Microsoft Word - 計量研修テキスト_第5版).doc
|
|
|
- このか そめや
- 9 years ago
- Views:
Transcription
1 Q8-1 テキスト P131 Engle-Granger 検定 Dependent Variable: RM2 Date: 11/04/05 Time: 15:15 Sample: 1967Q1 1999Q1 Included observations: 129 RGDP R C R-squared Mean dependent var Adjusted R-squared S.D. dependent var S.E. of regression Akaike info criterion Sum squared resid Schwarz criterion Log likelihood F-statistic Durbin-Watson stat Prob(F-statistic) 共和分なしが棄却 上記パラメーターの係数推定値は 超一致性 という性質を有する ( つまり共和分あり ) ( 上記パラメーターの計数推定値を用いたときの残差系列が定常である (= 共和分あり ) かどうか以下にて確認を行う ) 283
2 Null Hypothesis: RESID01 has a unit root Exogenous: None Lag Length: 4 (Automatic based on SIC, MAXLAG=12) t-statistic Prob.* Augmented Dickey-Fuller test statistic Test critical values: 1% level % level % level *MacKinnon (1996) one-sided p-values. Augmented Dickey-Fuller Test Equation Dependent Variable: D(RESID01) Date: 11/04/05 Time: 15:19 Sample (adjusted): 1968Q2 1999Q1 Included observations: 124 after adjustments この臨界値は利用不可 Mackinnon 表 (p6) を用いて正しい臨界値を算出 RESID01(-1) D(RESID01(-1)) D(RESID01(-2)) D(RESID01(-3)) D(RESID01(-4)) R-squared Mean dependent var Adjusted R-squared S.D. dependent var S.E. of regression Akaike info criterion Sum squared resid Schwarz criterion Log likelihood Durbin-Watson stat τ= (1/124) (-8.352) +(1/( )) (-13.41)= <τ=-3.81 であり 有意水準 5 パーセントで H 0 : 共和分なしを棄却 284
3 Q8-2 テキストP139 Johansenタイプの共和分検定 Date: 11/04/05 Time: 17:45 Sample (adjusted): 1967Q3 1999Q1 Included observations: 127 after adjustments Trend assumption: Linear deterministic trend Series: RM2 RGDP R Lags interval (in first differences): 1 to 1 トレース検定 Unrestricted Cointegration Rank Test (Trace) Hypothesized Trace 0.05 No. of CE(s) Eigenvalue Statistic Critical Value Prob.** None * At most At most Trace test indicates 1 cointegrating eqn(s) at the 0.05 level * denotes rejection of the hypothesis at the 0.05 level 共和分ベクトルは1 本 **MacKinnon-Haug-Michelis (1999) p-values 最大固有値検定 Unrestricted Cointegration Rank Test (Maximum Eigenvalue) Hypothesized Max-Eigen 0.05 No. of CE(s) Eigenvalue Statistic Critical Value Prob.** None * At most At most Max-eigenvalue test indicates 1 cointegrating eqn(s) at the 0.05 level * denotes rejection of the hypothesis at the 0.05 level **MacKinnon-Haug-Michelis (1999) p-values Unrestricted Cointegrating Coefficients (normalized by b'*s11*b=i): RM2 RGDP R E E E Unrestricted Adjustment Coefficients (alpha): D(RM2) D(RGDP) D(R)
4 1 Cointegrating Equation(s): Log likelihood 共和分ベクトル Normalized cointegrating coefficients (standard error in parentheses) 符号は正負反対 RM2 RGDP R ( ) ( ) Adjustment coefficients (standard error in parentheses) D(RM2) ( ) D(RGDP) ( ) D(R) -3.89E-05 ( ) 2 Cointegrating Equation(s): Log likelihood Normalized cointegrating coefficients (standard error in parentheses) RM2 RGDP R ( ) ( ) Adjustment coefficients (standard error in parentheses) D(RM2) ( ) ( ) D(RGDP) ( ) ( ) D(R) 2.67E E-06 ( ) (1.9E-06) 286
5 Q8-3 テキスト P142 誤差修正モデルの集計 Model A Dependent Variable: D(RM2) Date: 11/11/05 Time: 12:13 Sample (adjusted): 1967Q3 1999Q1 Included observations: 127 after adjustments D(RM2(-1)) D(RGDP(-1)) D(R(-1)) RESID01(-1) C R-squared Mean dependent var Adjusted R-squared S.D. dependent var S.E. of regression Akaike info criterion Sum squared resid Schwarz criterion Log likelihood F-statistic Durbin-Watson stat Prob(F-statistic) Model B Dependent Variable: D(RM2) Date: 11/17/05 Time: 18:46 Sample (adjusted): 1967Q3 1999Q1 Included observations: 127 after adjustments D(RGDP) D(R) D(RGDP(-1)) D(R(-1)) RESID01(-1) C R-squared Mean dependent var Adjusted R-squared S.D. dependent var S.E. of regression Akaike info criterion Sum squared resid Schwarz criterion Log likelihood F-statistic Durbin-Watson stat Prob(F-statistic)
6 Model C Dependent Variable: D(RM2) Date: 11/17/05 Time: 18:47 Sample (adjusted): 1967Q3 1999Q1 Included observations: 127 after adjustments D(RM2(-1)) D(RGDP) D(R) D(RGDP(-1)) D(R(-1)) RESID01(-1) C R-squared Mean dependent var Adjusted R-squared S.D. dependent var S.E. of regression Akaike info criterion Sum squared resid Schwarz criterion Log likelihood F-statistic Durbin-Watson stat Prob(F-statistic)
7 演習 テキスト P143 問 2) 各変数の単位根検定 WDOTについてのADF 検定 ~ 和分次数は1 注 ) レベル系列では単位根ありの帰無仮説を棄却できず Null Hypothesis: D(WDOT) has a unit root Exogenous: None Lag Length: 0 (Automatic based on SIC, MAXLAG=9) t-statistic Prob.* Augmented Dickey-Fuller test statistic Test critical values: 1% level % level % level *MacKinnon (1996) one-sided p-values. Augmented Dickey-Fuller Test Equation Dependent Variable: D(WDOT,2) Date: 11/17/05 Time: 14:13 Sample (adjusted): Included observations: 39 after adjustments D(WDOT(-1)) R-squared Mean dependent var Adjusted R-squared S.D. dependent var S.E. of regression Akaike info criterion Sum squared resid Schwarz criterion Log likelihood Durbin-Watson stat
8 CPIDOTについてのADF 検定 ~ 和分次数は1 注 ) レベル系列では単位根ありの帰無仮説を棄却できず Null Hypothesis: D(CPIDOT) has a unit root Exogenous: None Lag Length: 0 (Automatic based on SIC, MAXLAG=9) t-statistic Prob.* Augmented Dickey-Fuller test statistic Test critical values: 1% level % level % level *MacKinnon (1996) one-sided p-values. Augmented Dickey-Fuller Test Equation Dependent Variable: D(CPIDOT,2) Date: 11/17/05 Time: 14:16 Sample (adjusted): Included observations: 39 after adjustments D(CPIDOT(-1)) R-squared Mean dependent var Adjusted R-squared S.D. dependent var S.E. of regression Akaike info criterion Sum squared resid Schwarz criterion Log likelihood Durbin-Watson stat
9 INVRUについてのADF 検定 ~ 和分次数は1 注 ) レベル系列では単位根ありの帰無仮説を棄却できず Null Hypothesis: D(INVRU) has a unit root Exogenous: None Lag Length: 0 (Automatic based on SIC, MAXLAG=9) t-statistic Prob.* Augmented Dickey-Fuller test statistic Test critical values: 1% level % level % level *MacKinnon (1996) one-sided p-values. Augmented Dickey-Fuller Test Equation Dependent Variable: D(INVRU,2) Date: 11/17/05 Time: 14:17 Sample (adjusted): Included observations: 39 after adjustments D(INVRU(-1)) R-squared Mean dependent var Adjusted R-squared S.D. dependent var S.E. of regression Akaike info criterion Sum squared resid Schwarz criterion Log likelihood Durbin-Watson stat
10 問 3)Engle-Granger 検定 Engle-Granger 検定 : 帰無仮説 ( 共和分なし ) が棄却 共和分あり Null Hypothesis: RESID01 has a unit root Exogenous: None Lag Length: 0 (Automatic based on SIC, MAXLAG=9) t-statistic Prob.* Augmented Dickey-Fuller test statistic Test critical values: 1% level % level % level *MacKinnon (1996) one-sided p-values. Augmented Dickey-Fuller Test Equation Dependent Variable: D(RESID01) Date: 11/17/05 Time: 14:21 Sample (adjusted): Included observations: 40 after adjustments この臨界値は利用不可 Mackinnon 表 (p132) を用いて正しい臨界値を算出 RESID01(-1) R-squared Mean dependent var Adjusted R-squared S.D. dependent var S.E. of regression Akaike info criterion Sum squared resid Schwarz criterion Log likelihood Durbin-Watson stat Mackinnon 表 (p132) での有意水準 5% における臨界値を算出 τ= (1/40) (-8.352) +(1/(40 40)) (-13.41)= <τ=-3.96 であり帰無仮説は有意水準 5% にて棄却される 292
11 問 4)Error Correction Model の推定 Model A(P142) に相当 ~RESID01 が有意でない Dependent Variable: D(WDOT) Date: 11/11/05 Time: 16:42 Sample (adjusted): Included observations: 39 after adjustments D(WDOT(-1)) D(INVRU(-1)) D(CPIDOT(-1)) RESID01(-1) C R-squared Mean dependent var Adjusted R-squared S.D. dependent var S.E. of regression Akaike info criterion Sum squared resid Schwarz criterion Log likelihood F-statistic Durbin-Watson stat Prob(F-statistic) Model B(P143) に相当 ~RESID01 が有意 Dependent Variable: D(WDOT) Date: 11/11/05 Time: 16:47 Sample (adjusted): Included observations: 39 after adjustments D(INVRU) D(CPIDOT) D(INVRU(-1)) D(CPIDOT(-1)) RESID01(-1) C R-squared Mean dependent var Adjusted R-squared S.D. dependent var S.E. of regression Akaike info criterion Sum squared resid Schwarz criterion Log likelihood F-statistic Durbin-Watson stat Prob(F-statistic)
12 Model C(P143) に相当 ~RESID01 が有意 Dependent Variable: D(WDOT) Date: 11/17/05 Time: 14:30 Sample (adjusted): Included observations: 39 after adjustments D(WDOT(-1)) D(INVRU) D(CPIDOT) D(INVRU(-1)) D(CPIDOT(-1)) RESID01(-1) C R-squared Mean dependent var Adjusted R-squared S.D. dependent var S.E. of regression Akaike info criterion Sum squared resid Schwarz criterion Log likelihood F-statistic Durbin-Watson stat Prob(F-statistic)
13 問 5)Johansen タイプの共和分検定 Date: 11/17/05 Time: 14:35 Sample (adjusted): Included observations: 39 after adjustments Trend assumption: No deterministic trend Series: WDOT INVRU CPIDOT Lags interval (in first differences): 1 to 1 トレース検定 Unrestricted Cointegration Rank Test (Trace) Hypothesized Trace 0.05 No. of CE(s) Eigenvalue Statistic Critical Value Prob.** None At most At most Trace test indicates no cointegration at the 0.05 level * denotes rejection of the hypothesis at the 0.05 level **MacKinnon-Haug-Michelis (1999) p-values 最大固有値検定 Unrestricted Cointegration Rank Test (Maximum Eigenvalue) Hypothesized Max-Eigen 0.05 No. of CE(s) Eigenvalue Statistic Critical Value Prob.** None At most At most Max-eigenvalue test indicates no cointegration at the 0.05 level * denotes rejection of the hypothesis at the 0.05 level **MacKinnon-Haug-Michelis (1999) p-values Unrestricted Cointegrating Coefficients (normalized by b'*s11*b=i): WDOT INVRU CPIDOT Unrestricted Adjustment Coefficients (alpha): D(WDOT) D(INVRU) D(CPIDOT) 次頁に続く
14 1 Cointegrating Equation(s): Log likelihood Normalized cointegrating coefficients (standard error in parentheses) WDOT INVRU CPIDOT ( ) ( ) Adjustment coefficients (standard error in parentheses) D(WDOT) ( ) D(INVRU) ( ) D(CPIDOT) ( ) 2 Cointegrating Equation(s): Log likelihood Normalized cointegrating coefficients (standard error in parentheses) WDOT INVRU CPIDOT ( ) ( ) Adjustment coefficients (standard error in parentheses) D(WDOT) ( ) ( ) D(INVRU) ( ) ( ) D(CPIDOT) ( ) ( ) Johansen タイプの検定では 共和分ベクトルなし の結果 296
Microsoft Word - 計量研修テキスト_第5版).doc
Q9-1 テキスト P166 2)VAR の推定 注 ) 各変数について ADF 検定を行った結果 和文の次数はすべて 1 である 作業手順 4 情報量基準 (AIC) によるラグ次数の選択 VAR Lag Order Selection Criteria Endogenous variables: D(IG9S) D(IP9S) D(CP9S) Exogenous variables: C Date:
Microsoft Word - 計量研修テキスト_第5版).doc
Q4-1 テキスト P83 多重共線性が発生する回帰 320000 280000 240000 200000 6000 4000 160000 120000 2000 0-2000 -4000 74 76 78 80 82 84 86 88 90 92 94 96 98 R e s i dual A c tual Fi tted Dependent Variable: C90 Date: 10/27/05
Microsoft Word - 計量研修テキスト_第5版).doc
Q3-1-1 テキスト P59 10.8.3.2.1.0 -.1 -.2 10.4 10.0 9.6 9.2 8.8 -.3 76 78 80 82 84 86 88 90 92 94 96 98 R e s i d u al A c tual Fi tte d Dependent Variable: LOG(TAXH) Date: 10/26/05 Time: 15:42 Sample: 1975
Microsoft Word - 計量研修テキスト_第5版).doc
Q10-2 テキスト P191 1. 記述統計量 ( 変数 :YY95) 表示変数として 平均 中央値 最大値 最小値 標準偏差 観測値 を選択 A. 都道府県別 Descriptive Statistics for YY95 Categorized by values of PREFNUM Date: 05/11/06 Time: 14:36 Sample: 1990 2002 Included
Dependent Variable: LOG(GDP00/(E*HOUR)) Date: 02/27/06 Time: 16:39 Sample (adjusted): 1994Q1 2005Q3 Included observations: 47 after adjustments C -1.5
第 4 章 この章では 最小二乗法をベースにして 推計上のさまざまなテクニックを検討する 変数のバリエーション 係数の制約係数にあらかじめ制約がある場合がある たとえばマクロの生産関数は 次のように表すことができる 生産要素は資本と労働である 稼動資本は資本ストックに稼働率をかけることで計算でき 労働投入量は 就業者数に総労働時間をかけることで計算できる 制約を掛けずに 推計すると次の結果が得られる
7. フィリップス曲線 経済統計分析 (2014 年度秋学期 ) フィリップス曲線の推定 ( 経済理論との関連 ) フィリップス曲線とは何か? 物価と失業の関係 トレード オフ 政策運営 ( 財政 金融政策 ) への含意 ( 計量分析の手法 ) 関数形の選択 ( 関係が直線的でない場合の推定 ) 推
7. フィリップス曲線 経済統計分析 ( 年度秋学期 ) フィリップス曲線の推定 ( 経済理論との関連 ) フィリップス曲線とは何か? 物価と失業の関係 トレード オフ 政策運営 ( 財政 金融政策 ) への含意 ( 計量分析の手法 ) 関数形の選択 ( 関係が直線的でない場合の推定 ) 推定結果に基づく予測シミュレーション 物価と失業の関係......... -. -. -........ 失業率
R による共和分分析 1. 共和分分析を行う 1.1 パッケージ urca インスツールする 共和分分析をするために R のパッケージ urca をインスツールする パッケージとは通常の R には含まれていない 追加的な R のコマンドの集まりのようなものである R には追加的に 600 以上のパッ
R による共和分分析 1. 共和分分析を行う 1.1 パッケージ urca インスツールする 共和分分析をするために R のパッケージ urca をインスツールする パッケージとは通常の R には含まれていない 追加的な R のコマンドの集まりのようなものである R には追加的に 600 以上のパッケージが用意されており それぞれ分析の目的に応じて標準の R にパッケージを追加していくことになる インターネットに接続してあるパソコンで
第9回 日経STOCKリーグレポート 審査委員特別賞<地域の元気がでるで賞>
1/21 1 2 3 1 2 3 4 5 4 5 6 2/21 2 3 2 4 5 6 3/21 38 38 4 2007 10 471 10 10 () () () OKI () () () () () 1989 2008 4 13 10 10 1 2 3 4 1 3 1 4/21 2 3 3 2 5/21 3 100 1.5 1/2 4 () 1991 2002 10 3 1 6/21 10 6
オーストラリア研究紀要 36号(P)☆/3.橋本
36 p.9 202010 Tourism Demand and the per capita GDP : Evidence from Australia Keiji Hashimoto Otemon Gakuin University Abstract Using Australian quarterly data1981: 2 2009: 4some time-series econometrics
Microsoft Word - eviews4_
4 章 : トレンドモデル 2018/02/02 新谷元嗣 藪友良 高尾庄吾 教科書の 4 章の内容を確認しよう 具体的には 単位根検定として ADF 検定 ERS 検定 ペロン検定 パネル単位根検定 またトレンド分解として HP 分解を説明する 1. ADF 検定教科書の 4 章 7 節の例 ( ラグの選択 ) を通して 単位根検定の手順を確認しよう まず LAGLENGTH.XLS のデータを
3. みせかけの相関単位根系列が注目されるのは これを持つ変数同士の回帰には意味がないためだ 単位根系列で代表的なドリフト付きランダムウォークを発生させてそれを確かめてみよう yと xという変数名の系列をを作成する yt=0.5+yt-1+et xt=0.1+xt-1+et 初期値を y は 10
第 10 章 くさりのない犬 はじめにこの章では 単位根検定や 共和分検定を説明する データが単位根を持つ系列の場合 見せかけの相関をする場合があり 推計結果が信用できなくなる 経済分析の手順として 系列が定常系列か単位根を持つ非定常系列かを見極め 定常系列であればそのまま推計し 非定常系列であれば階差をとって推計するのが一般的である 1. ランダムウオーク 最も簡単な単位根を持つ系列としてランダムウオークがある
TS002
TS002 Stata 12 Stata VAR VEC whitepaper mwp 4 mwp-084 var VAR 14 mwp-004 varbasic VAR 26 mwp-005 svar VAR 33 mwp-007 vec intro VEC 51 mwp-008 vec VEC 80 mwp-063 VAR vargranger Granger 93 mwp-062 varlmar
Stata 11 Stata VAR VEC whitepaper mwp 4 mwp-084 var VAR 14 mwp-004 varbasic VAR 25 mwp-005 svar VAR 31 mwp-007 vec intro VEC 47 mwp-008 vec VEC 75 mwp
TS002 Stata 11 Stata VAR VEC whitepaper mwp 4 mwp-084 var VAR 14 mwp-004 varbasic VAR 25 mwp-005 svar VAR 31 mwp-007 vec intro VEC 47 mwp-008 vec VEC 75 mwp-063 VAR postestimation vargranger Granger 86
<4D F736F F D20939D8C7689F090CD985F93C18EEA8D758B E646F63>
Gretl OLS omitted variable omitted variable AIC,BIC a) gretl gretl sample file Greene greene8_3 Add Define new variable l_g_percapita=log(g/pop) Pg,Y,Pnc,Puc,Ppt,Pd,Pn,Ps Add logs of selected variables
% 10%, 35%( 1029 ) p (a) 1 p 95% (b) 1 Std. Err. (c) p 40% 5% (d) p 1: STATA (1). prtesti One-sample test of pr
1 1. 2014 6 2014 6 10 10% 10%, 35%( 1029 ) p (a) 1 p 95% (b) 1 Std. Err. (c) p 40% 5% (d) p 1: STATA (1). prtesti 1029 0.35 0.40 One-sample test of proportion x: Number of obs = 1029 Variable Mean Std.
k3 ( :07 ) 2 (A) k = 1 (B) k = 7 y x x 1 (k2)?? x y (A) GLM (k
2012 11 01 k3 (2012-10-24 14:07 ) 1 6 3 (2012 11 01 k3) [email protected] web http://goo.gl/wijx2 web http://goo.gl/ufq2 1 3 2 : 4 3 AIC 6 4 7 5 8 6 : 9 7 11 8 12 8.1 (1)........ 13 8.2 (2) χ 2....................
パネル・データの分析
パネル データの分析 内容 パネル データとは pooled cross section data の分析 パネルデータの分析 DID (Difference in Differences) モデル パネル データの分析 階差モデル (first difference model) fixed effects model random effects model パネル分析の実際 データ セットの作成
こんにちは由美子です
1 2 . sum Variable Obs Mean Std. Dev. Min Max ---------+----------------------------------------------------- var1 13.4923077.3545926.05 1.1 3 3 3 0.71 3 x 3 C 3 = 0.3579 2 1 0.71 2 x 0.29 x 3 C 2 = 0.4386
Microsoft Word - eviews2_
2018/02/02 新谷元嗣 藪友良 高尾庄吾 2 章 : 定常時系列モデル ここでは教科書 2 章 ( 定常時系列モデル ) の内容を再現する 具体的には ARMA モデルにおける同定 推定の手順 構造変化の問題を扱う 1 コレログラム Workfile を新規作成し ホームページの SIM2.xls から データを読み込もう 人工的に発生させたデータなので Date specification
操作変数法
操作変数法 Instrumental Varables Method 誤差項と説明変数の相関 説明変数の誤差 説明変数から省かれた変数の影響 誤差項 説明変数が内生変数であるとき 連立方程式モデル --------------------------- 誤差項と説明変数の間に相関がある場合には, 係数の推定値はバイアスを持つ 操作変数法 (Instrumental Varables Method)
1 Stata SEM LightStone 3 2 SEM. 2., 2,. Alan C. Acock, Discovering Structural Equation Modeling Using Stata, Revised Edition, Stata Press.
1 Stata SEM LightStone 3 2 SEM. 2., 2,. Alan C. Acock, 2013. Discovering Structural Equation Modeling Using Stata, Revised Edition, Stata Press. 2 3 2 Conservative Depress. 3.1 2. SEM. 1. x SEM. Depress.
ODAとFDIの相互関係 ~先進国5カ国における考察~
ODA と FDI の相互関係 ~ 先進国 5 カ国における考察 ~ 東京外国語大学外国語学部 イタリア語専攻 4 年 瀬脇理 目次 第 1 章導入 ~ 研究背景 定義 先行研究第 2 章モデル ~ モデルと分析手法の説明第 3 章データ ~ データの出典第 4 章分析 ~ 分析結果と考察第 5 章結論第 6 章付録 2001 2002 2003 2004 2005 2006 2007 2008 2009
事例研究(ミクロ経済政策・問題分析III) -規制産業と料金・価格制度-
事例研究 ( ミクロ経済政策 問題分析 III) - 規制産業と料金 価格制度 - ( 第 8 回 手法 (4) 応用データ解析 / 時系列分析 ) 2011 年 6 月 9 日 戒能一成 0. 本講の目的 ( 手法面 ) - 応用データ解析の手法のうち 時系列分析 (ARMAX, 共和分, VAR) パネルデータ分析の概要を理解する ( 内容面 ) - 計量経済学 統計学を実戦で応用する際の留意点を理解する
Stata 11 Stata ts (ARMA) ARCH/GARCH whitepaper mwp 3 mwp-083 arch ARCH 11 mwp-051 arch postestimation 27 mwp-056 arima ARMA 35 mwp-003 arima postestim
TS001 Stata 11 Stata ts (ARMA) ARCH/GARCH whitepaper mwp 3 mwp-083 arch ARCH 11 mwp-051 arch postestimation 27 mwp-056 arima ARMA 35 mwp-003 arima postestimation 49 mwp-055 corrgram/ac/pac 56 mwp-009 dfgls
第11回:線形回帰モデルのOLS推定
11 OLS 2018 7 13 1 / 45 1. 2. 3. 2 / 45 n 2 ((y 1, x 1 ), (y 2, x 2 ),, (y n, x n )) linear regression model y i = β 0 + β 1 x i + u i, E(u i x i ) = 0, E(u i u j x i ) = 0 (i j), V(u i x i ) = σ 2, i
50-4 平井健之.pwd
GDP GNP Gupta 1967, Wagner and Weber 1977, Mann 1980, Abizadeh and Gray 1985, Ram 1987, Abizadeh and Yousefi 1988, Nagarajan and Spears 1990 GDP GNP GDP GNP GDP GNP Adolph Wagner Wagner 1967 Ram 1987,
以下の内容について説明する 1. VAR モデル推定する 2. VAR モデルを用いて予測する 3. グレンジャーの因果性を検定する 4. インパルス応答関数を描く 1. VAR モデルを推定する ここでは VAR(p) モデル : R による時系列分析の方法 2 y t = c + Φ 1 y t
以下の内容について説明する 1. VAR モデル推定する 2. VAR モデルを用いて予測する 3. グレンジャーの因果性を検定する 4. インパルス応答関数を描く 1. VAR モデルを推定する ここでは VAR(p) モデル : R による時系列分析の方法 2 y t = c + Φ 1 y t 1 + + Φ p y t p + ε t, ε t ~ W.N(Ω), を推定することを考える (
こんにちは由美子です
Analysis of Variance 2 two sample t test analysis of variance (ANOVA) CO 3 3 1 EFV1 µ 1 µ 2 µ 3 H 0 H 0 : µ 1 = µ 2 = µ 3 H A : Group 1 Group 2.. Group k population mean µ 1 µ µ κ SD σ 1 σ σ κ sample mean
kubostat2018d p.2 :? bod size x and fertilization f change seed number? : a statistical model for this example? i response variable seed number : { i
kubostat2018d p.1 I 2018 (d) model selection and [email protected] http://goo.gl/76c4i 2018 06 25 : 2018 06 21 17:45 1 2 3 4 :? AIC : deviance model selection misunderstanding kubostat2018d (http://goo.gl/76c4i)
Stata11 whitepapers mwp-037 regress - regress regress. regress mpg weight foreign Source SS df MS Number of obs = 74 F(
mwp-037 regress - regress 1. 1.1 1.2 1.3 2. 3. 4. 5. 1. regress. regress mpg weight foreign Source SS df MS Number of obs = 74 F( 2, 71) = 69.75 Model 1619.2877 2 809.643849 Prob > F = 0.0000 Residual
こんにちは由美子です
Sample size power calculation Sample Size Estimation AZTPIAIDS AIDSAZT AIDSPI AIDSRNA AZTPr (S A ) = π A, PIPr (S B ) = π B AIDS (sampling)(inference) π A, π B π A - π B = 0.20 PI 20 20AZT, PI 10 6 8 HIV-RNA
1 Stata SEM LightStone 4 SEM 4.. Alan C. Acock, Discovering Structural Equation Modeling Using Stata, Revised Edition, Stata Press 3.
1 Stata SEM LightStone 4 SEM 4.. Alan C. Acock, 2013. Discovering Structural Equation Modeling Using Stata, Revised Edition, Stata Press 3. 2 4, 2. 1 2 2 Depress Conservative. 3., 3,. SES66 Alien67 Alien71,
LA-VAR Toda- Yamamoto(1995) VAR (Lag Augmented vector autoregressive model LA-VAR ) 2 2 Nordhaus(1975) 3 1 (D2)
LA-VAR 1 1 1973 4 2000 4 Toda- Yamamoto(1995) VAR (Lag Augmented vector autoregressive model LA-VAR ) 2 2 Nordhaus(1975) 3 1 (D2) E-mail [email protected] 2 Toda, Hiro Y. and Yamamoto,T.(1995) 3
回帰分析 単回帰
回帰分析 単回帰 麻生良文 単回帰モデル simple regression model = α + β + u 従属変数 (dependent variable) 被説明変数 (eplained variable) 独立変数 (independent variable) 説明変数 (eplanator variable) u 誤差項 (error term) 撹乱項 (disturbance term)
卒業論文
Y = ax 1 b1 X 2 b2...x k bk e u InY = Ina + b 1 InX 1 + b 2 InX 2 +...+ b k InX k + u X 1 Y b = ab 1 X 1 1 b 1 X 2 2...X bk k e u = b 1 (ax b1 1 X b2 2...X bk k e u ) / X 1 = b 1 Y / X 1 X 1 X 1 q YX1
DAA09
> summary(dat.lm1) Call: lm(formula = sales ~ price, data = dat) Residuals: Min 1Q Median 3Q Max -55.719-19.270 4.212 16.143 73.454 Coefficients: Estimate Std. Error t value Pr(> t ) (Intercept) 237.1326
非定常時系列データのVARモデル推定について
非定常時系列データの VAR モデル推定について 明治大学大学院商学研究科辻裕行 2010 年 12 月 18 日 要旨 単位根を含んだ非定常時系列に対する VAR モデルの推定問題を検証する 伝統的理論では 単位根が存在する時系列を分析する場合 レベルの VAR モデルで推定を行うことは望ましくなく データの階差を取ったモデルで推定を行わなければならないとされてきた しかし Sims,Stock,and
分布
(normal distribution) 30 2 Skewed graph 1 2 (variance) s 2 = 1/(n-1) (xi x) 2 x = mean, s = variance (variance) (standard deviation) SD = SQR (var) or 8 8 0.3 0.2 0.1 0.0 0 1 2 3 4 5 6 7 8 8 0 1 8 (probability
日本における化石燃料と経済成長の因果性分析 - 多変数アプローチに基づいて 石田葉月 Discussion Paper April 2011 Graduate School of Economics and Osaka School of International Public Pol
Discussion Papers In Economics And Business 日本における化石燃料と経済成長の因果性分析 - 多変数アプローチに基づいて 石田葉月 Discussion Paper 11-13 Graduate School of Economics and Osaka School of International Public Policy (OSIPP) Osaka
PowerPoint プレゼンテーション
日本の政府債務と経済成長 小黒曜子 明海大学経済学部 & ICU 社会科学研究所 (SSRI) 研究員 研究の背景 政府債務の増加は成長率に負の影響? (Cf. ex. Reinhart and Rogoff (2010)) エンゲル曲線を用いて日本の 実際の 生活水準を加味すると インフレ率と成長率にバイアスを確認 CPI : 実際の物価水準よりも高く ( 1% 程度 ) 算出される傾向 (eg.
最小2乗法
2 2012 4 ( ) 2 2012 4 1 / 42 X Y Y = f (X ; Z) linear regression model X Y slope X 1 Y (X, Y ) 1 (X, Y ) ( ) 2 2012 4 2 / 42 1 β = β = β (4.2) = β 0 + β (4.3) ( ) 2 2012 4 3 / 42 = β 0 + β + (4.4) ( )
講義のーと : データ解析のための統計モデリング. 第5回
Title 講義のーと : データ解析のための統計モデリング Author(s) 久保, 拓弥 Issue Date 2008 Doc URL http://hdl.handle.net/2115/49477 Type learningobject Note この講義資料は, 著者のホームページ http://hosho.ees.hokudai.ac.jp/~kub ードできます Note(URL)http://hosho.ees.hokudai.ac.jp/~kubo/ce/EesLecture20
σ t σ t σt nikkei HP nikkei4csv H R nikkei4<-readcsv("h:=y=ynikkei4csv",header=t) (1) nikkei header=t nikkei4csv 4 4 nikkei nikkei4<-dataframe(n
R 1 R R R tseries fseries 1 tseries fseries R Japan(Tokyo) R library(tseries) library(fseries) 2 t r t t 1 Ω t 1 E[r t Ω t 1 ] ɛ t r t = E[r t Ω t 1 ] + ɛ t ɛ t 2 iid (independently, identically distributed)
Microsoft PowerPoint - Econometrics pptx
計量経済学講義 第 4 回回帰モデルの診断と選択 Part 07 年 ( ) 限 担当教員 : 唐渡 広志 研究室 : 経済学研究棟 4 階 43 号室 emal: [email protected] webste: http://www3.u-toyama.ac.p/kkarato/ 講義の目的 誤差項の分散が不均 である場合や, 系列相関を持つ場合についての検定 法と修正 法を学びます
第13回:交差項を含む回帰・弾力性の推定
13 2018 7 27 1 / 31 1. 2. 2 / 31 y i = β 0 + β X x i + β Z z i + β XZ x i z i + u i, E(u i x i, z i ) = 0, E(u i u j x i, z i ) = 0 (i j), V(u i x i, z i ) = σ 2, i = 1, 2,, n x i z i 1 3 / 31 y i = β
Microsoft PowerPoint - ch04j
Ch.4 重回帰分析 : 推論 重回帰分析 y = 0 + 1 x 1 + 2 x 2 +... + k x k + u 2. 推論 1. OLS 推定量の標本分布 2. 1 係数の仮説検定 : t 検定 3. 信頼区間 4. 係数の線形結合への仮説検定 5. 複数線形制約の検定 : F 検定 6. 回帰結果の報告 入門計量経済学 1 入門計量経済学 2 OLS 推定量の標本分布について OLS 推定量は確率変数
1 15 R Part : website:
1 15 R Part 4 2017 7 24 4 : website: email: http://www3.u-toyama.ac.jp/kkarato/ [email protected] 1 2 2 3 2.1............................... 3 2.2 2................................. 4 2.3................................
博士学位請求論文審査報告書 申請者 : 植松良公 論文題目 :Statistical Analysis of Nonlinear Time Series 1. 論文の主題と構成経済時系列分析においては, 基礎となる理論は定常性や線形性を仮定して構築されるが, 実際の経済データにおいては, 非定常性や
Title 非線形時系列の統計解析 Author(s) 植松, 良公 Citation Issue 2013-09-30 Date Type Thesis or Dissertation Text Version ETD URL http://doi.org/10.15057/25906 Right Hitotsubashi University Repository 博士学位請求論文審査報告書 申請者
Medical3
Chapter 1 1.4.1 1 元配置分散分析と多重比較の実行 3つの治療法による測定値に有意な差が認められるかどうかを分散分析で調べます この例では 因子が1つだけ含まれるため1 元配置分散分析 one-way ANOVA の適用になります また 多重比較法 multiple comparison procedure を用いて 具体的のどの治療法の間に有意差が認められるかを検定します 1. 分析メニュー
201711grade2.pdf
2017 11 26 1 2 28 3 90 4 5 A 1 2 3 4 Web Web 6 B 10 3 10 3 7 34 8 23 9 10 1 2 3 1 (A) 3 32.14 0.65 2.82 0.93 7.48 (B) 4 6 61.30 54.68 34.86 5.25 19.07 (C) 7 13 5.89 42.18 56.51 35.80 50.28 (D) 14 20 0.35
自由集会時系列part2web.key
spurious correlation spurious regression xt=xt-1+n(0,σ^2) yt=yt-1+n(0,σ^2) n=20 type1error(5%)=0.4703 no trend 0 1000 2000 3000 4000 p for r xt=xt-1+n(0,σ^2) random walk random walk variable -5 0 5 variable
II (2011 ) ( ) α β û i R
II 3 9 9 α β 3 û i 4 R 3 5 4 4 3 6 3 6 3 6 4 6 5 3 6 F 5 7 F 6 8 GLS 8 8 heil and Goldberger Model 9 MLE 9 9 I 3 93 II 3 94 AR 4 95 5 96 6 6 8 3 3 3 3 3 i 3 33 3 Wald, LM, LR 33 3 34 4 38 5 39 6 43 7 44
Microsoft Word - eviews1_
1 章 : はじめての EViews 2018/02/02 新谷元嗣 藪友良 高尾庄吾 1 ここでは分析を行うにあたって 代表的なツールの 1 つとして EViews について解説しよう EViews は 時系列分析に強みを持つ統計ソフトであり その使い易さ また高度な分析に対応できることから 官公庁を中心に広く用いられている 1. データの入力と保存 EViews では データを特有のファイル形式である
(3) 検定統計量の有意確率にもとづく仮説の採否データから有意確率 (significant probability, p 値 ) を求め 有意水準と照合する 有意確率とは データの分析によって得られた統計値が偶然おこる確率のこと あらかじめ設定した有意確率より低い場合は 帰無仮説を棄却して対立仮説
第 3 章 t 検定 (pp. 33-42) 3-1 統計的検定 統計的検定とは 設定した仮説を検証する場合に 仮説に基づいて集めた標本を 確率論の観点から分析 検証すること 使用する標本は 母集団から無作為抽出されたものでなければならない パラメトリック検定とノンパラメトリック検定 パラメトリック検定は母集団が正規分布に従う間隔尺度あるいは比率尺度の連続データを対象とする ノンパラメトリック検定は母集団に特定の分布を仮定しない
評論・社会科学 123号(P)☆/1.福田
VECM 2002 1 2007 12 VECM 55 VECM 1 2 3 3-1ECM 3-2 3-3VECM 3-4 4 1 2017 9 28 2017 10 16 2 1 1 2015, 79-85 BLUEBest Linear Unbiased Estimator 1 Vector Error-Correction Model VECM II III VECM VECM 55 15-34
講義のーと : データ解析のための統計モデリング. 第3回
Title 講義のーと : データ解析のための統計モデリング Author(s) 久保, 拓弥 Issue Date 2008 Doc URL http://hdl.handle.net/2115/49477 Type learningobject Note この講義資料は, 著者のホームページ http://hosho.ees.hokudai.ac.jp/~kub ードできます Note(URL)http://hosho.ees.hokudai.ac.jp/~kubo/ce/EesLecture20
.. est table TwoSLS1 TwoSLS2 GMM het,b(%9.5f) se Variable TwoSLS1 TwoSLS2 GMM_het hi_empunion totchr
3,. Cameron and Trivedi (2010) Microeconometrics Using Stata, Revised Edition, Stata Press 6 Linear instrumentalvariables regression 9 Linear panel-data models: Extensions.. GMM xtabond., GMM(Generalized
Use R
Use R! 2008/05/23( ) Index Introduction (GLM) ( ) R. Introduction R,, PLS,,, etc. 2. Correlation coefficient (Pearson s product moment correlation) r = Sxy Sxx Syy :, Sxy, Sxx= X, Syy Y 1.96 95% R cor(x,
統計研修R分散分析(追加).indd
http://cse.niaes.affrc.go.jp/minaka/r/r-top.html > mm mm TRT DATA 1 DM1 2537 2 DM1 2069 3 DM1 2104 4 DM1 1797 5 DM2 3366 6 DM2 2591 7 DM2 2211 8
スライド 1
SASによる二項比率における正確な信頼区間の比較 原茂恵美子 1) 武藤彬正 1) 宮島育哉 2) 榊原伊織 2) 1) 株式会社タクミインフォメーションテクノロジーシステム開発推進部 2) 株式会社タクミインフォメーションテクノロジービジネスソリューション部 Comparison of Five Exact Confidence Intervals for the Binomial Proportion
Studies of Foot Form for Footwear Design (Part 9) : Characteristics of the Foot Form of Young and Elder Women Based on their Sizes of Ball Joint Girth
Studies of Foot Form for Footwear Design (Part 9) : Characteristics of the Foot Form of Young and Elder Women Based on their Sizes of Ball Joint Girth and Foot Breadth Akiko Yamamoto Fukuoka Women's University,
R John Fox R R R Console library(rcmdr) Rcmdr R GUI Windows R R SDI *1 R Console R 1 2 Windows XP Windows * 2 R R Console R ˆ R
R John Fox 2006 8 26 2008 8 28 1 R R R Console library(rcmdr) Rcmdr R GUI Windows R R SDI *1 R Console R 1 2 Windows XP Windows * 2 R R Console R ˆ R GUI R R R Console > ˆ 2 ˆ Fox(2005) [email protected]
スライド 1
SAS による二項比率の差の非劣性検定の正確な方法について 武藤彬正宮島育哉榊原伊織株式会社タクミインフォメーションテクノロジー Eact method of non-inferiority test for two binomial proportions using SAS Akimasa Muto Ikuya Miyajima Iori Sakakibara Takumi Information
: (EQS) /EQUATIONS V1 = 30*V F1 + E1; V2 = 25*V *F1 + E2; V3 = 16*V *F1 + E3; V4 = 10*V F2 + E4; V5 = 19*V99
218 6 219 6.11: (EQS) /EQUATIONS V1 = 30*V999 + 1F1 + E1; V2 = 25*V999 +.54*F1 + E2; V3 = 16*V999 + 1.46*F1 + E3; V4 = 10*V999 + 1F2 + E4; V5 = 19*V999 + 1.29*F2 + E5; V6 = 17*V999 + 2.22*F2 + E6; CALIS.
