Similar documents
Table. Stage model parameters. Mass of pole part m.4 kg Mass of table part M 22 kg Thrust viscous constant c x 2. 2 N s/m Twist dumping constant of jo

,, 2. Matlab Simulink 2018 PC Matlab Scilab 2

75 unit: mm Fig. Structure of model three-phase stacked transformer cores (a) Alternate-lap joint (b) Step-lap joint 3 4)

Study on Throw Accuracy for Baseball Pitching Machine with Roller (Study of Seam of Ball and Roller) Shinobu SAKAI*5, Juhachi ODA, Kengo KAWATA and Yu

MEC NC High frequency variation speed control of spindle motor for self-excited chattering vibration suppression in NC Machine tools. Teruaki I

SICE東北支部研究集会資料(2012年)

PRECISION COMPACT DISC PLAYER DP-75V

( ) : 1997

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202E646F63>

news

V s d d 2 d n d n 2 n R 2 n V s q n 2 n Output q 2 q Decoder 2 R 2 2R 2R 2R 2R A R R R 2R A A n A n 2R R f R (a) 0 (b) 7.4 D-A (a) (b) FET n H ON p H

thesis.dvi

最新耐震構造解析 ( 第 3 版 ) サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 3 版 1 刷発行時のものです.

Microsoft PowerPoint - 山形大高野send ppt [互換モード]

JFE(和文)No.4-12_下版Gのコピー

AD8212: 高電圧の電流シャント・モニタ

鉄鋼協会プレゼン

main.dvi

OPA134/2134/4134('98.03)

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202E646F63>

Proceedings of the 61st Annual Conference of the Institute of Systems, Control and Information Engineers (ISCIE), Kyoto, May 23-25, 2017 The Visual Se

318 T. SICE Vol.52 No.6 June 2016 (a) (b) (c) (a) (c) ) 11) (1) (2) 1 5) 6) 7), 8) 5) 20 11) (1

LMC6022 Low Power CMOS Dual Operational Amplifier (jp)

空気の屈折率変調を光学的に検出する超指向性マイクロホン

fj111_109

Unidirectional Measurement Current-Shunt Monitor with Dual Comparators (Rev. B

LD

Sample function Re random process Flutter, Galloping, etc. ensemble (mean value) N 1 µ = lim xk( t1) N k = 1 N autocorrelation function N 1 R( t1, t1

P361

Abstract This paper concerns with a method of dynamic image cognition. Our image cognition method has two distinguished features. One is that the imag

Instability of Aerostatic Journal Bearings with Porous Floating Bush at High Speeds Masaaki MIYATAKE *4, Shigeka YOSHIMOTO, Tomoaki CHIBA and Akira CH

2007-Kanai-paper.dvi

XFEL/SPring-8

ADC121S Bit, ksps, Diff Input, Micro Pwr Sampling ADC (jp)

K02LE indd

橡実験IIINMR.PDF

2012 September 21, 2012, Rev.2.2

Triple 2:1 High-Speed Video Multiplexer (Rev. C

MPC_Essentials_v1.0-ja-2

1, 2, 2, 2, 2 Recovery Motion Learning for Single-Armed Mobile Robot in Drive System s Fault Tauku ITO 1, Hitoshi KONO 2, Yusuke TAMURA 2, Atsushi YAM

I A A441 : April 15, 2013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida )

三石貴志.indd

What moves your world

Synthesis and Development of Electric Active Stabilizer Suspension System Shuuichi BUMA*6, Yasuhiro OOKUMA, Akiya TANEDA, Katsumi SUZUKI, Jae-Sung CHO

Fig. 2 Signal plane divided into cell of DWT Fig. 1 Schematic diagram for the monitoring system

positron 1930 Dirac 1933 Anderson m 22Na(hl=2.6years), 58Co(hl=71days), 64Cu(hl=12hour) 68Ge(hl=288days) MeV : thermalization m psec 100

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202E646F63>

A Study of Adaptive Array Implimentation for mobile comunication in cellular system GD133

TF Editor V3.5 ユーザーガイド

pp d 2 * Hz Hz 3 10 db Wind-induced noise, Noise reduction, Microphone array, Beamforming 1

mpctouch_userguide_v1.0-1

2. ICA ICA () (Blind Source Separation BBS) 2) Fig. 1 Model of Optical Topography. ( ) ICA 2.2 ICA ICA 3) n 1 1 x 1 (t) 2 x 2 (t) n x(t) 1 x(t

1 Fig. 1 Extraction of motion,.,,, 4,,, 3., 1, 2. 2.,. CHLAC,. 2.1,. (256 ).,., CHLAC. CHLAC, HLAC. 2.3 (HLAC ) r,.,. HLAC. N. 2 HLAC Fig. 2

Microsoft PowerPoint - 02_資料.ppt [互換モード]

main.dvi

修士論文

Trapezoidal Rule θ = 1/ x n x n 1 t = 1 [f(t n 1, x n 1 ) + f(t n, x n )] (6) 1. dx dt = f(t, x), x(t 0) = x 0 (7) t [t 0, t 1 ] f t [t 0, t 1 ], x x

General Purpose, Low Voltage, Rail-to-Rail Output Operational Amplifiers 324 V LM LMV321( )/LMV358( )/LMV324( ) General Purpose, Low Voltage, Rail-to-

untitled

Input image Initialize variables Loop for period of oscillation Update height map Make shade image Change property of image Output image Change time L

DPA,, ShareLog 3) 4) 2.2 Strino Strino STRain-based user Interface with tacticle of elastic Natural ObjectsStrino 1 Strino ) PC Log-Log (2007 6)

untitled

MLA8取扱説明書

<4D F736F F D B B BB2D834A836F815B82D082C88C602E646F63>

TF Editor V4.0 ユーザーガイド

untitled

0810_UIT250_soto

LT 低コスト、シャットダウン機能付き デュアルおよびトリプル300MHz 電流帰還アンプ

通信容量制約を考慮したフィードバック制御 - 電子情報通信学会 情報理論研究会(IT) 若手研究者のための講演会

. (.8.). t + t m ü(t + t) + c u(t + t) + k u(t + t) = f(t + t) () m ü f. () c u k u t + t u Taylor t 3 u(t + t) = u(t) + t! u(t) + ( t)! = u(t) + t u(

1 (1997) (1997) 1974:Q3 1994:Q3 (i) (ii) ( ) ( ) 1 (iii) ( ( 1999 ) ( ) ( ) 1 ( ) ( 1995,pp ) 1

LM35 高精度・摂氏直読温度センサIC

a) Extraction of Similarities and Differences in Human Behavior Using Singular Value Decomposition Kenichi MISHIMA, Sayaka KANATA, Hiroaki NAKANISHI a

OPA277/2277/4277 (2000.1)

0.1 I I : 0.2 I

DAC121S101/DAC121S101Q 12-Bit Micro Power, RRO Digital-to-Analog Converter (jp)

5D1 SY0004/14/ SICE 1, 2 Dynamically Consistent Motion Design of Humanoid Robots even at the Limit of Kinematics Kenya TANAKA 1 and Tomo

CVaR

LMC6082 Precision CMOS Dual Operational Amplifier (jp)

CM1-GTX

高速データ変換

258 5) GPS 1 GPS 6) GPS DP 7) 8) 10) GPS GPS ) GPS Global Positioning System

untitled

(a) 1 (b) 3. Gilbert Pernicka[2] Treibitz Schechner[3] Narasimhan [4] Kim [5] Nayar [6] [7][8][9] 2. X X X [10] [11] L L t L s L = L t + L s

1

(MIRU2008) HOG Histograms of Oriented Gradients (HOG)

MmUm+FopX m Mm+Mop F-Mm(Fop-Mopum)M m+mop MSuS+FX S M S+MOb Fs-Ms(Mobus-Fex)M s+mob Fig. 1 Particle model of single degree of freedom master/ slave sy

xx/xx Vol. Jxx A No. xx 1 Fig. 1 PAL(Panoramic Annular Lens) PAL(Panoramic Annular Lens) PAL (2) PAL PAL 2 PAL 3 2 PAL 1 PAL 3 PAL PAL 2. 1 PAL

4. C i k = 2 k-means C 1 i, C 2 i 5. C i x i p [ f(θ i ; x) = (2π) p 2 Vi 1 2 exp (x µ ] i) t V 1 i (x µ i ) 2 BIC BIC = 2 log L( ˆθ i ; x i C i ) + q

c 2009 i

EMX /EMX

mt_4.dvi

Galvanometer Optical Scanner & Driver Special Features Low inertia and high torque Exact linearity and precise position control Superior temperature c

LMV851/LMV852/LMV854 8 MHz Low Power CMOS, EMI Hardened Operational Amplifi(jp)

Nano Range Specification Stable & Stable Telescopic Resonators Model Nano S Nano S Nano S Nano S Nano L Nano L Nano L Nano L Nano L Nano L Nano L 130-

IPSJ SIG Technical Report Vol.2014-ARC-213 No.24 Vol.2014-HPC-147 No /12/10 GPU 1,a) 1,b) 1,c) 1,d) GPU GPU Structure Of Array Array Of

28 Horizontal angle correction using straight line detection in an equirectangular image

2). 3) 4) 1.2 NICTNICT DCRA Dihedral Corner Reflector micro-arraysdcra DCRA DCRA DCRA 3D DCRA PC USB PC PC ON / OFF Velleman K8055 K8055 K8055

A Study on Throw Simulation for Baseball Pitching Machine with Rollers and Its Optimization Shinobu SAKAI*5, Yuichiro KITAGAWA, Ryo KANAI and Juhachi

Transcription:

Fast and Precise Point-to-point and Trajectory Control for Positioning Systems of Galvanometer Scanner 215

i 1 1 1.1................................ 1 1.2...................... 3 1.2.1............................ 3 1.2.2........................... 5 1.3................................ 7 2 11 2.1......... 11 2.1.1......................... 11 2.1.2............... 14 2.1.3............... 14 2.1.4...................... 15 2.1.5............... 16 2.2.......... 17 2.2.1........................ 18 2.2.2.................... 18 2.3 2.................... 21 2.3.1 FB............... 23 2.3.2 FSC FF................. 25 2.4 2............... 3 2.4.1 FB............... 31 2.4.2 2............ 32 2.5............. 36 2.5.1............ 36 2.5.2............. 38 2.5.3....... 4

ii 2.6................................... 42 3 45 3.1.............. 45 3.1.1........................ 45 3.1.2............ 47 3.2........ 5 3.3................................... 53 4 55 4.1............................ 55 4.2 NST............................... 56 4.2.1 NST............................ 57 4.2.2 2................... 6 4.3 NST......................... 61 4.4................................... 63 5 67 5.1...................... 67 5.1.1............... 68 5.1.2........................ 68 5.1.3............ 71 5.1.4......... 71 5.2...................... 73 5.2.1 FF.................. 76 5.2.2......... 77 5.3................................... 79 6 81 6.1........................... 81 6.2............................. 83 85 87 95

iii 1.1.................................. 8 2.1 CO2.......................... 12 2.2.......... 12 2.3......................... 14 2.4.......... 15 2.5.................. 16 2.6................... 16 2.7......... 18 2.8 ( 1)................... 19 2.9 ( 2)................... 19 2.1 ( 3)................... 19 2.11 ( 4)................... 2 2.12 ( 5)................... 2 2.13 ( 6)................... 2 2.14....................... 21 2.15 2................ 25 2.16 C(z) ( 1)..................... 27 2.17 ( 1)............... 27 2.18 ( 1)................... 27 2.19 C(z) ( 2)..................... 28 2.2 ( 2)............... 28 2.21 ( 2)................... 28 2.22 C(z) ( 3)..................... 29 2.23 ( 3)............... 29 2.24 ( 3)................... 29 2.25 ( )... 3

iv 2.26 ( )................................. 3 2.27 FSC......................... 31 2.28 FSC.................. 31 2.29 2........... 32 2.3 y u ( 4).......... 33 2.31 ( 4)............... 33 2.32 ( 4)................... 33 2.33 y u ( 5).......... 34 2.34 ( 5)............... 34 2.35 ( 5)................... 34 2.36 y u ( 6).......... 35 2.37 ( 6)............... 35 2.38 ( 6)................... 35 2.39 ( 5)................. 37 2.4 ( 6)................. 37 2.41 ( 2).......... 39 2.42 ( 2).............. 39 2.43........... 4 2.44.... 41 2.45.......... 42 2.46..................... 42 3.1 ( 3)........................ 48 3.2 / ( 3)...... 49 3.3 FB............... 5 3.4 ( 3 )................... 5 3.5 ( 3B )................. 53 3.6 ( 3B )................. 53 3.7 ( 3B No.1 ) 54 3.8 ( 3B No.4 ) 54 4.1 ( ).................. 57 4.2 ( ).................... 57 4.3 (NST ).................. 59

v 4.4 (NST ).................... 59 4.5....................... 6 4.6 2...................... 61 4.7......................... 62 4.8 x ( )......... 64 4.9 y ( )......... 64 4.1 ( ).................. 64 4.11 x (NST )........ 65 4.12 y (NST )........ 65 4.13 (NST ).................. 65 5.1............. 69 5.2...................... 7 5.3 ( 4)....................... 71 5.4 ( 4)....................... 72 5.5 ( 4)........................ 72 5.6 ( 4A)...................... 74 5.7 ( 4B)...................... 74 5.8 ( 4A)....................... 75 5.9 ( 4B)....................... 75 5.1 ( 4A)................. 76 5.11 ( 4B)................. 76 5.12 FF 2.... 77 5.13 FF................ 77 5.14 ( 3A FF )............. 78 5.15 ( 3A FF )............. 78

vii 2.1................................ 17 2.2 ( 1)....................... 22 2.3 ( 2)....................... 22 2.4 ( 3)....................... 22 2.5 ( 4)....................... 22 2.6 ( 5)....................... 23 2.7 ( 6)....................... 23 2.8 FB ( 1).................. 26 2.9 FB ( 2).................. 26 2.1 FB ( 3).................. 26 2.11 ( 1 3)....................... 26 2.12 ( 4 6)....................... 32 3.1 ( 3)............ 49 3.2 ( 3B )...... 52 3.3 ( 3B )...... 52 3.4 ( 3C )... 52 3.5 ( 3D )... 52 4.1 NST........................ 63 4.2 NST........................... 63 5.1 5.6 ( 4).......................... 72 5.2 5.6 ( 4A 4B)...................... 74

1 1 1.1 ( ) (ICT; Information and Communication Technology) [1] PC [2] ICT (IoT; Internet of Things) (Figure of merit) (Via hole) [3] 214 1 µm 12 µm 5 µm [4]

2 1 [5,6] (Mechanics) (Electronics) (Informatics) (Control Engineering) FA(Factory Automation) (CAD; Computer Aided Design) ( ) [7] (Hardware) (Software) ( ) [8, 9] [1] (1) ( ) (2) ( ) (3) ( ) (4) [11] (1) Bang-bang (FF; Feedforward FF) [12] FF (FSC; Final State Control) [13, 14] FSC FF [15] (2) 2 [16] 2 2 [17 19]

1.2 3 (ZPETC; Zero Phase Error Tracking Control) [2] (PTC; Perfect Tracking Control) [21] (3) [22] MVNLS(Multi Variable Natural Length Spring) [23] [24] (4) 1 [25] [26] [27] (FB; Feedback FB) [28] 1.2 1.2.1 ( ) ( ) [29] (HDI; High Density Interconnect)

4 1 ( ) [3] 1, Hz 2,4 Hz ± 1 µm [31] ( ) (1) (2) (3) (1) 2 16 ( 4 ) (2) (PTP; Point-to-point PTP) PTP (CP; Continuous path CP) (3)

1.2 5 (1) (3) (1) (2) (3) (2) (3) 1.2.2 FSC [32] FSC [33] [34] [35] [36] [37] (FFT; Fast Fourier Transform) [38] (STFT; Short Time Fourier Transform) [39] (WT; Wavelet Transform) [4] SFFT WT [41] [42, 43] [44] [45] [46] [47]

6 1 (1) (2) 2 [48] 2 2 [49] FB [5] (Fretting) (False brinelling) [51 53] [54, 55] [56] [57] [58, 59] ( 3 ) 3 [6] ( 4 5 ) 4 2

1.3 7 4 PTP CP (NST; Non Stop Trepanning NST) [62] NST 5 [63] FB FF FB 1.3 6 1.1 1 2 PTP 2 CP 2 FF FB FB FB

8 1 1.1: (The MathWorks MATLAB/Simulink) 3

1.3 9 4 2 NST PTP CP (Trepannning ) FF FB NST 5 2 FF 6

11 2 FB 2 [13, 14] 2 [18] FF 2.1 2.1.1 2.1 [3] 1.6 µm 9.4 µm CO2 Nd(Neodymium) YAG(Yttrium-Aluminum-Garnet) 355 nm YAG UV

12 2 4,2 mm 2.1: CO2 galvano scanner (CH1) galvano scanner (CH2) aperture collimation lens Mirrors laser oscillator f- lens printed-circuit board X-Y positioning table 2.2: YAG [64] 2.2 X Y ( ) f-θ

2.1 13 X Y X-Y (CH1) 2 (CH2) D λ f-θ F d d. =. 4λF πd (2.1) 2.1 CO2 UV UV CO2 CH2 CH1 UV CH1 CH2 f-θ y F θ y = F θ (2.2) 2.2 (Scanning Area ) 65 65 mm 61 51 mm 51 51 mm X-Y X-Y (Step and Repeat) GT (Galvano-table Snchronousness) X-Y 9

14 2 (a) punching (b) trepanning 2.3: 2.1.2 2.3 PTP (Punching ) PTP CP 9 1 UV 2.1.3 2.4 (CNC; Computer Numerical Control)

2.1 15 y m supervisor controller mirror x digital servo controller u i' D/A A/D i ref current control amplifier i galvano scanner angular sensor y' interface y 2.4: x T s u D/A(Digital Analog) i ref i i A/D(Analog Digital) FB y y FB y y m (Microprocessor ) 2.1.4 2.5 2.6

16 2 mirror part bearing permanent magnet outer yoke bearing shaft join part moving coil inner yoke joint part angular sensor 2.5: mirror bearing yoke case bearing shaft coil permanent magnet angular sensor 2.6: 2.1.5 3 CO2 ( 3) 4 UV ( 5 6) 5

2.2 17 2.1: Name Scanner type Mirror type 1 st resonance Using at... frequency (fpu) Scanner1 MM CO2 (CH1) 1.7 Chapter 2 Scanner2 MM CO2 (CH2) 1.52 Chapter 2 Scanner3 MM CO2 (CH2) 1. Chapter 3, 6 Scanner4 MC CO2 (CH2).74 Chapter 6 Scanner5 MC UV (CH1) 1.31 Chapter 5 Scanner6 MC UV (CH2) 1.32 Chapter 5 CO2 ( 3 4) 1 2 2 2.1 MM (Moving Magnet type) MC (Moving Coil type) 3 1 fpu 2.7 ± 2 mppu ppu ( ppu 1/1 mppu ) 1 ppu 37 µs 2.2 1 6

18 2 1 Position (ppu) Settling tolerance Settling time t Time (s) 2.7: 2.2.1 2.4 u y 1 6 2.8 2.13 FB 2.2.2 2.14 P (z) zoh C cur (s) P mec (s) ( ) FB (.3 fpu) C cur (s) 2.3 k c L c C cur (s) = i i r ef = k ce L cs (s)i ref (s) (2.3) 3 ( 2.1) 1 (1. fpu) 2 (2.35 fpu) 3

2.2 19 Gain [db] Phase [degree] -2-4 -6-8 -1 1-1 1 18 9 Frequency [fpu] Measurement result -9 Mathematical model -18 1-1 1 Frequency [fpu] 2.8: ( 1) Gain [db] Phase [degree] -2-4 -6-8 -1 1-1 1 18 9 Frequency [fpu] Measurement result -9 Mathematical model -18 1-1 1 Frequency [fpu] 2.9: ( 2) Gain [db] Phase [degree] -2-4 -6-8 -1 1-1 1 18 9 Frequency [fpu] Measurement result -9 Mathematical model -18 1-1 1 Frequency [fpu] 2.1: ( 3)

2 2 Gain [db] Phase [degree] -2-4 -6-8 -1 1-1 1 18 9 Frequency [fpu] Measurement result -9 Mathematical model -18 1-1 1 Frequency [fpu] 2.11: ( 4) Gain [db] Phase [degree] -2-4 -6-8 -1 1-1 1 18 9 Frequency [fpu] Measurement result -9 Mathematical model -18 1-1 1 Frequency [fpu] 2.12: ( 5) Gain [db] Phase [degree] -2-4 -6-8 -1 1-1 1 18 9 Frequency [fpu] Measurement result -9 Mathematical model -18 1-1 1 Frequency [fpu] 2.13: ( 6)

2.3 2 21 P (z) P (s) zoh C cur (s) P mec (s) T s 2.14: (2.96 fpu).5 fpu.1 fpu.1.5 fpu FB 3 2.4 P m ec(s) ( P mec (s) = y(s) i(s) = K pe Ls 1 3 s 2 + l=1 k l s 2 + 2ζ l ω l + ω 2 l ) (2.4) K p ( ) L ( D/A ) ω l l ζ l l k l l [65] 2.4 1 6 2.2 2.7 2.8 2.13.1 fpu 3.5 fpu 2.3 2 2 2

22 2 2.2: ( 1) Plant gain K p 12.34 1 5 Resonant frequency ω 1, ω 2, ω 3 fpu 1.7, 2.4, 3.73 Damping coefficient ζ 1, ζ 2, ζ 3.5,.9,.3 Influence coefficient k 1, k 2, k 3.456, 1.64,.193 Delay time L 1/fpu.8 2.3: ( 2) Plant gain K p 11.27 1 5 Resonant frequency ω 1, ω 2, ω 3 fpu 1.52, 2.4, 3.48 Damping coefficient ζ 1, ζ 2, ζ 3.5,.9,.2 Influence coefficient k 1, k 2, k 3.63, 1.927,.155 Delay time L 1/fpu.7 2.4: ( 3) Plant gain K p 11.83 1 5 Resonant frequency ω 1, ω 2, ω 3 fpu 1., 2.36, 2.96 Damping coefficient ζ 1, ζ 2, ζ 3.2,.6,.4 Influence coefficient k 1, k 2, k 3.675,.581, 1.84 Delay time L 1/fpu.1 2.5: ( 4) Plant gain K p 5.5 1 5 Resonant frequency ω 1, ω 2, ω 3 fpu.74, 1.51, 2.2 Damping coefficient ζ 1, ζ 2, ζ 3.11,.7,.4 Influence coefficient k 1, k 2, k 3.44, 1.832,.49 Delay time L 1/fpu.17

2.3 2 23 2.6: ( 5) Plant gain K p 6.79 1 5 Resonant frequency ω 1, ω 2, ω 3 fpu 1.31, 1.57, 2.23 Damping coefficient ζ 1, ζ 2, ζ 3.5,.1,.1 Influence coefficient k 1, k 2, k 3.152, 1.56,.61 Delay time L 1/fpu.19 2.7: ( 6) Plant gain K p 6.79 1 5 Resonant frequency ω 1, ω 2, ω 3 fpu 1.32, 1.54, 2.29 Damping coefficient ζ 1, ζ 2, ζ 3.5,.9,.4 Influence coefficient k 1, k 2, k 3.84, 1.587,.47 Delay time L 1/fpu.19 FB FSC FF 2 2 FF PTP PTP CO2 1 3 4 CO2 CP 2.4.1 2 2.3.1 FB FB u y (= P (s)) u y m (= P m (s)) 2 2.15 u f FF F F (z) FF r err C(z) FB u h H S

24 2 FF F F (z) 2.3 2.4 P n (z) FB (NF; Notch Filter NF) FB [25] NF 1 FB [26] NF 9 9 NF NF FB 2.5 3 (Biquad Notch Filter) C(s) = K c s + ω c1 s s + ω c2 s + ω c3 3 k=1 s 2 + 2ζ nk ω nk + ω 2 nk s 2 + 2ζ nk ω dk + ω 2 dk (2.5) 3 NF 1 2 [66] (APF; All Pass Filter APF) 1 3 C(s) 2.8 2.1 C(s) C(z) (IIR; Infinite Impulse Response Filter) 1 3 C(z) 2.16 2.24 2.11.42 fpu 4.5 db 25 PTP.79 fpu FF FB 2.25 3 1 ±3 FB

2.3 2 25 P m (s) u f r err + u h u y FF (z) C (z) H P (s) + + i ref y m y' S 2.15: 2 NF 2.26 FB FB FB 2.3.2 FSC FF FSC [13] FF FSC(FFSC; Frequencyshaped Final State Control) FF B FFSC 2.15 P (s) F F (z)(= P n (z)) y r err FB 2.27 3 P n (z) B FF U U 2.15 FF u f 3 u f [] = u f [N] = 1 N = 41 2.28 U 3 1. fpu 2.36 fpu 2.96 fpu FSC FF PTP PTP

26 2 2.8: FB ( 1) Compensator gain K c 3.69 1 4 Cut off frequency ω c1, ω c2, ω c3 fpu.5,.5, 3.68 Numerator damping coefficient ζ n1, ζ n2, ζ n3.12,.1,.2 Denominator damping coefficient ζ d1, ζ d2, ζ d3.12,.4,.1 Frequency of notch filter ω n1, ω n2, ω n3 fpu 1.77, 2.29, 3.68 2.9: FB ( 2) Compensator gain K c 3.69 1 4 Cut off frequency ω c1, ω c2, ω c3 fpu.5,.5, 3.68 Numerator damping coefficient ζ n1, ζ n2, ζ n3.16,.1,.2 Denominator damping coefficient ζ d1, ζ d2, ζ d3.16,.45,.1 Frequency of notch filter ω n1, ω n2, ω n3 fpu 1.53, 2.21, 3.42 2.1: FB ( 3) Compensator gain K c 3.55 1 4 Cut off frequency ω c1, ω c2, ω c3 fpu.4,.4, 3.68 Numerator damping coefficient ζ n1, ζ n2, ζ n3.1,.5,.1 Denominator damping coefficient ζ d1, ζ d2, ζ d3.32,.25,.2 Frequency of notch filter ω n1, ω n2, ω n3 fpu.91, 1.4, 2.36 2.11: ( 1 3) Scanner Number 1 2 3 Gain margin db 5.18 4.96 6.25 Phase margin degrees 29.6 28. 28. Zero cross frequency fpu.37.33.33 Sensitivity (.42 fpu) db 6.93 8.7 8.84

2.3 2 27 8 Gain [db] 6 4 Phase [degree] 2 1-2 1-1 1 Frequency [fpu] 18 9-9 -18 1-2 1-1 1 Frequency [fpu] 2.16: C(z) ( 1) 4 3 2 Imaginary axis 1-1 -2-3 -4-4 -3-2 -1 1 2 3 4 Real axis 2.17: ( 1) 1-1 Gain [db] -2-3 -4-5 1-2 1-1 1 Frequency [fpu] 2.18: ( 1)

28 2 8 Gain [db] 6 4 Phase [degree] 2 1-2 1-1 1 Frequency [fpu] 18 9-9 -18 1-2 1-1 1 Frequency [fpu] 2.19: C(z) ( 2) 4 3 2 Imaginary axis 1-1 -2-3 -4-4 -3-2 -1 1 2 3 4 Real axis 2.2: ( 2) 1-1 Gain [db] -2-3 -4-5 1-2 1-1 1 Frequency [fpu] 2.21: ( 2)

2.3 2 29 8 Gain [db] 6 4 Phase [degree] 2 1-2 1-1 1 Frequency [fpu] 18 9-9 -18 1-2 1-1 1 Frequency [fpu] 2.22: C(z) ( 3) 4 3 2 Imaginary axis 1-1 -2-3 -4-4 -3-2 -1 1 2 3 4 Real axis 2.23: ( 3) 1-1 Gain [db] -2-3 -4-5 1-2 1-1 1 Frequency [fpu] 2.24: ( 3)

3 2 4 3 2 nominal f1: +3 % f1: -3 % Imaginary axis 1-1 -2-3 -4-4 -3-2 -1 1 2 3 4 Real axis 2.25: ( ) 4 3 2 nominal f1: +3 % f1: -3 % Imaginary axis 1-1 -2-3 -4-4 -3-2 -1 1 2 3 4 Real axis 2.26: ( ) 2.4 2 2 PTP CP PTP CP UV 2 4 6 FB CP FB FB

2.4 2 31 6 4 FF command input (normalized) 2-2 -4-6 1 2 3 4 5 Steps 2.27: FSC -2 Gain [db] -4-6 -8-1 1-1 1 Frequency [Hz] 2.28: FSC 2.4.1 FB 2.29 F F 1 (z) FF 1 F F 2 (z) FF 2 ŷ C P I (z) ob(z) FB ẋ = Ax + Bu u = Kx(K FB ) ẋ = (A BK)x FB 2.29

32 2 r FF 2 (z) + FF 1 (z) err C PI (z) + + u h u f P lp (z) + u H i ref P m (s) P (s) y m y ob (z) y' S 2.29: 2 2.12: ( 4 6) Scanner Number 4 5 6 Gain margin db 5.17 5.2 4.89 Phase margin degrees 31.1 35.9 35.8 Zero cross frequency fpu.22.27.27 Sensitivity (.35 fpu) db 8.63 5.15 5.17 FB LQI 2 4 6 FB y u 2.3 2.38 2.12.35 fpu 2.32 2.38 2.4.2 2 2 2.29 FB P lp (z)

2.4 2 33 8 Gain [db] 6 4 Phase [degree] 2 1-2 1-1 1 Frequency [fpu] 18 9-9 -18 1-2 1-1 1 Frequency [fpu] 2.3: y u ( 4) 4 3 2 Imaginary axis 1-1 -2-3 -4-4 -3-2 -1 1 2 3 4 Real axis 2.31: ( 4) 1-1 Gain [db] -2-3 -4-5 1-2 1-1 1 Frequency [fpu] 2.32: ( 4)

34 2 8 Gain [db] 6 4 Phase [degree] 2 1-2 1-1 1 Frequency [fpu] 18 9-9 -18 1-2 1-1 1 Frequency [fpu] 2.33: y u ( 5) 4 3 2 Imaginary axis 1-1 -2-3 -4-4 -3-2 -1 1 2 3 4 Real axis 2.34: ( 5) 1-1 Gain [db] -2-3 -4-5 1-2 1-1 1 Frequency [fpu] 2.35: ( 5)

2.4 2 35 8 Gain [db] 6 4 Phase [degree] 2 1-2 1-1 1 Frequency [fpu] 18 9-9 -18 1-2 1-1 1 Frequency [fpu] 2.36: y u ( 6) 4 3 2 Imaginary axis 1-1 -2-3 -4-4 -3-2 -1 1 2 3 4 Real axis 2.37: ( 6) 1-1 Gain [db] -2-3 -4-5 1-2 1-1 1 Frequency [fpu] 2.38: ( 6)

36 2 P lp (z) F F 1 (z) F F 2 (z) 2.6 P lp (z) = num(z) den(z) F F 1(z) = den(z) F (z) F F 2(z) = num(z) F (z) (2.6) (2.7) (2.8) F (z) [18] 2 num(z) den(z) FF err u h r u f u y 2.9 y r = den(z) F (z) num(z) den(z) = num(z) F (z) 2.39 2.4 5 6 2 ( r y ).27 fpu.1 fpu.1 fpu.59 db 3.77 2.5 2.5.1 f-θ (= )

2.5 37 Gain [db] Phase [degree] -2-4 -6 18 1-2 1-1 1 Frequency [fpu] 9-9 -18 1-2 1-1 1 Frequency [fpu] 2.39: ( 5) Gain [db] Phase [degree] -2-4 -6 18 1-2 1-1 1 Frequency [fpu] 9-9 -18 1-2 1-1 1 Frequency [fpu] 2.4: ( 6) (1) (2) (1) FF FB FF FB (2.3 )

38 2 (2) 2.41 2 u 2.3 2 1 ppu ( ppu) 37 µs ±1.5 % 1.12 % ± 1.5 % ± 12.5 1.2 % 6 mppu 2.42 2.41 2 8 5 e x y e = x y 8 12 mppu 2.41 12 mppu 3 % 8 25 2.5.2 FF FB

2.5 39 8 6 +1.5 % Positioning error [mppu] 4 2-2 -4-6 -1.5 % -8.5 1 1.5 Time [ms] 2.41: ( 2) 15 1 Positioning error [mppu] 5-5 -1 5 s 8 s -15.1.2.3.4.5.6.7.8 Time [ms] 2.42: ( 2) (PTP ) (CP ) 5 6 2.43 2.4 2 x y 1 ppu 4 mppu.5 ms PTP CP 9 CP

4 2 1.3 1.2 scanner5 scanner6 Position [ppu] 1.1 1.99.98.97.5 1 1.5 2 Time [s] 1-3 2.43: ( 6 ) 4 2.5.3 ( 4 ) 2.44 1

2.5 41 8 6 Positioning error [mppu] 4 2-2 -4-6 -8.76ms.5 1. 1.5 2. 2.5 3. 3.5 4. Time [ms] 2.44: ( ) 2.45 2.46 5

第 2 章 ガルバノスキャナ位置決め装置の概要と本研究の課題 42 Rolling direction 2µm 図 2.45: フレッチング損傷が生じた転がり軸受の内輪軌道面写真 ball oil inner ring Scooping out the oil Contacting 図 2.46: フレッチング損傷発生のメカニズム 2.6 まとめ 本章では まず制御対象の周波数応答特性を取得し 計測結果をよく表現する数学モデ ルを獲得した 次に PTP 動作が主であるガルバノスキャナに対して 応答性のよいト ルク指令型 2 自由度制御系を構築し PTP 動作と CP 動作を切り替えて用いるガルバノ スキャナに対して 追従性のよい既約分解表現に基づく 2 自由度制御系を構築した そし て それぞれの制御系において ロバスト安定性に優れた FB 補償器の設計と 外乱圧縮 特性が良好な状態量 FB 制御系を設計した 次に 第 1 章で問題提起した位置決め性能の 低下に関して 供試ガルバノスキャナ位置決め装置を用いた実験と数値シミュレーション により性能低下の要因を考察し 技術課題を明確化した 第 3 章では 位置決め精度低下

2.6 43 4

45 3 3 3.1 3.1.1 [43] (Exprimental Modal Analysis) (SDOF; Single Degree of Freedom Method) (MDOF; Multipule Degree of Freedom Method) 2

46 3 e(k) (k = 1 N 1) 3.1 n ê = B i Zi k (3.1) i=1 Z i = exp(s t t) s t = σ i + jω di n t s i B i σ i ω di Z i 3.2 n Z n i (a 1 Z n 1 i + a 2 Z n 2 i + + a n Z i ) = (3.2) 3.1 3.2 a 1 a n e(n 1) e(n 2) e() a 1 e(n) e(n 1) e(1) a 2.... e(n 2) e(n 3) e(n n 1) a n = e(n) e(n + 1). e(n 1) (3.3) 3.3 a 1 a n 3.2 Z i s i 3.1 B i Z1 Z2 Zn Z1 1 Z2 1 Zn 1... Z1 N 1 Z2 N 1 Zn N 1 B 1 B 2. B n = y() y(1). y(n 1) (3.4) 3.4 B i A i ϕ i ζ f di 3.5 3.8 A i = B i (3.5) ϕ i = arg B i (3.6) ζ i = σ i /ω di 1 + (σi /ω di ) 2 (3.7)

3.1 47 f di = ω di 2π 1 ζ 2 i (3.8) Z i 3.1.2 3.1 2 2 3 1 ppu 37 µs 5 1 µs (= FSC FF ) 2 ms 2 3.1 n 8 5 3.1 3.2 1 fpu No.2 No.5 ( ) No.1 No.3 FB 3.3 2.1 FB y /r.5 fpu 1. fpu 1.2 fpu ζ.1 ( 3.1) No.4 (.45 fpu) No.2 (1.3 fpu) No.5 (1.2 fpu) 3 No.4 FB No.2 No.5 1 FB NF APF PTP 2 FSC

48 3 1-3 8 6 Position error [ppu] 4 2-2 -4-6 37 µs -8.5 1 1.5 2 2.5 3 Time [sec] 1-3 3.1: ( 3) 3.1 No.1 No.3 PTP ( ) ( ) 3.4

3.1 49 3.1: ( 3) Mode Normalized Initial Decay Initial number frequency amplitude rate phase f di (fpu) A i (1 3 ppu) σ i (rad/s) ϕ i (rad) 1 1.27 511 2 1.3 3.1 1939 2.69 3.16 2.46 317.14 4.45 2.96 3989 2.8 5 1.2 1.28 2846 1.13 1 5-3 No.1 No.2 No.3 No.4 No.5-5.5 1 1.5 2 1-3 1 5-3 -5.5 1 1.5 2 1-3 1 5-3 -5.5 1 1.5 2 1-3 1 5-3 -5.5 1 1.5 2 1-3 1 5-3 -5.5 1 1.5 2 Time [sec] 1-3 3.2: / ( 3)

5 3 ζ=.6 ζ=.4 ζ=.2ζ=.1 ζ=.8 Imaginary axis 1.2fpu1.fpu.5fpu Pole Zero Real axis 3.3: FB Position error [ppu] 1-3 8 6 4 2-2 -4 Sampled waveform Identified waveform -6 37 µs -8.5 1 1.5 2 2.5 3 Time [sec] 1-3 3.4: ( 3 ) 3.2 2 3 3B

3.2 51 ( ) ( ) 3B x = ppu x = 1 ppu x = 1 ppu 9 ppu 3.5 3.6 5 3.2 3.3 ( 3.2 No.1 3.3 No.4) 1 3.7 3.8 3B ( 3C 3D) 3.4 3.5 3C 3D [67]

52 3 3.2: ( 3B ) Mode Normalized Initial Decay Initial number frequency amplitude rate phase f di (fpu) A i (1 3 ppu) σ i (rad/s) ϕ i (rad) 1 4.2 745 2.42 4.74 423 1.85 3 1.3 1.69 144 2.65 4.16 2.2 4121.18 5 1.66 2778 3.3: ( 3B ) Mode Normalized Initial Decay Initial number frequency amplitude rate phase f di (fpu) A i (1 3 ppu) σ i (rad/s) ϕ i (rad) 1.42 4.9 459 1.55 2.13 3.98 3448 1.26 3 1.3 1.66 1357 2.58 4.43 389 5 2.37.81 2371.65 3.4: ( 3C ) Initial amplitude Decay rate A i (1 3 ppu) σ i (rad/s) Normal area 1.72 1671 Damaged area 5.3 885 3.5: ( 3D ) Initial amplitude Decay rate A i (1 3 ppu) σ i (rad/s) Normal area 2.79 2436 Damaged area 7.73 964

3.3 53 1-3 8 6 Position error [ppu] 4 2-2 -4-6 37 µs -8.5 1 1.5 2 2.5 3 Time [sec] 1-3 3.5: ( 3B ) 1-3 8 6 Position error [ppu] 4 2-2 -4-6 37 µs -8.5 1 1.5 2 2.5 3 Time [sec] 1-3 3.6: ( 3B ) 3.3 5

54 3 Position error [ppu] 1 5-3 -5.5 1 1.5 2 Time [sec] 1-3 3.7: ( 3B No.1 ) Position error [ppu] 1 5-3 -5.5 1 1.5 2 Time [sec] 1-3 3.8: ( 3B No.4 )

55 4 2 (NST) PTP CP FF FB NST NST 5 6 4.1 9 CNC PTP CP

56 4 4.1 4.2 4.1 4.2 A B O n 4.2 4.1 1 PTP ( ) 2 CP ( ) 3 ( ) 2 3 ( T trs ) 4.2 NST (NST) NST NST

4.2 NST 57 START 1 st stage Move to center of hole 3 rd stage Shot the laser-pulse Finish settling? Output all data? 2 nd stage Output of orbit data Track orbit? Drilling other hole? END 4.1: ( ) A B O n 4.2: ( ) 4.2.1 NST NST 4.3 2 3 4.4 NST A B O n r A O n B

58 4 r ptp (t) = [x ptp (t), y ptp (t)] (4.1) O n+1 r trp (t) = [x trp (t), y trp (t)] (4.2) r(t) = r ptp (t) + r trp (t) = [x(t), y(t)] (4.3) O n r R ( D L P f P ) 1 T trp T trp = πd f P L P (4.4) r R T trp ( f trp ) f trp f trp rr [7] 4.5 L D = πd 12 P i (i = 1, 2, 3, 12) A L B O n P t P t NST NST P s P t β f trp (

4.2 NST 59 START 1 st stage Move to center of hole and output of orbit data Track orbit? 2 nd stage Shot the laser-pulse Output all data? Drilling other hole? END 4.3: (NST ) A B O n 4.4: (NST ) ) T dly β T ptp T dly 4.5 β = T ptp T dly T trp 36 (4.5) 4.5 P i ( P 11 ) NST T trs T ptp

6 4 P 3 P t Rolling direction P 2 A P 1 B O n P s P 11 4.5: 4.2.2 2 2 4.6 2 (x o, y o ) (x trp [k], y trp [k]) (x ptp [k], y ptp [k]) k T S r x 4.6 y { x ptp [k] = x ptp [k 1] + α x ptp ( x ptp < x lim ) x ptp [k] = x ptp [k 1] + x lim ( x ptp > = x lim ) (4.6) x ptp = x ptp [k] x ptp [k 1] α ( < α < 1) x lim 2 2 ( 2.29)

4.3 NST 61 x o Scanner (X-axis) interpolation algorithm x ptp + + x Scanner (X-axis) servomechanism Supervisor controller memory x trp y trp y o Scanner (Y-axis) interpolation algorithm y ptp + + y Scanner (Y-axis) servomechanism Galvano controller 4.6: 2 4.3 NST x 5 y 6 NST y 4.7 A.15 ppu B 25 1.9 D max D min J J = D min D max (4.7) J = 1 4.1 D.4 ppu f trp f P L P 4.4.1 fpu A 5 6 r

62 4 (ppu) S.15 (.15,.15) (, ) (a) Pattern A (b) Pattern B G 4.7: y 4.8 4.1 NST 4.11 4.13 Shot signal NST 1/f trp 4.8 x r x x ptp x trp T trs 9 ( ).5 ms NST 4.11 x x ptp x trp 4.13 4.2 NST 13 % NST.9

4.4 63 4.1: NST Conventioanl Proposed method method Hole diameter D mppu 4 Pitch of laser pulse L P mppu 7 Laser pulse frequency f P fpu 1.75 Trepaning frequency f trp fpu.1 Transition time T trs ms.5 4.2: NST Pattern A Pattern B Working time Ellipticity Working time Ellipticity (ms) (average) (ms) (average) Conventional 98.8.944 792.8.941 method Proposed 83.8.939 683.7.939 method ( 15.2 %) ( 13.8 %) 4.4 PTP CP PTP CP 2 1 %

64 4.2 r x = x ptp r x = x trp Waveform of x-axis scanner (mppu).15.1.5 Target angle Processing time Detected angle Shot signal.5 1 1.5 2 2.5 3 3.5 4 Time (ms) 4.8: x ( ).2 r y = y ptp r y = y trp Waveform of y-axis scanner (mppu).15.1.5 Target angle Detected angle Shot signal Processing time.5 1 1.5 2 2.5 3 3.5 4 Time (ms) 4.9: y ( ).19 Position of y-axis scanner (ppu).17.15.13 Rolling direction.11.11.13.15.17.19 Position of x-axis scanner (ppu) 4.1: ( )

4.4 65.2 r x = x ptp + x trp r x = x trp Waveform of y-axis scanner (mppu).15.1.5 Target angle Processing time Detected angle Shot signal.5 1 1.5 2 2.5 3 3.5 4 Time (ms) 4.11: x (NST ).2 r y = y ptp + y trp r y = y trp Waveform of y-axis scanner (mppu).15.1.5 Target angle Detected angle Shot signal Processing time.5 1 1.5 2 2.5 3 3.5 4 Time (ms) 4.12: y (NST ).19 Position of y-axis scanner (ppu).17.15.13 Rolling direction.11.11.13.15.17.19 Position of x-axis scanner (ppu) 4.13: (NST )

67 5 2 FF 3 4 5.1 2

68 5 5.1.1 [63, 71] 4 5.1 1 ( 5.1 step1 5) 2 ( 5.1 step6 7) 5.1.2 5.1.3 5.1.2 5.2 C(z) P (s) H S r err u h u i ref 2.15 d H(z) (BPF; Band-pass filter BPF) u f (z) BPF y f (z) BPF BPFH(z) 2 (Butterworth filter) (HPF; High-pass filter) (LPF; Low-pass filter) H(z) = H lpf (z) H lpf (z) H hpf (z) H hpf (z) (5.1) H lpf H lpf.18 fpu z (Bilinear Z-transform) θ m (θ = 1, 2,, i,, 1) ( 5.1 step1) ±8 ppu 1-8 ppu

5.1 69 Start Step1 Positioning at the measuring angle Step2 Starting disturbance input Step3 Step4 Measuring the gain of the controlled object Finished at all measurement angles? Measuring normalized torque proportion Step5 Calculating the normalized torque proportion Step6 Step7 Calculating the fourth-order polynomial of the torque proportion Calculating the torque variation Calculating torque variation End 5.1: ( step2) 2.11 4 (.1.4 fpu).18 fpu.33 ppu u f (z) y f (z) u f (z) = H(z) u(z) (5.2) y f (z) = H(z) y(z) (5.3)

7 5 d r err u h + u y C (z) H P (s) + + i ref y' S H (z) H (z) u f y f 5.2: θ i BPF BPF (. =..18 fpu ) g i ( step3) g i = u peak y peak θi u peak = sup u f (z) y peak = sup y f (z) (5.4) g i L i ( step5) L i = g i g c (5.5) g c L i step1 5 5.3 4

5.1 71 1.1 Torque proportion (normalized) 1.5 1.995.99.985.98.975.97-8 -6-4 -2 2 4 6 8 Angle of measurement position (ppu) 5.3: ( 4) 5.1.3 5.1.2 θ 4 K c =.. a 1 θ 4 + a 2 θ 3 + a 3 θ 2 + a 4 θ + a 5 (5.6) 5.4 4 a 1 a 5 5.1 4 5.5 4 1 ppu 1 76 µs 1 ±4 mppu 4 5.1.4 4 ( 4A 4B) 4A

72 5 1.5 1 Torque variation (%).5 -.5-1 -1.5-8 -6-4 -2 2 4 6 8 Angle of measurement position (ppu) 5.4: ( 4) 5.1: 5.6 ( 4) a 1 a 2 a 3 a 4 1.49 1 5 4.91 1 5 1.21 1 3 2.54 1 3 a 5 1. 8 6 Positioning error (mppu) 4 2-2 -4-6 -8.76ms.5 1. 1.5 2. 2.5 3. 3.5 4. Time (ms) 5.5: ( 4)

5.2 73 4B 4B 2.5.3 5.6 5.7 4A 4B 5.2 5.6 4A 4B 4B 1 % 4A 4B 5.5 5.8 5.9 5.9 2.44 4A 7 mppu 4B 12 mppu 1 ms 4B ±4 mppu 4B 5.1 5.11 4A 4B 5.11 2.45 4A 2 4B 8 25 µm 5.1 5.11 1 % 12 mppu 5.1 5.11 [72] 4A 5.2 5.1 4A 4B

74 5 5.2: 5.6 ( 4A 4B) scanner 4A scanner 4B a 1 2.84 1 5 6.57 1 7 a 2 5.16 1 6 1.43 1 5 a 3 1.51 1 3 1.6 1 3 a 4 7.88 1 4 2.71 1 4 a 5 1.4 1. 1.5 1 Torque variation (%).5 -.5-1 -1.5-8 -6-4 -2 2 4 6 8 Angle of measurement position (ppu) 5.6: ( 4A) 1.5 1 Torque variation (%).5 -.5-1 -1.5-8 -6-4 -2 2 4 6 8 Angle of measurement position (ppu) 5.7: ( 4B)

5.2 75 8 6 Positioning error (mppu) 4 2-2 -4-6 -8 7 mppu.76ms.5 1. 1.5 2. 2.5 3. 3.5 4. Time (ms) 8 6 5.8: ( 4A) 12 mppu Positioning error (mppu) 4 2-2 -4-6 -8.76ms.5 1. 1.5 2. 2.5 3. 3.5 4. Time (ms) 5.9: ( 4B) 4A

76 第 5 章 小振幅揺動動作による転がり軸受性能低下の定量化とその補償 Rolling direction 2µm 図 5.1: 転がり軸受の内輪軌道面写真 (供試体 4A) Rolling direction 2µm 図 5.11: 転がり軸受の内輪軌道面写真 (供試体 4B) 5.2.1 FF 補償による位置決め精度改善 転がり軸受性能低下時に位置決め誤差波形に発生する遅い応答を抑制する方法として FB 系の外乱圧縮特性を向上する方法も考えられるが ねじり振動モードの変動に対する ロバスト性やサーボ安定性とトレードオフの関係にあるため ここでは速度 FF 補償によ る改善方法を検討した 提案する位置決め精度改善法のブロック線図を 図 5.12 に示す 元のトルク指令型 2 自由度制御系 (図 2.15) と比較して Dv 速度補償ゲインが追加され ている点が異なる ここで vm 速度指令である 図 5.13 は 提案法をフレッチング損 傷が発生していない供試体 4 に適用し 開始点から x =.6 ppu 離れた点に向けて目標

5.2 77 u f FF (z) v m + + D v r err + C (z) u h + + u H i ref P m (s) P (s) y m y y' S 5.12: FF 2 8 6 Positioning error (ppu) 4 2-2 -4-1.5 +1.5-6 -8.5 1 1.5 2 Time (s) 1-3 5.13: FF.28 ms D v ±1.5.5 D v 3.7 fpu D v.6 2. ms D v.28.6 ms D v u ff 5.2.2 3 ( 3A) FF 5.14 5.15 x = 1.ppu.4 ms FF FF FF

78 5 8 6 Positioning error (mppu) 4 2-2 -4-6 -8.2.4.6.8 1. 1.2 1.4 1.6 1.8 Time (ms) 5.14: ( 3A FF ) 8 6 Positioning error (mppu) 4 2-2 -4-6 -8.2.4.6.8 1. 1.2 1.4 1.6 1.8 Time (ms) 5.15: ( 3A FF ) D v.32 FF.6 1.2 ms FF FF

5.3 79 5.3 FB FF FB

81 6 6.1 (1) (2) 2 PTP 2 CP 2 FF FB FB FB

82 6 3 2 4 2 PTP CP NST PTP CP FF FB 5 2 FB FF

6.2 83 6.2

85 215 12 1

87 [1] ICT ICT ICT http://www.soumu.go.jp/main_content/23656.pdf ( 215-9-27) [2] 26 :ICT pp.172 173 214 http://www.soumu.go.jp/johotsusintokei/whitepaper/ ( 215-9-27) [3] 26 [4] 214 214 [5] 1999 [6] Vol.62 No.9 pp.1259 1262 1996 [7] Vol.46 No.5 pp.362 369 27 [8] 27 [9] M. Iwasaki, K. Seki, Y. Maeda High Precision Motion Control Techniques -A Promising Approach to Improving

88 Motion Performance IEEE Industrial Electronics Magazine, Vol.6, No.1, pp.32 4, 212 [1] Vol.139 No.1 pp.667 676 2 [11] http://www2.iee.or.jp/~dmec/committee/dmec11.html ( 215-9-27) [12] K. S. Ananthanarayanan Third-Order Theory and Bang-Bang Control of Voice Coil Actuators IEEE Transactions on Magnetics Vol.Mag-18 No.3 pp.888 892 1982 [13] D Vol.125 No.5 pp.524 529 25 [14],,, LMI D Vol.128 No.6 pp.75 757 28 [15] T. Atsumi Feedforward Control Using Sampled-Data Polynomial for Track Seeking in Hard Disk Drives IEEE Transactions on Industrial Electronics Vol.56 No.5 pp.1338 1346 1982 [16] pp.114 123 1991 [17] 2 D Vol.117 No.5 pp.572 578 1997 [18],, 2 GA D Vol.124 No.1 pp.69 76, 24 [19],, Vol.77 No.6 pp.444 447, 24

89 [2] M. Tomizuka Zero Phase Error Tracking Algorithm for Digital Control Journal of Dynamic Systems, Measurement, and Control Vol.19 No.1 pp.65 68 1987 [21] D Vol.12 No.1 pp.1157 1164 2 [22] AC ( 1 ) Vol.57 No.3 pp.158 163 1991 [23] 23 IIC-8-48 pp.75 8 26 [24] 23 IIC-6-88 pp.145 151 26 [25] C Vol.127 No.12 pp.257 263 27 [26] T. Atsumi, T. Arisaka, T. Shimizu, T. Yamaguchi Vibration Servo Control Design for Mechanical Resonant Modes of a Hard-Disk- Drive Actuator JSME International Journal Series C Mechanical Systems, Machine Elements and Manufacturing Vol.46, No.3, pp.819 827 23 [27] D Vol.129 No.12 pp.1178 1186 29 [28],,, 54 2B43 pp.954 957 26 [29] 26 (7) pp.331 332 26

9 [3] HDI CO2 http://www.viamechanics.com/products/laser/27/ ( 215-9-27) [31] Vol.93 No.2 pp.43 47 211 [32],, D, Vol.129, No.9, pp.938-944, 29 [33],, 22, IIC-1-164, pp.25 3, 21 [34],, 23, IIC-11-52, pp.17 22, 211 [35] D Vol.131 No.3 pp.229 236 211 [36] D Vol.125 No.1 pp.76 83 25 [37] 27 2-25 II pp.21-24 215 [38] CQ pp.133-146 25 [39] Leon Cohen Time Frequency Analysis: Theory and Applications Prentice Hall 1994 [4] G. Strang, T. Nguyen Wavelets and Filter Banks Wellesley Cambridge Press, pp.221 262, 1996 [41]

91 C Vol.79 No.81 pp.1633 1646 213 [42] pp.367 371 1993 [43] pp.68 95 2 [44] B Vol.12 No.2 pp.141 147 2 [45] ( ) C Vol.65 No.638 pp.493 499 1999 [46] 23-22484 22-1-23 [47] 24-87879 22-8-28 [48],, Vol.29 No.7 pp.792 799 1993 [49],, Vol.34 No.8 pp.718 725 28 [5] 3 Vol.58 No.3 pp.162 165 213 [51] 1976 [52] J. Brndlein, P. Eschmann, L. Hasbargen, K. Weigand

92 Ball and Roller Bearings: Theory, Design and Application Wiley 1999 [53] JIS B 1562 29 29 [54] Vol.42 No.6 pp.492 499, 1997 [55] Vol.56 No.12 pp.788 796, 211 [56] C Vol.77 No.779 pp.2894 294, 211 [57],, 26-29229 25-4-8 [58] C Vol.73, No.734, pp.2811 2819, 27 [59], AC Vo.71, No.5, pp.633 638, 25 [6],,, 571132 215-4-3 [61],,, 214-14946 214-8-21 [62],,, 211-11589 211-6-9 [63],,,, 213-167777 213-8-29 [64]

93 27 [65],,,,, D Vol.125 No.12 pp.169 175 25 [66],,, D Vol.129 No.1 pp.981 988 29 [67] D Vol.129 No.12 pp.1218 1225 29 [68] T. Ono, S. Toyama, Y. Okubo, and H. Hirai Positioning control system for moving element and laser drilling machine 11/77,153, 214-1-28 [69] T. Miura Motor control device, control method, and control program 12/39,526, 211-9-6 [7],,, 439193, 23-1-2 [71] H. Otsuki, S. Toyama, K. Seki, Y. Okubo, D. Kitamura Optical scanner control method, optical scanner and laser machining apparatus 7,27,27, 27-9-18 [72],, Vol.53 No.7 pp.462 468 28

95 [1] D. Matsuka, M. Tokuyama Deterioration Diagnosis Method for Ball Bearings that Continue Minute Swaying Motion Journal of Advanced Mechanical Design, Systems, and Manufacturing Vol.7 No.1 pp.3 38 213 [2] D Vol.133 No.4 pp.421 427 213 [3] D Vol.134 No.8 pp.776 783 214 [4] D. Matsuka M. Tokuyama Deterioration Diagnosis Method for Bearings of Galvanometer Scanners that Continue Reciprocating Motion Proc. of 212 ASME-ISPS / JSME-IIP Joint International Conference on Micromechatronics for Information and Precision Equipment pp.355 357 212 [5] D. Matsuka S. Fukushima M. Iwasaki Compensation for Reversible Flux Loss Caused by Temperature Change in Fast and Precise Positioning of Galvanometer Scanners Proc. of 215 IEEE International Conference on Mechatronics pp.642 647 215 [6] D. Matsuka, K. Seki, M. Iwasaki

96 6 Method for Quantifying Degradation of Bearing Performance and Analyzing Its Effect on Settling Performance of Galvano Scanners Proc. of the 1st IEEJ international Workshop on Sensing, Actuation and Motion Control pp.is7-5-1 4 215 [7] 23 IIC-11-165 211 [8] 25 2-11 II pp.87 9 213 [9] 26 2-S8-3 II pp.13 18 214