ẋ = ax + y ẏ = x x by 2 Griffith a b Saddle Node Saddle-Node (phase plane) Griffith mrna(y) Protein(x) (nullcline) 0 (nullcline) (

Similar documents
Underlying mechanisms of biochemical oscillations

R¤Çʬ¤«¤ëÎÏ³Ø·Ï - ¡Áʬ´ô¤ÎÍͻҤò²Ä»ë²½¤·¤Æ¤ß¤ë¡Á

ver.1 / c /(13)

ohp_06nov_tohoku.dvi

sakigake1.dvi

数学演習:微分方程式

http : // ta/mathbio.html

( ) ( )

2017

重力方向に基づくコントローラの向き決定方法

1 c Koichi Suga, ISBN

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202E646F63>


(a) (b) (c) 4. (a) (b) (c) p.2/27


C 2. /

9 2 1 f(x, y) = xy sin x cos y x y cos y y x sin x d (x, y) = y cos y (x sin x) = y cos y(sin x + x cos x) x dx d (x, y) = x sin x (y cos y) = x sin x

meiji_resume_1.PDF


() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)

1 12 ( )150 ( ( ) ) x M x 0 1 M 2 5x 2 + 4x + 3 x 2 1 M x M 2 1 M x (x + 1) 2 (1) x 2 + x + 1 M (2) 1 3 M (3) x 4 +

Untitled

Shunsuke Kobayashi 1 [6] [11] [7] u t = D 2 u 1 x 2 + f(u, v) + s L u(t, x)dx, L x (0.L), t > 0, Neumann 0 v t = D 2 v 2 + g(u, v), x (0, L), t > 0. x

016-22_ŒÚ”Ł

³ÎΨÏÀ

x x x 2, A 4 2 Ax.4 A A A A λ λ 4 λ 2 A λe λ λ2 5λ + 6 0,...λ 2, λ 2 3 E 0 E 0 p p Ap λp λ 2 p 4 2 p p 2 p { 4p 2 2p p + 2 p, p 2 λ {

ii 3.,. 4. F. (), ,,. 8.,. 1. (75%) (25%) =7 20, =7 21 (. ). 1.,, (). 3.,. 1. ().,.,.,.,.,. () (12 )., (), 0. 2., 1., 0,.

p.2/76

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0

agora04.dvi


I A A441 : April 15, 2013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida )

Part y mx + n mt + n m 1 mt n + n t m 2 t + mn 0 t m 0 n 18 y n n a 7 3 ; x α α 1 7α +t t 3 4α + 3t t x α x α y mx + n

II (No.2) 2 4,.. (1) (cm) (2) (cm) , (

K E N Z OU

A(6, 13) B(1, 1) 65 y C 2 A(2, 1) B( 3, 2) C 66 x + 2y 1 = 0 2 A(1, 1) B(3, 0) P 67 3 A(3, 3) B(1, 2) C(4, 0) (1) ABC G (2) 3 A B C P 6

lecture_rev3

I

d dt A B C = A B C d dt x = Ax, A 0 B 0 C 0 = mm 0 mm 0 mm AP = PΛ P AP = Λ P A = ΛP P d dt x = P Ax d dt (P x) = Λ(P x) d dt P x =


6.1 (P (P (P (P (P (P (, P (, P.101

b.dvi

II Brown Brown

2 7 V 7 {fx fx 3 } 8 P 3 {fx fx 3 } 9 V 9 {fx fx f x 2fx } V {fx fx f x 2fx + } V {{a n } {a n } a n+2 a n+ + a n n } 2 V 2 {{a n } {a n } a n+2 a n+

c 2006 Yoneda norimasa All rights reserved

n ( (

) a + b = i + 6 b c = 6i j ) a = 0 b = c = 0 ) â = i + j 0 ˆb = 4) a b = b c = j + ) cos α = cos β = 6) a ˆb = b ĉ = 0 7) a b = 6i j b c = i + 6j + 8)

2 1 κ c(t) = (x(t), y(t)) ( ) det(c (t), c x (t)) = det (t) x (t) y (t) y = x (t)y (t) x (t)y (t), (t) c (t) = (x (t)) 2 + (y (t)) 2. c (t) =

1 [ 1] (1) MKS? (2) MKS? [ 2] (1) (42.195k) k 2 (2) (3) k/hr [ 3] t = 0 10 ( 1 velocity [/s] 8 4 O

数学の基礎訓練I

6.1 (P (P (P (P (P (P (, P (, P.

(astable multivibrator) (monostable multivibrator) (bistable multivibrator) (excitable vector field) (a) (b) 2

ad bc A A A = ad bc ( d ) b c a n A n A n A A det A A ( ) a b A = c d det A = ad bc σ {,,,, n} {,,, } {,,, } {,,, } ( ) σ = σ() = σ() = n sign σ sign(

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

x = a 1 f (a r, a + r) f(a) r a f f(a) 2 2. (a, b) 2 f (a, b) r f(a, b) r (a, b) f f(a, b)

Taro10-名張1審無罪判決.PDF

2 (2016 3Q N) c = o (11) Ax = b A x = c A n I n n n 2n (A I n ) (I n X) A A X A n A A A (1) (2) c 0 c (3) c A A i j n 1 ( 1) i+j A (i, j) A (i, j) ã i

.5 z = a + b + c n.6 = a sin t y = b cos t dy d a e e b e + e c e e e + e 3 s36 3 a + y = a, b > b 3 s363.7 y = + 3 y = + 3 s364.8 cos a 3 s365.9 y =,

1 1.1 [ 1] velocity [/s] 8 4 (1) MKS? (2) MKS? 1.2 [ 2] (1) (42.195k) k 2 (2) (3) k/hr [ 3] t = 0

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y

ω 0 m(ẍ + γẋ + ω0x) 2 = ee (2.118) e iωt x = e 1 m ω0 2 E(ω). (2.119) ω2 iωγ Z N P(ω) = χ(ω)e = exzn (2.120) ϵ = ϵ 0 (1 + χ) ϵ(ω) ϵ 0 = 1 +

(time series) ( 225 ) / / p.2/66

資料5:聖ウルスラ学院英智小・中学校 提出資料(1)

1 nakayama/print/ Def (Definition ) Thm (Theorem ) Prop (Proposition ) Lem (Lemma ) Cor (Corollary ) 1. (1) A, B (2) ABC

17 ( ) II III A B C(100 ) 1, 2, 6, 7 II A B (100 ) 2, 5, 6 II A B (80 ) 8 10 I II III A B C(80 ) 1 a 1 = 1 2 a n+1 = a n + 2n + 1 (n = 1,

1: 3.3 1/8000 1/ m m/s v = 2kT/m = 2RT/M k R 8.31 J/(K mole) M 18 g 1 5 a v t πa 2 vt kg (

1W II K =25 A (1) office(a439) (2) A4 etc. 12:00-13:30 Cafe David 1 2 TA appointment Cafe D

x A Aω ẋ ẋ 2 + ω 2 x 2 = ω 2 A 2. (ẋ, ωx) ζ ẋ + iωx ζ ζ dζ = ẍ + iωẋ = ẍ + iω(ζ iωx) dt dζ dt iωζ = ẍ + ω2 x (2.1) ζ ζ = Aωe iωt = Aω cos ωt + iaω sin

text-kitahata-final.dvi

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

(2018 2Q C) [ ] R 2 2 P = (a, b), Q = (c, d) Q P QP = ( ) a c b d (a c, b d) P = (a, b) O P ( ) a p = b P = (a, b) p = ( ) a b R 2 {( ) } R 2 x = x, y

Microsoft Word - 11問題表紙(選択).docx

.3. (x, x = (, u = = 4 (, x x = 4 x, x 0 x = 0 x = 4 x.4. ( z + z = 8 z, z 0 (z, z = (0, 8, (,, (8, 0 3 (0, 8, (,, (8, 0 z = z 4 z (g f(x = g(

24 I ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x

(2016 2Q H) [ ] R 2 2 P = (a, b), Q = (c, d) Q P QP = ( ) a c b d (a c, b d) P = (a, b) O P ( ) a p = b P = (a, b) p = ( ) a b R 2 {( ) } R 2 x = x, y

18 ( ) ( ) [ ] [ ) II III A B (120 ) 1, 2, 3, 5, 6 II III A B (120 ) ( ) 1, 2, 3, 7, 8 II III A B (120 ) ( [ ]) 1, 2, 3, 5, 7 II III A B (

LINEAR ALGEBRA I Hiroshi SUZUKI Department of Mathematics International Christian University

,,,17,,, ( ),, E Q [S T F t ] < S t, t [, T ],,,,,,,,

Phase space Attractor mutual interaction selforganization jump hysteresis stabilize or destabilize Synchronization Self-excited Oscillation Nonlinear

Chap10.dvi

t = h x z z = h z = t (x, z) (v x (x, z, t), v z (x, z, t)) ρ v x x + v z z = 0 (1) 2-2. (v x, v z ) φ(x, z, t) v x = φ x, v z

4 4 4 a b c d a b A c d A a da ad bce O E O n A n O ad bc a d n A n O 5 {a n } S n a k n a n + k S n a a n+ S n n S n n log x x {xy } x, y x + y 7 fx

E1 (4/12)., ( )., 3,4 ( ). ( ) Allen Hatcher, Vector bundle and K-theory ( HP ) 1

(Basics of Proability Theory). (Probability Spacees ad Radom Variables,, (Ω, F, P ),, X,. (Ω, F, P ) (probability space) Ω ( ω Ω ) F ( 2 Ω ) Ω σ (σ-fi

lecture

最新耐震構造解析 ( 第 3 版 ) サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 3 版 1 刷発行時のものです.

m(ẍ + γẋ + ω 0 x) = ee (2.118) e iωt P(ω) = χ(ω)e = ex = e2 E(ω) m ω0 2 ω2 iωγ (2.119) Z N ϵ(ω) ϵ 0 = 1 + Ne2 m j f j ω 2 j ω2 iωγ j (2.120)

18 ( ) I II III A B C(100 ) 1, 2, 3, 5 I II A B (100 ) 1, 2, 3 I II A B (80 ) 6 8 I II III A B C(80 ) 1 n (1 + x) n (1) n C 1 + n C

A A = a 41 a 42 a 43 a 44 A (7) 1 (3) A = M 12 = = a 41 (8) a 41 a 43 a 44 (3) n n A, B a i AB = A B ii aa

68 A mm 1/10 A. (a) (b) A.: (a) A.3 A.4 1 1

参加報告書

P70

Microsoft Word - Œ{Ł¶.doc

(1) (2) (3) (4) HB B ( ) (5) (6) (7) 40 (8) (9) (10)

( ) ( ) 1729 (, 2016:17) = = (1) 1 1

..3. Ω, Ω F, P Ω, F, P ). ) F a) A, A,..., A i,... F A i F. b) A F A c F c) Ω F. ) A F A P A),. a) 0 P A) b) P Ω) c) [ ] A, A,..., A i,... F i j A i A


untitled

II 2 II

Transcription:

2 (bifurcation) Saddle-Node Hopf Pitchfork 2.1 Saddle-Node( ) 2.1.1 Griffith : (bistability) ON/OFF 2 (bistability) (Stable node Stable spiral) 2 Griffith X mrna mrna X Griffith ( x y mrna ) 2.1: Griffith 2

ẋ = ax + y ẏ = x 2 1 + x by 2 Griffith a b Saddle Node Saddle-Node 2.1.2 (phase plane) Griffith mrna(y) Protein(x) (nullcline) 0 (nullcline) 2.2 2 2 (fixed point) 1: Griffith Griffith 2.1.3 (vector field) { ẋ = f(x, y) ẏ = g(x, y) 2 (x, y) (ẋ, ẏ) { ẋ = x + 2y + x 2 y ẏ = 8 2y x 2 y (x, y) = (1, 2) (x, y) = (1, 2) (ẋ, ẏ) = (5, 2) x 5 y 2 (1,2) 3

x (ẋ = 0) ( 2.2) 2.2: 2: Griffith 1 2.1.4 (linearization) 1 2 (Jacobian matrix) 1 d dt x 1 = F 1 (x 1,, x n ). d dt x n = F n (x 1,, x n ) x k(fp) 4

d dt x 1(fp) + x 1. x n(fp) + x n = F 1(fp) (x 1,, x n ). F n(fp) (x 1,, x n ) + 1 2 ( x 1,, x n ) + 2 F 1 x 2 1 F 1 F x 1 1 x n x 1... F n F x 1 n x n x n 2 F 1 x 1 x n x 1..... x n. 2 F n x n x 1 2 F n x 2 n (3 ) F k (x 1(fp),, x n(fp) ) = 0 0 2 ( x k(fp) ) 2 2 2 0 d dt x 1. x n = F 1 x 1 F 1 x n.. F n x 1 F n x n x 1. x n d x = J x dt 1 J 3: Griffith Griffith 2.1.5 (matrix exponential) d x = J x dt x = exp(jt) x 0 exp(jt) = I + Jt 1! + J2 t 2 + J3 t 3 + 2! 3! x 0 ( ) 5

(eigenvalue) J λ v ( exp(jt)v = I + Jt 1! + J2 t 2 2! ( = 1 + λt 1! + λ2 t 2 2! = exp(λt)v + J3 t 3 3! + λ3 t 3 3! ) + v ) + v x 0 x 0 = c 1 v 1 + c n v n 2.3 2.3: ( x ss ) x x(t) = exp(jt) x 0 = exp(jt)(c 1 v 1 + c n v n ) = c 1 exp(λ 1 t)v 1 + c n exp(λ n t)v n x ( ) ( 2.4) 6

2.4: ( ) ( ) ( 2.5 2.6) : Unstable node Stable node Saddle Stable spiral ( ) Unstable spiral ( ) Center 2 2 J = ( a c ) b d λ 2 (a + d)λ + (ad bc) = 0 2 λ 1 λ 2 2 τ = λ 1 + λ 2 = a + d = tr(j) = λ 1 λ 2 = ad bc = det(j) 7

2.5: ( ) 1 ( ) 2 ( ) τ τ 2 4 4: Griffith Griffith 2.1.6 (bifurcation) Griffith Saddle- Node 5: Griffith ab < 1 2 ab = 1 2 ab > 1 3 2 3 2.2 Hopf( ) 2.2.1 Sel kov : Sel kov 1968 2.7 8

2.6: ( ) ( ) phosphofructokinase(pfk) Sel kov Sel kov 2.7: Sel kov ADP PFK 2.7 { ẋ = x + ay + x 2 y ẏ = b ay x 2 y x ADP y F6P (limit cycle) Center ( 2.6) ( 2.7 ) λ = a + bi 2π (3) b 9

Hopf (Hopf bifurcation) ( ) Stable spiral Unstable spiral Hopf Unstable node Hopf Hopf 2.8: ( ) Stable spiral Unstable spiral ( ) Unstable spiral ( ) 2.2.2 : Sel kov 1. Sel kov 2. 1 Spiral 3. Sel kov 4. 2 ( : ) 5. Sel kov Stable Spiral Unstable Spiral a b ( : τ=0?) 10

6. 5 a b Stable Unstable 2.3 Pitchfork( ) 2.3.1 Toggle switch Collins lab. Gardner ( 2.9) (toggle switch) Griffith Saddle-Node Toggle switch 1 3 Pitchfork 2.9: Gardner Toggle switch 2 2.9 a ẋ = 1 + y x 2 a ẏ = 1 + x y 2 x y Pitchfork ( 2.10) 2.3.2 : Toggle switch 1. Toggle switch a 1 3 2. 1 1 Stable Node 3 Stable Node 2 Unstable Node 1 11

2.10: Pitchfork y 1 3 (pitchfork) 3. y x x x 5 ax 4 + 2x 3 2ax 2 + (1 + a 2 )x a = 0 4. 3 x x 5 ax 4 + 2x 3 2ax 2 + (1 + a 2 )x a = 0 (x 3 + x a)(x 2 ax + 1) = 0 5. x 3 + ax + b = 0 3 D = 4a 3 27b 2 D > 0 3 D = 0 D < 0 1 2 x 3 + x a x 3 + x a = 0 1 2 6. 2 x 2 ax + 1 a = 2 1 3 7. a > 2 2 x 2 ax + 1 8. 2 ( : ) 2.4 Further reading Strogatz, S.H, Nonlinear dynamics and chaos, Perseus Books Publishing, 1994. (ISBN 0-7382-0453-6) ( Borisuk and Tyson (1998) ) 12

Fall, C.P., Marland, E.S., Wagner, J.M. and Tyson, J.J. Computational cell biology, Springer, 2002. (ISBN 0-387-95369-8) (Bendixson ) Borisuk, M.T. and Tyson, J.J., Bifurcation analysis of a model of mitotic control in frog eggs, J. Theor. Biol. 195:69-85, 1998. ( ) Griffith, J.S. Mathematics of cellular control processes. II. Positive feedback to one gene. J. Theor. Biol. 20, 209-16, 1668. (Griffith ) Sel kov, E.E., Self-oscillations in glycolysis. 1. A simple kinetic model. Eur J Biochem. 4(1):79-86, 1968. (Sel kov ) Gardner, T.S., Cantor, C.R. and Collins, J.J., Construction of a genetic toggle switch in Escherichia coli., Nature 403(6767):339-42, 2000. (Toggle switch ) 13