21世紀の統計科学 <Vol. III>



Similar documents
seminar0220a.dvi

z.prn(Gray)

Stata 11 Stata ts (ARMA) ARCH/GARCH whitepaper mwp 3 mwp-083 arch ARCH 11 mwp-051 arch postestimation 27 mwp-056 arima ARMA 35 mwp-003 arima postestim

山形大学紀要

カルマンフィルターによるベータ推定( )

0.,,., m Euclid m m. 2.., M., M R 2 ψ. ψ,, R 2 M.,, (x 1 (),, x m ()) R m. 2 M, R f. M (x 1,, x m ), f (x 1,, x m ) f(x 1,, x m ). f ( ). x i : M R.,,

03.Œk’ì

50-4 平井健之.pwd

24.15章.微分方程式

第86回日本感染症学会総会学術集会後抄録(II)

橡同居選択における所得の影響(DP原稿).PDF

…K…E…X„^…x…C…W…A…fi…l…b…g…‘†[…N‡Ì“‚¢−w‘K‡Ì‹ê™v’«‡É‡Â‡¢‡Ä

Part. 4. () 4.. () Part ,

Stepwise Chow Test * Chow Test Chow Test Stepwise Chow Test Stepwise Chow Test Stepwise Chow Test Riddell Riddell first step second step sub-step Step

チュートリアル:ノンパラメトリックベイズ

E B m e ( ) γma = F = e E + v B a m = 0.5MeV γ = E e m =957 E e GeV v β = v SPring-8 γ β γ E e [GeV] [ ] NewSUBARU SPring

, 1), 2) (Markov-Switching Vector Autoregression, MSVAR), 3) 3, ,, , TOPIX, , explosive. 2,.,,,.,, 1


わが国企業による資金調達方法の選択問題

一般演題(ポスター)

日本内科学会雑誌第98巻第3号

(CFW ) CFW 1

DSGE Dynamic Stochastic General Equilibrium Model DSGE 5 2 DSGE DSGE ω 0 < ω < 1 1 DSGE Blanchard and Kahn VAR 3 MCMC

第85 回日本感染症学会総会学術集会後抄録(I)

Microsoft Word - 計量研修テキスト_第5版).doc


日本糖尿病学会誌第58巻第2号

²�ËÜËܤǻþ·ÏÎó²òÀÏÊÙ¶¯²ñ - Â裱¾Ï¤ÈÂ裲¾ÏÁ°È¾

オーストラリア研究紀要 36号(P)☆/3.橋本

330

082_rev2_utf8.pdf



A A. ω ν = ω/π E = hω. E

<4D F736F F D20939D8C7689F090CD985F93C18EEA8D758B E646F63>

LA-VAR Toda- Yamamoto(1995) VAR (Lag Augmented vector autoregressive model LA-VAR ) 2 2 Nordhaus(1975) 3 1 (D2)



dvipsj.4131.dvi


tnbp59-17_Web:プO1/ky079888509610003201

204 / CHEMISTRY & CHEMICAL INDUSTRY Vol.69-1 January

放射線専門医認定試験(2009・20回)/HOHS‐01(基礎一次)


診療ガイドライン外来編2014(A4)/FUJGG2014‐01(大扉)

fiúŁÄ”s‘ê‡ÌŁª”U…−…X…N…v…„…~…A…•‡Ì ”s‘ê™´›ß…−…^†[…fiŠ‚ª›Âfl’«

確率論と統計学の資料

日本糖尿病学会誌第58巻第1号

arma dvi

2 N(ε 1 ) N(ε 2 ) ε 1 ε 2 α ε ε 2 1 n N(ɛ) N ɛ ɛ- (1.1.3) n > N(ɛ) a n α < ɛ n N(ɛ) a n

本文/YAZ092F

Microsoft Word - 計量研修テキスト_第5版).doc

Power Transformation and Its Modifications Toshimitsu HAMASAKI, Tatsuya ISOMURA, Megu OHTAKI and Masashi GOTO Key words : identity transformation, pow

評論・社会科学 123号(P)☆/1.福田

Transcription:

21 III HP, 2011 11 II 6 1 ( ) 1980 1 tanaka@stat.hit-u.ac.jp 141

1 20 Journal of the Royal Statistical Society, Series B 20 1960 M.S. Bartlett, M.H. Quenouille, H. Wold, A.M. Walker, P. Whittle, E.J. Hannan, T.W. Anderson 1970 G.E.P Box G.M. Jenkins 1970 Time Series Analysis: Forecasting and Control identification estimation diagnostic checking Akaike (1973) AIC (Akaike s Information Criterion: ) 1980 1980 GARCH 1990 21 1980 2 3 6 7 8 142

2 5 3 6 2.1 {X t } t {y t } 2 (i) E(y t )=μ (ii) Cov(y t,y t+h )=γ( h ) γ(h) =0(h = 0) 0 y t = α j ε t j, {ε t } i.i.d.(0,σ 2 ), α 0 =1, j=0 αj 2 < (2.1) j=0 i.i.d.(0,σ 2 ) 0 σ 2 i.i.d. 0 (2.1) {α j } {y t } E(y t )=0, Cov(y t,y t+h )=σ 2 j=0 α j α j+ h (2.2) 143

(2.1) Brockwell-Davis (1991), Fuller (1996) i.i.d. s t Cov(y s,y t ) s t γ( s t ) s t ρ(h) = γ(h) γ(0) = γ(h) V(y t ) = ρ( h) (2.3) h ρ(h) ρ(h) h 1 1 1 2 2 3 144

1 10 8 6 4 2 0 2 4 0 100 200 300 400 2.2 {y t } S = h= Cov(y t,y t+h ) = h= γ(h) (2.4) S (2.1) {α j } j α j = O( λ j ), ( λ < 1) S < α j = O(j d 1 ), (0 <d<1/2) S 145

{y t } ARMA(p, q) y t = m + φ 1 y t 1 + + φ p y t p + ε t θ 1 ε t 1 θ q ε t q (2.5) {ε t } i.i.d.(0,σ 2 ) ARMA(p, q) φ(l) =1 φ 1 L φ p L p, θ(l) =1 θ 1 L θ q L q φ(l) y t = m + θ(l) ε t (2.6) ARMA(p, q) AR φ(x) =0 1 MA θ(x) =0 θ(x) =0 1 2 Anderson (1971) (2.6) ARMA(p, q) {y t } μ μ = m φ(1) = m 1 φ 1 φ p (2.6) ARMA(p, q) y t = μ + φ 1 (L) θ(l) ε t = μ + α j ε t j (2.7) j=0 α j φ 1 (L) θ(l) L j (2.7) ARMA MA( ) ARMA(p, q) AR( ) MA θ(x) =0 1 (2.7) ε t = θ 1 (L) φ(l)(y t μ) = β j (y t j μ) j=0 β j θ 1 (L) φ(l) L j ε t y t,y t 1, 146

ARMA(p, q) ARMA y t = ε t ε t 1 MA(1) ARMA MA MA 1 ARMA(2, 1) y t = 4.2+0.8y t 1 0.64y t 2 + ε t 0.5ε t 1 1 0.5L = 5+ 1 0.8L +0.64L ε 2 t (2.8) 5 ARMA(2, 1) 2.1 1 σ 2 =1 AR 2 0.4 ± i 0.48 = 0.8exp{±iπ/3} MA( ) (1 0.8L+ 0.64L 2 )(1 + α 1 L + α 2 L 2 + )=1 0.5L α 1 =0.3, α 2 = 0.4, α j =0.8α j 1 0.64α j 2 2 (2.8) ARMA(2, 1) 6 AR 6 re iω ω π/3 147

2 ARMA 1.0 0.8 0.6 0.4 0.2 0.0 0.2 0.4 0 5 10 15 20 2.3 {y t } (2.4) S γ(h) Fourier f(ω) = 1 2π h= γ(h) e ihω ( π ω π) (2.9) f(ω) f(ω) {y t } 2π f(ω) [0,π] ω 2π/ω π 2 0 148

{γ(h)} (2.9) f(ω) f(ω) (2.9) e ihω [ π, π] ω γ(h) 1 γ(h) f(ω) γ(h) = π π f(ω) e ihω dω (2.10) 1 1 f(ω) (2.10) γ(0) ω f(ω) ω {u t } σ 2 f(ω) =σ 2 /(2π) y t = μ + α j ε t j, {ε t } i.i.d.(0,σ 2 ), j=0 αj 2 < (2.11) j=0 f y (ω) 2 f y (ω) = α j e ijω j=0 f ε (ω) = σ2 2π α(e iω ) 2 (2.12) α(x) = j=0 α j x j ARMA(p, q) (2.8) ARMA(2, 1) f y (ω) = σ2 2π 1 0.5e iω 2 1 0.8e iω +0.64e 2iω 2 (2.13) 149

3 σ 2 =1 ω = π/3 6 3 ARMA 2.0 1.5 1.0 0.5 0.0 0 pi/2 pi ARMA Taniguchi- Kakizawa (2000) (2.10) (2006) 150

2.4 ARMA ARMA {y t } μ T y(t )=(y T,y T 1, ) h y T +h ŷ T +h (a) e T +h = y T +h ŷ T +h 0 (b) V(e T +h ) 2 y(t )=(y T,y T 1, ) y T +h y T +h V(e T +h ) y T +h =E(y T +h y(t )), V(e T +h) =E [ {y T +h E(y T +h y(t ))} 2] ARMA 0 ARMA(p, q) y T +h y T +h y T +h = φ 1 y T +h 1 + + φ p y T +h p + ε T +h θ 1 ε T +h 1 θ q ε T +h q y j = y j (j T ), ε j = { εj (j T ) 0 (j>t) {ε t }. h MA( ) ARMA(p, q) y T +h = α j ε T +h j, α 0 = 1 (2.14) j=0 MA( ) y T +h = j=h α j ε T +h j, e T +h = h 1 j=0 α j ε T +h j, h 1 V(e T +h) =σ 2 αj 2 j=0 151

V(y t ) 2.5 ARMA ARMA AR p MA q ARMA(p, q) ARMA(p, q) φ(l) y t = θ(l)ε t, {ε t } i.i.d.(0,σ 2 ) (2.15) 0 0 φ =(φ 1,,φ p ), θ =(θ 1,,θ q ), σ 2 =V(ε t ) 2 2.5.1 2 T φ θ 2 { } T T 2 φ(l) f(φ, θ) = ε 2 yt t = (2.16) θ(l) t=1 t=1 MA θ(l) MA ε t φ MA ε t NLSE ( 2 ) (2.16) Box-Jenkins-Reinsel (1994) 152

σ 2 φ θ NLSE 2.5.2 ARMA(p, q) y =(y 1,,y T ) N(0,σ 2 Σ) Σ T φ θ L(φ, θ,σ 2 )= T 2 log(2πσ2 ) 1 2 log Σ 1 2σ 2 y Σ 1 y (2.17) φ θ (2.17) σ 2 y Σ 1 y/t σ 2 l(φ, θ) = T 2 log(y Σ 1 y) 1 log Σ (2.18) 2 φ θ MLE ( ) σ 2 ˆσ 2 = y ˆΣ 1 y/t ˆΣ Σ φ θ MLE MLE T Σ Σ 1 Box-Jenkins-Reinsel (1994) Brockwell-Davis (1991) MLE NLSE 3 ARMA β =(φ, θ ) NLSE MLE T (ˆβ β) N(0, Ω 1 ) ˆβ β MLE NLSE Ω β Fisher Ω= 1 ( E(ut u t ) E(u tv t ) ) σ 2 E(v t u t ) E(v tv t ) u t =(u t,,u t p+1 ), v t =(v t,,v t q+1 ) {u t }, {v t } AR(p) φ(l)u t = ε t AR(q) θ(l)v t = ε t 2.5.3 153

ARMA T ARMA(p, q) φ(l)y t = θ(l)ε t e t = y t p j=1 ˆφ j y t j + q j=1 ˆθ j e t j (t =1,,T) (2.19) h r h = T h t=1 e t e t+h Tt=1 e 2 t (h =1,,T 1) (2.20) ARMA(p, q) Trh N(0, 1) h 5% r h [ 1.96 1, 1.96 1 ] T T 0 ±2/ T m p + q 2 Q = T m h=1 r 2 h, Q = T (T +2) m h=1 1 T h r2 h (2.21) ARMA(p, q) m p q χ 2 Q Box-Pierce Q Ljung-Box Q χ 2 154

Kullback-Leibler Akaike (1973) AIC ARMA(p, q) AIC AIC(p, q) = 2 +2(p + q + 1) (2.22) p q ARMA(p, q) AIC (2.22) 1 2 p + q AIC Schwarz (1978) SBC(p, q) = 2 +(p + q +1)logT (2.23) SBC 2 AIC 2 SBC SBC AIC 3 ARIMA ARFIMA d d I(d) I Integrated I(d) φ(l)(1 L) d y t = θ(l)ε t, {ε t } i.i.d.(0,σ 2 ) (3.24) d φ(l) =1 φ 1 L φ p L p, θ(l) =1 θ 1 L θ q L q 2 φ(x) =0,θ(x) =0 1 {y t } ARIMA(p, d, q) ARIMA I Integrated ARIMA ARIMA(0, 1, 0) y t = y t 1 + ε t = ε 1 + + ε t, y 0 = 0 (3.25) 155

AR 1 y t = O p ( t) ARIMA(p, d, q) y t = O p (t d 1/2 ) ARIMA d ARMA (3.24) ARIMA(p, d, q) d ARFIMA(p, d, q) F Fractional d <1/2 d> 1/2 0 <d<1/2 (Hosking (1981)) 4 ARFIMA(p, d, q) 0 <d<1/2 ARFIMA(p, d, q) ARMA f(ω) = σ2 2π θ(e iω ) 2 1 e iω 2d φ(e iω ) 2, γ(h) = π π f(ω) e ihω dω (3.26) ARFIMA(0,d,0) γ(h) =σ 2 Γ(1 2d)Γ(h + d) Γ(d)Γ(1 d)γ(h d +1) (h >0) (3.27) (3.26) ω 0 f(ω) =O(ω 2d ) (3.27) ARFIMA(0,d,0) h γ(h) =O(h 2d 1 ) ARFIMA(p, d, q) Hosking (1981) 2.1 1 ARFIMA(0, 0.45, 0) σ 2 =1 4 ARMA 156

4 1.0 0.8 0.6 0.4 0.2 0.0 0.2 0 5 10 15 20 ARFIMA ARMA Hosking (1996) 4 μ ARFIMA(p, d, q) T ȳ T 1/2 d (ȳ μ) = 1 ( ) T (y T d+1/2 t μ) N 0,σ 2 (d) θ2 (1) φ 2 (1) σ 2 (d) = lim T V ( 1 T d+1/2 t=1 ) T (1 L) d ε t = t=1 σ 2 Γ(1 2d) (1 + 2d)Γ(1+d)Γ(1 d) ARMA(p, q) d =0 157

ARFIMA d 1/4 Hosking (1996) ARIMA ARFIMA 1 L m SARIMA, SARFIMA S Seasonal Box-Jenkins-Reinsel (1994) Journal of Econometrics (1996), Vol. 73 4 7 AR(1) y t = ρy t 1 + ε t Δ y t = δy t 1 + ε t (Δ = 1 L, δ = ρ 1) (4.28) y 0 =0,{ε t } i.i.d.(0,σ 2 ) H 0 : ρ =1(δ =0) H 1 : ρ<1(δ<0) ρ δ LSE H 0 T δ LSE ˆδ H 1 : ρ =1 c/t (c ) (Phillips-Perron (1988)) T ˆδ = 1 Tσ 2 T t=2 y t 1 Δy t / 1 T 2 σ 2 T yt 1 2 t=2 1 0 1 0 Y (t) dy (t) Y 2 (t) dt {Y (t)} [0,1] Ornstein-Uhlenbeck (O-U) (4.29) dy (t) = cy (t) dt + dw (t), Y(0) = 0 Y (t) =e ct t 0 e cs dw (s) {W (t)} [0,1] (4.29) (Nabeya-Tanaka (1990)) 158

Fuller (1996), Tanaka (1996) ARMA AR MA AR MA MA(1) y t = ε t αε t 1, {ε t } i.i.d.(0,σ 2 ) (4.30) y t H 0 : α =1vs.H 1 : α<1 {y t } y t =(1 L)x t H 0 (1 L)x t =(1 L)ε t 1 L AR H 1 AR MA AR (4.30) {ε t } S T = 1 T y Ω 2 y y Ω 1 y (4.31) H 0 (LBIU) Ω y H 0 S T α =1 (c/t ) Tanaka (1996), (2006) S T n=1 [ 1 n 2 π 2 + c2 n 4 π 4 ] Z 2 n, {Z n } NID(0, 1) (4.32) MA Elliott- Rothenberg-Stock (1996) (2006) 159

5 1 Perron (1989) T B D t (T B )= { 0 (t TB ) 1 (t>t B ) (5.33) y t = α 0 + α 1 D t (T B )+η t, η t = ρη t 1 + ε t, {ε t } i.i.d.(0,σ 2 ) (5.34) ρ Perron (1989) Zivot-Andrews (1992), Vogelsang-Perron (1998) 1 Tong (1983) threshold ( ) AR y t = φ (1) 1 y t 1 + + φ (1) p 1 + ε (1) t φ (2) 1 y t 1 + + φ (2) p 2 + ε (2) t (x t <a ) (x t a a x t y t Hamilton (1989) 0 1 S t P (S t =1 S t 1 =1)=p, P (S t =0 S t 1 =1)=1 p 160

P (S t =0 S t 1 =0)=q, P(S t =1 S t 1 =0)=1 q ARCH GARCH EM MCMC 6 2 {x t } x =(x 1,x 2,,x T ) T T =2 J J x DWT Discrete Wavelet Transform w 1 w = W x, w =. w J v J, W = W 1. W J V J (6.35) W W j T/2 j j V J W J 1/ T w w j j T/2 j 1 T/2 j w J w v J 161

J V J v J = V J x = T x x x 3 (a) (b) (c) ARFIMA (a) (b) (c) (b) 5 1 ARFIMA(0, 0.45,0) T = 512 1 5 1.0 0.8 0.6 0.4 0.2 0.0 0.2 0 5 10 15 20 162

(c) ARFIMA ARFIMA Percival-Walden (2000) 7 VARMA m (p, q) y t =Φ 1 y t 1 + +Φ p y t p + ε t Θ 1 ε t 1 Θ q ε t q (7.36) {ε t } i.i.d.(0, Σ) y t ε t m Φ k,θ l,σ m m Φ(L) =I m Φ 1 L Φ p Θ(L) =I m Θ 1 L Θ q L q Φ(L) y t =Θ(L) ε t (7.37) Φ(x) =0 1 VMA m ( ) VARMA MA ARMA VAR VAR (1988), Hamilton (1994) VAR {y t } I(1) Δ y t Δ y t = C j ε t j = C(L) ε t (7.38) j=0 = [C(1) + (C(L) C(1))] ε t = C(1) ε t +Δ C(L) ε t C(L) { C(L)ε t } (7.37) (7.38) Φ(L)Δy t =Δε t =Φ(L) C(L) ε t 163

Φ(L) C(L) =ΔI m I m m Φ(1) C(1) = 0 (7.39) (7.38) Φ(1) (7.39) Φ(1) y t =Φ(1) C(L) ε t {y t } {y t } cointegration Φ(1) Johansen (1995) r VAR(p) (7.37) Φ(L) Φ(L) =Φ(1)L +Φ(L) Φ(1) L =Φ(1)L +ΔΓ(L) Γ(L) =I q Γ 1 L 1 Γ p 1 L p 1, p Γ j = Φ i i=j+1 VAR(p) Δy t = γα y t 1 +Γ 1 Δ y t 1 + +Γ p 1 Δ y t p+1 + ε t (7.40) γα = Φ(1) γ α q r r (7.40) ECM Error Correction Model: 1 {α y t 1 } I(1) r r ARIMA 4 1 Hamilton (1994), Johansen (1995) 164

8 ARIMA ARFIMA SARIMA, SARFIMA S Seasonal SARIMA Box-Jenkins-Reinsel (1994) SARFIMA Journal of Econometrics (1996), Vol. 73 (2006) Arellano-Bond (1991), Blundell-Bond (1998) Anderson, T. W. (1971). The Statistical Analysis of Time Series, Wiley, New York. Arellano, M. and Bond, S. (1991). Some tests of specification for panel data: Monte Carlo evidence and an application to employment equations, Review of Economic Studies, 58, 277-297. Beran, J. (1994). Statistics for Long-Memory Processes, Chapman & Hall, New York. Blundell, R. and Bond, S. (1998). Initial conditions and moment restrictions in dynamic panel data models, Journal of Econometrics, 87, 115-143. Box, G. E. P. and Jenkins, G. M. (1970). Time Series Analysis: Forecasting and Control, Holden-Day, San Francisco. Box, G. E. P., Jenkins, G. M., and Reinsel, G. C. (1994). Time Series Analysis: Forecasting and Control, 3rd Edition, Holden-Day, San Francisco. Brockwell, P. J. and Davis, R. A. (1991). Time Series: Theory and Methods, 3rd Edition, Springer, New York. Elliott, G., Rothenberg, T. J., and Stock, J. H. (1996). Efficient tests for an autoregressive unit root, Econometrica, 64, 813-836. 165

Fuller, W. A. (1996). Introduction to Statistical Time Series, 2nd Edition, Wiley, New York. Hamilton, J. D. (1989). A new approach to the economic analysis of nonstationary time series and the business cycle, Econometrica, 57, 357-384. Hamilton, J. D. (1994). Time Series Analysis, Princeton University Press, Princeton. Hosking, J. R. M. (1981). Fractional differencing, Biometrika, 68, 165-176. Hosking, J. R. M. (1996). Asymptotic distributions of the sample mean, autocovariances, and autocorrelations of long-memory time series, Journal of Econometrics, 73, 261-284. Johansen, S. (1995). Likelihood-Based Inference in Cointegrated Vector Autoregressive Models, Oxford University Press, Oxford. (2006). X-12-ARIMA CIRJE No. R-5 Nabeya, S. and Tanaka, K. (1990). A general approach to the limiting distribution for estimators in time series regression with nonstable autoregressive errors, Econometrica, 58, 145-163. Percival, D. B. and Walden, A. T. (2000). Wavelet Methods for Time Series Analysis, Cambridge University Press, Cambridge. Perron, P. (1989). The great crash, the oil price shock, and the unit root hypothesis, Econometrica, 57, 1361-1401. Phillips, P. C. B. and Perron, P. (1988). Testing for a unit root in time series regression, Biometrika, 75, 335-346. Schwarz, G. (1978). Estimating the dimension of a model, Annals of Statistics, 6, 461-464. Tanaka, K. (1996). Time Series Analysis: Nonstationary and Noninvertible Distribution Theory, Wiley, New York. (2006).. Taniguchi, M. and Kakizawa, Y. (2000). Asymptotic Theory of Statistical Inference for Time Series, Springer, New York. 166

Tong, H. (1983). Threshold Models in Non-Linear Time Series Analysis, Springer, New York. Vogelsang, T. J. and Perron, P. (1998). Additional tests for a unit root allowing for a break in the trend function at an unknown time, International Economic Review, 39, 1073-1100. (1988).. Zivot, E. and Andrews, D. W. (1992). Further evidence on the great crash, the oil price shock, and the unit root hypothesis, Journal of Business and Economic Statistics, 10, 251-270. 167