θ (rgument) θ = rg 2 ( ) n n n n = Re iθ = re iϕ n n = r n e inϕ Re iθ = r n e inϕ R = r n r = R /n, e inϕ = e iθ ϕ = θ/n e iθ = e iθ+2i = e iθ+4i = (

Similar documents
x (x, ) x y (, y) iy x y z = x + iy (x, y) (r, θ) r = x + y, θ = tan ( y ), π < θ π x r = z, θ = arg z z = x + iy = r cos θ + ir sin θ = r(cos θ + i s

z f(z) f(z) x, y, u, v, r, θ r > 0 z = x + iy, f = u + iv C γ D f(z) f(z) D f(z) f(z) z, Rm z, z 1.1 z = x + iy = re iθ = r (cos θ + i sin θ) z = x iy

z f(z) f(z) x, y, u, v, r, θ r > 0 z = x + iy, f = u + iv C γ D f(z) f(z) D f(z) f(z) z, Rm z, z 1.1 z = x + iy = re iθ = r (cos θ + i sin θ) z = x iy

n=1 1 n 2 = π = π f(z) f(z) 2 f(z) = u(z) + iv(z) *1 f (z) u(x, y), v(x, y) f(z) f (z) = f/ x u x = v y, u y = v x

(ii) (iii) z a = z a =2 z a =6 sin z z a dz. cosh z z a dz. e z dz. (, a b > 6.) (z a)(z b) 52.. (a) dz, ( a = /6.), (b) z =6 az (c) z a =2 53. f n (z

(iii) 0 V, x V, x + 0 = x. 0. (iv) x V, y V, x + y = 0., y x, y = x. (v) 1x = x. (vii) (α + β)x = αx + βx. (viii) (αβ)x = α(βx)., V, C.,,., (1)

b n c n d n d n = f() d (n =, ±, ±, ) () πi ( a) n+ () () = a R a f() = a k Γ ( < k < R) Γ f() Γ ζ R ζ k a Γ f() = f(ζ) πi ζ dζ f(ζ) dζ (3) πi Γ ζ (3)

body.dvi

Z: Q: R: C: sin 6 5 ζ a, b

9 5 ( α+ ) = (α + ) α (log ) = α d = α C d = log + C C 5. () d = 4 d = C = C = 3 + C 3 () d = d = C = C = 3 + C 3 =

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)

1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ =

y = f(x) (x, y : ) w = f(z) (w, z : ) df(x) df(z), f(x)dx dx dz f(z)dz : e iωt = cos(ωt) + i sin(ωt) [ ] : y = f(t) f(ω) = 1 2π f(t)e iωt d

(1) D = [0, 1] [1, 2], (2x y)dxdy = D = = (2) D = [1, 2] [2, 3], (x 2 y + y 2 )dxdy = D = = (3) D = [0, 1] [ 1, 2], 1 {

grad φ(p ) φ P grad φ(p ) p P p φ P p l t φ l t = 0 g (0) g (0) (31) grad φ(p ) p grad φ φ (P, φ(p )) xy (x, y) = (ξ(t), η(t)) ( )

29

[ ] 0.1 lim x 0 e 3x 1 x IC ( 11) ( s114901) 0.2 (1) y = e 2x (x 2 + 1) (2) y = x/(x 2 + 1) 0.3 dx (1) 1 4x 2 (2) e x sin 2xdx (3) sin 2 xdx ( 11) ( s

() Remrk I = [0, ] [x i, x i ]. (x : ) f(x) = 0 (x : ) ξ i, (f) = f(ξ i )(x i x i ) = (x i x i ) = ξ i, (f) = f(ξ i )(x i x i ) = 0 (f) 0.

KENZOU

But nothing s unconditional, The Bravery R R >0 = (0, ) ( ) R >0 = (0, ) f, g R >0 f (0, R), R >

x i [, b], (i 0, 1, 2,, n),, [, b], [, b] [x 0, x 1 ] [x 1, x 2 ] [x n 1, x n ] ( 2 ). x 0 x 1 x 2 x 3 x n 1 x n b 2: [, b].,, (1) x 0, x 1, x 2,, x n

1 : f(z = re iθ ) = u(r, θ) + iv(r, θ). (re iθ ) 2 = r 2 e 2iθ = r 2 cos 2θ + ir 2 sin 2θ r f(z = x + iy) = u(x, y) + iv(x, y). (x + iy) 2 = x 2 y 2 +

c y /2 ddy = = 2π sin θ /2 dθd /2 [ ] 2π cos θ d = log 2 + a 2 d = log 2 + a 2 = log 2 + a a 2 d d + 2 = l

高等学校学習指導要領

高等学校学習指導要領

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

f(x) = f(x ) + α(x)(x x ) α(x) x = x. x = f (y), x = f (y ) y = f f (y) = f f (y ) + α(f (y))(f (y) f (y )) f (y) = f (y ) + α(f (y)) (y y ) ( (2) ) f

, 1 ( f n (x))dx d dx ( f n (x)) 1 f n (x)dx d dx f n(x) lim f n (x) = [, 1] x f n (x) = n x x 1 f n (x) = x f n (x) = x 1 x n n f n(x) = [, 1] f n (x

= M + M + M + M M + =.,. f = < ρ, > ρ ρ. ρ f. = ρ = = ± = log 4 = = = ± f = k k ρ. k

lim lim lim lim 0 0 d lim 5. d 0 d d d d d d 0 0 lim lim 0 d

(2 X Poisso P (λ ϕ X (t = E[e itx ] = k= itk λk e k! e λ = (e it λ k e λ = e eitλ e λ = e λ(eit 1. k! k= 6.7 X N(, 1 ϕ X (t = e 1 2 t2 : Cauchy ϕ X (t

v_-3_+2_1.eps


W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2)

.5 z = a + b + c n.6 = a sin t y = b cos t dy d a e e b e + e c e e e + e 3 s36 3 a + y = a, b > b 3 s363.7 y = + 3 y = + 3 s364.8 cos a 3 s365.9 y =,

50 2 I SI MKSA r q r q F F = 1 qq 4πε 0 r r 2 r r r r (2.2 ε 0 = 1 c 2 µ 0 c = m/s q 2.1 r q' F r = 0 µ 0 = 4π 10 7 N/A 2 k = 1/(4πε 0 qq

Tips KENZOU PC no problem 2 1 w = f(z) z 1 w w z w = (z z 0 ) b b w = log (z z 0 ) z = z 0 2π 2 z = z 0 w = z 1/2 z = re iθ θ (z = 0) 0 2π 0

( : December 27, 2015) CONTENTS I. 1 II. 2 III. 2 IV. 3 V. 5 VI. 6 VII. 7 VIII. 9 I. 1 f(x) f (x) y = f(x) x ϕ(r) (gradient) ϕ(r) (gradϕ(r) ) ( ) ϕ(r)

36 3 D f(z) D z f(z) z Taylor z D C f(z) z C C f (z) C f(z) f (z) f(z) D C D D z C C 3.: f(z) 3. f (z) f 2 (z) D D D D D f (z) f 2 (z) D D f (z) f 2 (

v er.1/ c /(21)

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

( ) sin 1 x, cos 1 x, tan 1 x sin x, cos x, tan x, arcsin x, arccos x, arctan x. π 2 sin 1 x π 2, 0 cos 1 x π, π 2 < tan 1 x < π 2 1 (1) (

z z x = y = /x lim y = + x + lim y = x (x a ) a (x a+) lim z z f(z) = A, lim z z g(z) = B () lim z z {f(z) ± g(z)} = A ± B (2) lim {f(z) g(z)} = AB z

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

66 σ σ (8.1) σ = 0 0 σd = 0 (8.2) (8.2) (8.1) E ρ d = 0... d = 0 (8.3) d 1 NN K K 8.1 d σd σd M = σd = E 2 d (8.4) ρ 2 d = I M = EI ρ 1 ρ = M EI ρ EI

A S hara/lectures/lectures-j.html ϵ-n 1 ϵ-n lim n a n = α n a n α 2 lim a n = 0 1 n a k n n k= ϵ

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4

() (, y) E(, y) () E(, y) (3) q ( ) () E(, y) = k q q (, y) () E(, y) = k r r (3).3 [.7 ] f y = f y () f(, y) = y () f(, y) = tan y y ( ) () f y = f y

e a b a b b a a a 1 a a 1 = a 1 a = e G G G : x ( x =, 8, 1 ) x 1,, 60 θ, ϕ ψ θ G G H H G x. n n 1 n 1 n σ = (σ 1, σ,..., σ N ) i σ i i n S n n = 1,,

第1章 微分方程式と近似解法

Z: Q: R: C:

5 c P 5 kn n t π (.5 P 7 MP π (.5 n t n cos π. MP 6 4 t sin π 6 cos π 6.7 MP 4 P P N i i i i N i j F j ii N i i ii F j i i N ii li i F j i ij li i i i

Chap11.dvi

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0

2 R U, U Hausdorff, R. R. S R = (S, A) (closed), (open). (complete projective smooth algebraic curve) (cf. 2). 1., ( ).,. countable ( 2 ) ,,.,,

J. Bernoulli 694 Riccti dy dx + ψy + φy + χ = (ψ, φ, χ x ) Leibniz Riccti 73 Leibniz Bessel ( )Bessel. 738 J. Bernoulli. 764 Novi Comm. Acd. Petrop. L

( ; ) C. H. Scholz, The Mechanics of Earthquakes and Faulting : - ( ) σ = σ t sin 2π(r a) λ dσ d(r a) =

(1) (2) (3) (4) 1

1 1. x 1 (1) x 2 + 2x + 5 dx d dx (x2 + 2x + 5) = 2(x + 1) x 1 x 2 + 2x + 5 = x + 1 x 2 + 2x x 2 + 2x + 5 y = x 2 + 2x + 5 dy = 2(x + 1)dx x + 1

2000年度『数学展望 I』講義録


1 I 1.1 ± e = = - = C C MKSA [m], [Kg] [s] [A] 1C 1A 1 MKSA 1C 1C +q q +q q 1

p = mv p x > h/4π λ = h p m v Ψ 2 Ψ

Gmech08.dvi


1 1 x y = y(x) y, y,..., y (n) : n y F (x, y, y,..., y (n) ) = 0 n F (x, y, y ) = 0 1 y(x) y y = G(x, y) y, y y + p(x)y = q(x) 1 p(x) q(

( ) 2.1. C. (1) x 4 dx = 1 5 x5 + C 1 (2) x dx = x 2 dx = x 1 + C = 1 2 x + C xdx (3) = x dx = 3 x C (4) (x + 1) 3 dx = (x 3 + 3x 2 + 3x +


No. No. 4 No f(z) z = z z n n sin x x dx = π, π n sin(mπ/n) x m + x n dx = m, n m < n e z, sin z, cos z, log z, z α 4 4 9

sec13.dvi

SFGÇÃÉXÉyÉNÉgÉãå`.pdf

phs.dvi

量子力学 問題


Radiation from moving charges#1 Liénard-Wiechert potential Yuji Chinone 1 Maxwell Maxwell MKS E (x, t) + B (x, t) t = 0 (1) B (x, t) = 0 (2) B (x, t)

l µ l µ l 0 (1, x r, y r, z r ) 1 r (1, x r, y r, z r ) l µ g µν η µν 2ml µ l ν 1 2m r 2mx r 2 2my r 2 2mz r 2 2mx r 2 1 2mx2 2mxy 2mxz 2my r 2mz 2 r

1 2 1 No p. 111 p , 4, 2, f (x, y) = x2 y x 4 + y. 2 (1) y = mx (x, y) (0, 0) f (x, y). m. (2) y = ax 2 (x, y) (0, 0) f (x,


mugensho.dvi

1.2 y + P (x)y + Q(x)y = 0 (1) y 1 (x), y 2 (x) y 1 (x), y 2 (x) (1) y(x) c 1, c 2 y(x) = c 1 y 1 (x) + c 2 y 2 (x) 3 y 1 (x) y 1 (x) e R P (x)dx y 2

2012 IA 8 I p.3, 2 p.19, 3 p.19, 4 p.22, 5 p.27, 6 p.27, 7 p

r III... IV.. grad, div, rot. grad, div, rot 3., B grad, div, rot I, II ɛ-δ web page (

III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F

Gmech08.dvi

(Bessel) (Legendre).. (Hankel). (Laplace) V = (x, y, z) n (r, θ, ϕ) r n f n (θ, ϕ). f n (θ, ϕ) n f n (θ, ϕ) z = cos θ z θ ϕ n ν. P ν (z), Q ν (z) (Fou

1 1.1 [ ]., D R m, f : D R n C -. f p D (df) p : (df) p : R m R n f(p + vt) f(p) : v lim. t 0 t, (df) p., R m {x 1,..., x m }, (df) p (x i ) =

1 1 sin cos P (primary) S (secondly) 2 P S A sin(ω2πt + α) A ω 1 ω α V T m T m 1 100Hz m 2 36km 500Hz. 36km 1

x A Aω ẋ ẋ 2 + ω 2 x 2 = ω 2 A 2. (ẋ, ωx) ζ ẋ + iωx ζ ζ dζ = ẍ + iωẋ = ẍ + iω(ζ iωx) dt dζ dt iωζ = ẍ + ω2 x (2.1) ζ ζ = Aωe iωt = Aω cos ωt + iaω sin

1 1.1 H = µc i c i + c i t ijc j + 1 c i c j V ijklc k c l (1) V ijkl = V jikl = V ijlk = V jilk () t ij = t ji, V ijkl = V lkji (3) (1) V 0 H mf = µc

2 2 L 5 2. L L L L k.....


, ( ) 2 (312), 3 (402) Cardano

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google

08-Note2-web

Microsoft Word - 信号処理3.doc

chap9.dvi

A 2 3. m S m = {x R m+1 x = 1} U + k = {x S m x k > 0}, U k = {x S m x k < 0}, ϕ ± k (x) = (x 0,..., ˆx k,... x m ) 1. {(U ± k, ϕ± k ) 0 k m} S m 1.2.

M3 x y f(x, y) (= x) (= y) x + y f(x, y) = x + y + *. f(x, y) π y f(x, y) x f(x + x, y) f(x, y) lim x x () f(x,y) x 3 -

II (10 4 ) 1. p (x, y) (a, b) ε(x, y; a, b) 0 f (x, y) f (a, b) A, B (6.5) y = b f (x, b) f (a, b) x a = A + ε(x, b; a, b) x a 2 x a 0 A = f x (

[1] 1.1 x(t) t x(t + n ) = x(t) (n = 1,, 3, ) { x(t) : : 1 [ /, /] 1 x(t) = a + a 1 cos πt + a cos 4πt + + a n cos nπt + + b 1 sin πt + b sin 4πt = a

Transcription:

( ) i i i (Σe i i = e i + e i 2 + ), y n ( ) 2 y y = +iy 2 (, y) = + iy y > (upper hlf plne) y < (lower hlf plne) = + iy (rel prt) y (imginry prt) Re = Im = y = Re + iim = + iy = = ( + iy)( iy) = 2 + y 2 (r, θ) ( = r cos θ, y = r sin θ) = + iy = r cos θ + ir sin θ = r(cos θ + i sin θ) = re iθ = re iθ (polr form) r θ r = = 2 + y 2, tn θ = y

θ (rgument) θ = rg 2 ( ) n n n n = Re iθ = re iϕ n n = r n e inϕ Re iθ = r n e inϕ R = r n r = R /n, e inϕ = e iθ ϕ = θ/n e iθ = e iθ+2i = e iθ+4i = (e 2i = cos(2) + i sin(2) = ) 2 m m =,, 2,..., n ϕ = θ + 2m n n n = R /n e i(θ+2m)/n (de Moivre) (cos θ + i sin θ) n = cos(nθ) + i sin(nθ) 2

= re iϕ, n = r n e inϕ = r n (cos ϕ + i sin ϕ) n = r n (cos nϕ + i sin nϕ) r = R /n, ϕ = θ + 2m n (e iθ ) n = e inθ (cos θ + i sin θ) n = cos(nθ) + i sin(nθ) 2 = r e iθ r 2 e iθ2 = r (cos θ + i sin θ )r 2 (cos θ 2 + i sin θ 2 ) = r r 2 (cos θ cos θ 2 sin θ sin θ 2 + i cos θ sin θ 2 + i sin θ cos θ 2 ) = r r 2 (cos(θ + θ 2 ) + i sin(θ + θ 2 )) n = (re iθ ) n = r n (cos(nθ) + i sin(nθ)) i n = Re iθ = i = e i/2 (R = ) n = 2 = re iϕ = e i(/2+2m)/2 = e i(/4+m) = cos( 4 + m) + i sin( 4 + m) (r = R/2 = ) m = m = m = : cos 4 + i sin 4 = 2 ( + i) m = : cos( 4 + ) + i sin( 4 + ) = 2 ( + i) m = 2 m = m = 3 m = 2 + i 3 n = Re iθ = + i = 2e i3/4 (R = 2 /2 ) n = 3 = re iϕ = 2 /6 e i(3/4+2m)/3 3

3 m =,, 2 D (D ) (D ) D D (regulr) D df d = lim f( + ) D ( ) < < r (r ) ( < < r) ( ) r = = + iy =, y = (i), y = (ii) =, y 2 ( y = = y ) ( ) 2 D, y f( + ) f( +, y + y) f(, y) lim = lim + i y (i), y = f( +, y + y) f(, y) f( +, y) f(, y) f(, y) lim = lim = + i y (ii) =, y f( +, y + y) f(, y) f(, y + y) f(, y) f(, y) lim = lim = i + i y y i y y 2 f(, y) 4 f(, y) = i y

f(, y) f(, y) = u(, y) + iv(, y) u(, y) v(, y) u(, y) v(, y) + i = i + y y u(, y) = v(, y) y, u(, y) y v(, y) = (uchy-riemnn) = u(, y) + iv(, y) u(, y), v(, y) u(, y), v(, y) 2 ( u, v ) = = + iy = iy 2 + y 2 = u + iv (u = 2 + y 2, v = y 2 + y 2 ) u = 2 + y 2 2 2 ( 2 + y 2 ) 2 = 2 + y 2 ( 2 + y 2 ) 2 v y = 2 + y 2 u y = 2y ( 2 + y 2 ) 2 v = 2y ( 2 + y 2 ) 2 2y2 2 + y 2 = 2 + y 2 ( 2 + y 2 ) 2 = / = = / u y = / = = ( = ) = ( / ) D r = 2 + y 2 = r 2 r = = = iy = u + iv = (u =, v = y) 5

u =, v y =, u y =, v = d ( ) i d = lim N i= N f( i ) i d = d + i dy d = d + idy = u(, y) + iv(, y) d = (u(, y) + iv(, y))(d + idy) = (u(, y)d v(, y)dy) + i (v(, y)d + u(, y)dy), y t d = t2 t f((t)) d dt dt ( ) d 6

t b (), (b) () = (b) t t (t) (t ) ( ) (Jordn) () (b) 2 (simply connected) (multiply connected) D ( ) () (b) d = F ((b)) F (()) df () ( =, F () = f(ξ)dξ) d 2 2 d = F ( 2 ) F ( ) 2 ( + g())d = d = d 2 d = d = + 2 d = 2 d = d + g()d d + d 2 d + 2 d 3 2 + 2 (2 ) 4, 2 = + i = + iy ( ) d = ( + iy)(d + idy) = (d ydy + iyd + idy) y (, ) y = y (y y ) 7

(d ydy + iyd + idy) = (d d + id + id) = 2i d = i = = = + i 2 ( y ) 2 + i 2 d = (d ydy + iyd + idy) = 2 2 = 2 (d ydy + iyd + idy) + d + ( y + i)dy 2 (d ydy + iyd + idy) = i 2 2 y =, dy = 2 =, d = = + i t ( )(t) (t) = ( + i)t ( t ) d = (t) d(t) dt = dt ( + i)t( + i)dt = 2i 2 = i (t) ( + i)t y (, ) (, ) (t) = (t, t) = (, )t = = + i ( =, y = ) = + iy (t) = ( + i)t t ( + i)t = = + i 2 2 t ) (t) = t 2 (t) = + it ( d = 2 2 d + d = 2 tdt + ( + it)idt = 2 + i 2 = i 2 (t) = + it = y ( ) / r = r, y = = r, y = d = = = i re iθ ireiθ dθ ( = re iθ ) idθ 8

= + i = + i (y = ) d == ( iy)(d+idy) = (d+ydy iyd+idy) = (d+d id+id) = 2 d = =, y = = + i ( =, y = ) 2 d = (d + ydy iyd + idy) = (d + ydy iyd + idy) = 2 2 2 d + (ydy + idy) = + i y = = y =, y = = + i 3 d = (d + ydy iyd + idy) = 3 3 ydy + (d id) = i (uchy) D D d =, 2,..., n,..., n (,..., n ), 2,..., n (,..., n ) d = n i= i d D D f() = 2i d = sin r > sin sin /( ) 9

sin d = 2i sin f (n) () = n! d 2i ( ) n+ (Gourst) f() = 2i d, f( + δ) = 2i δ d (f( + δ) f())/δ = = n= c n ( ) n = c n ( ) n + c n ( ) n n= n= c n = f(ξ) dξ (n =, ±, ±2,...) 2i (ξ ) n+ n= c n ( ) n (principl prt) ( ) = = e / ep e = + + 2 2 + = n= n n!

e / = n! ( )n n= = ( ) singulrity / = ( R < < R ) = = (isolted singulrity) removble singulrity n n (pole) (essentil singulrity) < < R ( < δ δ < R) = g() = g() ( ) n ( < < δ) n n n lim ( ) n n (residue) = Res(f, ) = d 2i Res(f, ) Res n n d = 2i Res(f, i ) i= n n d = 2i Res(f, i ) i=

d = c n ( ) n d n= r ( ) n d (n =, 2,...) n = d = 2 re iθ ireiθ dθ ( = re iθ ) = 2 idθ = 2i () = r = re iθ n ( ) n d = 2 = i r n r n e inθ ireiθ dθ 2 e i(n )θ dθ = i [ r n i(n ) e i(n )θ] 2 = i ( r n i(n ) ) i(n ) = e i2n n n =, 2,... ( ) n (n ) ( ) d = = c n ( ) n d n= c ( ) d = 2ic 2

Res(f, ) = c n c = c + c ( ) + c 2 ( ) 2 + c + c 2 ( ) 2 2 c d d (( ) 2 ) = = d d (c ( ) 2 + c ( ) 3 + c 2 ( ) 4 + c ( ) + c 2 ) = = c n ( c = ( (n )! d n ) n ) = d n c ( ) n = n d n ( Res(f, ) = c = ( (n )! d n ) n ) = ( ) ( ) lim e i d = ( > ) R R R R +R +R (ir) R R R = Re iθ lim e i d = R R R R ( R R ( ir) +R ) 3

R R ( ) R R R R + = R ( R R R R + R = ) ( ) ( ) I = e i d, I = R R e i d R I I I = e i d = i R e ireiθ f(re iθ )Re iθ dθ ( = Re iθ ) b f() d b f()d b f() f() ( ) f() f() b f() d b b b f() d f()d f()d 2 b f() d b f()d b f() d f() f() b f()d 4 b f() d

I = e i d R = i = = = e ireiθ f(re iθ )Re iθ dθ e ireiθ f(re iθ ) Re iθ dθ ep[ir(cos θ + i sin θ) ] f(re iθ ) Rdθ e R sin θ f(re iθ ) Rdθ ( e i = e i e i = ) e R sin θ f(re iθ ) Rdθ ep = f(re iθ ) R θ ϵ I ϵr e R sin θ dθ ϵr e R sin θ dθ = ϵr = ϵr = ϵr = ϵr = 2ϵR /2 /2 /2 /2 /2 e R sin θ dθ + ϵr e R sin θ dθ /2 e R sin θ dθ + ϵr e R sin(θ +) dθ (θ = θ ) /2 e R sin θ dθ + ϵr e R sin θ dθ (sin(θ + ) = sin θ) /2 e R sin θ dθ + ϵr e R sin θ dθ /2 e R sin θ dθ (sin( θ) = sin θ) sin θ θ /2 2θ sin θ ( sin θ sin θ 2θ/) 5

I 2ϵR /2 e R sin θ dθ 2ϵR /2 e 2Rθ/ dθ = 2ϵR [ 2R e 2Rθ/] /2 = ϵ ( e R ) R I ϵ ϵ lim I = R I I = e i d = i R 2 e ireiθ f(re iθ )Re iθ dθ ( = Re iθ ) I 2 e ireiθ f(re iθ ) Rdθ = 2 ep[ ir(cos θ + i sin θ)] f(re iθ ) Rdθ = R ϵr = ϵr = ϵr = 2ϵR 2 2 /2 e R sin θ f(re iθ ) dθ e R sin θ dθ e R sin(θ +) dθ (θ = θ ) e R sin θ dθ e R sin θ dθ θ 3/2 2θ/ sin θ sin d = sin 6

( ) n sin = (2n + )! 2n+ = 3! 3 + n= 2, 4,... = = R r sin d = R 2i r = 2i = 2i = 2i = 2i J ( R r ( R r ( R r e i e i d e i R d e i ) r d e i R d e i ) r d e i r d + e i ) R d e = + + = 2i lim lim J = R r sin d (2) r R r R d + d + R r d + d 2 ( ) = r ( ) 2 R ( ) R r +r +r +R +R R J = e i r d = e i R d + e i R d + e i r 2 d + e i d = J = J + e i d + 2 e i d = (3) J r =, R = (3) R 7

2 e i d = e ir cos θ e R sin θ dθ e ireiθ Re iθ ireiθ dθ = i e ireiθ dθ = i e ir cos θ e R sin θ dθ = e ir cos θ e R sin θ dθ e R sin θ dθ (3) e i d = i = i re iθ eir cos θ e r sin θ re iθ dθ ( = re iθ ) e ir cos θ e r sin θ dθ r i lim r e ir cos θ e r sin θ dθ = i dθ = i (3) J (2) sin / sin d = 2i lim lim J = R r 2i lim e r i d 2i e lim R 2 i d = 2 sin / sin d = 2 ( sin + sin ) d = ( sin 2 = 2 = 2 = 2 ( ( sin sin + sin d sin( ) ) d sin ) d sin ) d sin d r R sin d + sin R d + r sin d 8

r sin / R, r ( ) R lim R R sin d = lim lim R r ( r R sin d + sin R d + sin ) r d = lim lim R r sin d R +R 2 d, 2 d 2 2 ( R) R 2 e i d =, 2 e i d = sin d = = 2i = 2i sin d + e 2i 2 i d 2i 2 ( ei + e i e i )d + 2i d 2i e i 2 e i d e i d 2i d 2 e i d + = + 2 = + 2 + R +R R +R + + = ( ) + e i d = 2ie = 2i sin d = ( 2i ei e i )d = 2i + e i d 2i e i d = sin d = 2 lim lim sin R r d = 2 9

+ + ( ) f() lim ϵ ( ϵ b ) f()d + f()d +ϵ (principl vlue) pv b ( ϵ f()d = lim ϵ b ) f()d + f()d +ϵ PV p.v. vp P ( ) d ( ϵ) R R R R ( R, ϵ ) ϵ d = R R d + +ϵ d + d + 2 d (R, ϵ ) /( ) Res(f/( ), i ) n d = 2i f Res(, i) i= = ϵ R d = pv R d + lim ϵ d + 2 d ϵ 2 R /( ) R 2 () lim ϵ d = i lim ϵ f( + ϵe iθ ) ϵe iθ ϵe iθ dθ = i lim 2 ϵ f( + ϵe iθ )dθ = if()

R, ϵ pv n d = if() + 2i f Res(, i) i= = f() = e i e i d ( = ) pv e i d = i f( = ) = e = = e i 2