1 1.1 / Fik Γ= D n x / Newton Γ= µ vx y / Fouie Q = κ T x 1. fx, tdx t x x + dx f t = D f x 1 fx, t = 1 exp x 4πDt 4Dt lim fx, t =δx 3 t + dxfx, t = 1

Similar documents
Untitled

. ev=,604k m 3 Debye ɛ 0 kt e λ D = n e n e Ze 4 ln Λ ν ei = 5.6π / ɛ 0 m/ e kt e /3 ν ei v e H + +e H ev Saha x x = 3/ πme kt g i g e n

Part () () Γ Part ,

30

II ( ) (7/31) II ( [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Re

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.


9. 05 L x P(x) P(0) P(x) u(x) u(x) (0 < = x < = L) P(x) E(x) A(x) P(L) f ( d EA du ) = 0 (9.) dx dx u(0) = 0 (9.2) E(L)A(L) du (L) = f (9.3) dx (9.) P


No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

( )

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT

TOP URL 1

n (1.6) i j=1 1 n a ij x j = b i (1.7) (1.7) (1.4) (1.5) (1.4) (1.7) u, v, w ε x, ε y, ε x, γ yz, γ zx, γ xy (1.8) ε x = u x ε y = v y ε z = w z γ yz

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt

5 H Boltzmann Einstein Brown 5.1 Onsager [ ] Tr Tr Tr = dγ (5.1) A(p, q) Â 0 = Tr Âe βĥ0 Tr e βĥ0 = dγ e βh 0(p,q) A(p, q) dγ e βh 0(p,q) (5.2) e βĥ0

master.dvi

Maxwell

untitled

構造と連続体の力学基礎

Note.tex 2008/09/19( )

pdf

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y

tomocci ,. :,,,, Lie,,,, Einstein, Newton. 1 M n C. s, M p. M f, p d ds f = dxµ p ds µ f p, X p = X µ µ p = dxµ ds µ p. µ, X µ.,. p,. T M p.


TOP URL 1

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H

TOP URL 1

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5.

v v = v 1 v 2 v 3 (1) R = (R ij ) (2) R (R 1 ) ij = R ji (3) 3 R ij R ik = δ jk (4) i=1 δ ij Kronecker δ ij = { 1 (i = j) 0 (i

( ) ( 40 )+( 60 ) Schrödinger 3. (a) (b) (c) yoshioka/education-09.html pdf 1

(5) 75 (a) (b) ( 1 ) v ( 1 ) E E 1 v (a) ( 1 ) x E E (b) (a) (b)

: 2005 ( ρ t +dv j =0 r m m r = e E( r +e r B( r T 208 T = d E j 207 ρ t = = = e t δ( r r (t e r r δ( r r (t e r ( r δ( r r (t dv j =


2 G(k) e ikx = (ik) n x n n! n=0 (k ) ( ) X n = ( i) n n k n G(k) k=0 F (k) ln G(k) = ln e ikx n κ n F (k) = F (k) (ik) n n= n! κ n κ n = ( i) n n k n

newmain.dvi

K E N Z OU

N/m f x x L dl U 1 du = T ds pdv + fdl (2.1)

201711grade1ouyou.pdf

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

5 5.1 E 1, E 2 N 1, N 2 E tot N tot E tot = E 1 + E 2, N tot = N 1 + N 2 S 1 (E 1, N 1 ), S 2 (E 2, N 2 ) E 1, E 2 S tot = S 1 + S 2 2 S 1 E 1 = S 2 E

t = h x z z = h z = t (x, z) (v x (x, z, t), v z (x, z, t)) ρ v x x + v z z = 0 (1) 2-2. (v x, v z ) φ(x, z, t) v x = φ x, v z

6kg 1.1m 1.m.1m.1 l λ ϵ λ l + λ l l l dl dl + dλ ϵ dλ dl dl + dλ dl dl 3 1. JIS 1 6kg 1% 66kg 1 13 σ a1 σ m σ a1 σ m σ m σ a1 f f σ a1 σ a1 σ m f 4


I-2 (100 ) (1) y(x) y dy dx y d2 y dx 2 (a) y + 2y 3y = 9e 2x (b) x 2 y 6y = 5x 4 (2) Bernoulli B n (n = 0, 1, 2,...) x e x 1 = n=0 B 0 B 1 B 2 (3) co

1: 3.3 1/8000 1/ m m/s v = 2kT/m = 2RT/M k R 8.31 J/(K mole) M 18 g 1 5 a v t πa 2 vt kg (


73

D = [a, b] [c, d] D ij P ij (ξ ij, η ij ) f S(f,, {P ij }) S(f,, {P ij }) = = k m i=1 j=1 m n f(ξ ij, η ij )(x i x i 1 )(y j y j 1 ) = i=1 j

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2


d ϕ i) t d )t0 d ϕi) ϕ i) t x j t d ) ϕ t0 t α dx j d ) ϕ i) t dx t0 j x j d ϕ i) ) t x j dx t0 j f i x j ξ j dx i + ξ i x j dx j f i ξ i x j dx j d )

Maxwell

gr09.dvi

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.

all.dvi



I ( ) 2019

2000年度『数学展望 I』講義録

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4

simx simxdx, cosxdx, sixdx 6.3 px m m + pxfxdx = pxf x p xf xdx = pxf x p xf x + p xf xdx 7.4 a m.5 fx simxdx 8 fx fx simxdx = πb m 9 a fxdx = πa a =


数学Ⅱ演習(足助・09夏)

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0

genron-3

untitled

Introduction to Numerical Analysis of Differential Equations Naoya Enomoto (Kyoto.univ.Dept.Science(math))


Gauss Gauss ɛ 0 E ds = Q (1) xy σ (x, y, z) (2) a ρ(x, y, z) = x 2 + y 2 (r, θ, φ) (1) xy A Gauss ɛ 0 E ds = ɛ 0 EA Q = ρa ɛ 0 EA = ρea E = (ρ/ɛ 0 )e

( ) ,

Microsoft Word - 11問題表紙(選択).docx

A

2 1 x 2 x 2 = RT 3πηaN A t (1.2) R/N A N A N A = N A m n(z) = n exp ( ) m gz k B T (1.3) z n z = m = m ρgv k B = erg K 1 R =


P F ext 1: F ext P F ext (Count Rumford, ) H 2 O H 2 O 2 F ext F ext N 2 O 2 2

i 18 2H 2 + O 2 2H 2 + ( ) 3K

構造と連続体の力学基礎

all.dvi

b3e2003.dvi

,,,17,,, ( ),, E Q [S T F t ] < S t, t [, T ],,,,,,,,

Dirac 38 5 Dirac 4 4 γ µ p µ p µ + m 2 = ( p µ γ µ + m)(p ν γ ν + m) (5.1) γ = p µ p ν γ µ γ ν p µ γ µ m + mp ν γ ν + m 2 = 1 2 p µp ν {γ µ, γ ν } + m

phs.dvi

ω 0 m(ẍ + γẋ + ω0x) 2 = ee (2.118) e iωt x = e 1 m ω0 2 E(ω). (2.119) ω2 iωγ Z N P(ω) = χ(ω)e = exzn (2.120) ϵ = ϵ 0 (1 + χ) ϵ(ω) ϵ 0 = 1 +

7 π L int = gψ(x)ψ(x)φ(x) + (7.4) [ ] p ψ N = n (7.5) π (π +,π 0,π ) ψ (σ, σ, σ )ψ ( A) σ τ ( L int = gψψφ g N τ ) N π * ) (7.6) π π = (π, π, π ) π ±

( ) ( )

Sturm-Liouville Green KEN ZOU Hermite Legendre Laguerre L L [p(x) d2 dx 2 + q(x) d ] dx + r(x) u(x) = Lu(x) = 0 (1) L = p(x) d2 dx

ii 3.,. 4. F. (), ,,. 8.,. 1. (75%) (25%) =7 20, =7 21 (. ). 1.,, (). 3.,. 1. ().,.,.,.,.,. () (12 )., (), 0. 2., 1., 0,.

Z: Q: R: C: 3. Green Cauchy

24 I ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x

V 0 = + r pv (H) + qv (T ) = + r ps (H) + qs (T ) = S 0 X n+ (T ) = n S n+ (T ) + ( + r)(x n n S n ) = ( + r)x n + n (d r)s n = ( + r)v n + V n+(h) V

dynamics-solution2.dvi

II 1 II 2012 II Gauss-Bonnet II

1 8, : 8.1 1, 2 z = ax + by + c ax by + z c = a b +1 x y z c = 0, (0, 0, c), n = ( a, b, 1). f = n i=1 a ii x 2 i + i<j 2a ij x i x j = ( x, A x), f =

6 2 T γ T B (6.4) (6.1) [( d nm + 3 ] 2 nt B )a 3 + nt B da 3 = 0 (6.9) na 3 = T B V 3/2 = T B V γ 1 = const. or T B a 2 = const. (6.10) H 2 = 8π kc2

() n C + n C + n C + + n C n n (3) n C + n C + n C 4 + n C + n C 3 + n C 5 + (5) (6 ) n C + nc + 3 nc n nc n (7 ) n C + nc + 3 nc n nc n (

Transcription:

1 1.1......... 1............. 1.3... 1.4......... 1.5.............. 1.6................ Bownian Motion.1.......... Einstein.............. 3.3 Einstein........ 3.4..... 3.5 Langevin Eq.... 3.6................ 4.7.................... 4 3 5 3.1................... 5 3............ 5 3.3................. 5 3.4 Navie-Stokes............ 5 3.5................. 5 3.6 Benoulli.............. 5 3.7............ 5 3.8 Reynolds............. 6 3.9.......... 6 3.1.......... 6 3.11 Boltzmann....... 6 6.3........ 11 6.3.3 Kaman-Howath...... 11 6.3.4............... 11 6.4............ 11 6.4.1........ 11 6.4. Reynolds..... 11 6.4.3 Kolmogoov...... 1 6.4.4 Taylo............. 1 6.5................ 1 6.6 Kolmogoov -5/3 K41. 1 6.7 K6 K41............. 1 6.8... 13 7 13 8 14 8.1... 14 8.... 14 8.3............... 15 8.4.............. 15 8.5............... 15 8.6 K ɛ..... 15 8.7... 16 9 16 9.1................ 16 9........... 17 4 Reynolds 7 4.1 Reynolds Reynolds... 7 4. Reynolds........... 7 4.3 Pandtl............ 7 4.3.1........... 8 4.4 Hagen Poiseuille........ 8 5 9 5.1........ 9 5. Kolmogoov... 9 5.3 MHD.............. 9 6 1 6.1... 1 6......... 1 6.3 Kaman-Howath.......... 11 6.3.1 Navie-Stokes... 11 1

1 1.1 / Fik Γ= D n x / Newton Γ= µ vx y / Fouie Q = κ T x 1. fx, tdx t x x + dx f t = D f x 1 fx, t = 1 exp x 4πDt 4Dt lim fx, t =δx 3 t + dxfx, t = 1 4 x =Dt 5 1.3 W l, n n l n 1 W l, n = n C n+l 6 n! = 7 n + l/! n l/! πn exp l n l 1 8 n Stiling log n! n + 1 log n n + 1 log π 1.4 x = la, t = nτ 9 W x, n x = W l, n x a 1 = exp x x 1 4πDt 4Dt D = a τ 1.5 = [L] [T ] 11 n +1 x n x a x + a W x, n +1= 1 W x a, n+ 1 W x + a, n 1 1.6 W t τ = a W x 13 n x n x n =x n x n 1 +x n 1 x n +...+x 1 x +x 14 ±a x n x n = na =Dt 15 /4/1 Bownian Motion.1 F x v = βfx β n t = Γ x = D n x x βfn 16

. Einstein Γ=D n βfn =, Ux = dxf x 17 x n = n exp Maxwell n = n exp Einstein βux D Ux kt 18 19 D = βkt Bown Renolds β = 1 1 6πη Einstein D = kt 6πη, x =Dt = kt 3πη t x.3 Einstein Bow P = nkt f = 1 n kt 3 n x f = f f v = f/6πη Γ= D n x + nf 6πη = 4 D = kt/6πη.4 pq W l, n = n C l p l q n l 1 l np exp πnpq pqn 1 x vt exp πdt πdt 5 D = pqa /τ v = pa/τ Stiling.5 Langevin Eq. ζ mftf t ft =, ftft =Aδt t 6 Langevin Foke-Plank 1: m =,Ft = W x =, ζ dx dt W t m =,Ft W ζ dx dt x = F ζ t, W t = ft 7 x = A t 8 ζ = D W x 9 /4/17 = F t+ft 3 x = A t 31 ζ = D W x x βfxw 3 m,ft = Langevin d x dx dt = ζ + ft 33 dt <x > < v>=< dx/dt > d <x > dt + ζ d <x > = v = A dt ζ = kt 34 3

<v>=, v w < x >= A ζ t = kt ζ t 35 w t = w A x + ζvw 36 v w exp ζv /A t ζ 1 w W w exp v /kt, m,ft dv dt W exp x x /4Dt 37 = ζv + F x+ft 38 < x >= v t, < v >= ζv + F t, < x > < v x >=, < v >=A t 39 v w Foke-Plank w t.6 = v w x + v ζv F w + A w v 4 Langevin <vtvt >= A ζ e ζ t t,<vt >= kt 41 <vtv >= kt ζ β = 1 ζ = 1 kt ζ = 1 kt, < ftf >= ζktδt 4 dt < vtv > 43 dt < ftf > 44 m d dt <v>= mζ < v > +ee, J = ne < v > 45 < v > = ee/mζσ = J/E = ne /mζ jt = n i ev i d jt = ζjt+e dt m n ɛ i t 46 i=1 e4 m <ɛ i tɛ l t >= Aδ il δt t σ = 1 dt < jtj > 47 kt 1 σ = 1 dt < ɛtɛ > 48 kt.7 P = P t + t P t P t + t =bt P t+ft 49 ft bt Langevin d P t = ν P t+ft dt ν =1 bt/ t F t =ft/ t bt > 1 P 49 P t + t = bt P t + ft P t ft = 1 bt bt P 1/4/18 m d x dt + mω x = F t 5 Fouie mω x + mω 1 + iφ x = F 51 φ β = F ω x ω ω φ m ω ω + ω 4 5 φ x = v /ω kt ω φ mω ω ω + ω 4 53 φ φ ω ω ω ω 4

3 3.1 ρ + ρ v = 54 t ρ ρ = onst. 3. substantial mateial deivative 3.3 ρ v t v = 55 D Dt = + v 56 t + ρ v v = + 57 ρ v vdv = ρ v v nds 58 ρ gdv ρ v v v ρ t 59 σ xy :y x σ xy = µ dv x dy 6 σ nds = σ 61 3.4 Navie-Stokes σ = p I τ σ ij = pδ ij τ ij 63 τ i j vi τ ij = µ + v j 64 x j x i µ Navie-Stokes τ = µ v 65 D v Dt = 1 ρ p + ν v + g 66 ν = µ/ρ 3.5 1/4/5 v N-S Eq. t + v v = 1 ρ p + ν v φ g = φ ω v v + ω v = t + P + φ ν ω 67 p/ρ = P ω t + v ω =ω v + ν ω 68 3.6 Benoulli t =, g = φ, ν = v v ω = +P+φ 69 v +P+φ = onst. 7 ρ D v Dt = σ + ρ g 6 3.7 ν = ωds = onst. 5

3.8 Reynolds N-S Eq. U, L N-S Eq. v = U v,x= Lx,y= Ly, z = Lz, t =L/Ut, P = ρu P Dv Dt = P + ν UL v 71 R = UL/ν:Reynolds numbe 3.9 1/5/ v / ρ D v Dt = ρ v D v Dt = v p τ + ρ g 7 54 ρv t ρv v = p v+p v τ v+ τ v + ρ v g 73 1.. 3. 4. 5. 6. 5 µ vi τ v = + v j x j x i < 74 3.1 U dv ρu + ρv / v q q p v τ v ρ g v 73 ρ D Dt U = q p v τ v 75 3.11 Boltzmann δf δt f q, p, t Liouville df dt = f F δf + v f + t m v f = 76 δt Boltzmann n n fd v 77 g <g> fgd v <g> 78 fd v f, n, g g f t d v = t n<g> n t g f gv i d v = n<v i g> n v i g x i x i x i g F i f d v = n gf i 79 m v i m v i Boltzmann g t n<g> n + n <g v> t n< g v > n F m δf v g = g d v8 δt g =1 n t + n< v>= δf δt d v 81 6

8 g = m v mn < v >+ mn < v j v> n < F>= t x δf m v d v j δt 8 v =< v>+ v mn D Dt < v>= n< F> P τ + R 83 P = nm < v >/3 τ ij = nm < v i v j <v >δ ij /3 > R = m v δf δt d v 8 g = m v/ nm > t <v + nm <v v> n F v v mv δf = d v 84 δt v =< v>+ v nm t <v> + 3 p nm + <v> + 5 p < v>+τ < v>+ q = nf < v>+ R < v>+ Q + m δf <v> d v 85 δt q = nm <v v > andom motion Q = m δf v δt d v 81, 83 nm t <v> = m δf n <v> < v>+ d v δt mn < v > < v> < v>+n < F> < v> < v> p < v> τ + R < v> 86 73 85 86 3 p + 3 t p< v>+p < v>+ τ < v>+ q = Q 87 3 ndt Dt + p < v>= q τ < v>+ Q 88 1/5/16 4 Reynolds 4.1 Reynolds Reynolds Navie-Stokes v t + v v = 1 ρ p + 1 ρ τ v = V + v V = v p = P + p τ = T + τ Vi T ij = µ + V j x j x i v,τ ij = µ i + v j x j x i Reynolds Navie-Stokes V V + v v = 1 ρ P 1 ρ T 89 v = v v 89 V V = 1 ρ P T + ρ v v 9 ρ v v Reynolds Boltzmann P ij = nm < v i v j > 4. Reynolds Reynolds τ 1 µ V 1 x µ U L 91 ρv 1 v ρv 9 ρv 1 v τ 1 v R 93 U Reynolds Reynolds 4.3 Pandtl ξ x = ξ V 1 x 1 v th x = 7

<mv 1 ξ mv 1 > ρ m <mv 1 ξ mv 1 >v th ρ V 1 x ξv th = µ V 1 x 94 µ = ρξv th ρv l ρv = ρv 1 l ρv 1 + ρv 1 l ρv 1 ρ V 1 x l 95 l Pandtl ρ V1 x lv Reynolds ρv v V1 x v 1 v 1 v ρl V 1 V 1 96 x x ρl V 1 x ρlv 1, µ = ρv th ξ 97 ρlv µ = lv ν Reynolds 4.3.1 98 n v =, v =n, v n t + n v = n t + v n = 99 γ n e γt 1 γn + v n = v = n L n n L nγ 11 L n l= n = n l L n 1 Γ=<n v > D n = D n L n 13 11,1 D = l γ = γ k 14 k 11 4.4 Hagen Poiseuille N-S Eq. z ν v p d ρ = ν d + 1 d v z 1 dp d ρ dz = 15 v z = 1 dp 4ρν dz a 16 Hagen Poiseuille V a V = πv zd πa = a dp 17 8ρν dz λ dp dz = λ 1 ρv a 18 λ = 64 19 R R = V a/ν Reynolds Reynoolds R< 3 R > 3 λ =.3164R 1/4 11 8

1/5/3 Kolmogoov Kolmogoov 5 kolmogoov 5/3 5.1 Kolmogoov ɛ ɛ d v dt v v v3 111 L L k L 1 µ v τ v ρ ρ v ν l 11 l l ɛ l 1 ɛ L K ɛ V 3 K L K ν V K l 113 ɛ, ν L K = T K = ν 3 1/4 ɛ ν 1/ ɛ V K = νɛ 1/4 114 5. Kolmogoov Ek Ekdk = v 115 [Ek] = L3 T 116 [ɛ] = L T 3 117 ɛ, k Ek k α ɛ β L 3 =[Ek] = L α T 3=β α, =3β α = 5 3, β = 3 L T 3 β 118 Ek ɛ /3 k 5/3 Kolomogoov 5/3 ν v l νv k νek k νk 5/3 k k νk 1/3 k 119 k Kolomogoov 5/3 5.3 MHD MagnetohydodynamiMHD v b Ek, F k MHD v A = B µρ T [ɛ] = [v3 ] [L] = [v3 ] B T = L3 T 4 1 B 1 9

Ek k α ɛ β L 3 L 3 β 1 =[Ek] = L α T T 4 B 3=3β α, =4β α = 3, β = 1 11 Ek ɛb 1/ k 3/ Kaihnann 6. Kaman-Howath A, B < u A p B >: < u A u B >: < u A u A u B >: 17 6 Kaman-Howath : : : B i =A i B ij =A 1 i j + B 1 δ ij B ijk =A i j k + B k δ ij +C j δ ik + D i δ jk 18 6.1 Reynolds Kamann-Howath N-S Eq. t u i ν u i = u j 1 p 1 x j ρ x j OpeatoL, M, L 1 L u = M u u + L 1 p 13 L < u>= M < u u >+L 1 <p> 14 u Reynolds Pandtl < u u > < u> 14 L < u u >= M < u u u >+L 1 <p u> 15 L < u u u >= M < u u u u >+L 1 <p u u > 16 Kaman-Howath 15 Q ij Q ij = u ia u jb AB Q ij =Q ji A 1,B 1 1/5/3 =,, Q ij Q ll = u la u lb Q nn = u na u nb Q ij = i j Q ll Q nn +Q nn δ ij 19 S ij,k S ij,k = u ia u ja u kb =,, S ij,k = S ji,k C = D S S 11,1 = Q lll S,1 = S 33,1 = Q nnl S 1, = S 13,3 = Q lnn S ij,k = i j k 3 Q lll Q nnl Q lnn + kδ ij Q nnl + iδ jk + j δ ik Q lnn 13 1

S ij,k = S k.ij 131 6.3 Kaman-Howath K-H Eq. 6.3.1 Navie-Stokes N-S Eq. A B N-S Eq. u i t + u i u k = 1 p + ν u i x k ρ x i u j t + x u j u k = 1 p + ν u j 13 k ρ x i u j, u i t ν Q ij = = S ik,j S i,jk k S ik,j + S jk,i T ij 133 k pu j = p u i = 6.3. i Q ij = Q nn = Q ll + Q ll = 1 Q ll Q ii = i S ik,j = Q nnl = 1 Q lll Q lnn = 1 4 Q lll S ik.i = k 6.3.3 Kaman-Howath +3 Q ll 134 + 4 Q lll 135 134 i = j 133 +3 t Q ll ν + +3 Q ll 135 +3 + 4 Q lll [ t ν + 4 ] Q ll = + 4 Q lll 136 Kaman-Howath N-S Eq. t u i ν u i = u i u k 1 x k ρ p 137 x i u Al u Bl = Q ll u Al u Al u Bl = Q lll 6.3.4 k Q ij =u ia u jb = + Φ ij ke i k d 3 k 138 S ij,k Φ ij,k 133 t Φ ij = ik α Φ iα,j +Φ jα,i νk Φ ij 139 t Ek, t =4πk6 Γk, t νk Ek, t 14 Ek, tdk = u i / Γk, t Φ iα,j 6.4 6.4.1 1/6/6 l e v e mve/ ρlev 3 e/ µ v y l e µl ev e = µl e vet t t ρl3 e v e µl e v e ρl e µ l e ν 6.4. Reynolds 141 Reynolds ρu i u j l E v E Reynolds ρve l E ρve 3 l E 11

ve 3 /l E ɛ ɛ K-H Eq.136 Q ll t + 4 Q lll 14 t E v E t E v3 E l E t E l E v E 6.4.3 Kolmogoov K-H Eq.136 Q ll ν t + 4 Q ll 143 t K v K t K ν v K l K ɛ t K l K /v K v K ν l K lk R K v Kl K ν v K ν l K ɛ ν3 l 4 K 1 Kolomogoov 114 GOY i k u i k N-S Eq. d dt u i k+νk u i k= i k j δ il k ik l k u j pu l q p+ q= k 144 p + q = k GOYGledze-Ohkitani-Yamada k i = i k i =,..N 1 u i t i ii iii d dt + νk u i =+i 1 i u i+1 u i+ + i u i 1u i+1 + 3 i u i 1u i 145 1 i = k i, i = 1 k i 1, 3 i = 1 k i 1 N =1 N 1 =, = N 1 =3 = 3 1 = GOY Kolmogoov 6.4.4 Taylo Q ll = MioSale : λ l Q ll Q ll Q ll MaoSale : Λ l Q ll d l K <λ l < Λ l 6.5 N-S Eq. 6.6 Kolmogoov -5/3 K41 ɛ K41 ɛ ɛ v p /ɛ/k p/3 k 6.7 K6 K41 1/6/13 ɛ ɛ ɛ x, t = 3 4π 3 ɛ x + y, tdy 146 y < 1

ɛ ln ɛ L l n L l 1 = L/Γ l = l 1 /Γ l n = L/Γ n ɛ = ɛ ɛ 1 ɛ ɛ n ɛ = ɛ n = ɛ ɛ 1 ɛ ɛ ɛ 1 ɛ n 1 ln ɛ = lnɛ +lne 1 +lne + +lne n 147 e i ɛ i /ɛ i 1 ln ɛ 1 P ɛ = exp ln ɛ m 148 πσ ɛ σ m =lnɛ σ, σ = A + µ ln L/ µ ln L/ ɛ /3 = ɛ /3 ɛ /3 P ɛ dɛ ɛ /3 ɛ n µ/9 L 149 v ɛ/k 1/3 Ek v k ɛ/3 k 5/3 k µ/9 15 K41-5/3 µ/9 v p /ɛ/k p/3 k µpp 1/3 6.8 1/k N N = k D D k D /k 3 ɛ ɛ ɛ = k3 k D ɛ = ɛ k 3 D ɛ /3 = ɛ /3 k D /k 3 = ɛ /3 k D 3/3 Ek = ɛ /3 k 5 /3 = ɛ /3 k D 3/3 k 5/3 151 1/6/ 7 Reynolds Reynolds x y U s x lx x Lx Ux, y L l L U y/lx U s x x, y U, V, u, v U s, L, l U x + V y = V = OU s l/lreynolds N-S Eq. y U V V +V x y + x uv+ y v = 1 P ρ y +ν U x + V y 15 y v = 1 P ρ y 153 L l, Reynolds Rynolds U s l L u l 156 x v = 1 P 154 ρ x N-S Eq. x U U x + V U y + x u v + y uv = ν U x + V y 155 154 U U x + V U y + uv = 156 y O U s u = O L l ξ = y/l, lx, U s x U = U s fξ 157 uv = Us gξ 158 13

f = O1, g = Ol/L V y V = U dy = l x ξ 156 dus dx f U s dl l dx ξf dξ 159 ξ ξ g = l du s U s dx f dl dx ξff l du s U s dx f fdξ+ dl dx f ξf dξ 16 x l = onst., du s U s dx dl dx = onst. l x x y x Us l = onst. l x U s 1/ x ν T Reynolds R T U s l/ν T Reynolds U uv = ν T y Us g = ν T l f g = f 16 f = 1 ξ R T f + f fdξ f = seh ξ/ = 8 R T 161 e ξ/ +e ξ/ 16 163 8.1 Navie-Stokes Diet Numeial Simulation DNS DNS Reynolds UL/ν Kolmogoov l K ν 3 /ɛ 1/4, t K ν/ɛ 1/ ɛ v 3 /l l k ν 3/4 L = R 3/4 UL T L/U t K ν 1/ T = R 1/ UL R 9/4 R 1/ = R.75 U = 1m/s 36km/h ν = 1 5 m /s L =m R 1 6 1 13.5 1 3 8. 1/6/7 Kaman-Howath Reynolds Reynolds Rynolds 14

8.3 Reynolds x U y U y l u v U y l Reynolds uv = l U y U y 164 Businesque Reynolds uv = ν T U y ν T 165 Reynolds Reynolds 8.4 N-S Eq. U i t + U j U i = P x j x i ρ + ν x j x j U i u i t + U u i U i j + u j = p x j x j x i ρ + ν x i Reynolds x j u j u i 166 ui + u j x j x i x i u i u j u i u j 167 K 1 u i 168 u j ɛ τ ij = ν uj u i uj u i x i x i x j x i x j K t + U K U j i = R ij x i x i x j [ pu j ρ + U i u j uj νu i + u i x i x j 169 ] 17 ɛ ɛ ɛ t + U i = W H j + ν ɛ 171 x i x j ui u k W ν + u j u j Ui +ν u i u i u j x j x j x k x i x k x k x j x k ν U i x j x k H j ν ρ 8.5 +νu j U j x k U i x j x k 17 u j p u i u i + νu j 173 x k x k x k x k K = u i u i / Reynolds K ν T R ij = u i u j = 3 Kδ Ui ij ν T + U j 174 x j x i Pandtl u i u j l U U x x ν T lu l K ν T U x ν T = Kl 175 l K 17 K t + U U i U j j + R ij x j x i = νt K K3/ x j σ k x j l 176 σ K, σ k ɛ = K3/ l K N-S Eq.166 U i x i, σ K l 8.6 K ɛ ɛ K ɛ ɛ µ ν T = C µ K ɛ 171 ɛ t + U ɛ ɛ i = C ɛ1 x i K R U i ɛ ij C ɛ x j K + x j ɛ νt σ ɛ 177 ɛ x j 178 15

N-S Eq. Reynolds 174 K K t + U U i U j j + R ij x j x i = νt K ɛ 179 x j σ k x j C µ, C ɛ1 C ɛ, σ ɛ 8.7 Lage Eddy Simulation, 1, G G U = Gx x ux dx = G u 18 u i = U i + u Rynolds G u i u j = G U i U j +G u i U j + U i u j + u i u j = U i U j + L ij + M ij 181 N-S Eq. U i t + U i U j = 1 P x j ρ x i x j L ij x j M ij + U i L ij = G U i U j U i U j M ij = Ui 3 K δ ij + ν SG + U j x j x i 18 183 L ij Lenad ν SG = C S 4/3 ɛ 1/3 u K = G i u j =C K /3 ɛ 1/3 184 C S, C K ɛ ɛ = M ij U i x j 185 Lage Eddy Simulation 9 1/7/4 Kolmogoov 9.1 Se.4.4 λ P. dx = λρv 186 d λ = 64 187 R λ =.316 R 1/4 188 λ N-S Eq. v t + v v = 1 ρ P + ν v x λ 1 x, v λ v, t λ 3 t, P/ρ λ 4 P/ρ, ν λ 5 ν, λ 1,λ, N-S Eq. λ λ 1 3 = λ λ 1 1 = λ 1 1 λ 4 = λ 5 λ 1 λ λ 3 = λ 1 λ 1, λ 4 = λ, λ 5 = λ 1 λ x λ 1 x, v λ v, t λ 1 λ 1 t, P/ρ λ P/ρ, ν λ 1λ ν, 189 dp/ρ dx = Cd α V β ν γ C λ λ 1 1 = λ α 1 λβ λ 1λ γ 19 α = 1 γ, β = α 191 dp dx = Cd 1 γ V γ ν γ = C V d ν γ dv γ dp dx = C V d F R 16

9. τ τ MHD τ v mn + v v = p + j B t n + n v = t v = E + v e B = η j p e en B t = E p 3/ η T 3/ 19 n x λ 1 x, v λ v, t λ 3 t, n λ 4 n, B λ 5 B, E λ 6 E, P λ 7 P, j λ 8 j, η λ 9 η 193 λ 4 λ λ 1 3 = λ 4 λ λ 1 1 λ 7λ 1 1 = λ 8 λ 5 λ 4 λ 1 3 = λ 1 1 λ 4λ λ 6 = λ λ 5 = λ 9 λ 8 = λ 7 λ 1 1 λ 1 4 λ 8 = λ 1 1 λ 5 λ 5 λ 1 3 = λ 1 1 λ 6 λ 9 = λ 3/ 7 λ 3/ 4 194 λ = λ P x λ 4 x, v λv, t λ 5 t, n λ 8 n, B λ 5 B, E λ 6 E, P λ 1, j λ 9 j, η λ 3 η 195 τ n T B a τ = Cn p T q B a s 196 C λ 5 = λ 8p λ q λ 5 λ 4s p + q + 5 4 s = 5 4 197 τ n p T q B a p+ q + 5 4 + 5 4 na p T a q +Ba 5/4 +1 B 1 198 τ = 1 B F na,t a, Ba 5/4 17