1 Fourier Fourier Fourier Fourier Fourier Fourier Fourier Fourier Fourier analog digital Fourier Fourier Fourier Fourier Fourier Fourier Green Fourier

Similar documents
1 yousuke.itoh/lecture-notes.html [0, π) f(x) = x π 2. [0, π) f(x) = x 2π 3. [0, π) f(x) = x 2π 1.2. Euler α

body.dvi

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt

, 1 ( f n (x))dx d dx ( f n (x)) 1 f n (x)dx d dx f n(x) lim f n (x) = [, 1] x f n (x) = n x x 1 f n (x) = x f n (x) = x 1 x n n f n(x) = [, 1] f n (x

x A Aω ẋ ẋ 2 + ω 2 x 2 = ω 2 A 2. (ẋ, ωx) ζ ẋ + iωx ζ ζ dζ = ẍ + iωẋ = ẍ + iω(ζ iωx) dt dζ dt iωζ = ẍ + ω2 x (2.1) ζ ζ = Aωe iωt = Aω cos ωt + iaω sin

x (x, ) x y (, y) iy x y z = x + iy (x, y) (r, θ) r = x + y, θ = tan ( y ), π < θ π x r = z, θ = arg z z = x + iy = r cos θ + ir sin θ = r(cos θ + i s

, 3, 6 = 3, 3,,,, 3,, 9, 3, 9, 3, 3, 4, 43, 4, 3, 9, 6, 6,, 0 p, p, p 3,..., p n N = p p p 3 p n + N p n N p p p, p 3,..., p n p, p,..., p n N, 3,,,,

text.dvi

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y

n=1 1 n 2 = π = π f(z) f(z) 2 f(z) = u(z) + iv(z) *1 f (z) u(x, y), v(x, y) f(z) f (z) = f/ x u x = v y, u y = v x



5. [1 ] 1 [], u(x, t) t c u(x, t) x (5.3) ξ x + ct, η x ct (5.4),u(x, t) ξ, η u(ξ, η), ξ t,, ( u(ξ,η) ξ η u(x, t) t ) u(x, t) { ( u(ξ, η) c t ξ ξ { (

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

(5 B m e i 2π T mt m m B m e i 2π T mt m m B m e i 2π T mt B m (m < 0 C m m (6 (7 (5 g(t C 0 + m C m e i 2π T mt (7 C m e i 2π T mt + m m C m e i 2π T


(iii) 0 V, x V, x + 0 = x. 0. (iv) x V, y V, x + y = 0., y x, y = x. (v) 1x = x. (vii) (α + β)x = αx + βx. (viii) (αβ)x = α(βx)., V, C.,,., (1)


(1) (2) (3) (4) HB B ( ) (5) (6) (7) 40 (8) (9) (10)

xia2.dvi

数値計算:フーリエ変換

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)

y π π O π x 9 s94.5 y dy dx. y = x + 3 y = x logx + 9 s9.6 z z x, z y. z = xy + y 3 z = sinx y 9 s x dx π x cos xdx 9 s93.8 a, fx = e x ax,. a =

Microsoft Word - 信号処理3.doc

2.2 ( y = y(x ( (x 0, y 0 y (x 0 (y 0 = y(x 0 y = y(x ( y (x 0 = F (x 0, y(x 0 = F (x 0, y 0 (x 0, y 0 ( (x 0, y 0 F (x 0, y 0 xy (x, y (, F (x, y ( (

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10%

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google

ft. ft τfτdτ = e t.5.. fx = x [ π, π] n sinnx n n=. π a π a, x [ π, π] x = a n cosnx cosna + 4 n=. 3, x [ π, π] x 3 π x = n sinnx. n=.6 f, t gt n 3 n

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

simx simxdx, cosxdx, sixdx 6.3 px m m + pxfxdx = pxf x p xf xdx = pxf x p xf x + p xf xdx 7.4 a m.5 fx simxdx 8 fx fx simxdx = πb m 9 a fxdx = πa a =

v er.1/ c /(21)

() (, y) E(, y) () E(, y) (3) q ( ) () E(, y) = k q q (, y) () E(, y) = k r r (3).3 [.7 ] f y = f y () f(, y) = y () f(, y) = tan y y ( ) () f y = f y

m d2 x = kx αẋ α > 0 (3.5 dt2 ( de dt = d dt ( 1 2 mẋ kx2 = mẍẋ + kxẋ = (mẍ + kxẋ = αẋẋ = αẋ 2 < 0 (3.6 Joule Joule 1843 Joule ( A B (> A ( 3-2

Lebesgue Fubini L p Banach, Hilbert Höld


Z: Q: R: C: sin 6 5 ζ a, b

B [ 0.1 ] x > 0 x 6= 1 f(x) µ 1 1 xn 1 + sin sin x 1 x 1 f(x) := lim. n x n (1) lim inf f(x) (2) lim sup f(x) x 1 0 x 1 0 (

Z: Q: R: C:

(1) D = [0, 1] [1, 2], (2x y)dxdy = D = = (2) D = [1, 2] [2, 3], (x 2 y + y 2 )dxdy = D = = (3) D = [0, 1] [ 1, 2], 1 {

5.. z = f(x, y) y y = b f x x g(x) f(x, b) g x ( ) A = lim h 0 g(a + h) g(a) h g(x) a A = g (a) = f x (a, b)

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

1 1 sin cos P (primary) S (secondly) 2 P S A sin(ω2πt + α) A ω 1 ω α V T m T m 1 100Hz m 2 36km 500Hz. 36km 1

x i [, b], (i 0, 1, 2,, n),, [, b], [, b] [x 0, x 1 ] [x 1, x 2 ] [x n 1, x n ] ( 2 ). x 0 x 1 x 2 x 3 x n 1 x n b 2: [, b].,, (1) x 0, x 1, x 2,, x n

pdf

1 filename=mathformula tex 1 ax 2 + bx + c = 0, x = b ± b 2 4ac, (1.1) 2a x 1 + x 2 = b a, x 1x 2 = c a, (1.2) ax 2 + 2b x + c = 0, x = b ± b 2

SFGÇÃÉXÉyÉNÉgÉãå`.pdf

Radiation from moving charges#1 Liénard-Wiechert potential Yuji Chinone 1 Maxwell Maxwell MKS E (x, t) + B (x, t) t = 0 (1) B (x, t) = 0 (2) B (x, t)

mugensho.dvi

App. of Leb. Integral Theory (S. Hiraba) Lebesgue (X, F, µ) (measure space)., X, 2 X, F 2 X σ (σ-field), i.e., (1) F, (2) A F = A c F, (3)

Note.tex 2008/09/19( )

December 28, 2018


i

TOP URL 1

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α

meiji_resume_1.PDF

z f(z) f(z) x, y, u, v, r, θ r > 0 z = x + iy, f = u + iv C γ D f(z) f(z) D f(z) f(z) z, Rm z, z 1.1 z = x + iy = re iθ = r (cos θ + i sin θ) z = x iy

18 ( ) I II III A B C(100 ) 1, 2, 3, 5 I II A B (100 ) 1, 2, 3 I II A B (80 ) 6 8 I II III A B C(80 ) 1 n (1 + x) n (1) n C 1 + n C


1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0

Chap11.dvi

I-2 (100 ) (1) y(x) y dy dx y d2 y dx 2 (a) y + 2y 3y = 9e 2x (b) x 2 y 6y = 5x 4 (2) Bernoulli B n (n = 0, 1, 2,...) x e x 1 = n=0 B 0 B 1 B 2 (3) co

.3. (x, x = (, u = = 4 (, x x = 4 x, x 0 x = 0 x = 4 x.4. ( z + z = 8 z, z 0 (z, z = (0, 8, (,, (8, 0 3 (0, 8, (,, (8, 0 z = z 4 z (g f(x = g(

Z: Q: R: C: 3. Green Cauchy

Acrobat Distiller, Job 128

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT

u = u(t, x 1,..., x d ) : R R d C λ i = 1 := x 2 1 x 2 d d Euclid Laplace Schrödinger N := {1, 2, 3,... } Z := {..., 3, 2, 1,, 1, 2, 3

2 2 L 5 2. L L L L k.....

IA 2013 : :10722 : 2 : :2 :761 :1 (23-27) : : ( / ) (1 /, ) / e.g. (Taylar ) e x = 1 + x + x xn n! +... sin x = x x3 6 + x5 x2n+1 + (

I


W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2)


III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F

grad φ(p ) φ P grad φ(p ) p P p φ P p l t φ l t = 0 g (0) g (0) (31) grad φ(p ) p grad φ φ (P, φ(p )) xy (x, y) = (ξ(t), η(t)) ( )

1.2 y + P (x)y + Q(x)y = 0 (1) y 1 (x), y 2 (x) y 1 (x), y 2 (x) (1) y(x) c 1, c 2 y(x) = c 1 y 1 (x) + c 2 y 2 (x) 3 y 1 (x) y 1 (x) e R P (x)dx y 2

1 1. x 1 (1) x 2 + 2x + 5 dx d dx (x2 + 2x + 5) = 2(x + 1) x 1 x 2 + 2x + 5 = x + 1 x 2 + 2x x 2 + 2x + 5 y = x 2 + 2x + 5 dy = 2(x + 1)dx x + 1

n Y 1 (x),..., Y n (x) 1 W (Y 1 (x),..., Y n (x)) 0 W (Y 1 (x),..., Y n (x)) = Y 1 (x)... Y n (x) Y 1(x)... Y n(x) (x)... Y n (n 1) (x) Y (n 1)

- II

振動と波動

2 G(k) e ikx = (ik) n x n n! n=0 (k ) ( ) X n = ( i) n n k n G(k) k=0 F (k) ln G(k) = ln e ikx n κ n F (k) = F (k) (ik) n n= n! κ n κ n = ( i) n n k n

2011de.dvi

M3 x y f(x, y) (= x) (= y) x + y f(x, y) = x + y + *. f(x, y) π y f(x, y) x f(x + x, y) f(x, y) lim x x () f(x,y) x 3 -

(2 X Poisso P (λ ϕ X (t = E[e itx ] = k= itk λk e k! e λ = (e it λ k e λ = e eitλ e λ = e λ(eit 1. k! k= 6.7 X N(, 1 ϕ X (t = e 1 2 t2 : Cauchy ϕ X (t

( ) sin 1 x, cos 1 x, tan 1 x sin x, cos x, tan x, arcsin x, arccos x, arctan x. π 2 sin 1 x π 2, 0 cos 1 x π, π 2 < tan 1 x < π 2 1 (1) (

(Bessel) (Legendre).. (Hankel). (Laplace) V = (x, y, z) n (r, θ, ϕ) r n f n (θ, ϕ). f n (θ, ϕ) n f n (θ, ϕ) z = cos θ z θ ϕ n ν. P ν (z), Q ν (z) (Fou

p03.dvi

y = f(x) y = f( + h) f(), x = h dy dx f () f (derivtive) (differentition) (velocity) p(t) =(x(t),y(t),z(t)) ( dp dx dt = dt, dy dt, dz ) dt f () > f x

30

z f(z) f(z) x, y, u, v, r, θ r > 0 z = x + iy, f = u + iv C γ D f(z) f(z) D f(z) f(z) z, Rm z, z 1.1 z = x + iy = re iθ = r (cos θ + i sin θ) z = x iy

( ) 2.1. C. (1) x 4 dx = 1 5 x5 + C 1 (2) x dx = x 2 dx = x 1 + C = 1 2 x + C xdx (3) = x dx = 3 x C (4) (x + 1) 3 dx = (x 3 + 3x 2 + 3x +

newmain.dvi

構造と連続体の力学基礎

5.. z = f(x, y) y y = b f x x g(x) f(x, b) g x ( ) A = lim h g(a + h) g(a) h g(x) a A = g (a) = f x (a, b)

RIMS98R2.dvi

I 1

leb224w.dvi

(ii) (iii) z a = z a =2 z a =6 sin z z a dz. cosh z z a dz. e z dz. (, a b > 6.) (z a)(z b) 52.. (a) dz, ( a = /6.), (b) z =6 az (c) z a =2 53. f n (z

Transcription:

Fourier Fourier Fourier etc * 1 Fourier Fourier Fourier (DFT Fourier (FFT Heat Equation, Fourier Series, Fourier Transform, Discrete Fourier Transform, etc Yoshifumi TAKEDA 1 Abstract Suppose that u is a function describing the temperature at a location in a metal bar The heat equation is a parabolic partial differential equation which is used to determine the change in the function u over time We explain the solution technique called separation of variables, which is a traditional method In this article, we consider it especially in ideal conditions, in order to give an explanation of the principles of Fourier series and Fourier transform And then we shall elaborate on discrete Fourier transform (DFT and fast Fourier transform (FFT from a mathematical point of view *1 Department of Mathematics and Statistics, Wakayama Medical University 1

1 Fourier Fourier Fourier Fourier Fourier Fourier Fourier Fourier Fourier analog digital Fourier Fourier Fourier Fourier Fourier Fourier Green Fourier Fourier

Fourier Fourier 014 1 u(x,t x t u u x t 3

1 u t u x (1 * 3 (1 *3 u(x,t g(x h(t u(x,t g(x h(t u t g(x d dt h(t, u x d g(x h(t dx g(x d dt d h(t g(x h(t dx h (t h(t g (x g(x x t x t *4 h (t h(t g (x g(x ξ ( h (t ξ h(t, g (x ξ g(x h(t e ξ t g(x e ξ ix, e ξ ix * *3 Fourier Jean Baptiste Joseph Fourier (1768-1830 *4 ξ 4

(1 e ξ t e ξ ix, e ξt e ξ ix Ae ξ t e ξ ix + Be ξ t e ξ ix (A + Be ξ t cos( ξ x + (A Bie ξ t sin( ξ x ξ A, B e ξ t cos( ξ x, e ξ t sin( ξ x (3 4 Fourier t 0 5

(1 (3 t 0 u(x,t Ae t cosx *5 t 0 *6 Fourier π π π π *5 A t 0 *6 ( ξ 6

π 0 π n1 n 1 e (n 1t sin((n 1x u(x,t (t 0 u(x,0 n1 sin((n 1x n 1 sinx + 3 sin(3x + 5 sin(5x + 7 sin(7x + n 10 n 100 7

Fourier * 7 *8 Fourier (t 0 f (x f (x u(x,t x cos(nx, sin(nx n e n t u(x,t ( e n t A n cos(nx + B n sin(nx n1 (4 Fourier * 9 A n, B n f (x u(x,0 n1 ( A n cos(nx + B n sin(nx (5 (4 f (x (5 A n, B n *7 *8 *9 0 8

π π π π π π π π cos(mx sin(nxdx 0 cos(mx cos(nxdx 0 (m n sin(mx sin(nxdx 0 (m n cos (nxdx π π sin (nxdx π π f (x cos(mxdx π π π ( n1 n1 ( A n π ( A n cos(nx + B n sin(nx cos(mxdx π cos(nx cos(mxdx + B n π π A n cos(mx cos(mx dx A n π π π sin(nx cos(mx dx (6 sin(mx A n 1 π π π f (x cos(nxdx, B n 1 π π π f (x sin(nxdx A n, B n f (x (5 (4 (5 Fourier A n, B n Fourier 5 Fourier e nt cos(nx, e nt sin(nx 9

* 10 e ξ t cos( ξ x, e ξ t sin( ξ x (3 ξ ξ ω e ωt cos(ω x, e ωt sin(ω x e ωt e iω x, e ωt e iω x ω ω e ωt e iω x (7 * 11 t 0 ω C(ω C(ωe iω x C(ωe iωx dω f (x f (x C(ωe iωx dω Fourier C(ω Fourier *10 *11 0 10

Fourier C(ω f (xe iηx dx ( * 1 C(ω 1 f (x C(ωe iωx dω e iηx dx C(η f (xe iωx dx (8 C(ωe iωx dω (9 f (x C(ω (8 Fourier C(ω f (x (9 Fourier Fourier 1 Gauß f (x e x σ Fourier * 13 C(ω 1 f (xe iωx dx 1 e x σ e iωx dx σ e σ ω Fourier C(ω Gauß f (x σ C(ω ω Fourier *1 (6 1 *13 13 11

Fourier f (x 1 T ( T < x < T 0 (x T, T x 1 T T T C(ω 1 1 4πT T T f (xe iωx dx 1 T cos(ωxdx 1 4πT 1 T e iωx dx 1 4πT [ ] sin(ωx T ω T T T T sin(t ω T ω e iωx dx f (x T sin ω ω 0 6 ω A(ω, B(ω A(ω B(ω A(ω B(ω A(η B(ω ηdη (10 1

Fourier A(ω B(ω e iωx dω ( A(η B(ω ηdη e iωx dω ( A(η B(ω ηe iωx dω dη ( A(η B(ωe i(ω+ηx dω dη (ω ω η ( ( A(ηe iη x dη B(ωe iω x dω C Fourier F (C F (A B F (A F (B Fourier 7 * 14 ω f (x f (x u(x,t e ωt e iω x (7 C(ωe iωx dω C(ωe ωt e iωx dω f (x C(ω 1 f (ye iωy dy (8 *14 13

u(x,t 1 1 K(x,t ( 1 ( ( f (ye iωy dy e ωt e iωx dω f (ye iωy e ωt e iωx dω dy e ωt+iω(x y dω f (ydy K(x,t 1 e ωt+iωx dω f (x u(x,t u(x,t K(x,t * 15 K(x y,t f (ydy K(x,t 1 πt x e 4t * 16 8 Fourier (DFT *15 Green *16 14 14

* 17 N f (x N x 1, x,, x N f (x 1, f (x,, f (x N f (x N 1 f (x N N 1 N 1 N x N 1 *17 15

* 18 N N (a 1, a,, a N N 1 c 0 + c 1 x + + c x N (c 0, c 1,, c f (x f (x c 0 + c 1 x + + c x (11 1, x,, x cos(nx, sin(nx (n 1,, 3, f (x f (x A 1 cosx + B 1 sinx + A cos(x + B sin(x + (11 Fourier (c 0, c 1,, c Fourier *18 C[x] C[x]/(x N 1 16

Fourier Fourier * 19 Fourier ( Fourier ( Fourier ( Fourier ( 1 N 1, e i N 1, e i N i,, e N N e i 1 N ζ 1, ζ, ζ,, ζ * 0 f (x c 0 + c 1 x + + c x (c 0, c 1,, c ( f (1, f (ζ, f (ζ,, f (ζ x ζ k *19 Fourier : Discrete Fourier Transform (DFT *0 ζ N 1 x N 1 17

f (ζ k c 0 + c 1 ζ k + + c ζ k( c 0 (1, ζ k, ζ k( c 1 c Foureir f (1 f (ζ f (ζ 1 1 1 1 ζ ζ 1 ζ ζ (( c 0 c 1 c 1 1 1 1 ζ ζ 1 ζ ζ (( 1 1 1 1 ζ 1 ζ ( 1 ζ ( ζ (( N N * 1 1 N 1 1 1 1 ζ 1 ζ ( 1 ζ ( ζ (( Foureir 9 x N 1 f (x c 0 + c 1 x + + c x, g(x d 0 + d 1 x + + d x x N 1 1 1 x, x 1, x x n 1, x 3 x N,, x x 1 + ζ k k + ζ (k k + + ζ ((k k 1 + 1 + + 1 N (k l *1 (k + 1,l + 1 1 + ζ k l + ζ (k l + + ζ ((k l ζ N(k l 1 ζ k l 1k l 1 1 ζ k l 0 1 (k l 18

N c 0 d 1 + c 1 d 0 + c d + + c d 1 N 0 1 k c 0 d k + c 1 d k 1 + c d k + + c d k+1 c i d k i (1 i0 N 0 c i d i + i0 f (x c 0 + c 1 x + + c x, g(x d 0 + d 1 x + + d x c i d 1 i x + + i0 f (x g(x ( i0 k c i d i, i0 c i d 1 i,, c i d i x i0 c i d i i0 c i d k i (1 i0 x k Fourier C(η D(ω ηdη (10 ω e iωx Fourier * (10 dη (1 1 ω k * 3 i η * Fourier (9 Fourier (5 *3 R (, Z/N {0, 1,, N 1} 19

Fourier Fourier Fourier Fourier Fourier x N 1 10 Fourier (FFT c i d k i i0 N N 1 N 1 0 N 1 N N N Fourier (a 0 b 0, a 1 b 1,, a b N 0

Fourier Fourier Fourier Fourier Fourier 1 1 1 1 ζ ζ 1 ζ ζ (( N 0 0 0 N 0 N * 4 Fourier Fourier * 5 Fourier Fourier Fourier Fourier D ζ 1 1 1 1 ζ ζ D ζ 1 ζ ζ (( f (ζ 0 f (ζ 1 f (ζ D ζ c 0 c 1 c N m (ζ N 1 1 + 1 + + 1 N (if k + l 0 or N *4 (k +1,l +1 1+ζ k+l +ζ (k+l + +ζ ((k+l ζ N(k+l 1 ζ k+l 1k+l 1 1 ζ k+l 1 0 (otherwise *5 N 1

(ζ 0, (ζ 1,, (ζ N 1, (ζ N, (ζ N +1,, (ζ N + N 1 f (x c 0 + c x + + c N x ( N 1 f (x f (x c 0 + c x + + c N x N 1 f (x f (x f (1, f (ζ, f (ζ,, f (ζ f (ζ 0, f (ζ 1,, f (ζ ( N 1, f (ζ N, f (ζ ( N +1,, f (ζ ( N + N 1 η ζ η N Fourier f (1 1 1 1 f (η 1 η η N 1 f (η N 1 1 η N 1 η ( N 1( N 1 1 η c 0 c c N D η D ζ N N (N 1N N N N N N 4 N 1 1 4

Fourier Fourier 1 4 + 1 4 1 * 6 f (x c 0 + c 1 x + + c x c 0 + c x + + c N x N + x(c 1 + c 3 x + + c x N g(x c 0 + c x + + c N x N h(x c 1 + c 3 x + + c x N f (x g(x + x h(x f (ζ 0 g(η 0 + ζ 0 h(η 0 f (ζ 1 g(η 1 + ζ 1 h(η 1 f (ζ N 1 g(η N 1 + ζ N 1 h(η N 1 f (ζ N g(η N + ζ N h(η N f (ζ N +1 g(η 1 + ζ N +1 h(η 1 f (ζ g(η N 1 + ζ h(η N 1 g, h * 7 f, g, h (c 0,,c, (a 0,,a N 1, (b 0,,b N 1 Fourier *6 *7 η N 1 3

(ĉ 0,,ĉ, (â 0,,â N 1, ( b 0,, b N 1 ĉ 0 â 0 + ζ 0 b 0 ĉ 1 â 1 + ζ 1 b 1 ĉ N 1 â N 1 + ζ N 1 b N 1 ĉ N â 0 + ζ N b 0 ĉ N +1 â 1 + ζ N +1 b 1 ĉ â N 1 + ζ b N 1 ζ N 1 ĉ 0 â 0 + ζ 0 b 0 ĉ 1 â 1 + ζ 1 b 1 ĉ N 1 â N 1 + ζ N 1 b N 1 ĉ N â 0 ζ 0 b 0 ĉ N +1 â 1 ζ 1 b 1 ĉ â N 1 ζ N 1 b N 1 ( ĉ 0 â 0 ζ 0 b0 + ĉ N 1 â N 1 ζ N 1 b N 1 ĉ N ζ 0 b0 ĉ â 0 â N 1 ζ N 1 b N 1 (13 Fourier 4

(â 0,,â N 1, ( b 0,, b N 1 N N N Fourier (ĉ 0,,ĉ Fourier N N N N Fourier ( ( N N + N N + N g, h 4 * 8 1 1 Fourier Fourier 0 Fourier Fourier * 9 * 30 N ( 3 log N 1 + 1 N 1 Fourier Fourier f g â, b Fourier ĉ Fourier (N ( 3 log N 1 + 1 + N + N ( 3 log N 1 + 1 9 N log N N + 3 *8 N m *9 Fourier : Fast Fourier Transform (FFT *30 16 5

* 31 N 1 N(N + N 1 N N N 11 c c 0 + c 1 + + c, d d 0 + d 1 + + d f (x c 0 + c 1 x + + c x, g(x d 0 + d 1 x + + d x f (x, g(x Fourier f (x g(x x c d f ( g( *31 Fourier Fourier 6

1 11 Gauß Gauß e x dx π, x t, x t dt, dx, e t dx Gauß R, a R Cauchy R R a R 0 e x dx + e (R+iy idy + e (x+ia dx + e ( R+iy idy 0 0 R a a a e (R+iy idy e (R+iy a dy e R +y iry a dy e R +y dy 0 0 e R +a a dy e R +a a e R +a a 0 as R 0 a lim e (R+iy idy 0 R 0 0 0 0 lim e ( R+iy idy 0 R a e x dx e (x+ia dx (14 * 3 *3 Cauchy x + ia u, dx du e (x+ia dx e u du 7

1 Fourier f (x C(ω f (x Fourier f (xe iηx dx Gauß ( C(ωe iωx dω h(x e x C(ωe iωx dω e iηx dx h(εx e ε x 1 as ε 0 f (x h(εx f (xe iηx dx ( h(εx ( ( εx z, x z, εdx dz ε ( ω η εζ, dω εdζ ( C(ωe iωx dω e iηx dx h(εxc(ωe iωx e iηx dω dx h(εxc(ωe i(ω ηx dω dx h(zc(ωe i(ω η z dz ε dω ε h(zc(η + εζ e iζ z dζ dz ε 0, ( ( ( ( ( h(zc(ηe iζ z dζ dz h(ze iζ z dζ dz C(η e z e iζ z dζ dz C(η e z iζ z dζ dz C(η e (z iζ (iζ dζ dz C(η 8

( ( ( e (z iζ +ζ dζ dz C(η e (z iζ e ζ dζ dz C(η e (z iζ dz e ζ dζ C(η (14 ( ( e z dz e z dz e ζ dζ C(η ( e ζ dζ C(η Gauß C(η C(η C(ω 13 Fourier Gauß f (x e x σ Fourier C(ω 1 f (xe iωx dx 1 e x σ e iωx dx 1 1 1 1 1 1 9 e x σ iωx dx e x +σ iωx σ dx e (x+σ iω σ 4 i ω σ e (x+σ iω +σ 4 ω σ dx dx e (x+σ iω σ e σ4 ω σ dx e (x+σ iω σ dx e σ ω

(14 x σt, dy σdt Gauß Gauß 1 e x σ dx e σ ω 1 σ σ e t σ dt e σ ω e t dt e σ ω e σ ω σ e σ ω 14 7 K(x,t 1 1 1 x e 4t e ω t+iωx dω e (ω t ix t x 4t dω e (ω t ix t dω ω t η, t dω dη 1 t x e 4t (η ix e t dη (14 1 t x e 4t e η dη Gauß 1 t 1 πt e x 4t π x e 4t 30

15 Parseval-Plancherel Fourier c (c 0, c 1,, c, d (d 0, d 1,, d ĉ ( f (1, f (ζ, f (ζ,, f (ζ, d (g(1, g(ζ, g(ζ,, g(ζ ĉ l f (ζ l c k ζ kl k0 Fourier (1/ND ζ d Fourier d 0 d 1 d 1 N 1 1 1 1 ζ 1 ζ ( 1 ζ ( ζ (( d 0 d 1 d d k 1 N ζ kl g(ζ l l0 ( 1 (c,d c k d k c k k0 k0 N ζ kl g(ζ l l0 1 N k0 1 N (ĉ, d c k ζ kl g(ζ l 1 l0 N l0 ( 1 c k k0 N ( c k ζ kl g(ζ l 1 k0 N ζ kl g(ζ l l0 l0 f (ζ l g(ζ l Fourier Parseval-Plancherel (c,d 1 N (ĉ, d, c 1 N ĉ 31

16 Fourier N m 1 N ζ e i 1 N Fourier (13 D ζ, D η D ζ c 0 c N 1 c N c a 0 ζ 0 b 0 D η + D η a N 1 ζ N 1 b N 1 D η a 0 a N 1 ζ 0 ζ N 1 D η b 0 b N 1 N m S(m ζ 0 1 +, S(m S(m 1 + m 1 1 + m 1 + m 1 S(m 1 + 3 m 1 1 S(m 1 (S(m 1 1 + 3 m 1 S(m 1 m S(m 1 1 m 1 + 3 S(0 0 S(m 1 m S(0 1 0 + 3 m 3 m 1 S(m m ( 3 m 1 + 1 [1] Émile Picard, Leçons sur quelques équations fonctionnelles avec des applications a divers problèmes d analyse et de physique mathématique, rédigées par Eugène Blanc, Gauthier- Villars (198 (1977 3

[] ( (1953 (1958 [3] 4 (1963 [4] (1977 [5] Rudolf Lidl and Günter Pilz, Applied Abstract Algebra, Undergraduate Texts in Mathematics, Springer, nd edition (1997 [6] (003 33