Μ粒子電子転換事象探索実験による世界最高感度での 荷電LFV探索 第3回機構シンポジューム 2009年5月11日 素粒子原子核研究所 三原 智

Similar documents
cm λ λ = h/p p ( ) λ = cm E pc [ev] 2.2 quark lepton u d c s t b e 1 3e electric charge e color charge red blue green qq

W 1983 W ± Z cm 10 cm 50 MeV TAC - ADC ADC [ (µs)] = [] (2.08 ± 0.36) 10 6 s 3 χ µ + µ 8 = (1.20 ± 0.1) 10 5 (Ge

加速器の基本概念 V : 高周波加速の基礎

目次 T2K 実験 ニュートリノ振動解析 外挿 ( 前置検出器 後置検出器 ) の 手法 Toy MCによるデモンストレーション まとめ 2

LHC ALICE (QGP) QGP QGP QGP QGP ω ϕ J/ψ ALICE s = ev + J/ψ

pptx

(e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ,µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) [ ] [ ] [ ] ν e ν µ ν τ e µ τ, e R,µ R,τ R (2.1a

1/2 ( ) 1 * 1 2/3 *2 up charm top -1/3 down strange bottom 6 (ν e, ν µ, ν τ ) -1 (e) (µ) (τ) 6 ( 2 ) 6 6 I II III u d ν e e c s ν µ µ t b ν τ τ (2a) (

Strangeness spin in the proton studied with neutrino scattering


Electron Ion Collider と ILC-N 宮地義之 山形大学

25 3 4

Bethe-Bloch Bethe-Bloch (stopping range) Bethe-Bloch FNAL (Fermi National Accelerator Laboratory) - (SciBooNE ) SciBooNE Bethe-Bloch FNAL - (SciBooNE

PowerPoint Presentation

Table 1: Basic parameter set. Aperture values indicate the radius. δ is relative momentum deviation. Parameter Value Unit Initial emittance 10 mm.mrad

Mott散乱によるParity対称性の破れを検証

q quark L left-handed lepton. λ Gell-Mann SU(3), a = 8 σ Pauli, i =, 2, 3 U() T a T i 2 Ỹ = 60 traceless tr Ỹ 2 = 2 notation. 2 off-diagonal matrices

LEPS

Slide 1

positron 1930 Dirac 1933 Anderson m 22Na(hl=2.6years), 58Co(hl=71days), 64Cu(hl=12hour) 68Ge(hl=288days) MeV : thermalization m psec 100

03J_sources.key

CMB and DM (Cosmic Microwave Background and Dark Matter) ~ ~

Kaluza-Klein(KK) SO(11) KK 1 2 1

第90回日本感染症学会学術講演会抄録(I)

Muon Muon Muon lif

Ł\”ƒ-2005

Microsoft Word - 4NMR2.doc

42 3 u = (37) MeV/c 2 (3.4) [1] u amu m p m n [1] m H [2] m p = (4) MeV/c 2 = (13) u m n = (4) MeV/c 2 =

余剰次元のモデルとLHC

2 内容 大気ニュートリノ スーパーカミオカンデ ニュートリノ振動の発見 検証 今後のニュートリノ振動の課題

O1-1 O1-2 O1-3 O1-4 O1-5 O1-6

7 π L int = gψ(x)ψ(x)φ(x) + (7.4) [ ] p ψ N = n (7.5) π (π +,π 0,π ) ψ (σ, σ, σ )ψ ( A) σ τ ( L int = gψψφ g N τ ) N π * ) (7.6) π π = (π, π, π ) π ±

kyoto1208-flavor-okada.pptx

EGunGPU


OHO.dvi

Transcription:

µ COMET LFV esys

clfv (Charged Lepton Flavor Violation) J-PARC µ COMET

( )

( )

( )

( ) B

( ) B

( ) B

( ) B

( ) B

( ) B

( ) B

2016 J- PARC µ KEK

3

3 3

3 3

3 3

3 3

3 3

clfv

clfv

clfv

clfv

clfv

clfv

clfv

clfv

clfv

clfv SM µ - e - ν µ ν e L µ 1 0 1 0 ΔL µ =0 L e 0 1 0 1 ΔL e =0 µ - A e - A L µ 1 0 0 0 ΔL µ =-1 L e 0 0 1 0 ΔL e =+1 vs µ

clfv SM ν µ µ - e - ν µ ν e m ixin g L µ 1 0 ν1 0 ΔL µ =0 L e 0 1 0 e 1 ΔL e =0 µ e µ - A e - A W (m ν /m W ) 4 L µ 1 0 0 0 ΔL µ =-1 L e 0 0 1 0 ΔL e =+1 Very Small (10-52 ) vs µ

clfv GUT LFV

@ Planck mass scale SUSY-GUT Yukawa interaction SUSY Seesaw Model Neutrino Yukawa interaction CKM matrix LFV Neutrino oscillation L.J.Hall,V.Kostelecky,S.Raby,1986;A.Masiero, F.Borzumati, 1986

clfv LHC Masiero et al. JHEP03

LHC clvf LHC+cLFV LHC clfv LHC clfv LHC clfv TeV LHC LHC+cLFV LHC upgrade, ILC

clfv g-2 Hep-ph/0607263v2 S.Antusch et al This Experiment

clfv g-2 hep-ph/0703035v2 G.Isidori et al Hep-ph/0607263v2 S.Antusch et al δ 12 LL = 10 4 and δ 23 LL = 10 2 300 GeV M~ 600 GeV This Experiment 200 GeV M 2 1000 GeV 500 GeV µ 1000 GeV 10 tan β 50 A U = 1 TeV M q = 1.5 TeV. and the GUT relations The red areas correspond to points within the funnel region which satisfy the B- physics constraints listed

clfv g-2 ~10 hep-ph/0703035v2 G.Isidori et al Hep-ph/0607263v2 S.Antusch et al δ 12 LL = 10 4 and δ 23 LL = 10 2 300 GeV M~ 600 GeV Current Bound This Experiment This Experiment 200 GeV M 2 1000 GeV 500 GeV µ 1000 GeV 10 tan β 50 A U = 1 TeV M q = 1.5 TeV. and the GUT relations The red areas correspond to points within the funnel region which satisfy the B- physics constraints listed 0.002

Muon clfv MEGA SINDRUM II MEG Los Alamos µ eγ PSI µ-e conversion PSI µ eγ RUNNING! µ (28MeV/c) ( )µ ( 52MeV/c) µ 28MeV/c 4 x 10 7 s -1 ~10 7 s -1 3 x 10 7 s -1 1995 PRD 65, 112002 1.2 10-11 EPJ C47 337-346 (2006) (Au )7 x 10-13 NP B834 (2010) 1-12 2.8 x 10-11

µ eγ µ-e conversion

µ eγ µ-e conversion µ eγ µ-e conv

µ eγ µ-e conversion µ eγ µ-e conv µ eγ µ-e conv Loop vs Tree LHC

µ eγ µ-e conversion µ eγ µ-e conv µ eγ µ-e conv Loop vs Tree LHC

µ eγ µ-e conversion Z Z µ eγ µ-e conv µ eγ µ-e conv Loop vs Tree LHC

µ-e conversion µ eγ µ eγ µ eγ µ-e conversion

µ-e conversion µ eγ µ eγ µ eγ µ-e conversion ν µ ν e? γ

µ-e conversion µ eγ µ eγ µ eγ µ-e conversion µ-e conversion µ

µ 1s Neutrino-less muon nuclear capture (=µ-e conversion) µ - + (A, Z) e - + (A,Z) µ muon decay in orbit µ e ν ν nuclear muon capture µ + ( A, Z) ν µ + ( A, Z 1) B(µ - N e - N) = Γ (µ - N e - N ) Γ ( µ - N ν N ' )

µ E µe ~ m µ -B µ m µ : µ B µ : 1s R.Kitano, M.Koike, Y.Okada P.R. D66, 096002(2002)

Mu2e @ FNAL FNAL Mu2e Experiment CD-0 Tevatron Accumulator Ring Debuncher Ring C. Bhat and M. Syphers Mu2e Acc WG meeting Mar 9,

COMET 10-16 J-PARC E21

COMET J-PARC p π µ 8GeV, ~7µA 56kW µ π µ J-PARC PAC J-PARC PAC -1 µ /

π π - +(A,Z) (A,Z-1)* γ + (A,Z-1) γ e + e -

π π - +(A,Z) (A,Z-1)* γ + (A,Z-1) γ e + e - π µν µ-e conv 0.88µs µ

π π - +(A,Z) (A,Z-1)* γ + (A,Z-1) γ e + e -

π π - +(A,Z) (A,Z-1)* γ + (A,Z-1) γ e + e -

µ 100nsec, ~1µsec - 8GeV 10 11 1.17µs (584ns x 2) 10-9 100ns 0.7 second beam spill 1.5 second accelerator cycle N bg = NP x R ext x R π-stop/p x A π x P RPC x P γ-e x A NP : total # of protons (~10 21 ) R ext : Extinction Ratio (10-9 ) R π-stop/p : π stop yield per proton (3.5 x 10-7 ) R RPC : Probability of γ from π (0.2) P γ-e : Probability of e from γ A : detector acceptance 1.4x10-5 BR=10-16, N bg ~ 0.1 Extinction < 10-9

COMET RCS: h=2 1 MR:h=8(9) 4(3) RF ON 8GeV 1.6 x 10 13 ppb, 7µA, 56kW Linac RCS

COMET RCS: h=2 1 MR:h=8(9) 4(3) RF ON 8GeV 1.6 x 10 13 ppb, 7µA, 56kW Linac RCS

COMET RCS: h=2 1 MR:h=8(9) 4(3) RF ON 8GeV 1.6 x 10 13 ppb, 7µA, 56kW Linac RCS

π π µ π Mars and PHITS

µ π µ µ Guide π s until decay to µ s Suppress high-p particles µ s : p µ < 75 MeV/c e s : pe < 100 MeV/c Beam Blocker See Classical Electrodynamics, J.D.Jackson Ch.12-Sec.4 Beam collimator

µ π µ µ Guide π s until decay to µ s Suppress high-p particles µ s : p µ < 75 MeV/c e s : pe < 100 MeV/c Beam Blocker See Classical Electrodynamics, J.D.Jackson Ch.12-Sec.4 Beam collimator

COMET ~100MeV µ µ

60-MeV/c DIO electrons µ : τ µ - = 0.88 µs 66 µ rejection ~10-6 : < 10kHz 20% 105-MeV/c µ-e electron

JPNC

2x10 7 sec Single event sensitivity N µ µ µ 2.0x10 18 fcap, µ 0.6 Ae 0.031. total protons muon yield per proton muon stopping efficiency 8.5x10 20 0.0035 0.66 # of stopped muons 2.0x10 18 Single event sensitivity 90% C.L. upper limit 2.6 x 10-17 6.0 x 10-17

2x10 7 sec Background Events Comments Radiative Pion Capture 0.05 Beam Electrons <0.1 MC stat limited Muon Decay in Flight <0.0002 Pion Decay in Flight <0.0001 Neutron Induced 0.024 For high E n Delayed-Pion Radiative Capture 0.002 Anti-proton Induced 0.007 For 8 GeV p Muon Decay in Orbit 0.15 Radiative Muon Capture <0.001 Muon Capture with n Emission <0.001 Muon Capture with Charged Part. Emission <0.001 Cosmic-Ray Muons 0.002 Electrons from Cosmic-Ray Muons 0.002 Total 0.34

2x10 7 sec Background Events Comments Radiative Pion Capture 0.05 Beam Electrons <0.1 MC stat limited Muon Decay in Flight <0.0002 Pion Decay in Flight <0.0001 Neutron Induced 0.024 For high E n Delayed-Pion Radiative Capture 0.002 Anti-proton Induced 0.007 For 8 GeV p Muon Decay in Orbit 0.15 Radiative Muon Capture <0.001 Muon Capture with n Emission <0.001 Muon Capture with Charged Part. Emission <0.001 Cosmic-Ray Muons 0.002 Electrons from Cosmic-Ray Muons 0.002 Total 0.34 < 10-9

75 35.7 17 2 3 π W 4.4 3 0.5 4.7 2.3 3 75

2009 2010 2011 2012 2013 2014 2015 2016 2017 CDR TDR π µ

2016 J-PARC µ KEK J-PARC clfv COMET KEK