $(2\mathrm{d})$

$v_{\mathrm{c}\mathrm{h}_{4}}$ $\mathrm{m}$ $\mathrm{k}\mathrm{g}$ $\mathrm{s}\mathrm{e}\mathrm{c}$ $\ovalbox{\tt\small REJECT}$ $\mathrm{m}\mathrm{o}1$ 28 2: $A_{i}$ (a) $44\cross 10^{11}$ $126\cross 10^{5}$ $(\mathrm{b})$ $3\cross 10^{8}$ $126\cross 10^{5}$ $(\mathrm{c})$ $25\cross 10^{16}$ $167\cross 10^{5}$ $(\mathrm{d})$ $275\cross 10^{9}$ $838\cross 10^{4}$ 1: $\Omega_{j}$ Arrhenius $\Omega_{\mathrm{a}}=A_{\mathrm{a}}[\mathrm{C}\mathrm{H}_{4}]^{1/2}[\mathrm{O}_{2}]^{5/4}\exp(-E_{\mathrm{a}}/RT)$ $\Omega_{\mathrm{b}}=A_{\mathrm{b}}[\mathrm{C}\mathrm{H}_{4}]$ [H20] (3a) $\exp(-e_{\mathrm{b}}/rt)$ (3b) $\Omega_{\mathrm{c}}=A_{\mathrm{c}}[\mathrm{H}_{2}]^{1/2}[\mathrm{O}_{2}]^{9/4}[\mathrm{H}_{2}\mathrm{O}]^{-1}T^{-1}\exp(-E_{\mathrm{c}}/RT)$ (3c) $\Omega_{\mathrm{d}}=A_{\mathrm{d}}[\mathrm{C}\mathrm{O}][\mathrm{H}_{2}\mathrm{O}]\exp(-E_{\mathrm{d}}/RT)$ $(3\mathrm{d})$ $[\cdot]$ $A_{i}$ $E_{i}$ l 2 $\nu_{ij}$ (2) $j$ (1) $\omega_{i}=\sum_{j}\nu_{ij}\omega_{j}$ 6 (Lele 1992) Navier- Stokes (Baum et al 1994) 1 $d=2\cross 10^{-3}\mathrm{m}$ $Y_{\mathrm{C}\mathrm{H}_{4}0}=1$ $T_{1\mathrm{o}\mathrm{w}}=300\mathrm{K}$ $T_{1\mathrm{o}\mathrm{w}}$ $v\mathrm{c}\mathrm{h}_{4}=40\mathrm{m}/\sec$ $Y_{\mathrm{O}_{2}0}=0232$ $Y_{\mathrm{N}_{2}0}=0768$ $v_{\mathrm{a}\mathrm{i}\mathrm{r}}=4\mathrm{m}/\sec$ $T_{\mathrm{h}\mathrm{i}\mathrm{g}\mathrm{h}}=2000\mathrm{K}$ $t<50\cross 10^{-4}\sec$ $T_{\mathrm{h}\mathrm{i}\mathrm{g}\mathrm{h}\mathrm{i}\mathrm{n}\mathrm{i}\mathrm{t}}=2250\mathrm{K}$ $T_{\mathrm{h}\mathrm{i}\mathrm{g}\mathrm{h}}$ 1 $Re\sim 8\cross 10^{3}$ Reynolds Damk\"ohler $Da\sim 4\cross 10^{7}$ 4 Runge-Kutta

10-3 29 3 31 t=48 $\cross$ 10-3sec& \acute 2 $t=48\cross 10^{-3}\sec$ $0\leq r\leq 12\cross 10^{-2}0\leq z\leq 95\cross 10^{-2}$ $5\cross 10^{-3}\leq z_{\sim}<225\cross 10^{-2}$ $J$ $z\sim 8\cross 10^{-3}\mathrm{m}$ $\cross$ $\leq z_{\sim}<4\cross 10^{-3}$ 2 ( $2(c)-(g)$ ) - l $\backslash ^{\backslash }$ ( $2(a)(b)$ ) 32 Bilger(1988) $Z= \frac{2y_{\mathrm{c}\mathrm{h}_{4}}/w_{\mathrm{c}\mathrm{h}_{4}}+(y_{\mathrm{o}_{2}0}-y_{\mathrm{o}_{2}})/w_{\mathrm{o}_{2}}+(y_{\mathrm{c}\mathrm{o}}/w_{\mathrm{c}\mathrm{o}}+y_{\mathrm{h}_{2}}/w_{\mathrm{h}_{2}})/2}{2y_{\mathrm{c}\mathrm{h}_{4}0}/w_{\mathrm{c}\mathrm{h}_{4}}+y_{\mathrm{o}_{2}0}/w_{\mathrm{o}_{2}}}$ (4) 0 1 2 $Z= \frac{y_{\mathrm{o}_{2}0}/w_{\mathrm{o}_{2}}}{2y_{\mathrm{c}\mathrm{h}_{4}0}/w_{\mathrm{c}\mathrm{h}_{4}}+y_{\mathrm{o}_{2}0}/w_{o_{2}}}=z_{\mathrm{s}\mathrm{t}}$ (5) b $D_{i}$ $D$ 3 $Z_{\mathrm{s}\mathrm{t}}$ $\rho\frac{\partial Z}{\partial t}+\rho u\cdot\nabla Z=\nabla\cdot(\rho D\nabla Z)$ (6) $Z=Z_{\mathrm{s}\mathrm{t}}$ (6) $\rho\frac{\partial Y_{i}}{\partial t}=\frac{\rho}{le_{i}}\frac{\chi}{2}\frac{\partial^{2}y_{i}}{\partial Z^{2}}+\omega_{i}$ (7) $\chi$ $\chi=2d \nabla Z ^{2}$ $D_{i}$ 2 (6)

30 2; $(t=48\cross 10^{-3})(a)$ (b) (c) (d) ) (e) (f) (g) H $z$

31 3: 48 ) $\cross 10^{-3}$ $Z_{\mathrm{s}\mathrm{t}}$ $- \sum_{i}h_{i}\omega_{i}$ ) $(t=$ ( Lewis 1 Burke-Schumann $Z\leq Z_{\mathrm{s}\mathrm{t}}$ 0 $Y_{\mathrm{F}^{\backslash }}=\{$ $Y_{\mathrm{F}0}(Z-Z_{\mathrm{s}\mathrm{t}})/(1-Z_{\mathrm{s}\mathrm{t}})$ $Z>Z_{\mathrm{s}\mathrm{t}}$ $Y_{\mathrm{O}_{2}0}(1-Z/Z_{\mathrm{s}\mathrm{t}})$ $Z\leq Z_{\mathrm{s}\mathrm{t}}$ $Y_{\mathrm{O}_{2}}=\{$ 0 $Z>Z_{\mathrm{s}\mathrm{t}}$ $Z$ $Z\leq Z_{\mathrm{s}\mathrm{t}}$ $T-T_{1\mathrm{o}\mathrm{w}}\propto\{$ $1-Z$ $Z>Z_{\mathrm{s}\mathrm{t}}$ $t=48\cross 10^{-3}$ 4 Burke-Schumann Burke-Schumann l $=Z_{\mathrm{s}\mathrm{t}}$ 4 Z 2 3 2 G 0 3

$\dot{\mathrm{b}}_{\tilde{\mathrm{t}}}$ 32 2500 1 2000 08 1500 06 1000 04 500 02 00 002 04 06 08 $z$ $T_{:}$ $Y_{\mathrm{C}\mathrm{H}_{4}}$ $Y_{\mathrm{O}_{2}}$ 4: $Z$ Burke-Schumann $Z=Z_{\mathrm{s}\mathrm{t}}$ $(t=48\cross 10^{-3})$ $Y_{i}$ (7) $Z$ $\chi_{\mathrm{s}\mathrm{t}}$ } $=Z_{\mathrm{s}\mathrm{t}}$ 5 Z $\xi$ (a) (b) $\xi=0$ $r$ $n$ $\varphi$ $\varphi=\nabla\cdot u-n\cdot\nabla u\cdot n$ $5(a)$ $\xi\leq 8\cross 10^{-3}$ 2 3 $z_{\sim}<7\cross 10^{-3}$ $5(b)$ \mbox{\boldmath $\xi$}\sim $<8\cross 10^{-3}$ $5(a)10^{-2}<\xi\sim<\sim 25\cross 10^{-2}$ $5(b)$ 2 3 $10-2\sim\sim<z<225\cross 10^{-2}$ $5(a)$ 3 $6(a)$

$\mathfrak{c}\backslash$ 33 $Z=Z_{\mathrm{s}\mathrm{t}}$ 5: (a) (b) $(\mathrm{x}10^{3})$ (b) ( ) 6: (a) 2 up ( )down b ( )

34 $(r z)=(28\cross 10^{-3}2088\cross 10^{-2})(\xi\sim 1499\cross 10^{-2})$ $\eta$ $\eta=0$ 3 2 $6(b)$ 2 $\chi_{\mathrm{s}\mathrm{t}}=2d \nabla Z _{\mathrm{s}\mathrm{t}}^{2}$ $(r z)=(302\cross 10^{-3}1388\cross 10^{-2})(\xi\sim 2201\cross 10^{-2})$ 4 6 4 $\grave{\mathrm{j}}\ovalbox{\tt\small REJECT}$ Burke-Schumann $\langle$ Lagrangian (Pitsch 2000) 3 $\Delta$ Baum M Poinsot T and Th\ evenin D (1994) Accurate boundary condition for multicomponent reactive flows J Comput Phys 116 247-261

) ) 35 Bilger R (1988) The structure of turbulent nonpremixed flames In Twenty-Second Symposium (Intemational) on Combustion pp 475-488 The Combustion Institute Pittsburgh Donbar J M Driscoll J F and Carter C D (2001) Strain rates measured along the wrinkled flame contour within turbulent non-premixed jet flame Cornbust Flame 125 1239-1257 Everest D A Driscoll J F Dahm W J A and Feikema D A (1995) Images of the two-dimensional field and temperature gradients to quantify mixing rates within a non-premixed turbulent jet flame Combust Flame 101 58-68 Jones W P and Lindstedt R P (1988) Global reaction schemes for hydrocarbon combustion Combust Flame 73 233-249 Kee R J Rupley F M Meeks E and Miller J A (1996) Chemkin-III: Afortran chemical kinetics package for the analysis of gas-phase chemical and plasma kinetics Technical Report SAND96-8216 Sandia National Laboratories Kida S and Goto S (2002) Line statistics: Stretching rate of passive lines in turbulence Phys Fluids 14 352-361 (2004) ( $\mathrm{b}$ 70 773-779 Lele S K (1992) Compact finite difference schemes with spectral-like resolution $J$ Comput Phys 103 16-42 Nada Y Tanahashi M and Miyauchi T (2004) Effect of turbulence characteristics on local flame structure of $\mathrm{h}_{2}$-air premixed flames J Turbulence 5 16 Peters N (1984) Laminar diffusion models in non-premixed turbulent combustion Prog Energy Combust Sci 10 319-339 Pitsch H (2000) Unsteady flamelet modeling of differential diffusion in turbulent jet diffusion flames Combust Flame 123 358-374 Smooke M D Wess J Ruelle D Jaffe R L and Ehlers J (Eds) (1991) Reduced $\mathrm{p}\mathrm{p}$ Kinetic Mechanisms and Asymptotic Approirnations for Methane-Air Flames $1-$ $28$ Springer-Verlag (2002) (6 ) Djamrak D (1998) 2 $\mathrm{b}$ ( 64 318 325