2, 3, -, - (X H í et (X, Q )), l- ( ), - l( ),, - l-, (, l Hom(Z l, Z ) = 0, Hom(Z, Z ) Z )., Tate Q (i) Q l (i), l Q l (i) G (I ), Q (i) (i 0 ) χ i :

Similar documents
日本数学会・2011年度年会(早稲田大学)・総合講演

[Oc, Proposition 2.1, Theorem 2.4] K X (a) l (b) l (a) (b) X [M3] Huber adic 1 Huber ([Hu1], [Hu2], [Hu3]) adic 1.1 adic A I I A {I n } 0 adic 2

( ),, ( [Ka93b],[FK06]).,. p Galois L, Langlands p p Galois (, ) p., Breuil, Colmez([Co10]), Q p Galois G Qp 2 p ( ) GL 2 (Q p ) p Banach ( ) (GL 2 (Q

.5.1. G K O E, O E T, G K Aut OE (T ) (T, ρ). ρ, (T, ρ) T. Aut OE (T ), En OE (F ) p..5.. G K E, E V, G K GL E (V ) (V, ρ). ρ, (V, ρ) V. GL E (V ), En

k + (1/2) S k+(1/2) (Γ 0 (N)) N p Hecke T k+(1/2) (p 2 ) S k+1/2 (Γ 0 (N)) M > 0 2k, M S 2k (Γ 0 (M)) Hecke T 2k (p) (p M) 1.1 ( ). k 2 M N M N f S k+

24.15章.微分方程式

0.,,., m Euclid m m. 2.., M., M R 2 ψ. ψ,, R 2 M.,, (x 1 (),, x m ()) R m. 2 M, R f. M (x 1,, x m ), f (x 1,, x m ) f(x 1,, x m ). f ( ). x i : M R.,,

2 N(ε 1 ) N(ε 2 ) ε 1 ε 2 α ε ε 2 1 n N(ɛ) N ɛ ɛ- (1.1.3) n > N(ɛ) a n α < ɛ n N(ɛ) a n

非可換Lubin-Tate理論の一般化に向けて

( ) 1., ([SU] ): F K k., Z p -, (cf. [Iw2], [Iw3], [Iw6]). K F F/K Z p - k /k., Weil., K., K F F p- ( 4.1).,, Z p -,., Weil..,,. Weil., F, F projectiv

( ) Lemma 2.2. X ultra filter (1) X = X 1 X 2 X 1 X 2 (2) X = X 1 X 2 X 3... X N X 1, X 2,..., X N (3) disjoint union X j Definition 2.3. X ultra filt


example2_time.eps

i Version 1.1, (2012/02/22 24),.,..,.,,. R-space,, ( R- space),, Kahler (Kähler C-space)., R-space,., R-space, Hermite,.

8.1 Fubini 8.2 Fubini 9 (0%) 10 (50%) Carathéodory 10.3 Fubini 1 Introduction [1],, [2],, [3],, [4],, [5],, [6],, [7],, [8],, [1, 2, 3] 1980

untitled


Centralizers of Cantor minimal systems

1 180m g 10m/s v 0 (t=0) z max t max t z = z max 1 2 g(t t max) 2 (6) r = (x, y, z) e x, e y, e z r = xe x + ye y + ze z. (7) v =


0. I II I II (1) linear type: GL( ), Sp( ), O( ), (2) loop type: loop current Kac-Moody affine, hyperbolic (3) diffeo t


1

基礎数学I

第85 回日本感染症学会総会学術集会後抄録(I)

A Brief Introduction to Modular Forms Computation

Mazur [Ma1] Schlessinger [Sch] [SL] [Ma1] [Ma1] [Ma2] Galois [] 17 R m R R R M End R M) M R ut R M) M R R G R[G] R G Sets 1 Λ Noether Λ k Λ m Λ k C Λ

B [ 0.1 ] x > 0 x 6= 1 f(x) µ 1 1 xn 1 + sin sin x 1 x 1 f(x) := lim. n x n (1) lim inf f(x) (2) lim sup f(x) x 1 0 x 1 0 (

q n/2 X H n (X Fq,et, Q l) Frobenius q 1/2 (Deligne, [D5]) X (I) (II) X κ open (proper )smooth X κ proper strictly semi-stable weight filtration cohom

A A. ω ν = ω/π E = hω. E

数理解析研究所講究録 第1908巻

CRA3689A

日本内科学会雑誌第101巻第12号

$\mathfrak{m}$ $K/F$ the 70 4(Brinkhuis) ([1 Corollary 210] [2 Corollary 21]) $F$ $K/F$ $F$ Abel $Gal(Ic/F)$ $(2 \cdot\cdot \tau 2)$ $K/F$ NIB ( 13) N

8.1 Fubini 8.2 Fubini 9 (0%) 10 (50%) Carathéodory 10.3 Fubini 1 Introduction 1 (1) (2) {f n (x)} n=1 [a, b] K > 0 n, x f n (x) K < ( ) x [a

5.. z = f(x, y) y y = b f x x g(x) f(x, b) g x ( ) A = lim h g(a + h) g(a) h g(x) a A = g (a) = f x (a, b)


x (0, 6, N x 2 (4 + 2(4 + 3 < 6 2 3, a 2 + a 2+ > 0. x (0, 6 si x > 0. (2 cos [0, 6] (0, 6 (cos si < 0. ( (2 (3 cos 0, cos 3 < 0. cos 0 cos cos

On a branched Zp-cover of Q-homology 3-spheres

II (1) log(1 + r/100) n = log 2 n log(1 + r/100) = log 2 n = log 2 log(1 + r/100) (2) y = f(x) = log(1 + x) x = 0 1 f (x) = 1/(1 + x) f (0) = 1

1 Introduction 1 (1) (2) (3) () {f n (x)} n=1 [a, b] K > 0 n, x f n (x) K < ( ) x [a, b] lim f n (x) f(x) (1) f(x)? (2) () f(x)? b lim a f n (x)dx = b

' , 24 :,,,,, ( ) Cech Index theorem 22 5 Stability 44 6 compact 49 7 Donaldson 58 8 Symplectic structure 63 9 Wall crossing 66 1

D-brane K 1, 2 ( ) 1 K D-brane K K D-brane Witten [1] D-brane K K K K D-brane D-brane K RR BPS D-brane

2.1 H f 3, SL(2, Z) Γ k (1) f H (2) γ Γ f k γ = f (3) f Γ \H cusp γ SL(2, Z) f k γ Fourier f k γ = a γ (n)e 2πinz/N n=0 (3) γ SL(2, Z) a γ (0) = 0 f c

平成 30 年度 ( 第 40 回 ) 数学入門公開講座テキスト ( 京都大学数理解析研究所, 平成 30 ~8 年月 72 月日開催 30 日 [6] 1 4 A 1 A 2 A 3 l P 3 P 2 P 1 B 1 B 2 B 3 m 1 l 3 A 1, A 2, A 3 m 3 B 1,

Part. 4. () 4.. () Part ,

IV.dvi

A11 (1993,1994) 29 A12 (1994) 29 A13 Trefethen and Bau Numerical Linear Algebra (1997) 29 A14 (1999) 30 A15 (2003) 30 A16 (2004) 30 A17 (2007) 30 A18

Tabulation of the clasp number of prime knots with up to 10 crossings

I , : ~/math/functional-analysis/functional-analysis-1.tex

untitled

Noether [M2] l ([Sa]) ) ) ) ) ) ( 1, 2) ) ( 3) K F = F q O K K l q K Spa(K, O K ) adc adc [Hu1], [Hu2], [Hu3] K A Spa(A, A ) Sp A A B X A X B = X Spec

(Frequecy Tabulatios)

Q p G Qp Q G Q p Ramanujan 12 q- (q) : (q) = q n=1 (1 qn ) 24 S 12 (SL 2 (Z))., p (ordinary) (, q- p a p ( ) p ). p = 11 a p ( ) p. p 11 p a p

1/1 lim f(x, y) (x,y) (a,b) ( ) ( ) lim limf(x, y) lim lim f(x, y) x a y b y b x a ( ) ( ) xy x lim lim lim lim x y x y x + y y x x + y x x lim x x 1


K 2 X = 4 MWG(f), X P 2 F, υ 0 : X P 2 2,, {f λ : X λ P 1 } λ Λ NS(X λ ), (υ 0 ) λ : X λ P 2 ( 1) X 6, f λ K X + F, f ( 1), n, n 1 (cf [10]) X, f : X

Twist knot orbifold Chern-Simons

Lebesgue Fubini L p Banach, Hilbert Höld

= π2 6, ( ) = π 4, ( ). 1 ( ( 5) ) ( 9 1 ( ( ) ) (

SAMA- SUKU-RU Contents p-adic families of Eisenstein series (modular form) Hecke Eisenstein Eisenstein p T

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10%

24 I ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

330

,.,. NP,., ,.,,.,.,,, (PCA)...,,. Tipping and Bishop (1999) PCA. (PPCA)., (Ilin and Raiko, 2010). PPCA EM., , tatsukaw

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

main.dvi

II K116 : January 14, ,. A = (a ij ) ij m n. ( ). B m n, C n l. A = max{ a ij }. ij A + B A + B, AC n A C (1) 1. m n (A k ) k=1,... m n A, A k k


III III 2010 PART I 1 Definition 1.1 (, σ-),,,, Borel( ),, (σ-) (M, F, µ), (R, B(R)), (C, B(C)) Borel Definition 1.2 (µ-a.e.), (in µ), (in L 1 (µ)). T

1W II K =25 A (1) office(a439) (2) A4 etc. 12:00-13:30 Cafe David 1 2 TA appointment Cafe D

日本内科学会雑誌第98巻第3号

2 p T, Q

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d

Z[i] Z[i] π 4,1 (x) π 4,3 (x) 1 x (x ) 2 log x π m,a (x) 1 x ϕ(m) log x 1.1 ( ). π(x) x (a, m) = 1 π m,a (x) x modm a 1 π m,a (x) 1 ϕ(m) π(x)

17 Θ Hodge Θ Hodge Kummer Hodge Hodge

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt

2010 ( )

46 Y Y Y Y 3.1 R Y Figures mm Nylon Glass Y (X > X ) X Y X Figure 5-1 X min Y Y d Figure 5-3 X =X min Y X =10 Y Y Y Y Figure 5-

α = 2 2 α 2 = ( 2) 2 = 2 x = α, y = 2 x, y X 0, X 1.X 2,... x 0 X 0, x 1 X 1, x 2 X 2.. Zorn A, B A B A B A B A B B A A B N 2

Milnor 1 ( ), IX,. [KN].,. 2 : (1),. (2). 1 ; 1950, Milnor[M1, M2]. Milnor,,. ([Hil, HM, IO, St] ).,.,,, ( 2 5 )., Milnor ( 4.1)..,,., [CEGS],. Ω m, P

..3. Ω, Ω F, P Ω, F, P ). ) F a) A, A,..., A i,... F A i F. b) A F A c F c) Ω F. ) A F A P A),. a) 0 P A) b) P Ω) c) [ ] A, A,..., A i,... F i j A i A

1 = = = (set) (element) a A a A a A a A a A {2, 5, (0, 1)}, [ 1, 1] = {x; 1 x 1}. (proposition) A = {x; P (x)} P (x) x x a A a A Remark. (i) {2, 0, 0,

1 a b = max{a, b}, a b = mi{a, b} a 1 a 2 a a 1 a = max{a 1,... a }, a 1 a = mi{a 1,... a }. A sup A, if A A A A A sup A sup A = + A if A = ± y = arct

1 Abstract 2 3 n a ax 2 + bx + c = 0 (a 0) (1) ( x + b ) 2 = b2 4ac 2a 4a 2 D = b 2 4ac > 0 (1) 2 D = 0 D < 0 x + b 2a = ± b2 4ac 2a b ± b 2

x = a 1 f (a r, a + r) f(a) r a f f(a) 2 2. (a, b) 2 f (a, b) r f(a, b) r (a, b) f f(a, b)

「産業上利用することができる発明」の審査の運用指針(案)

4

a n a n ( ) (1) a m a n = a m+n (2) (a m ) n = a mn (3) (ab) n = a n b n (4) a m a n = a m n ( m > n ) m n 4 ( ) 552

.3. (x, x = (, u = = 4 (, x x = 4 x, x 0 x = 0 x = 4 x.4. ( z + z = 8 z, z 0 (z, z = (0, 8, (,, (8, 0 3 (0, 8, (,, (8, 0 z = z 4 z (g f(x = g(

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

x V x x V x, x V x = x + = x +(x+x )=(x +x)+x = +x = x x = x x = x =x =(+)x =x +x = x +x x = x ( )x = x =x =(+( ))x =x +( )x = x +( )x ( )x = x x x R


( )

(1) (2) (3) (4) 1

r 1 m A r/m i) t ii) m i) t B(t; m) ( B(t; m) = A 1 + r ) mt m ii) B(t; m) ( B(t; m) = A 1 + r ) mt m { ( = A 1 + r ) m } rt r m n = m r m n B

( ) (, ) ( )

29

QCD 1 QCD GeV 2014 QCD 2015 QCD SU(3) QCD A µ g µν QCD 1

Transcription:

- ( ) Contents 1. 1 2. Fontaine -. 2 3.. 14 4. C - (Tate-Sen ):- 16 References 27 1., 2009 l- - I, II,, 2 Fontaine - -, 3 -,, 4 (- )Tate-Sen, -, Q, G := Gal(/) O, π O, k := O /π O v : Q { } v () = 1 -. 0 Q, ur I := Gal(/ ur ) - χ : G Z (, 1 n ζ n g G g(ζ n) = ζ χ(g) ). C n := - ( -, ).,, G - Deition 1.1. V (G )-, V Q - G Q -, (, G rull, V Q -). G - Re G., - - l- (l ) X (H í et (X, Q )), ([Mi]), l- (l ), X X k H í et (X, Q l) l-, X H í et (X, Q l), { } { } { { } } { { } } = { { l- l- ( Grothendieck ). 1 } }

2, 3, -, - (X H í et (X, Q )), l- ( ), - l( ),, - l-, (, l Hom(Z l, Z ) = 0, Hom(Z, Z ) Z )., Tate Q (i) Q l (i), l Q l (i) G (I ), Q (i) (i 0 ) χ i : G Z χi (I ) Z Q (i) (, H 2 ét (P1, Q ) H 1 ét (G m,, Q ) Q ( 1) ), - Fontaine, - (B cris, B st, B dr ), - - - 2 3,, X -, X k ( ). 4, 2, 3, Tate-Sen - 2. Fontaine -. 2, Fontaine ([Fo82], [Fo94a], [Fo94b], [Be04]) B cris, B st, B dr -, -, - -, - -, - (Q ur B ur := Q ur - ) V Re G, D ur (V ) := (B ur Q V ) G B ur Frobenius ϕ Frobenius ϕ. (B G ur B G ur := {x B ur g(x) = x ( g G )} = 0, Bur ϕ=1 := {x B ur ϕ(x) = x} = Q B ur 0 (B ur Q V ) B ur Q V : a (b x) ab x B ur 0 D ur (V ) B ur Q V = 0 ), dim 0 D ur (V ) dim Q V D ur (V ) V Proosition 2.1. V Re G (1) V 2

(2) dim 0 D ur (V ) = dim Q V,, B ur 0 D ur (V ) B ur Q V G ϕ, - (B ur 0 D ur (V )) ϕ=1 V (, V D ur (V ) ). Proof., G - B ( = cris, st, dr ) ( B ur, G - ϕ ),,, V - D (V ) := (B Q V ) G dim D (V ) = dim Q V (, := B G ),, D (V ) - B, ( D ur (V ) )V D (V ) (), - B ur C,, - C, Tate i Z, C (i) := C Q Q (i) = C e i, G g(ae i ) := χ(g) i g(a)e i (a C ) Theorem 2.2. (Tate[Ta67]) (1) i = 0, H 0 (G, C (0)) = H 1 (G, C (0)) =. (2) i 0, H j (G, C (i)) = 0 ( j 0). Proof. 4. H 0 (G, ), - - (i 0 Q (i) )C, Q ( 1) - C, Tate Q( 1) G m,r, 2π 1, 2π 1 - C 3

2.1. B 2.1, B cris, B st, B dr B +, ( )Ẽ+ Ẽ + := lim O C / := {O C / O C / O C / } n Ẽ +, x = (x n ) n 0, (x n O C /, x n+1 = x n ). F = O Q ur / lim O Q n ur/, F Ẽ+. Ẽ+ x = (x n ) n 0 v(x) := lim n v ( x n n ) (, x n O C x n ), v : Ẽ+ R 0 { } x n,, v, Ẽ+. Ẽ+, ε, Ẽ+ ε := ( ε n ) n 0, ε n O C, ε 0 = 1, ε 1 1, ε n+1 = ε n ( n) (, ε n O C /, ε n ). := ( n ) n 0, n O C, 0 =, n+1 = n ( n) Ẽ + x x ϕ Frobenius. Ẽ +, O C G - ϕ G - (, Ẽ +, v ). Ã + := W (Ẽ+ ) Ẽ+ Witt., - Ã+ /Ã+ Ẽ+ () Ã + -, Ẽ+ v, [ ] : Ẽ+ Ã+ Teichmüller,, [0] = 0, [1] = 1, x, y Ẽ+ [xy] = [x][y], [x] x Ẽ+ (mod ), x Ã+ x = n=0 [a n] n (a n Ẽ+ ) Witt Ẽ+ ϕ, G - Ã+ (, - )., ϕ( n=0 [a n] n ) = n=0 [a n] n, g( n=0 [a n] n ) = n=0 [g(a n)] n (g G ). Qur = W ( F )[ 1 ], B + := Ã+ [ 1 ] Q ur B +. B +, C, [x] = [(x n ) n 0 ] Ã+ (x Ẽ+ ), θ([x]) := lim n x n n (, x n O C, x n O C /O C ). θ : Ã+ O C, θ : Ã+ O C : [a n ] n θ([a n ]) n n=0, θ θ G - θ([x]) O C, θ [ ] er(θ), n=0 er(θ) = ([ ] )Ã+ (, θ (mod ) Ẽ+, O C ). θ G - er(θ) G - 4

, ϕ (, ϕ([ ] ) er(θ) ). θ. θ : B + C 2.2. B dr :de Rham. B + B + dr, B + dr := lim n B+ /er(θ) n, B + dr G, ϕ. θ : B + C G - θ : B + dr C B + B + dr, B+ dr C, er(θ), G - B + dr ( B +, ). t := log([ε]) = n 1 ([ε] 1)n ( 1) B + dr n n=1 (([ε] 1) er(θ), t B + dr ). log ( ), ϕ(t) = log(ϕ([ε])) = log([ε] ) = log([ε]) = t, g(t) = log(g([ε])) = log([ε] χ(g) ) = χ(g)log([ε]) = χ(g)t (g G ) (, t Q ( 1) -, 2π 1 - )., log([ε]) = ([ε] 1)x (x B + dr ), θ(x) 0, B + dr, er(θ) = tb + dr B dr := B + dr [t 1 ]. B dr G - B + dr - Fil i B dr := t i B + dr (i Z) B dr, Re G (filtered modules over ) D dr Deition 2.3. D ( filtered module over ), D, - Fil i D (i Z), i > 0 Fil i D = 0, Fil i D = D,. D 1 D 2, D 1 D 2 - f : D 1 D 2 i Z f(fil i D 1 ) Fil i D 2 MF. 5

Remark 2.4. MF, D 1 = e 1, Fil 0 D 1 = D 1, Fil 1 D 1 = 0, D 2 = e 2, Fil 1 D 2 = D 2, Fil 2 D 2 = 0, f : D 1 D 2 : ae 1 ae 2 Im(f) = D 1 Coim(f) = D 2., MF, i,, Deition 2.5. Re G MF 0 D 1 D 2 D 3 0 0 Fil i D 1 Fil i D 2 Fil i D 3 0 V Re G, D dr : Re G MF D dr (V ) := (B dr Q V ) G, Fil i D dr (V ) := (Fil i B dr Q V ) G D dr (V ), Proosition 2.6. (1) B G dr =. (2) V Re G, dim D dr (V ) i Z dim (C (i) Q V ) G dim Q V Proof., Tate (Theorem 2.2). Deition 2.7. (1) 0 t k+1 B + dr tk B + dr C (k) 0 dim D dr (V ) = dim Q V, V (de Rham reresentation). Re G Re G,dR. (2) V Re G,dR, Z {i Z Fil i D dr (V )/Fil i+1 D dr (V ) 0} V Hodge-Tate (Hodge-Tate weight). (2), D dr Re G,dR Proosition 2.8. (0) Re G,dR (, f : V 1 V 2 V 1, V 2 Re G,dR er(f), Im(f), Coker(f) Re G,dR). (1) D dr : Re G,dR MF (, Re G,dR MF ). (2) V Re G,dR, B dr (B dr Q V ) B dr Q V : a (b x) ab x B dr D dr (V ) B dr Q V 6

, B + dr G - (, Fil i (B dr D dr (V )) := Fil i 1 B dr Fil i 2 D dr (V ) i 1 +i 2 =i, ). Fil i (B dr Q V ) := Fil i B dr Q V Remark 2.9. (Tate ) i, D dr (Q (i)) = (B dr Q Q (i)) G = ( 1 e t i i ) (, e i Q (i) )., Q (i), Fil i D dr (Q (i)) = D dr (Q (i)), Fil i+1 D dr (Q (i)) = 0, Q (i) Hodge-Tate i. Remark 2.10. L V Re G, V Re G,dR, V G L V GL, Hilbert 90 (H 1 (Gal(L/), GL n (L)) = {1}), V GL V 2.3. B HT :Hodge-Tate. B HT,, G g( n Z a n T n ) := n Z B HT := C [T, T 1 ] g(a n )χ(g) n T n (g G, n Z a n T n B HT ) B HT, Re G - M gr, D HT Deition 2.11. Re G M gr,, D HT : Re G M gr, D HT (V ) := (B HT Q V ) G, D HT (V ) i := (C T i Q V ) G D HT (V ) Remark 2.12. 2.6(2), Deition 2.13. (1) V Re G dim D dr (V ) dim D HT (V ) dim Q V dim D HT (V ) = dim Q V, V Hodge-Tate (Hodge-Tate reresentation). Hodge-Tate Re G Re G,HT. (2) V Re G,HT, Z V Hodge-Tate {i Z D HT (V ) i 0} Tate, Proosition 2.14. V Re G, (1), (2). (1) V Re G,HT. 7

(2) B HT (B HT Q V ) B HT Q V : a (b x) ab x B HT D HT (V ) B HT Q V, G - C - (,, (B HT D HT (V )) i := C T i 1 D HT (V ) i2, ). i 1 +i 2 =i (B HT Q V ) i := C T i Q V Deition 2.15. V Re G,HT, (2) 0, C [G ]- C (i) D HT (V ) i C Q V i Z., V Hodge-Tate ( Hodge-Tate decomosition). Remark 2.16. i Z, H 1 (G, Q (i)) 0 Q (i) V Q 0. i 0, V Hodge-Tate. (, C 0 C (i) C Q V C 0, Tate i 0 C [G ]- ). i = 0, 1- log(χ) : G Q : g log(χ(g)) [log(χ)] Hom(G, Q ) = H 1 (G, Q ) Hodge-Tate ( 4 )., Hodge-Tate, t i B + dr /ti+1 B + dr B HT i Z 2.6 (2). Proosition 2.17. (1) Re G,dR Re G,HT. (2) V Re G,dR, D dr (V ) Hodge-Tate D HT (V ) Hodge-Tate., - Fil i D dr (V )/Fil i+1 D dr (V ) D HT (V ) i Z Remark 2.18. Re G,HT Re G.dR, i 1, Re G 0 Q (i) V Q 0, V Hodge-Tate Remark 2.19. Hodge-Tate, Hodge-Tate - Hodge-Tate, 4. 8

2.4. B cris : A cris Ã+ er(θ) = ([ ] ) PD-enveloe -. Ã + G - A cris, ϕ([ ] ) ([ ] ) ( mod Ã+ ) Frobenius ϕ A cris ([ ] ) er(θ), Ã + B + dr G - A cris B + dr,, A cris = { n=0 a n ([ ] ) n n! B + dr a n Ã+, a n 0(n )} (, a n 0 (n ), Ã+ ). B + cris := A cris[ 1 ]. t B + dr, n 1 ([ε] 1)n t = ( 1) = ( 1) n 1 ([ε] 1)n (n 1)! n n! n=1 n=0, t A cris. B cris := B + cris [t 1 ] G, ϕ t, B cris G, ϕ B + cris B+ dr B cris B dr, Q ur B + ur Q B + cris. B cris B dr,. Proosition 2.20. (1) 0 B cris B dr. (2) B G cris = 0. (3) (Bloch- ) G -,, Q B ϕ=1 cris. 0 Q B ϕ=1 cris B + dr B dr 0 B + dr Deition 2.21. V Re G, B ϕ=1 cris := {x B cris ϕ(x) = x} : x (x, x), Bϕ=1 cris D cris (V ) := (B cris Q V ) G. (1)(2) 2.6 (2), dim 0 D cris (V ) dim D dr (V ) dim Q V B + dr B dr : (x, y) x y Deition 2.22. D ϕ- (filtered ϕ-module over ), D 0 -, ϕ- ϕ D : D D (, a 0, x D, ϕ D (ax) = ϕ(a)ϕ D (x) ), D := 0 D -, ϕ- MF ϕ. Deition 2.23. V Re G dim 0 D cris (V ) = dim Q (V ), V Re G Re G,cris. 9

Remark 2.24. V, D cris (V ) Frobenius ϕ Dcris (V ) B cris Frobenius, dim 0 D cris (V ) dim D dr (V ), V V (1) 0 D cris (V ) D dr (V )., D cris (V ) MF ϕ. Proosition 2.25. V Re G (1) V Re G,cris. (2) B cris 0 D cris (V ) B cris Q V G -, ϕ,,, (G ) (B cris 0 D cris (V )) ϕ=1 Fil 0 (B dr D dr (V )) V,, V D cris (V ), D cris : Re G,cris MF ϕ Proof. (1) (2) (, (1) (2) ), B cris, χ i µ : G Z (i Z, µ ), Bloch-, V Re G,cris, (B cris 0 D cris (V )) ϕ=1 Fil 0 (B dr D dr (V )) = (B cris Q V ) ϕ=1 Fil 0 (B dr Q V ) = (B ϕ=1 cris B + dr ) Q V = V Remark 2.26. D cris essential image, 2.7. Remark 2.27. Q (i),, t B cris, D cris (Q (i)) = (B cris Q Q (i)) G = 0 ( 1 t i e i ), ϕ( 1 t i e i ) = 1 i ( 1 t i e i ), Fil i D dr (Q (i)) = D dr (Q (i)), Fil i+1 D dr (Q (i)) = 0. Remark 2.28., H 1 (G, Q (1)) G - 1 µ n x x 1 (, µ n := {ζ ζ n = 1} ) n lim /( ) n n H 1 (G, Z (1)) lim /( ) n, H 1 (G, Z (1)) H 1 (G, Q (1)) n H 1 (G, Q (1)) : a [V a ]., a O 0 Q (1) V a Q 0 V a i 2, H 1 (G, Q (i)) 2.5. B st :, π, π := ( π n ) Ẽ+ π n O C, π 0 = π, π n+1 = π n π, ( 1) n 1 log([ π]) := ( [ π] 1) n tb + dr n π, t ( ) n=1 ϕ(log([ π]) = log([ π]), g(log([ π]) = log(g[ π]) = log([ π][ε] cπ (g) ) = log([ π]) + c π (g)t 10

, c π 1- B st : G Z (1), g(π n ) = π n ε c π (g) n ( n) B st := B cris [log([ π])] B dr log([ π]), B cris, B st = B cris [log([ π])] B cris [T ] (B cris ) log([ π]) ϕ, G B st G, ϕ B st π π B st B cris derivation N n n N : B st B st : a i log([ π]) i ia i log([ π]) i 1 (a i B cris ), N, i=0 i=0 ϕn = Nϕ Deition 2.29. D (ϕ, N)- ( filtered (ϕ, N)-module over ), D ϕ-, ϕ D N D = N D ϕ D 0 - N D : D D ϕ D N D = N D ϕ D, N D (ϕ, N)- MF ϕ,n. ϕ- N = 0 (ϕ, N)- MF ϕ ϕ,n MF Proosition 2.30. B st (1) B G st = 0. (2) 0 B st B dr. (3) Bst N=0 = B cris,, B ϕ=1,n=0 st B + dr = Q. Remark 2.31., V Re G,, Deition 2.32. V Re G D st (V ) := (B st Q V ) G dim 0 D st (V ) dim D dr (V ) dim Q V dim 0 D st (V ) = dim Q (V ) ( semi-stable reresentation). Re G Re G,st. Remark 2.33. (1) B cris B st (2) Re G,cris Re G,st Re G,dR (2) V Re G, B st ϕ, N B dr D st (V ), D st (V ) MF ϕ,n. Proosition 2.34. V Re G (1) V Re G,st. 11

(2) B st 0 D st (V ) B st Q V G, ϕ, N,,, (G - )., Proof., D cris (B st 0 D st ) ϕ=1,n=0 Fil 0 (B dr D dr (V )) V D st : Re G,st MF ϕ,n Remark 2.35. 2.28 H 1 (G, Q (1)), a \ O V a, (v (a) > 0, V a Tate /a Z - Tate ). 2.6., Deition 2.36. L D (1), (2), (ϕ, N, Gal(L/))- ( filtered (ϕ, N, Gal(L/))-module over ) (1) D L (ϕ, N). (2) Gal(L/) Aut MF ϕ,n (D). L D (ϕ, N, Gal(L/))- N = 0, D (ϕ, Gal(L/))- (ϕ, Gal(L/)))- MF ϕ,n,gal(l/) (ϕ, N, Gal(L/))(, (, MF ϕ,gal(l/) ). Deition 2.37. V Re G, L, V G L V GL ( ), V (, ). (, ) Re G Re G,cris(, Re G,st)., V GL ( ) Re G Re G,L cris(, Re G,L st). Remark 2.38. (1) Remark 2.10,, Re G,cris Re G,st Re G,dR (, Re G,st = Re G,dR ( - )). (2) V Re G,L st, D L st(v ) := (B st Q V ) G L, dim L0 Dst(V L ) = dim Q V Dst L, B st B dr G, ϕ, N,, Dst(V L ) MF ϕ,n,gal(l/) (V Re G,L cris, Dcris(V L ) := (B cris Q V ) G L MF ϕ,gal(l/) )., Proosition 2.39. L V Re G, (1), (2). (1) V Re G,L st(, V Re G,L cris). 12

(2) (,. B st L0 D L st(v ) B st Q V B cris L0 D L cris(v ) B cris Q V ) (2) Proosition 2.40. L D L cris : Re G,L cris MF ϕ,gal(l/) : V D L cris(v ) (, Dst L : Re G,L st MF ϕ,n,gal(l/) : V Dst(V L )) Remark 2.41. essential image 2.7., - Theorem 2.42. (Berger[Be02], Colmez[Co08]), Re G,st = Re G,dR Remark 2.43. Berger([Be02]), (ϕ, Γ), - Robba - Crew- Crew-, André([An04]), Christol-Mebkhout([Me02]), edlaya([e04]), Colmez([Co08]) Esaces Vectoriels de dimension ie (Crew- ) 2.7. (ϕ, N). 2.7, D cris, D st essential imege L, D MF ϕ,n,gal(l/)., D t N (D), t H (D), dim L0 D = 1 D = L 0 e, t N (D) := v (α) Z(, α L 0, ϕ(e) = αe ), t H(D) Z Fil th(d) (L L0 D) 0 Fil th(d)+1 (L L0 D) = 0, dim L0 D = d, D d- d D, t N (D) := t N ( d D), t H (D) := t H ( d D) t H (D) = i Z dim L(Fil i (L L0 D)/Fil i+1 (L L0 D)) Deition 2.44. D MF ϕ,n,gal(l/) (, D MF ϕ,gal(l/) ) (1), (2), (weakly-admissible) (ϕ, N, Gal(L/)) (, (ϕ, Gal(L/)) ). (1) t N (D) = t H (D) (2) D (ϕ, N, Gal(L/))- D t N (D ) t H (D ) MF ϕ,n,gal(l/),wa, MF ϕ,gal(l/),wa. Proosition 2.45. 13

(1) MF ϕ,n,gal(l/),wa, MF ϕ,n,gal(l/),wa (2) V Re G,L st, Dst(V L ) Proof. (2) V Re G,L st., t N (V ) = t H (V ), {χ k δ k Z, δ : G Z : }. D Dst(V L ), t N (D ) t H (D ), dim L0 D = d, Dst L : Re G,L st MF ϕ,n,gal(l/), d D Dst( L d V ), dim L0 D = 1, dim L0 D = 1 t N (D ) t H (D ), D = L 0 e D ϕ(e) = αe (α L 0 ), Fil h (L L0 D ) = L L0 D, Fil h+1 (L L0 D ) =., (B st L0 D ) ϕ=1,n=0 Fil 0 (B dr L L L0 D ) (B st L0 Dst(V L )) ϕ=1,n=0 Fil 0 (B dr L L L0 Dst(V L )) = V, D B ϕ=α 1 cris t h B + dr V, α = i u (u O L 0 ), B ϕ=α 1 cris = B ϕ= i cris, t h, B ϕ=h i cris B + dr, h > i, i h t N (D ) t H (D ) Lemma 2.46. (1) k < 0, B ϕ=k cris B + dr = 0. (2) k = 0, B ϕ=1 cris B + dr = Q. (3) k > 0, B ϕ=k cris B + dr Q - Proof. k 0, B ϕ=k cris B + dr t k B ϕ=1 cris t k B + dr, Bϕ=1 cris B+ dr = Q k 1, 0 Q t B +,ϕ= cris C 0, Theorem 2.47. Dst L : Re G,L st MF ϕ,n,gal(l/),wa, Dcris L : Re G,L cris MF ϕ,gal(l/),wa Remark 2.48., Colmez-Fontaine([CF00]), Fontaine([Fo 03]) almost C -, Colmez([Co02]) Esaces Vectoriels de dimension ie B ϕ=k cris B + dr G -,, almost C - Esaces Vectoriels de dimension ie G -, (ϕ, Γ) Robba -, edlaya ([e04]) (Berger([Be08]) isin([i06])). 3.. 3, X -, X k ( ) 2 -,,, ([Tsu02]), 14

X O (, X Sec(O [T 1, T 2,, T n ]/(T 1 T 2 T m π )) (1 m n) )., X X X := X Sec() Sec(). i 0, - H í et (X, Q ) H i dr(x /) := H i (X, Ω X /). H í et (X, Q ) Re G, H i dr (X /) k 0 Fil k H i dr(x /) := Im(H i (X, Ω k X / ) Hi (X, Ω X /)) H i dr (X /) MF., X X k := X Sec(O ) Sec(k), H i log cris(x) := H i log cris(x k /O 0 ) O0 0 ( [BerO73], [Hya94]). 0 - ϕ- Frobenius ϕ 0 - N, Nϕ = ϕn., X (X k ) N = 0.,. Theorem 3.1. (Berthelot-Ogus, - ), π O, 0 H i log cris(x) H i dr(x /) Proof., X Berthelot-Ogus([BerO78]), - ([Hya94]), H i log cris (X) (ϕ, N)- (X, ϕ- ), Theorem 3.2., G -, ϕ, N,. (1) X, (2) X,,,, (X B cris Q H í et(x, Q ) B cris 0 H i log cris(x). B st Q H í et(x, Q ) B st 0 H i log cris(x). g g, ϕ 1, N 1, Fil k H í et(x, Q ) g 1, ϕ ϕ, N 1 + 1 N, Fil k = H í et(x, Q ) Re G,st k 1 +k 2 =k H í et(x, Q ) Re G,cris), (ϕ, N)- D st (H í et(x, Q )) H i log cris(x) 15 Fil k 1 Fil k 2

(X ϕ- D cris (H í et(x, Q )) H i log cris(x)) Proof.,, ([Tsu02]]). Faltings(almost étale [Fa02]), Niziol( [Ni98]), ( [Tsu99]), de Jong, Theorem 3.3. X (1) H í et (X, Q ), D dr (H í et(x, Q )) H i dr(x /) (2) H í et (X, Q ) Hodge-Tate, C Q H í et(x, Q ) n 0 C ( n) H i n (X, Ω n X /), 2 3, X H í et (X, Q ) - { } { { } } { { } } { { } } { } =, 2.6 - Re G, Re G,dR Re G, l-, -. B dr, - (ϕ, Γ)- ([Fo91]). 4. C - (Tate-Sen ):- 4,, Hodge-Tate, Tate-Sen C - ([Sen73], [Sen80], [Fo04])), - ([Sen88], [Sen93], [BC08]), -, - -, -, Tate-Sen, Hodge-Tate -, ((ϕ, Γ)-) -. 16

4.1. Tate-Sen :, - ) [Fo04] (,, Tate 2.6 ) := n 0 (ζ n)(ζ n 1 n ), H := Gal(/ ) = er(χ : G Z ). Γ := Gal( /) = G /H. χ : Γ Z, Γ Z Tate-Sen, C - G Deition 4.1. W G C -, W C -, G (, a C, x W g(ax) = g(a)g(x) ), C - Re G,C., W Re G,C, W C -, G C -, 1- [U W ] H 1 (G, GL n (C )) (, n = dim C W ). 1-, [U W ] W Tate-Sen, C - W W H := {x W g(x) = x ( g H )}, (decomletion ) 1-, inflation-restriction 1 H 1 (Γ, GL n (C H )) H 1 (G, GL n (C )) H 1 (H, GL n (C )) H 1 (H, GL n (C )), H 1 (Γ, GL n (C H )) (decomletion). (1) H 1 (H, GL n (C )), (2) H 1 (Γ, GL n (C H )) (decomletion) (1), (2), / ( ),, ( 4.2 4.6), (1), (2)., ( variant) Tate-Sen, Tate-Sen - (, (overconvergent) (ϕ, Γ) ([CC98]), B- ([Be08a]) ), (1) (2) - ( )., (1) (1) (almost étaleness). Theorem 4.2. ([Ta67] ro.9, [Fo04] theorem.1.8) M, m tr M/ (O M ), (1) Theorem 4.3. (i), (ii) (i) C H = (, C - ). (ii) n 1, H 1 (H, GL n (C )) = {1}. (i) Lemma 4.4. M, J := Gal(M/ ), ε > 0., x M y v (x y) inf g J {v (g(x) x)} ε 17

Proof.,, λ m v (λ) < ε, 4.2 µ O M tr M/ (µ) = λ, x M, y := tr M/ (xµ) λ, x y = 1 λ (xλ tr M/ (xµ)) = 1 λ ( g J (x g(x))g(µ)), (i) Proof. (of (i)), C H, C H., x C H, C {x n } n 0 v (x x n ) n ( n) x n., n x n, M n, J n := Gal(M n / ). ε > 0, 4.4 y n v (x n y n ) inf g Jn {v (g(x n ) x n )} ε, x C H J n H, g J n, n v (g(x n ) x n ) = v (g(x n x) + (x x n )) n v (x y n ) inf{v (x x n ), v (x n y n )} n ε, lim n y n = x, y n, x. (ii) Proof. (of (ii)) [U] H 1 (H, GL n (C )). (U : H GL n (C ) : τ U τ, [U] 1- ), [U] = 1, U H,, U(H ) 1 + 2 M n (O C ), inflation-restriction 1 H 1 (Gal( / ), GL n (C H )) H 1 (H, GL n (C )) H 1 (H, GL n (C )) (i) C H =, Gal( / ) = Gal( / ), Hilbert 90, [U H ] = 1 H 1 (H, GL n (C )), U(H ) 1 + 2 M n (O C ), M 1 1 + M n (O C ) τ H M1 1 U τ τ(m 1 ) 1 + 3 M n (O C ) M 1, U(H ) 1 + 4 M n (O C ), x m v (x) < 1, 4.2 y O tr / (y) = x, α := y x tr / (α) = 1, v (α) > 1 Q H Gal( / ) Q, M 1 := τ Q τ(α)u τ, α, M 1 1 + M n (O C )., τ H, M1 1 U τ τ (M 1 ) 1 = M1 1 (U τ τ (M 1 ) M 1 ) = M1 1 (U τ τ ( τ Q τ(α)u τ) τ Q τ(α)u τ) = M1 1 ( τ Q τ τ(α)u τ τ τ Q τ(α)u τ). {τ τ} τ Q = {ττ i(τ) } τ Q (, τ i(τ) H ),, α, ττ i(τ) (α)u ττi(τ) τ(α)u τ = τ(α)u τ (τ(u τi(τ) ) 1) 3 M n (O C ) 18

., M 1 1 U τ τ (M 1 ) 1 3 M 2 (O C )., k M k 1 + k M n (O C ), τ H (M 1 M 2 M k ) 1 U τ τ (M 1 M k ) 1 + k+2 M n (O C ) M k, M := k=1 M k( M 1 M 2 ), M 1 + M n (O C ), τ H, M 1 U τ τ (M) = 1., [U] = 1 H 1 (H, GL n (C )) (i)(ii) Re G,C, W Re G,C (i), W H := {x W τ(x) = x τ H } -, G Γ Corollary 4.5. W Re G,C, C -, C b W H dim b W H W : a x ax = dim C W Proof. W 1 [U W ] H 1 (G, GL n (C )), (ii), [U W H ] = 1, (i) C -, C - W Γ - W H,, Tate-Sen 2 W H (decomletion),, / Z / Z, Γ = Gal( /) Z, n (n) (n) Gal( (n) /) Z/ n Z γ 0 Γ Z 1 Z, t : x (n) t (x) := 1 n tr (n) /(x) t well-deed -, x t (x) = x, t (γ(x)) = t (x) ( γ Γ, x ). t, /, -, n 0, n := (ζ n) (, n (n) ). Theorem 4.6. ([Fo04].ro.1.13]), n 0, / n Z, v (t n (x) x) v (γ n (x) x) 1 (, γ n Γ n )., t :, t. Tate-Sen (2)(decomletion), Theorem 4.7. / Z, t, (γ 0 Γ ). 19

(1) t : (2) (1) t t :. L := er(t : )., = L, (3) γ 0 1 : L L γ 0 1 : L L ρ : L L ρ, y L v (ρ(y)) v (y) 1 Proof. (1). 4.6, x, v (t (x)) = v (t (x) x + x) inf{v (t (x) x), v (x)} inf{v (γ 0 (x) x) v (x) 1 1, v (x)}, t., t t :. (2)., = L x L, x = t (x) = 0 L = {0}. x, t (x), x t (x) L, x L., = L γ 0 1 : L L. n L n := L n γ 0=1 n = γ 0 1 : L n L n, L n -, n 0 L n L, x L, L, {x n } n 1 x = lim n x n, t, 0 = t (x) = lim n t (x n )., x = lim n (x n t (x n )), x n t (x n ) n 0 L n. n 0 L n L (3). ρ : L L γ 0 1 : L L y L, ρ(y) L, 4.6, v (ρ(y)) = v (t (ρ(y)) ρ(y)) v ((γ 0 1)ρ(y)) t, Theorem 4.8. - (i), (ii), (i) C G =. (ii). H 1 (Γ, GL n ( )) H 1 (Γ, GL n ( )) 20 1 = v (y) 1

Proof. (i)., 4.7, (i) 4.3 (1) 4.7(2) γ 0 1 : L L (ii)., U : Γ GL n ( ) 1-, k, m > 0 / m 4.7, U γ0 1 + k M n (O b ) (, γ 0 Γ m ), U, U γ0 M n (O m ). U γ0 := 1 + U 0 (U 0 M n (O m )), v (U 0 ) k, U 0 = (U 0 t m (U 0 )) + t m (U 0 ), U 0 t m (U 0 ) M n (er(t m )), 4.7(3), V 1 M n (er(t m )), U 0 = (γ 0 1)(V 1 ) + t m (U 0 ) 4.6 4.7(3), v (t m (U 0 )) = inf{v (t m (U 0 ) U 0 ), v (U 0 )}, v (U 0 ) k 1 1 v (V 1 ) = v (ρ(u 0 t m (U 0 ))) v (U 0 t m (U 0 )) v (U 0 ) 2 1 k 2 1 1., (1 V 1 ) 1 (1 + U 0 )(1 γ 0 (V 1 )) k+1, k V 1, U 0 k + 1, k+1, (1 V 1 ) 1 (1 + U 0 )(1 γ 0 (V 1 )) = (1 + V 1 + V 2 1 + )(1 + U 0 )(1 γ 0 (V 1 )) 1 + V 1 + U 0 γ 0 (V 1 ) mod k+1 = 1 + V 1 + ((γ 0 1)(V 1 ) + t m (U 0 )) γ 0 (V 1 ) = 1 + t m (U 0 )., (1 V 1 ) 1 (1 + U 0 )(1 γ 0 (V 1 )) = 1 + U 1 + W 1, U 1 M n (O b ), W 1 M n (O m ), v (U 1 ) k + 1, v (W 1 ) k 1 U 1, W 1., U 1 = (γ 0 1)(V 2 ) + t m (U 1 ), v (V 2 ) k + 1 2, v 1 (t m (U 1 )) k + 1 1, k k+2, (1 V 2 ) 1 (1 + U 1 + W 1 )(1 γ 0 (V 2 )) = (1 + V 2 + V 2 2 + )(1 + U 1 + W 1 )(1 γ 0 (V 2 )) 1 + W 1 + t m (U 1 ), W 2 := t m (U 1 ), (1 V 2 ) 1 (1 + U 1 + W 1 )(1 γ 0 (V 2 ) = 1 + U 2 + (W 1 + W 2 ), U 2 M n (O b ), W 2 M n (O m ), v (U 2 ) k + 2, v (W 2 ) k + 1 1. 21

,, V i M n (O b ), v (V i ) k + (i 1) 2 1, {(1 V 1 )(1 V 2 ) (1 V i )} 1 (1+U 0 ){(1 γ 0 (V 1 )) (1 γ 0 (V i ))} = 1+U i +(W 1 +W 2 + +W i ), U i M n (O b ), W i M n (O m ), v (U i ) k + i, v (W i ) k + (i 1) 1, (1 V ) := i=1 (1 V i) M n (O b ),, (1 V ) 1 (1 + U 0 )(1 γ 0 (V )) = 1 + W M n (O m ), v (W ) k 1.,, U γ := (1 V )U γ (1 γ(v )) (γ Γ ), V U γ 0 M n (O m ) v (U γ 0 1) k 1, γ Γ, U γ GL n ( m ) ( ). claim, Γ U γγ(u γ 0 ) = U γγ 0 = U γ 0 γ = U γ 0 γ 0 (U γ), γ 0 (U γ) = U 1 γ 0 U γγ(u γ 0 ) t m m -,, γ 0 (U γ t m (U γ)) = U 1 γ 0 (U γ t m (U γ))γ(u γ 0 ) (γ 0 1)(U γ t m (U γ)) = U 1 γ 0 (U γ t m (U γ))γ(u γ 0 ) (U γ t m (U γ)) = (U 1 γ 0 1)(U γ t m (U γ))γ(u γ 0 ) +(U γ t m (U γ))(γ(u γ 0 ) 1), 4.7(3) v (U γ t m (U γ)). k k 2 1 > 0, = v (ρ((γ 0 1)(U γ t m (U γ)))) v ((γ 0 1)(U γ t m (U γ)) 1 v (U γ t m (U γ)) + inf{v (U 1 γ 0 1), v (γ(u γ 0 ) 1)} 1 v (U γ t m (U γ)) + k 2 1 v (U γ t m (U γ)) =, U γ = t m (U γ) M n ( m ) (ii) 1 U : Γ GL n ( ), V GL n ( ) γ Γ V 1 U γ γ(v ) = 1, V GL n ( ), m, U γ0 1 + k M n (O m ) (γ 0 Γ m ), V 1 U γ0 γ 0 (V ) = 1, γ 0 (V ) = Uγ 1 0 V,, 4.7(3), k (γ 0 1)(V t m (V )) = (U 1 γ 0 1)(V t m (V )) v (V t m (V )) = v (ρ((γ 0 1)(V t m (V )))) v ((γ 0 1)(V t m (V ))) 1 v (V t m (V )) + v (Uγ 1 0 1) v (V t m (V )) + k 1 1 > 0 V = t m (V ) M n ( m ) 22 1

W H decomletion, Proosition 4.9. M Γ -., M. Proof. M, M M M, M, / 4.7, γ 0 Γ M, M.,, M α, γ m 0 1(m ), γ m 0 α m, α m 1., α m 1 + k O m α 1 + k O, M 0 M = 4.7(2) γ 0 1 : L L, α = 1, α 1., M γ 0 u, (γ 0 1)(u) = (α 1)u, v ( 1 u) = v α 1 (ρ(u)) v (u) 1. v ( 1 u) = v α 1 (u) k, α = 1, M =. W Re G,C. x W H x Γ {γ(x)} γ Γ W H - W H Γ -. W H := {x W H dim x Γ < } Theorem 4.10. W Re G,C, (1) W H -, (2) : W H W H dim W H = dim C W W H W H : a x ax (x) := lim γ 1 1 logχ(γ) ( 1) n 1 (γ 1) n (x) n n=1 ( γ 1 γ Γ γ 1 1 ), well-deed -, (, ). det(t H W ) [T ] Proof. (i)., 4.8(i) W H Γ - W W W H : a x ax. 4.8(ii) W, W H = W, W W H W H W, x W H dim x Γ < e 1, e 2,, e m x Γ, f 1,, f d W, 1 i m, e i := d j=1 a ijf j (a ij ), x Γ W Γ, n 23

{a ij } 1 i m,1 j d n - Γ n., 4.9 a ij, e i W, x W (ii)., x W H, 1 ( 1) n 1 (γ 1) n = lim (x) W H γ 1 log(χ(γ)) n n=1 well-deed -, A M d ( ) f 1,, f d, Γ, γ Γ, γ(f 1 ),, γ(f d ) γ(a) A γ(a), det(t H W ) [X]. Deition 4.11. (1) W Re G,C, D Sen (W ) := W H. 4.10 W Sen : D Sen (W ) D Sen (W ) P W (X) [X], W Sen P W (X) ( ) W Hodge-Tate. (2) V Re G D Sen (V ) := D Sen (C Q V ), P V (X) := P C Q V (X) V Sen, P V (X) V Hodge-Tate Remark 4.12. D Sen (Q (i)) = e i, (e i ) = ie i., Q (i) Hodge- Tate i., Hodge-Tate Hodge-Tate Hodge-Tate, Proosition 4.13. V Re G, 2 (1) V Hodge-Tate. (2) V Hodge-Tate, D Sen (V ) ( )., V Hodge-Tate Hodge-Tate Proof. (1) (2) V Hodge-Tate (Deition 2.15) 4.12. (2) (1),, V Hodge-Tate V G Hodge-Tate,, e 1, e 2, e d, (e i ) = n i e i (n i Z) x W H W H, 1 γ Γ γ(x) = ex(log(χ(γ)) (x)), n γ(e i ) = ex(log(χ(γ))n i )e i = χ(γ) n i e i (γ Γ n ), C Q V G C n D Sen (V ) G d n i=1 C (n i ), V G Hodge-Tate, V Hodge-Tate n 24

, - Tate-Sen, C (i) Tate ( 2.2) Theorem 4.14. (1) i = 0, H 0 (G, C ) =, H 1 (G, C ) =. (2) i 0, H j (G, C (i)) = 0 ( j). Proof., H 0 (G, C ) = 4.8(i) i 0, H 0 (G, C (i)) = 0, 4.7, v (χ(γ 0 ) 1) >, C 1 (i) H = e i = Le i ei., γ 0 1 : e i e i, γ 0 1 : Le i Le i x L 4.7(2) x = ρ(y) (y L). γ 0 (xe i ) = xe i, 0 = (γ 0 1)(ρ(y)e i ) = γ 0 (ρ(y))χ(γ 0 ) i e i ρ(y)e i = χ(γ 0 ) i (γ 0 1)(ρ(y))e i + (χ(γ 0 ) i 1)ρ(y)e i = χ(γ 0 ) i ye i + (χ(γ 0 ) i 1)ρ(y)e i., 4.7(3), v (y) = v (χ(γ 0 ) i 1) + v (ρ(y)) v (χ(γ 0 ) i 1) + v (y) > v (y). y = 0 x = 0, (C (i)) G = 0 H 1 (G, C (i)), 4. 3(ii) C W W H (H )C -, H 1 (H, C (i)) = 0 inflationrestriction, H 1 (Γ, e i ) H 1 (G, C (i))., n n 4.7 inflation-restriction 0 H 1 (Gal( n /), (C (i)) G n ) H 1 (Γ, e i ) H 1 (Γ n, e i ) Gal( n/) 0, n, 4.7, Γ γ 0, H 1 (Γ, e i ) e i /(γ 0 1) e i ( C - ). 4.7(2), i = 0 H 1 (Γ, e 0 ) = (G ). i 1, H 0, γ 0 1 : Le i Le i, n L n := L n ( ), n 0 L n L, γ 0 1 : Le i Le i i 0, H 1 (Γ, e i ) = 0. 4.2. Tate-Sen : ( ) -,, -, 4.1 Hodge-Tate, Tate-Sen - [BC08] - - - Q Banach., -, [BC08], Banach. S Q - (, S : S R 0 Q -, a Q, f S af S = a f S ( Q - ) ). X := {m x S m x }, x X E x := S/m x. Deition 4.15. Q - S, (algebra of coefficients). 25 1

(1) S S v S : S R { } f S := v S(f). (i)v S (f) = f = 0. (ii) f, g S, v S (fg) v S (f) + v S (g), v S (f + g) inf{v S (f), v S (g)}. (iii) a Q v S (a) = v (a) (2) x X E x Q, O S := {x S v S (x) 0}. Remark 4.16. A Q, A, S - Deition 4.17. V, V S (G )-,. (1) V S- G S- (, V S ). (2) V G O S - T V S OS T = V T S (G )-, S-Re G. Remark 4.18. S = E Q (2), E-Re G E - V S-Re G, x X, E x - V x := V S E x. S -, Sen Theorem 4.19. ([BC08]) V S-Re G, (1), n ((C Q S) S V ) H Γ n Q S- D n Sen (V ) (C Q S) n Q S D n Sen (V ) (C Q S) S V : a x ax (2) x D n Sen (V ), 1 ( 1) k 1 (γ 1) k n (x) := lim (x) D n γ 1 Sen log(χ(γ)) k (V ) k=1 well-deed n Q S, det(t n D n Sen (V )) n Q S[X] n, Q S (3) x X, D n Sen (V ) S E x D Sen (V x G n ) Remark 4.20., 4.1 C 4.2, 4.6 C Q S, 4.1 S, [BC08], 4.2, 4.6, 4.7 (TS ), 4.1 V D Sen (V ), [BC08] [Be08], TS C -, Tate-Sen - - Remark 4.21.,, S Hilbert90 26

Deition 4.22. V S-Re G, (2) Q S V Sen, P V (X). Remark 4.23. (3), x X, P V (X) S E x = P Vx (X) Q E x [X] [Ya]., - References [An02] Y. André, Filtrations de tye Hasse-Arf et monodromie -adique, Invent. Math. 148 (2002),. 285-317. [Be02] L. Berger, Rerésentations -adiques et équations différentielles, Invent. Math. 148 (2002),. 219-284. [Be04] L. Berger, An introduction to the theory of -adic reresentations, Geometric Asects of Dwork theory, Walter de Gruyter, Berlin (2004),. 255-292. [Be08a] L. Berger, Construction de (ϕ, Γ)-modules: rerésentations -adiques et B-aires, Algebra and Number Theory, 2 (2008), no. 1, 91 120. [Be08b] L. Berger, Équations différentielles -adiques et (ϕ, N)-modules filtrés, Astérisque. 319 (2008),. 13-38. [BC08] L. Berger and P. Colmez, Familles de rerésentations de de Rham et monodromie -adique, Astérisue. 319 (2008),. 303-337. [BerO78] P. Berthelot and A. Ogus, Notes on crystalline cohomology, Mathematical Notes, Princeton University Press, (1978). [CC98] F. Cherbonnier and P. Colmez, Rerésentations -adiques surconvergentes, Invent. Math. 133 (1998),. 581-611. [Co02] P. Colmez, Esaces de Banach de dimension ie, J. Inst. Math. Jussieu 1 (2002),. 331-439. [Co07a] P. Colmez, Rerésentations triangulines de dimension 2, rerint (2007). [Co08] P. Colmez, Esaces vectoriels de dimension ie et rerésentations de de Rham. Astérisque. 319 (2008),. 117-186. [CF00] P. Colmez and J-M. Fontaine, Construction des rerésentations -adiques semi-stables, Invent. Math. 140 (2000), 1-43. [Fa02] G. Faltings, Almost étale extensions, Astérisque 279 (2002),. 185-270. [Fo82] J-M. Fontaine, Sur certains tyes de rerésentations -adiques du groue de Galois d un cors local; construction d un anneau de Barsotti-Tate, Ann of Math. 115 (1982),. 529-577. [Fo91] J-M. Fontaine, Rerésentations -adiques des cors locaux, in The Grothendieck Festschrift, vol. 2, Birkhauser, Boston, 1991,. 249-309. [Fo94a] J-M. Fontaine, Le cors des ériodes -adiques, Astérisque. 223 (1994),. 59-102. [Fo94b] J-M. Fontaine, Rerésentations -adiques semi-stables, Astérisque. 223 (1994),. 113-184. [Fo03] J-M. Fontaine, Presque C -rerésentations, in Volume dedicated to azuya ato s 50-th Birthday, Documenta Mathematica (2003),. 285-385. [Fo04] J-M. Fontaine, Arithmétique des rerésentations galoisiennes -adiques, Astérisque. 295 (2004),. 1-115. [Hya94] O. Hyodo and. ato, Semi-stable reduction and crystalline cohomology with logarithmic oles, Astérisque 223 (1994),. 221-268. [e04]. edlaya, A -adic local monodromy theorem, Ann of Math. (2) 160 (2004),. 93-184. [i06] M. isin, Crystalline reresentations and F -crystals, in Algebraic geometry and number theory, Progr. Math. vol 253, Birkhauser (2006),. 459-496. [Me04] Z. Mebkhout, Analogue -adique du théoreme de Turrittin et le théoreme de la monodromie -adique, Invent. Math. 148 (2002),. 319-351. [Mi], l-,. [Ni98] W. Niziol, Crystalline conjecture via -theory, Ann. Sci. École. Norm. Su. (4) 31 (1998), no 5,. 659-681. [Sen73] S. Sen, Lie algebras of Galois grous arising from Hodge-Tate modules, Ann of Math. 97 (1973),. 160-170. [Sen80] S. Sen, Continuous cohomology and -adic Galois reresentations, Invent. Math. 62 (1980),. 89-116. [Sen88] S. Sen, The analytic variations of -adic Hodge structure, Ann of Math. (2) 127 (1988),. 647-661. [Sen93] S. Sen, An inite-dimensional Hodge-Tate theory, Bull. Soc. Math. France. 121 (1993),. 13-34. 27

[Ta67] J. Tate, -divisible grous, in Proc. Conf. Local Fields (Driebergen, 1966), Sringer, 1967,. 158-183. [Tsu99] T. Tsuji, -adic étale comomology and crystalline cohomology in the semi-stable reduction case. Invent. Math. 137 (1999),. 233-411. [Tsu02] T. Tsuji, Semi-stable conjecture of Fontaine-Jannsen: a survey. Astérisque 279, (2002),. 323-370. [Ya], Eigencurve,. 28