Big Bang Planck Big Bang 1 43 Planck Planck quantum gravity Planck Grand Unified Theories: GUTs X X W X 1 15 ev 197 Glashow Georgi 1 14 GeV 1 2



Similar documents
cm λ λ = h/p p ( ) λ = cm E pc [ev] 2.2 quark lepton u d c s t b e 1 3e electric charge e color charge red blue green qq

6 2 T γ T B (6.4) (6.1) [( d nm + 3 ] 2 nt B )a 3 + nt B da 3 = 0 (6.9) na 3 = T B V 3/2 = T B V γ 1 = const. or T B a 2 = const. (6.10) H 2 = 8π kc2

,,.,,.,.,,,.,.,.,..,.,,.,.,,..,, CMB

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5.

untitled

30

Mathews Grant J. (University of Notre Dame) Boyd Richard N. (Lawrence Livermore National Laboratory) 2009/5/21

(e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ,µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) [ ] [ ] [ ] ν e ν µ ν τ e µ τ, e R,µ R,τ R (2.1a

QMI_10.dvi

untitled

Bethe-Bloch Bethe-Bloch (stopping range) Bethe-Bloch FNAL (Fermi National Accelerator Laboratory) - (SciBooNE ) SciBooNE Bethe-Bloch FNAL - (SciBooNE


23 1 Section ( ) ( ) ( 46 ) , 238( 235,238 U) 232( 232 Th) 40( 40 K, % ) (Rn) (Ra). 7( 7 Be) 14( 14 C) 22( 22 Na) (1 ) (2 ) 1 µ 2 4

q quark L left-handed lepton. λ Gell-Mann SU(3), a = 8 σ Pauli, i =, 2, 3 U() T a T i 2 Ỹ = 60 traceless tr Ỹ 2 = 2 notation. 2 off-diagonal matrices

all.dvi

W 1983 W ± Z cm 10 cm 50 MeV TAC - ADC ADC [ (µs)] = [] (2.08 ± 0.36) 10 6 s 3 χ µ + µ 8 = (1.20 ± 0.1) 10 5 (Ge

(Blackbody Radiation) (Stefan-Boltzmann s Law) (Wien s Displacement Law)

/ Christopher Essex Radiation and the Violation of Bilinearity in the Thermodynamics of Irreversible Processes, Planet.Space Sci.32 (1984) 1035 Radiat


V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H

untitled

2.1: n = N/V ( ) k F = ( 3π 2 N ) 1/3 = ( 3π 2 n ) 1/3 V (2.5) [ ] a = h2 2m k2 F h2 2ma (1 27 ) (1 8 ) erg, (2.6) /k B 1 11 / K

(Compton Scattering) Beaming 1 exp [i (k x ωt)] k λ k = 2π/λ ω = 2πν k = ω/c k x ωt ( ω ) k α c, k k x ωt η αβ k α x β diag( + ++) x β = (ct, x) O O x

総研大恒星進化概要.dvi

1 2 2 (Dielecrics) Maxwell ( ) D H

( ) ,

CMB and DM (Cosmic Microwave Background and Dark Matter) ~ ~

. ev=,604k m 3 Debye ɛ 0 kt e λ D = n e n e Ze 4 ln Λ ν ei = 5.6π / ɛ 0 m/ e kt e /3 ν ei v e H + +e H ev Saha x x = 3/ πme kt g i g e n

( ) Note (e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ, µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) 3 * 2) [ ] [ ] [ ] ν e ν µ ν τ e

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α

LLG-R8.Nisus.pdf

1 9 v.0.1 c (2016/10/07) Minoru Suzuki T µ 1 (7.108) f(e ) = 1 e β(e µ) 1 E 1 f(e ) (Bose-Einstein distribution function) *1 (8.1) (9.1)

main.dvi

Kaluza-Klein(KK) SO(11) KK 1 2 1

inflation.key


PowerPoint Presentation

4 2 Rutherford 89 Rydberg λ = R ( n 2 ) n 2 n = n +,n +2, n = Lyman n =2 Balmer n =3 Paschen R Rydberg R = cm 896 Zeeman Zeeman Zeeman Lorentz


IA

Hanbury-Brown Twiss (ver. 2.0) van Cittert - Zernike mutual coherence

m(ẍ + γẋ + ω 0 x) = ee (2.118) e iωt P(ω) = χ(ω)e = ex = e2 E(ω) m ω0 2 ω2 iωγ (2.119) Z N ϵ(ω) ϵ 0 = 1 + Ne2 m j f j ω 2 j ω2 iωγ j (2.120)

中央大学セミナー.ppt

( )

42 3 u = (37) MeV/c 2 (3.4) [1] u amu m p m n [1] m H [2] m p = (4) MeV/c 2 = (13) u m n = (4) MeV/c 2 =

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4

TOP URL 1

1/2 ( ) 1 * 1 2/3 *2 up charm top -1/3 down strange bottom 6 (ν e, ν µ, ν τ ) -1 (e) (µ) (τ) 6 ( 2 ) 6 6 I II III u d ν e e c s ν µ µ t b ν τ τ (2a) (

LNSC2010_HK.dvi

5 5.1 E 1, E 2 N 1, N 2 E tot N tot E tot = E 1 + E 2, N tot = N 1 + N 2 S 1 (E 1, N 1 ), S 2 (E 2, N 2 ) E 1, E 2 S tot = S 1 + S 2 2 S 1 E 1 = S 2 E

FPWS2018講義千代

500 6 LHC ALICE ( 25 ) µsec MeV QGP

ω 0 m(ẍ + γẋ + ω0x) 2 = ee (2.118) e iωt x = e 1 m ω0 2 E(ω). (2.119) ω2 iωγ Z N P(ω) = χ(ω)e = exzn (2.120) ϵ = ϵ 0 (1 + χ) ϵ(ω) ϵ 0 = 1 +

25 3 4

Report10.dvi

量子力学 問題

æ

gr09.dvi


untitled

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T

Microsoft Word - 章末問題


I-2 (100 ) (1) y(x) y dy dx y d2 y dx 2 (a) y + 2y 3y = 9e 2x (b) x 2 y 6y = 5x 4 (2) Bernoulli B n (n = 0, 1, 2,...) x e x 1 = n=0 B 0 B 1 B 2 (3) co

4‐E ) キュリー温度を利用した消磁:熱消磁

kawa (Spin-Orbit Tomography: Kawahara and Fujii 21,Kawahara and Fujii 211,Fujii & Kawahara submitted) 2 van Cittert-Zernike Appendix A V 2

スライド タイトルなし

N cos s s cos ψ e e e e 3 3 e e 3 e 3 e

TOP URL 1

positron 1930 Dirac 1933 Anderson m 22Na(hl=2.6years), 58Co(hl=71days), 64Cu(hl=12hour) 68Ge(hl=288days) MeV : thermalization m psec 100

Part () () Γ Part ,

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

2 X-ray 6 gamma-ray :38m 0:77m nm 17.2 Hz Hz 1 E p E E = h = ch= (17.2) p = E=c = h=c = h= (17.3) continuum continuous spectrum line spectru


II ( ) (7/31) II ( [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Re

master.dvi

Chadwick [ 1 ] 1919,, electron number Q kinetic energy [MeV] 8.1: 8.1, 1 internal conversion electron E γ E e =

untitled

The Physics of Atmospheres CAPTER :

Drift Chamber

Mott散乱によるParity対称性の破れを検証

: 2005 ( ρ t +dv j =0 r m m r = e E( r +e r B( r T 208 T = d E j 207 ρ t = = = e t δ( r r (t e r r δ( r r (t e r ( r δ( r r (t dv j =

1. 4cm 16 cm 4cm 20cm 18 cm L λ(x)=ax [kg/m] A x 4cm A 4cm 12 cm h h Y 0 a G 0.38h a b x r(x) x y = 1 h 0.38h G b h X x r(x) 1 S(x) = πr(x) 2 a,b, h,π

: 8.2: A group (i.e. a very small cluster) of galaxies superimposed on a x-ray image from the ROSAT satellite

Untitled

d > 2 α B(y) y (5.1) s 2 = c z = x d 1+α dx ln u 1 ] 2u ψ(u) c z y 1 d 2 + α c z y t y y t- s 2 2 s 2 > d > 2 T c y T c y = T t c = T c /T 1 (3.

nenmatsu5c19_web.key

pdf

1 223 KamLAND 2014 ( 26 ) KamLAND 144 Ce CeLAND 8 Li IsoDAR CeLAND IsoDAR ν e ν µ ν τ ν 1 ν 2 ν MNS m 2 21


( ) ) ) ) 5) 1 J = σe 2 6) ) 9) 1955 Statistical-Mechanical Theory of Irreversible Processes )

O x y z O ( O ) O (O ) 3 x y z O O x v t = t = 0 ( 1 ) O t = 0 c t r = ct P (x, y, z) r 2 = x 2 + y 2 + z 2 (t, x, y, z) (ct) 2 x 2 y 2 z 2 = 0

( ) ( 40 )+( 60 ) Schrödinger 3. (a) (b) (c) yoshioka/education-09.html pdf 1

(MRI) 10. (MRI) (MRI) : (NMR) ( 1 H) MRI ρ H (x,y,z) NMR (Nuclear Magnetic Resonance) spectrometry: NMR NMR s( B ) m m = µ 0 IA = γ J (1) γ: :Planck c

() n C + n C + n C + + n C n n (3) n C + n C + n C 4 + n C + n C 3 + n C 5 + (5) (6 ) n C + nc + 3 nc n nc n (7 ) n C + nc + 3 nc n nc n (

201711grade1ouyou.pdf


vol5-honma (LSR: Local Standard of Rest) 2.1 LSR R 0 LSR Θ 0 (Galactic Constant) 1985 (IAU: International Astronomical Union) R 0 =8.5

Muon Muon Muon lif

Einstein 1905 Lorentz Maxwell c E p E 2 (pc) 2 = m 2 c 4 (7.1) m E ( ) E p µ =(p 0,p 1,p 2,p 3 )=(p 0, p )= c, p (7.2) x µ =(x 0,x 1,x 2,x

Transcription:

12 Big Bang 12.1 Big Bang Big Bang 12.1 1-5 1 32 K 1 19 GeV 1-4 time after the Big Bang [ s ] 1-3 1-2 1-1 1 1 1 1 2 inflationary epoch gravity strong electromagnetic weak 1 27 K 1 14 GeV 1 15 K 1 2 GeV quark confinement neutrino decoupling nucleosynthesis photon decoupling 3K 1-4 ev 12.1: 273

274 12 Big Bang Planck Big Bang 1 43 Planck Planck quantum gravity Planck Grand Unified Theories: GUTs X X W X 1 15 ev 197 Glashow Georgi 1 14 GeV 1 27 K Big Bang 1 36 12.2 Big Bang 1 36 1 32

12.1 Big Bang 275 radius of observed universe [ m ] 1 2 Standard "Big Bang" theory 1 1-2 1-4 1-6 inflationary theory inflationary period 1-4 1-3 1-2 1-1 time after the Big Bang [ s ] 12.2: 1 32 1 6 1 12 1 GeV 1 15 K W Z 1 6 1 13 K 1GeV 1 3MeV 1 1 K e + p n + ν e (12.1) e + e + Z ν x + ν x

276 12 Big Bang 1.9 K Big Bang 1 nucleosynthesis 1 9 K D p + n D+γ (12.2) A =5 A =8 4 He 25% 4 He 4 He 3 He 5 7 Li 7 Be 4 He 75% 4 He Coulomb A =5 8 15 4 He

Thomson 12.1 Big Bang 277 4 K 1% 38 K 3 K 1 5 Cosmic Microwave Background Radiation Big Bang

278 12 Big Bang 12.2 12.2.1 E f(e) f(e) = 1 ( ) E µ exp ± 1 kt T µ (12.3) k Bolzmann ± + Fermi Bose E m p E 2 = p 2 c 2 + m 2 c 4 (12.4) N U P S N = U = P = kt dp f(e) (12.5) (2π h) 3 dp Ef(E) (12.6) (2π h) 3 S = 1 kt dp log[1 f(e) ] (12.7) (2π h) 3 [ ] U + P µn (12.8) S Boltzmann g 1 2 g =2 1 g =2 T µ (1) kt mc 2 kt µ

12.2 279 (2) kt mc 2 kt mc 2 µ Boltzmann (3) µ mc 2 kt Fermi Fermi Bose Bose.5 MeV/c 2 MeV 12.2.2 kt mc 2 kt µ E 1 E = pc dp c 3 E2 de d p (12.9) 4π N U P N = U = n(e)de = u(e)de = E 2 de 2π 2 f(e) (12.1) ( hc) 3 E 2 de 2π 2 Ef(E) (12.11) ( hc) 3 P = p(e)de = kt E 2 de 2π 2 log[1 f(e) ] (12.12) ( hc) 3 n(e) E E +de u(e) p(e) Bose E x = E/(kT ) x 2 dx e x 1 = 2!ζ(3) ζ(3) = 1.22 56 93 (12.13) x 3 dx e x 1 = π4 15 (12.14) ζ N boson = ζ(3) (kt) 3 π 2 ( hc) 3 U boson = π2 (kt) 4 3 ( hc) 3 (12.15)

28 12 Big Bang Fermi Bose x n e x 1 xn e x +1 = 2xn e 2x (12.16) 1 x n dx e x 1 x n dx e x +1 = 2x n dx e 2x 1 = 1 2 n x n ( dx e x +1 = 1 1 ) x n dx 2 n e x 1 t n dt e t 1 (12.17) (12.18) n =2 n =3 Fermi Bose N fermion = 3 4 N boson U fermion = 7 8 U boson (12.19) 12.3 Bose u(e) Fermi T =1 15 K kt = 86 GeV u ( E ) [ 1 6 fm -3 ] 7 6 5 4 3 2 T =1 15 K boson fermion 1 2 4 6 8 1 energy E [ GeV ] 12.3:

12.2 281 N boson =1.1 1 7 T 3 m 3 U boson =3.78 1 16 T 4 Jm 3 (12.2) T K U boson N boson = π4 3 ζ(3) kt =2.7 kt U fermion N fermion = 7 6 E x = E/(kT ) x 2 log ex e x ± 1 dx = ± U boson N boson =3.15 kt (12.21) x 2 log ex ± 1 e x dx (12.22) ± [ ] x 2 log ex ± 1 1 e x dx = ± 3 x3 log ex ± 1 e x + 1 x 3 dx 3 e x ± 1 (12.23) 1 3 P P = 1 3 U (12.24) (12.24) S = 4 3 U kt (12.25) S boson = 2π4 45 ζ(3) N boson =3.6 N boson S fermion = 7 6 S boson (12.26) - N ( kt h ) 3 S (12.27)

282 12 Big Bang 12.2.3 U boson 12.1 quarks 7 8 6 2 3 2 = 63 massive leptons 7 8 3 2 2 = 1.5 neutrinos 7 8 3 2 1 = 5.25 photon 1 2 = 2 weak bosons 3 3 = 9 gluons8 2 = 16 6 flavor 2 3 2 1 2 W ± Z 1 Higgs 8 2 U standard = 15.75 U boson (12.28) 3 4 2%

12.2 283 12.2.4 1 n(e)de = 1 1 π 2 ( hc) 3 ( ) E 2 de (12.29) E exp 1 kt u(e)de = En(E)dE = 1 1 π 2 ( hc) 3 ( E exp kt ) E 3 de (12.3) 1 E N γ = 2ζ(3) (kt)3 π 2 ( hc) 3 =2.2 1 7 T 3 m 3 (12.31) U γ = π2 (kt) 4 15 ( hc) 3 =7.56 1 16 T 4 Jm 3 (12.32) u(e) λ u(e) (12.3) E λ λ λ +dλ u(λ)dλ = 4 hc λ 5 dλ ( ) 2π hc exp 1 kt λ u(λ) 12.4 (12.33) u(λ) λ max u(λ) λ max =.21452 hc kt =2.9 1 3 K T m (12.34) λ max 5 nm T = 2.9 1 3 5. 1 7 = 58 K (12.35)

284 12 Big Bang.25.2 u ( λ ) [ ev µm -4 ].15.1.5 8 K 7 K 6 K 5 K...5 1. 1.5 wave length λ [ µm] 12.4: 12.2.5 kt mc 2 µ E E = mc 2 + p2 2m (12.36) ±1 ( ) ( ) f(e) = exp mc2 µ exp p2 (12.37) kt 2mkT Fermi Bose ( ) p 2n exp p2 dp = 2mkT = (2n 1)!! 2 n 1 π 3 2 (2mkT ) n+ 1 2 ( ) 1 π 2 3 (mkt ) 2 n =1 2 2m 3kT 2 ( ) 1 π 2 3 (mkt ) 2 n =2 2 (12.38)

12.2 285 N U N = ( ) 3 ) mkt 2 exp ( mc2 µ 2π h 2 kt (12.39) U = (mc 2 + 3 ) 2 kt N (12.4) (12.21) P f(e) 1 log [1 f(e)] f(e) P = kt N (12.41) S [ ] 5 (2πkT)3/2 S = N + log 2 (2π h) 3 N (12.42) 12.2.6 1 8 K 1 kev E mc 2 R N U matter = Nmc2 R 3 (12.43) R 3 (12.32) T 4 kt = hν = hc (12.44) λ R 4 1 m 3 1 U matter (today) = 1.67 1 27 (3. 1 8 ) 2 =1.5 1 1 Jm 3 (12.45)

286 12 Big Bang 2.7 K (12.32) U γ (today) = 7.56 1 16 2.7 4 =4. 1 14 Jm 3 (12.46) 4 R R 3 R 4 f U matter = f 3 U matter (today) U γ = f 4 U γ (today) (12.47) U matter = U γ f = 4. 1 14 1.5 1 1 =3 1 4 (12.48) T = 3K 3 1 4 =15 K (12.49)

12.3 287 12.3 Big Bang BBN Big Bang Nucleosynthesis Primordial Nucleosynthesis primordial Big Bang D 3 He 4 He 7 Li 4 He/H.8 7 Li/H 1 1 9 (1) (2) η = N baryon N γ 5 1 1 (12.5) p + p D+e + + ν e B/A 12.3.1 t<1s p + e n + ν e n + e + p + ν e (12.51) n p + e + ν e (12.52)

288 12 Big Bang kt > MeV Boltzmann Boltzmann n p exp ( mc2 kt ) mc 2 =(m n m p )c 2 =1.293 MeV (12.53) kt n/p 1 n N n t 1s kt < mc 2 (12.51) mc 2 n p = exp fr freeze-out ( mc2 kt fr ) 1 6 (12.54) T fr (12.51) Fermi 1.9 K 2.7 K t>1s (12.52) D = 2 H p + n D+γ (12.55) B(D) = 2.23 MeV kt.1 MeV 1 τ n = 882 s

12.3 289 n p 1 7 (12.56) 12.3.2 (12.55) 4 He D+n 3 H+γ 3 H+p 4 He + γ D+p 3 He + γ 3 He + n 4 He + γ (12.57) D+D 3 H+p 3 H+D 4 He + n D+D 3 He + n 3 He + D 4 He + p (12.58) 4 He 2p +2n 4 He + γ (12.59) 1:7 4 He 1:12 4 He Y p = 4 4+12 =.25 (12.6) Big Bang kt 1 MeV NSE nuclear statistical equilibrium i fraction X i = A i N i N baryon = A i (N i /N H ) 1+ i A i (N i /N H ) (12.61)

29 12 Big Bang A i N i N baryon X i = g i [ ζ(3) A i 1 π (1 A i)/2 2 (3A i 5)/2 ] A 5/2 i ( kt ) 3(Ai 1)/2 m N c 2 η A i 1 X Z i p B i i m N ( ) (12.62) X A Bi i Z i n exp kt i Γ i Λ i i t dn i dt = 3HN i + Λ i Γ i N i (12.63) H =ȧ(t)/a(t) Hubble i i n p D 3 H 3 He 4 He 6, 7, 8 Li 7, 9 Be 16 O (12.52) (12.57) (12.58) A =7 3 He + 4 He 7 Be + γ 7 Be + n 7 Li + p (12.64) 7 Li + p 2 4 He Coulomb 5 8 4 He 5 He 5 He 4 He 4 He 8 Be 8 Be 4 He 12.5 [3] Big Bang t 18 s 1 6 9 7 Be 53.29 3 H 12.33 7 Be + e 7 Li + ν e 3 H 3 He + e + ν e (12.65)

12.3 291 Big Bang D, 3 He, 4 He, 7 Li 12.3.3 Big Bang η 12.6 [2] D D+D D 4 He 7 Li 7 Be 7 Li Helium-4 Big Bang 4 He 4 He HII 4 He Big Bang 4 He Y p =.238 ±.2 (stat) ±.5 (sys) (12.66) HII Lithium-7 7 Li 1/3 Li Li Fe Li Big Bang Li ( ) Li/H p = 1.23 ±.6 +.68+.56.32 1 1 (12.67) +.56 Li Li Li-Fe 6 Li D Big Bang Big Bang D QAS quaser absorption system D QAS D/H =(3. ±.4 (stat)) 1 5 (12.68)

12.3 293 D/H =(1.5±.1 (stat)) 1 5 D D/H < 9.7 1 5 12.6 Helium-3 3 He HII Big Bang 3 He Big Bang η η 12.6 4 He D 7 Li 2.6 η 1 6.2 η 1 = η 1 1 (12.69) 1 9 Big Bang η (12.69) Ω b =3.65 1 3 h 2 η 1 (12.7).95 Ω b h 2.23 (12.71) Ω b 1 Ω lum.24 h 1 (12.72) Ω lum Ω b 1 6 K X Ω matter.3 Dark Matter Big Bang Big Bang η η

294 12 Big Bang 12.4 12.4.1 1 Hubble Big Bang George Gamow 9 Big Bang Gamow Ralph Alpher Robert Herman 5K 1965 Bell Arno Penzias Robert Wilson 4 GHz 7.35 cm 3.5 ±1. K Gamow, Alpher, Herman Planck Big Bang 1 5 3 K Planck T I ν = 2hν3 1 c 2 ( hν exp kt ) 1 (12.73) T =3K Planck ν 5 GHz λ 2mm COBE Cosmic Background Explorer Satellite FIRAS Far-Infrared Absolute Spectrophotometer 1 4 1 GHz 1 GHz 3 COBE FIRAS T γ N γ U γ T γ = 2.725 ±.2 K (95% CL) N γ = 2 ζ(3) π 2 Tγ 3 U γ = π2 15 T γ 4 411 cm 3 4.64 1 34 gcm 3.26 ev cm 3 (12.74)

12.4 295 12.4.2 Penzias Wilson 1% isotropic unpolarized 1 5 anisotropic T T (θ,φ) = a lm Y lm (θ, φ) (12.75) lm θ 1/l l a lm 2 (12.76) 4π l =1 m T T =1.23 1 3 ( l = 1 ) (12.77) Doppler T β = v/c Doppler T (θ) = T ( ) 1 β 2 1 β cos θ = T 1+βcos θ + β2 2 cos2θ + O(β3 ) (12.78) (11.2 ±.1) h ( 7.22 ±.8) v = 371 ±.5 kms 1 (12.79) Local Group of galaxies v LG = 627 ± 22 km s 1 (12.8) Q rms Q 2 rms T 2 γ = 1 4π a 2m 2 (12.81) m

296 12 Big Bang µk 1 6 K 4 µk Q rms 28 µk (12.82) COBE l >2 BOOMERanG MAXIMA-1 DASI CBI 1 5 12.7 [4] [ ( +1)C /2 π ] 1/2 [ µ K] 1 7 5 3 2 Angular Scale [Degrees] 1 5 2 1 5 2 1.5.2.1.5 n=1 H=5 CDM+1%B COBE QMASK FIRS MAX TEN MAXIMA IAC Pyth HACME Pyth V SP MSAM ARGO SK IAB TOCO97 QMAP TOCO98 ARCHEOPS BOOM-LDB CAT OVRO WD DASI SuZIE BIMA CBI VSA 1 2 5 1 2 5 1 1 5 eff Ned Wright - 1 Nov 22 12.7: l 12.7 l 2

BOOMERanG 12.4 297 Ω tot =1.2 ±.6 (12.83) Ω tot =1 Ω b h 2 =.22 ±.4 (12.84) Big Bang Big Bang

298 12 Big Bang 12.5 12 1. 2. K. Hagiwara et al., Phys. Rev. D66, 11-1 (22) (Particle Data Group) http://pdg.lbl.gov/22/bigbangnucrpp.pdf http://pdg.lbl.gov/22/microwaverpp.pdf 3. A Knowledgebase for Extragalactic Astronomy and Cosmology http://nedwww.ipac.caltech.edu/level5/ 4. Ned Wright scosmology Tutorial http://www.astro.ucla.edu/ wright/ 5. G. Gamow, Phys. Rev. 7 (1946) 572, R. Alpher, H. Bethe and G. Gamow, Phys. Rev. 73 (1948) 83 R. Alpher and R.C. Herman, Phys. Rev. 75 (1949) 189 6. Big-bang nucleosynthesis enters the precision era, Rev. Mod. Phys. 7 (1998) 33 7. COBE: http://space.gsfc.nasa.gov/astro/cobe/