86 6 r (6) y y d y = y 3 (64) y r y r y r ϕ(x, y, y,, y r ) n dy = f(x, y) (6) 6 Lipschitz 6 dy = y x c R y(x) y(x) = c exp(x) x x = x y(x ) = y (init

Similar documents
d dt A B C = A B C d dt x = Ax, A 0 B 0 C 0 = mm 0 mm 0 mm AP = PΛ P AP = Λ P A = ΛP P d dt x = P Ax d dt (P x) = Λ(P x) d dt P x =

Trapezoidal Rule θ = 1/ x n x n 1 t = 1 [f(t n 1, x n 1 ) + f(t n, x n )] (6) 1. dx dt = f(t, x), x(t 0) = x 0 (7) t [t 0, t 1 ] f t [t 0, t 1 ], x x

A

数学Ⅱ演習(足助・09夏)

error_g1.eps

p12.dvi

n (1.6) i j=1 1 n a ij x j = b i (1.7) (1.7) (1.4) (1.5) (1.4) (1.7) u, v, w ε x, ε y, ε x, γ yz, γ zx, γ xy (1.8) ε x = u x ε y = v y ε z = w z γ yz

untitled

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT

f : R R f(x, y) = x + y axy f = 0, x + y axy = 0 y 直線 x+y+a=0 に漸近し 原点で交叉する美しい形をしている x +y axy=0 X+Y+a=0 o x t x = at 1 + t, y = at (a > 0) 1 + t f(x, y

: 1g99p038-8

dy = sin cos y cos () y () 1 y = sin 1 + c 1 e sin (3) y() () y() y( 0 ) = y 0 y 1 1. (1) d (1) y = f(, y) (4) i y y i+1 y i+1 = y( i + ) = y i

研修コーナー

パーキンソン病治療ガイドライン2002

tnbp59-21_Web:P2/ky132379509610002944

1 8, : 8.1 1, 2 z = ax + by + c ax by + z c = a b +1 x y z c = 0, (0, 0, c), n = ( a, b, 1). f = n i=1 a ii x 2 i + i<j 2a ij x i x j = ( x, A x), f =

i

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2)

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

1 n A a 11 a 1n A =.. a m1 a mn Ax = λx (1) x n λ (eigenvalue problem) x = 0 ( x 0 ) λ A ( ) λ Ax = λx x Ax = λx y T A = λy T x Ax = λx cx ( 1) 1.1 Th

note1.dvi

1 4 1 ( ) ( ) ( ) ( ) () 1 4 2



() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0

II (10 4 ) 1. p (x, y) (a, b) ε(x, y; a, b) 0 f (x, y) f (a, b) A, B (6.5) y = b f (x, b) f (a, b) x a = A + ε(x, b; a, b) x a 2 x a 0 A = f x (


1. 1 A : l l : (1) l m (m 3) (2) m (3) n (n 3) (4) A α, β γ α β + γ = 2 m l lm n nα nα = lm. α = lm n. m lm 2β 2β = lm β = lm 2. γ l 2. 3

#A A A F, F d F P + F P = d P F, F y P F F x A.1 ( α, 0), (α, 0) α > 0) (x, y) (x + α) 2 + y 2, (x α) 2 + y 2 d (x + α)2 + y 2 + (x α) 2 + y 2 =

17 ( ) II III A B C(100 ) 1, 2, 6, 7 II A B (100 ) 2, 5, 6 II A B (80 ) 8 10 I II III A B C(80 ) 1 a 1 = 1 2 a n+1 = a n + 2n + 1 (n = 1,

ohpr.dvi

d ϕ i) t d )t0 d ϕi) ϕ i) t x j t d ) ϕ t0 t α dx j d ) ϕ i) t dx t0 j x j d ϕ i) ) t x j dx t0 j f i x j ξ j dx i + ξ i x j dx j f i ξ i x j dx j d )

(iii) 0 V, x V, x + 0 = x. 0. (iv) x V, y V, x + y = 0., y x, y = x. (v) 1x = x. (vii) (α + β)x = αx + βx. (viii) (αβ)x = α(βx)., V, C.,,., (1)

85 4


基礎数学I

ma22-9 u ( v w) = u v w sin θê = v w sin θ u cos φ = = 2.3 ( a b) ( c d) = ( a c)( b d) ( a d)( b c) ( a b) ( c d) = (a 2 b 3 a 3 b 2 )(c 2 d 3 c 3 d

Chap11.dvi


1 (1) ( i ) 60 (ii) 75 (iii) 315 (2) π ( i ) (ii) π (iii) 7 12 π ( (3) r, AOB = θ 0 < θ < π ) OAB A 2 OB P ( AB ) < ( AP ) (4) 0 < θ < π 2 sin θ

.3. (x, x = (, u = = 4 (, x x = 4 x, x 0 x = 0 x = 4 x.4. ( z + z = 8 z, z 0 (z, z = (0, 8, (,, (8, 0 3 (0, 8, (,, (8, 0 z = z 4 z (g f(x = g(

1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ =

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

1 1 x y = y(x) y, y,..., y (n) : n y F (x, y, y,..., y (n) ) = 0 n F (x, y, y ) = 0 1 y(x) y y = G(x, y) y, y y + p(x)y = q(x) 1 p(x) q(

f(x,y) (x,y) x (x,y), y (x,y) f(x,y) x y f x (x,y),f y (x,y) B p.1/14

C による数値計算法入門 ( 第 2 版 ) 新装版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 新装版 1 刷発行時のものです.

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2

2 1 Introduction (1.1.2) Logistic ث Malthus (1.1.3) (( ) ث)( ) α = ( ) ( + ) [Verhulst 1845] 0 ( ) ( + ) lim ( ) = 0 t (1.1.4) (( ) ث)( ) α = ( ) Logi

最新耐震構造解析 ( 第 3 版 ) サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 3 版 1 刷発行時のものです.

第3章 非線形計画法の基礎

i 18 2H 2 + O 2 2H 2 + ( ) 3K

構造と連続体の力学基礎

December 28, 2018

II ( ) (7/31) II ( [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Re

( ) sin 1 x, cos 1 x, tan 1 x sin x, cos x, tan x, arcsin x, arccos x, arctan x. π 2 sin 1 x π 2, 0 cos 1 x π, π 2 < tan 1 x < π 2 1 (1) (

ẍ = kx, (k > ) (.) x x(t) = A cos(ωt + α) (.). d/ = D. d dt x + k ( x = D + k ) ( ) ( ) k k x = D + i D i x =... ( ) k D + i x = or ( ) k D i x =.. k.

第90回日本感染症学会学術講演会抄録(I)

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

A S hara/lectures/lectures-j.html ϵ-n 1 ϵ-n lim n a n = α n a n α 2 lim a n = 0 1 n a k n n k= ϵ

Ł\”ƒ-2005

: , 2.0, 3.0, 2.0, (%) ( 2.

1 (1) () (3) I 0 3 I I d θ = L () dt θ L L θ I d θ = L = κθ (3) dt κ T I T = π κ (4) T I κ κ κ L l a θ L r δr δl L θ ϕ ϕ = rθ (5) l

webkaitou.dvi

takei.dvi

Numerical Analysis II, Exam End Term Spring 2017


9 2 1 f(x, y) = xy sin x cos y x y cos y y x sin x d (x, y) = y cos y (x sin x) = y cos y(sin x + x cos x) x dx d (x, y) = x sin x (y cos y) = x sin x

A

TOP URL 1


2014 S hara/lectures/lectures-j.html r 1 S phone: ,

f(x) = f(x ) + α(x)(x x ) α(x) x = x. x = f (y), x = f (y ) y = f f (y) = f f (y ) + α(f (y))(f (y) f (y )) f (y) = f (y ) + α(f (y)) (y y ) ( (2) ) f

30

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google

プリント

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10%

2000年度『数学展望 I』講義録

k m m d2 x i dt 2 = f i = kx i (i = 1, 2, 3 or x, y, z) f i σ ij x i e ij = 2.1 Hooke s law and elastic constants (a) x i (2.1) k m σ A σ σ σ σ f i x

2.2 ( y = y(x ( (x 0, y 0 y (x 0 (y 0 = y(x 0 y = y(x ( y (x 0 = F (x 0, y(x 0 = F (x 0, y 0 (x 0, y 0 ( (x 0, y 0 F (x 0, y 0 xy (x, y (, F (x, y ( (

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

1

TOSM kanie/tosm/ HP kanie/agora/ kanie/ h

all.dvi

Onsager SOLUTION OF THE EIGENWERT PROBLEM (O-29) V = e H A e H B λ max Z 2 Onsager (O-77) (O-82) (O-83) Kramers-Wannier 1 1 Ons


January 27, 2015


v v = v 1 v 2 v 3 (1) R = (R ij ) (2) R (R 1 ) ij = R ji (3) 3 R ij R ik = δ jk (4) i=1 δ ij Kronecker δ ij = { 1 (i = j) 0 (i

2 (2016 3Q N) c = o (11) Ax = b A x = c A n I n n n 2n (A I n ) (I n X) A A X A n A A A (1) (2) c 0 c (3) c A A i j n 1 ( 1) i+j A (i, j) A (i, j) ã i


SO(3) 49 u = Ru (6.9), i u iv i = i u iv i (C ) π π : G Hom(V, V ) : g D(g). π : R 3 V : i 1. : u u = u 1 u 2 u 3 (6.10) 6.2 i R α (1) = 0 cos α

B ver B

2011de.dvi

DOPRI5.dvi

D 24 D D D

18 2 F 12 r 2 r 1 (3) Coulomb km Coulomb M = kg F G = ( ) ( ) ( ) 2 = [N]. Coulomb

Introduction to Numerical Analysis of Differential Equations Naoya Enomoto (Kyoto.univ.Dept.Science(math))

1.2 y + P (x)y + Q(x)y = 0 (1) y 1 (x), y 2 (x) y 1 (x), y 2 (x) (1) y(x) c 1, c 2 y(x) = c 1 y 1 (x) + c 2 y 2 (x) 3 y 1 (x) y 1 (x) e R P (x)dx y 2

( ) ( 40 )+( 60 ) Schrödinger 3. (a) (b) (c) yoshioka/education-09.html pdf 1

Transcription:

8 6 ( ) ( ) 6 ( ϕ x, y, dy ), d y,, dr y r = (x R, y R n ) (6) n r y(x) (explicit) d r ( y r = ϕ x, y, dy ), d y,, dr y r y y y r (6) dy = f (x, y) (63) = y dy/ d r y/ r

86 6 r (6) y y d y = y 3 (64) y r y r y r ϕ(x, y, y,, y r ) n dy = f(x, y) (6) 6 Lipschitz 6 dy = y x c R y(x) y(x) = c exp(x) x x = x y(x ) = y (initial value problem, IVP) dy = f(x, y) (66) y(x ) = y Lipschitz 6 (Lipschitz ) x [x, α] z, z R n f(x, z ) f(x, z ) L z z (67) L R (66) y(x)

63 : Euler,, Runge-Kutta 87 6 dy = y y() = L = Lipschitz (67) y(x) = exp(x) Lipschitz (66) 63 : Euler,, Runge-Kutta [x, α] l x i = x + i j= h j y(x i ) y i h i (i =,,, l ) (Step Size) (Stiff) y/h=(y(x + h) y(x))/h dy/ y i+ := y i + h i f(x i, y i ) (68) Euler ( Euler Euler ) δy/(h)=(y(x + h) y(x h))/(h) y i+ := y i + h i f(x i, y i ) (69) y = y(x h ) y Euler y 3 (Euler ) x i (i =,,, l ) y i+ := y i + h i f(x i, y i ) 36 ( ) y Euler x i (i =,, l ) y i+ := y i + h i f(x i, y i )

88 6 Euler ( ) Runge-Kutta 37 ( Runge-Kutta ) x i (i =,,, l ) (a) k, k, k 3, k 4 k = f(x i, y i ) k = f(x i + h i, y i + h ik ) k 3 = f(x i + h i, y i + h ik ) k 4 = f(x i + h i, y i + h i k 3 ) (b) y i+ := y i + 6 h i(k + k + k 3 + k 4 ) 4 63 dy = x + y y() = Euler Runge-Kutta 6 相対誤差 e-6 e-9 Euler, h=/ Euler, h=/ 4 Midpoint h=/ ERK44, h=/ MIdpoint, h=/ 4 e- e- ERK44, h=/ 4 4 6 8 x 6: Euler,, Runge-Kutta

64 Runge-Kutta 89 63 63 x = h = /,/4 Euler, Runge-Kutta 4 [Hint: f Taylor 4 ] 64 Runge-Kutta Runge-Kutta m Runge-Kutta 38 38 (m Runge-Kutta ) [x, α] l x, x,, x l = α x i x i+ h i x i (i =,,, l ) (a) k, k,, k m k = f(x i + c h i, y i + h i m j= a j k j ) k = f(x i + c h i, y i + h i m j= a j k j ) k m = f(x i + c m h i, y i + h i m j= a m j k j ) (b) y i+ := y i + h i m j= w j k j c, c,, c m, a,, a m,m, w, w,, w m 6 O(h p+ ) m p Runge-Kutta ( 6) 3 Runge-Kutta c a c 3 a 3 a 3 c m a m a m a m,m w w w m w m Butcher Table

9 6 6: m Runge-Kutta c a a a m c a a a m c m a m a m a m,m w w w m c = a i j = (i j) k k m Runge-Kutta c a c a a c m a m a m a m,m w w w m a i j = (i < j) k j ( j =,, m) n 3 Runge-Kutta j k j = f(x i + c j h i, y i + h i a js k j + h i a j j k j ) (6) s= c a a a m c a a a m c m a m a m a m,m w w w m k,, k m mn k = f(x i + c h i, y i + h i m j= a j k j ) k = f(x i + c h i, y i + h i m j= a j k j ) k m = f(x i + c m h i, y i + h i m j= a m j k j ) (6)

6 Runge-Kutta 9 Runge-Kutta Butcher[] Lawson, Huta, Shanks, [3, 36, 37, 38] Runge-Kutta Runge-Kutta ( = ) A- Runge-Kutta Runge-Kutta Newton ( ) Runge-Kutta Stiff Runge-Kutta [9] Runge-Kutta 6 Runge-Kutta k k m (6, 6) 6 Newton Newton 39 ( Newton ) k (),, k() m for l =,,, (a) J( (b), k(l) k (l+) k (l+) k (l+) m,, k(l) m ) := m J (,, k(l) m ) f(x i + c h i, y i + h mj= i a j j ) f(x i + c h i, y i + h mj= i a j j ) m f(x i + c m h i, y i + h mj= i a m j j ) I n J J J m J(k (l, k(l),, k(l) m ) = J I n J J m J m J m I n J mm

9 6 J( J(, k(l) J pq = h i a pq y f(x i + c p h i, y i + h i, k(l) m j= a p j j ) M n (R),, k(l) m ) LU,, k(l) m ) z z z m = f(x i + c h i, y i + h mj= i a j j ) f(x i + c h i, y i + h mj= i a j j ) m f(x i + c m h i, y i + h mj= i a m j j ) mn [z z z n ] T Newton LU LU Jacobi [6] 66 Runge-Kutta Runge-Kutta Runge-Kutta Stiff Runge-Kutta (6) step Runge-Kutta Runge-Kutta Runge-Kutta Runge-Kutta 66 Runge-Kutta dy = Ay + g(x) = f(x, y) y(x ) = y (6) A M n (R) (6) (6) n mn r (I h i a rr A)k r = f(x i + c r h i, y i + h i a r j k j ) (63) j=

66 Runge-Kutta 93 I h i a A h i a A h i a m A h i a A h i a m,m A h i a m A h i a m,m I h i a mm A k k m = f(x i + c h i, y i ) f(x i + c m h i, y i ) (64) 66 Runge-Kutta Runge-Kutta 3 [] 4 : Butcher[] 3 3 6 3+ 3 6 3 6 : Butcher[] 4 3+ 3 3 3 4 + 36 +3 7 +6 8 8 3 4 9 +3 4 8 8 : Optimal[] 3 3 4 3 4 6 8 3 7 36 8 4 4 : (classical)runge-kutta ( 37)[] 6 3 3 3 3 3 3 6 9 9 3 3 6 7 6 : Butcher[] 9 8 3 6 3 8 8 3 8 3 4 63 44 44 9 7 4 8 6 7 4 4 4

94 6 Butcher Jain[] Stiff 66 dy = y + y cos x dy = y 3y + 3 cos x sin x y () = y () = (6) 66 dy = y + y cos x dy = 998y 999y + 999 cos x sin x y () =, y () = (66) (6) (66) [] (67) y (x) = exp( x) y (x) = exp( x) + cos x (67) Stiff 6 6 [, ] (x l = ) 66( 6, 63) 66( 64, 6) 66 (6)(66) (67) 67 Rössler Rössler Model [33] d dt x y z = (y + z) x + αy β + z(x µ) (68) α = β = / µ 3, 4, [33]

67 Rössler 9 6: 66 : Runge-Kutta -:optimal 4-4:classical 7-6:Butcher y y y y y y / 8e+6 376e- 9948e+4 6e-3 644e+3 6e- / 4 639e+3 3e-3 4e+ 634e-6 98e- 9e-9 / 6 977e+ 63e- 836e- 978e-9 9e-4 9e- / 8 373e+ 3887e-6 368e-3 3484e- 864e-8 68e-6 / 9e+ 47e-7 4e- 347e-3 976e-8 63e- / 986e- 9e-8 9e-7 7e- 9e-7 993e- / 4 68e-3 94e- 794e-7 34e- 697e-7 39e- / 6 386e-4 89e- 889e-7 74e-4 894e-7 74e-4 / 8 66e- 37e- 3e-6 7e-4 e-6 99e-4 63: 66 : Runge-Kutta - -4:Butcher 3-6:Butcher y y y y y y / 4e+4 894e-3 7e+3 86e- 49e+ 3e-8 / 4 49e+3 64e-4 434e+ 76e-7 66e-3 9e- / 6 737e+ 446e- 644e- 779e- 34e-7 33e- / 8 e+ 6e-6 4e-4 34e- 6e-8 e+ / 7849e- 6e-7 9966e-7 99e-4 986e-8 493e- / 4939e- e-8 43e-7 363e- 37e-7 363e- / 4 393e-3 664e- 78e-7 364e- 773e-7 34e- / 6 938e-4 39e- 944e-7 74e-4 89e-7 687e-4 / 8 e- 47e- 3e-6 44e-4 6e-6 44e-4

96 6 64: 66 : Runge-Kutta -:optimal 4-4:classical 7-6:Butcher y y y y y y / NaN NaN NaN NaN NaN NaN / 4 NaN NaN NaN NaN NaN NaN / 6 NaN NaN NaN NaN NaN NaN / 8 NaN NaN NaN NaN NaN NaN / 6776e- 796e-6 79e- 89e-7 89e-3 8e-8 / 89e-4 36e-8 86e- 873e- e-7 47e- / 4 3396e- 66e- 63e-8 646e-3 63e-9 48e-6 / 6 33e-6 3946e- 9e-9 3e- 349e-9 e+ / 8 48e-7 44e- 99e-9 68e-6 373e-9 68e-6 ( NaN ) 6: 66 : Runge-Kutta - -4:Butcher 3-6:Butcher y y y y y y / 7e+ 49e- 97e+ 98e-3 4998e- 47e-6 / 4 6e+ 4889e-4 693e+ 69e- 68e-3 9e-8 / 6 74e+ 3e- 8e- 798e-7 933e-6 879e- / 8 7664e- 99e-6 37e-4 38e-9 363e-8 4e-3 / 484e-3 93e-7 936e-7 9388e- 797e- e- / 334e-4 748e-9 3888e-9 367e-4 746e- 36e-6 / 4 898e- 466e- 6e-9 36e-6 773e-9 36e-6 / 6 86e-6 93e- 6e-9 e+ e-9 e+ / 8 76e-8 8e- e-9 68e-6 6e-9 44e-6

67 Ro ssler モデルの数値例 97 y y - - - x [, ], h = /89 Explicit: 6th Order - x [, ], h = /89 Implicit: 6th Order 図 6: 6 次の陽的 R-K 法 (左) と陰的 R-K 法 (右) の数値解 (µ = 4) y y - - - - - x [,], h = /89 Explicit: 6th Order - x [,], h = /89 Implicit: 6th Order 図 63: 6 次の陽的 R-K 法 (左) と陰的 R-K 法 (右) の数値解 (µ = )

98 6 [ ] T [, ] 6 Runge-Kutta Runge- Kutta (68) h h = /89 Fig6 µ = 4 Fig63 µ = Rössler Model µ 3, 4,, µ = Runge-Kutta t = x 7 6 Runge-Kutta 3 6 Runge-Kutta (68) IEEE74 Explicit : 7 step (6th order), µ = h = /496 h = /89 RN 48989e + 469349e + RZ 674e + 99e + RP 43638e + 384e + RM 63464e + 3868896e + Implicit : 3 step (6th order), µ = h = /496 h = /89 RN 384764e + 36987e + RZ 67438e + 678e + RP 3447e + 463796e + RM 3444998e + 34648e + µ = y RN, RM, RP, RZ ( ) [7] order order (68) [, ] Rössler Model IEEE74 µ = 7 z µ = 7 z Fig64 µ µ =, 7 µ = 4

67 Rössler 99 e- e- Roessler Model: gmp 8bit(38 digits) Extrapolation: 4 steps Relative Round-off Error: h=/4 \mu= \mu=7 Roessler Model: [, ], 8bit Extrapolation 4steps, h=/4 Relative Error e-3 e-3 e-4 \mu=4 z e-4 e- 3 4 t 3 4 t 64: µ = 4,, 7 z ( ) µ = 7 z( ) (a) dy = x y y() = (b) h = /4 Euler y() ỹ() (c) ỹ(), 994,

6, 4 Runge-Kutta A Hamilton EHairer, SPNørsett and GWanner Solving Ordinary Differential Equations, I Springer-Verlag, 993 EHairer and GWanner Solving Ordinary Differential Equations, II Springer-Verlag, 996 plain TEX TEX