untitled

Similar documents
untitled

1 12 CP 12.1 SU(2) U(1) U(1) W ±,Z [ ] [ ] [ ] u c t d s b [ ] [ ] [ ] ν e ν µ ν τ e µ τ (12.1a) (12.1b) u d u d +W u s +W s u (udd) (Λ = uds)

cm λ λ = h/p p ( ) λ = cm E pc [ev] 2.2 quark lepton u d c s t b e 1 3e electric charge e color charge red blue green qq

Mott散乱によるParity対称性の破れを検証

LHC ALICE (QGP) QGP QGP QGP QGP ω ϕ J/ψ ALICE s = ev + J/ψ

main.dvi

TOP URL 1

7 π L int = gψ(x)ψ(x)φ(x) + (7.4) [ ] p ψ N = n (7.5) π (π +,π 0,π ) ψ (σ, σ, σ )ψ ( A) σ τ ( L int = gψψφ g N τ ) N π * ) (7.6) π π = (π, π, π ) π ±

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H


positron 1930 Dirac 1933 Anderson m 22Na(hl=2.6years), 58Co(hl=71days), 64Cu(hl=12hour) 68Ge(hl=288days) MeV : thermalization m psec 100

TeV b,c,τ KEK/ ) ICEPP

BESS Introduction Detector BESS (BESS-TeVspectrometer) Experimetns Data analysis (1) (2) Results Summary

untitled

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5.

July 28, H H 0 H int = H H 0 H int = H int (x)d 3 x Schrödinger Picture Ψ(t) S =e iht Ψ H O S Heisenberg Picture Ψ H O H (t) =e iht O S e i

km_atami09.ppt

nenmatsu5c19_web.key

LEPS

v v = v 1 v 2 v 3 (1) R = (R ij ) (2) R (R 1 ) ij = R ji (3) 3 R ij R ik = δ jk (4) i=1 δ ij Kronecker δ ij = { 1 (i = j) 0 (i

Canvas-tr01(title).cv3

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.

6 2 T γ T B (6.4) (6.1) [( d nm + 3 ] 2 nt B )a 3 + nt B da 3 = 0 (6.9) na 3 = T B V 3/2 = T B V γ 1 = const. or T B a 2 = const. (6.10) H 2 = 8π kc2



(Compton Scattering) Beaming 1 exp [i (k x ωt)] k λ k = 2π/λ ω = 2πν k = ω/c k x ωt ( ω ) k α c, k k x ωt η αβ k α x β diag( + ++) x β = (ct, x) O O x

I A A441 : April 15, 2013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida )

9 1. (Ti:Al 2 O 3 ) (DCM) (Cr:Al 2 O 3 ) (Cr:BeAl 2 O 4 ) Ĥ0 ψ n (r) ω n Schrödinger Ĥ 0 ψ n (r) = ω n ψ n (r), (1) ω i ψ (r, t) = [Ĥ0 + Ĥint (

量子力学 問題

rcnp01may-2

Note.tex 2008/09/19( )

1/2 ( ) 1 * 1 2/3 *2 up charm top -1/3 down strange bottom 6 (ν e, ν µ, ν τ ) -1 (e) (µ) (τ) 6 ( 2 ) 6 6 I II III u d ν e e c s ν µ µ t b ν τ τ (2a) (

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

OHO.dvi

,,..,. 1

FPWS2018講義千代

( ) ,

Gauss Gauss ɛ 0 E ds = Q (1) xy σ (x, y, z) (2) a ρ(x, y, z) = x 2 + y 2 (r, θ, φ) (1) xy A Gauss ɛ 0 E ds = ɛ 0 EA Q = ρa ɛ 0 EA = ρea E = (ρ/ɛ 0 )e

I II


(e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ,µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) [ ] [ ] [ ] ν e ν µ ν τ e µ τ, e R,µ R,τ R (2.1a

総研大恒星進化概要.dvi


( ) Note (e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ, µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) 3 * 2) [ ] [ ] [ ] ν e ν µ ν τ e

TOP URL 1

( )

Μ粒子電子転換事象探索実験による世界最高感度での 荷電LFV探索 第3回機構シンポジューム 2009年5月11日 素粒子原子核研究所 三原 智

1. 4cm 16 cm 4cm 20cm 18 cm L λ(x)=ax [kg/m] A x 4cm A 4cm 12 cm h h Y 0 a G 0.38h a b x r(x) x y = 1 h 0.38h G b h X x r(x) 1 S(x) = πr(x) 2 a,b, h,π

4 2 Rutherford 89 Rydberg λ = R ( n 2 ) n 2 n = n +,n +2, n = Lyman n =2 Balmer n =3 Paschen R Rydberg R = cm 896 Zeeman Zeeman Zeeman Lorentz

meiji_resume_1.PDF

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4

untitled

all.dvi

Drift Chamber

05Mar2001_tune.dvi

2000年度『数学展望 I』講義録

TOP URL 1

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0

untitled

( ) ) ) ) 5) 1 J = σe 2 6) ) 9) 1955 Statistical-Mechanical Theory of Irreversible Processes )

m(ẍ + γẋ + ω 0 x) = ee (2.118) e iωt P(ω) = χ(ω)e = ex = e2 E(ω) m ω0 2 ω2 iωγ (2.119) Z N ϵ(ω) ϵ 0 = 1 + Ne2 m j f j ω 2 j ω2 iωγ j (2.120)


80 4 r ˆρ i (r, t) δ(r x i (t)) (4.1) x i (t) ρ i ˆρ i t = 0 i r 0 t(> 0) j r 0 + r < δ(r 0 x i (0))δ(r 0 + r x j (t)) > (4.2) r r 0 G i j (r, t) dr 0


untitled

chap9.dvi

2.2 h h l L h L = l cot h (1) (1) L l L l l = L tan h (2) (2) L l 2 l 3 h 2.3 a h a h (a, h)


ohpr.dvi

J-PARC October 14-15, 2005 KEK

Electron Ion Collider と ILC-N 宮地義之 山形大学

反D中間子と核子のエキゾチックな 束縛状態と散乱状態の解析

A

1. 2 P 2 (x, y) 2 x y (0, 0) R 2 = {(x, y) x, y R} x, y R P = (x, y) O = (0, 0) OP ( ) OP x x, y y ( ) x v = y ( ) x 2 1 v = P = (x, y) y ( x y ) 2 (x

main.dvi

ω 0 m(ẍ + γẋ + ω0x) 2 = ee (2.118) e iωt x = e 1 m ω0 2 E(ω). (2.119) ω2 iωγ Z N P(ω) = χ(ω)e = exzn (2.120) ϵ = ϵ 0 (1 + χ) ϵ(ω) ϵ 0 = 1 +

6 6.1 L r p hl = r p (6.1) 1, 2, 3 r =(x, y, z )=(r 1,r 2,r 3 ), p =(p x,p y,p z )=(p 1,p 2,p 3 ) (6.2) hl i = jk ɛ ijk r j p k (6.3) ɛ ijk Levi Civit

( ) ( 40 )+( 60 ) Schrödinger 3. (a) (b) (c) yoshioka/education-09.html pdf 1

1 1.1 H = µc i c i + c i t ijc j + 1 c i c j V ijklc k c l (1) V ijkl = V jikl = V ijlk = V jilk () t ij = t ji, V ijkl = V lkji (3) (1) V 0 H mf = µc

untitled

Λ (Λ ) Λ (Ge) Hyperball γ ΛN J-PARC Λ dead time J-PARC flash ADC 1 dead time ( ) 1 µsec 3


基礎数学I

note4.dvi

d ϕ i) t d )t0 d ϕi) ϕ i) t x j t d ) ϕ t0 t α dx j d ) ϕ i) t dx t0 j x j d ϕ i) ) t x j dx t0 j f i x j ξ j dx i + ξ i x j dx j f i ξ i x j dx j d )

Bethe-Bloch Bethe-Bloch (stopping range) Bethe-Bloch FNAL (Fermi National Accelerator Laboratory) - (SciBooNE ) SciBooNE Bethe-Bloch FNAL - (SciBooNE

: 2005 ( ρ t +dv j =0 r m m r = e E( r +e r B( r T 208 T = d E j 207 ρ t = = = e t δ( r r (t e r r δ( r r (t e r ( r δ( r r (t dv j =

I

64 3 g=9.85 m/s 2 g=9.791 m/s 2 36, km ( ) 1 () 2 () m/s : : a) b) kg/m kg/m k

pdf

Chadwick [ 1 ] 1919,, electron number Q kinetic energy [MeV] 8.1: 8.1, 1 internal conversion electron E γ E e =

( ; ) C. H. Scholz, The Mechanics of Earthquakes and Faulting : - ( ) σ = σ t sin 2π(r a) λ dσ d(r a) =

D = [a, b] [c, d] D ij P ij (ξ ij, η ij ) f S(f,, {P ij }) S(f,, {P ij }) = = k m i=1 j=1 m n f(ξ ij, η ij )(x i x i 1 )(y j y j 1 ) = i=1 j

II ( ) (7/31) II ( [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Re

QMI_09.dvi

QMI_10.dvi

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T


ELECTRONIC IMAGING IN ASTRONOMY Detectors and Instrumentation 5 Instrumentation and detectors

Hanbury-Brown Twiss (ver. 2.0) van Cittert - Zernike mutual coherence

Transcription:

BELLE B J/ψ + K 12

1 1 2 BELLE 3 2.1 BELLE... 3 2.1.1 CP... 3 2.1.2 CKM... 4 2.1.3... 6 2.1.4 B CP... 8 2.2 KEKB... 13 2.3 BELLE... 16 2.3.1 SVD... 19 2.3.2 CDC.................. 2 2.3.3 ACC... 21 2.3.4 TOF... 24 2.3.5 CsI ECL.................. 25 2.3.6... 26 2.3.7 KL /µ KLM... 27 2.3.8... 27 2.4... 29 3 KL/µ KLM 3 3.1... 3 3.2... 32 3.2.1 Registive Plate Counter (RPC)... 33 3.2.2... 34 3.2.3... 35 3.3 KL /µ... 36 3.3.1... 36 i

3.3.2... 36 3.3.3............... 39 3.3.4... 39 4 J/ψ K 53 4.1... 55 4.2... 57 4.2.1... 59 4.2.2 J/ψ... 61 4.3 K... 64 4.3.1 KS... 64 4.3.2 π... 66 4.3.3 K... 67 4.4... 69 4.4.1 B... 69 4.4.2... 7 4.5... 71 4.6... 74 5 75 A B B 77 8 82 ii

2.1... 7 2.2 V ub /V uc,b B K ε ρ η... 7 2.3 B + π K + (a) (b)....... 8 2.4 B B... 9 2.5 KEKB... 13 2.6 BELLE... 16 2.7 SVD... 19 2.8 CDC... 2 2.9 ACC... 23 2.1 ACC... 23 2.11 TOF... 24 2.12 ECL... 25 2.13 BELLE... 28 3.1 KLM Barrel... 3 3.2 KLM Endcap... 31 3.3 KLM... 34 3.4 e + e µ + µ... 37 3.5... 38 3.6... 38 3.7 cos θ... 38 3.8 cos θ... 38 3.9 µ φ... 38 3.1 cos θ... 38 3.11 Efficiency of BKLM-FS-L5... 41 3.12 Efficiency of BKLM-BS-L5... 41 3.13 Efficiency of EKLM-F-L5... 41 iii

3.14 Efficiency of EKLM-B-L5... 41 3.15 Denominator of BKLM-FS-L5... 42 3.16 Denominator of BKLM-BS-L5... 42 3.17 Denominator of EKLM-F-L5... 42 3.18 Denominator of EKLM-B-L5... 42 3.19 efficiency vs day of BKLM-FS... 43 3.2 efficiency vs day of BKLM-FS1... 43 3.21 efficiency vs day of BKLM-FS2... 43 3.22 efficiency vs day of BKLM-FS3... 43 3.23 efficiency vs day of BKLM-FS4... 44 3.24 efficiency vs day of BKLM-FS5... 44 3.25 efficiency vs day of BKLM-FS6... 44 3.26 efficiency vs day of BKLM-FS7... 44 3.27 efficiency vs day of BKLM-BS... 45 3.28 efficiency vs day of BKLM-BS1... 45 3.29 efficiency vs day of BKLM-BS2... 45 3.3 efficiency vs day of BKLM-BS3... 45 3.31 efficiency vs day of BKLM-BS4... 46 3.32 efficiency vs day of BKLM-BS5... 46 3.33 efficiency vs day of BKLM-BS6... 46 3.34 efficiency vs day of BKLM-BS7... 46 3.35 efficiency vs day of EKLM-FS... 47 3.36 efficiency vs day of EKLM-FS1... 47 3.37 efficiency vs day of EKLM-FS2... 47 3.38 efficiency vs day of EKLM-FS3... 47 3.39 efficiency vs day of EKLM-BS... 48 3.4 efficiency vs day of EKLM-BS1... 48 3.41 efficiency vs day of EKLM-BS2... 48 3.42 efficiency vs day of EKLM-BS3... 48 3.43 7 EKLM-FS-L12................. 49 3.44 9 EKLM-FS-L12................. 5 3.45 µ CDC θ =17 µ + µ... 51 4.1 J/ψ K... 53 iv

4.2 B... 55 4.3 J/ψ... 56 4.4 e ±... 56 4.5 µ ±... 56 4.6 K... 57 4.7 KS... 57 4.8 π... 57 4.9 π ±... 58 4.1 γ... 58 4.11 Generic MC EID... 6 4.12 GenericMC µid... 6 4.13 MC EID... 6 4.14 MC µid... 6 4.15 M e + e EID.1 & EID.1... 62 4.16 M µ + µ µid.1 & µid.1... 62 4.17 M e + e EID.9 & EID.1... 62 4.18 M µ + µ µid.8 & µid.1... 62 4.19 M e + e EID.9 & EID.9... 62 4.2 M µ + µ µid.8 & µid.8... 62 4.21 γ M e + e... 63 4.22 γ M e + e... 63 4.23 J/ψ.................. 63 4.24 M π + π... 64 4.25 dφ... 65 4.26 dφ... 65 4.27 dφ... 65 4.28 dφ SN... 65 4.29 dr... 66 4.3 dr... 66 4.31 dr SN... 66 4.32 z dist... 66 4.33 z dist... 66 4.34 z dist SN... 66 4.35 M π + π... 67 4.36 M π + π... 67 v

4.37 M γγ... 68 4.38 M γγ E γ... 68 4.39 E γ M γγ................. 68 4.4 M K S π... 69 4.41 P... 69 KS π 4.42 E vs M bc... 7 4.43 M e + e... 72 4.44 M µ + µ... 72 4.45 EID... 72 4.46 µid... 72 4.47 M π + π... 73 4.48 M γγ... 73 4.49 E vs M bc... 73 vi

2.1 CP... 5 2.2 CKM ρ, τ... 6 2.3 KEKB... 14 2.4 BELLE... 18 2.5... 22 2.6 ECL... 26 2.7... 27 3.1 KLM... 35 3.2... 4 3.3 KLM... 4 4.1 B J/ψ K... 53 4.2 J/ψ l + l... 54 4.3 A... 58 4.4 ID... 61 4.5 J/ψ... 63 4.6 KS ππ... 64 4.7 KS... 67 4.8... 71 vii

1 1 9 CP CP CP CP CP Charge Parity C P CP CP 1964 K CP K CP K CP 1973 CP KM u,d,s SLAC BNL c Fermilab b CDF t KM KM 198 KM B b CP K D B B B K CP 1

1 KM B B B B B B B KEK BELLE BELLE 1 5 KLM KEK KL /µ KLM KL /µ K L µ K L CP φ 1 B J/ψKL µ B B B J/ψ µ + µ µ CP B J/ψK CP CP 1999 5 2 12 1 fb 1 B J/ψK K KS + π 2 BELLE 3 KL µ KLM 4 K Lµ 5 6 2

2 BELLE 2.1 BELLE 2.1.1 CP C( ) P( ) 18 T CPT C,P,T CP 1964 K CP [16] K K K CP CP K = K (2.1) ( K1 = 1 2 K + K ), CP K1 = K1 (2.2) ( K2 = 1 2 K K ), CP K2 = K2 (2.3) CP K π π K 2π CP =+1 3π CP = 1 π π KL K S CP π K2 K L π K 1 3

2 BELLE KS K L π 2.1.2 CKM L L = g Ψ i {V i,j γ µ (1 γ 5 ) /2}Ψ j W µ + H.C. (2.4) 2 i,j Ψ i i V i,j i j H.C. Hermitian Conjugate V i,j CKM u, s, c u,s,c d d V ud V us V ub d s = V s = V cd V cs V cb s (2.5) c c V td V ts V tb c CKM CP n n 2n 2 n(n 1) (n 1)(n 2)2 V CP CKM Wolfenstein λ = sin θ C (Cabbibo θ C ) λ A, ρ, η 1 λ2 λ λ 3 A(ρ iη) 2 V = λ 1 λ2 λ 2 A 2 + O(λ 4 ) (2.6) λ 3 A(1 ρ iη) λ 2 A 1 λ, A ρ, η 4

2.1. BELLE ( ) (A 2 λ 6 η/ ) s s u K K +,K,K, K λ 2 A 2 λ 4 η 2 1 3 c c s u D D +,D,D, D 1 A 2 λ 6 η 1 4 b b c s B B +,B,Bd, B d, A2 λ 4 λ 2 η.5 u Bs, B s 2.1: CP 2.5 2.6 u, d, s, c λ 1 V cs 3 A, ρ, η 3 t, b 2.1 b s, c 2.1 A 2,λ 6,η CKM Wolfenstein λ β λ = sin θ C =.221 ±.2 (2.7) A V cb V cb B B τ B A =.839 ±.41 ±.82 (2.8) b u b c V ub /V cb =.8 ±.3 (2.9) ρ2 + η 2.36 ±.14 (2.1) ρ, η 2.2 1 K 5

2 BELLE Quantity V cb.41 ±.2 ±.4 S.Stone, B Decays, Singapole, 1991 V ub /V cb.85 ±.35 Includes recent CLEO result M t 132 ± 31 ± 19 GeV LEP Collab., Phys. Lett. B276, 247(1992) B K.8 ±.2 Harris and Rosneer, Phys. Rev. D45, 946 (1992) ɛ K (2.268 ±.23) 1 3 PDG Re(ɛ /ɛ) (14.5 ± 5) 1 4 average of E731 and NA31 x d.677 ±.14 CLEO, 1993 Report to the PAC, Jan. 1993 f B BB unconstrained τ B 1.4 ±.4 psec E.Loci, UNK B-Factory Workship, Jan. 1993 2.1.3 2.2: CKM ρ, τ CKM Vi,jV i,k = δ jk (2.11) i 2.11 V ub V td V td V tb + V cd V cb + V ud V ub = (2.12) 2.1 ( ) ( ) V φ 1 arg cd V cb Vtd V = tan 1 η (2.13) tb ρ(ρ 1) + η ( ) ( ) 2 V φ 2 arg ud V ub η Vtd V = tan 1 (2.14) tb 1 ρ ( ) ( ) V φ 3 arg cd V cb η Vud V = tan 1 (2.15) ub ρ 6

2.1. BELLE η CP(B d ππ) V ud V ub Aλ3 (ρ + iη) φ 1 V td V tb Aλ3 (1 ρ iη) φ 2 CP(B s ρk s ) φ 3 V cd V cb Aλ3 2.1: CP(B d J/ψ K s ) ρ BELLE η.8.6 from B mixing d.4.2 from ε allowed area from V ud Vcb ρ.6.4.2.2.4.6.8 1. 2.2: V ub /V uc,b B K ε ρ η 7

2 BELLE 2.1.4 B CP B CP B, B CP Γ(B f) Γ ( B f ) B f CP B f CP CP CP K B B pm π K ± 2.3 2.16 2.17 s W u b u u u (a) b W s u u u (b) u 2.3: B + π K + (a) (b) A ( B + π K +) = A t e i(φt+δt) + A p e i(φp+δp) (2.16) A ( B π K ) = A t e i(φt+δt) + A p e i( φp+δp) (2.17) A, φ, δ t, p tree penguin A i (i = φ, δ) φ 8

2.1. BELLE δ Γ ( B + π K +) A ( B + π K +) 2 = A t 2 + A 2 p +2 A t A p cos ( φ + δ) (2.18) Γ ( B π K ) A ( B π K ) 2 = A t 2 + A 2 p +2 A t A p cos ( φ + δ) (2.19) φ φ t φ p, δ δ t δ p Γ ( B + π K +) Γ ( B π K ) 2 A t A p sin ( φ) sin ( δ) (2.2) CP A t, A p, sin ( δ) CP CP K B B, B CP CP CP BELLE 2.4 b u,c,t d b W d B W W B B u,c,t u,c,t B d u,c,t b d W b 2.4: B B B, B A CP CP f CP A CP f CP B, Ā CP f CP B (2.21) 9

2 BELLE r fcp q Ā CP (2.22) p A CP B B K K 2.4 B B B Γ B B p, q B phys(t) = e i(m i 2 Γ)t {cos ( Mt/2) B (2.23) +i q p sin ( Mt/2) B } B phys (t) = ei(m i 2 Γ)t {i q p sin ( Mt/2) B (2.24) + cos ( Mt/2) B } M M B M H,M L M = M H + M L (2.25) 2 M = M H M L (2.26) f CP Bphys(t) = A CP [g + (t)+r fcp g (t)] (2.27) ( ) p f CP B phys (t) = A CP [g (t)+r fcp g + (t)] (2.28) q Γ ( [ ) Bphys(t) f CP = ACP 2 e Γt 1+ rfcp 2 + 1 r ] f CP 2 cos( Mt) Im(r fcp sin( Mt)) 2 2 (2.29) Γ ( [ B phys (t) f ) CP = ACP 2 e Γt 1+ rfcp 2 + 1 r ] f CP 2 cos( Mt)+Im(r fcp sin( Mt)) 2 2 (2.3) B f CP A fcp (t) A fcp (t) Γ(B phys (t) f CP) Γ( B phys (t) f CP) Γ(B phys (t) f CP)+Γ( B phys f CP) (2.31) 1

2.1. BELLE 2.3 2.3 2.31 A fcp (t) = (1 r f CP 2 ) cos( Mt) 2Im(r fcp sin( Mt)) 1+ r fcp 2 (2.32) B d 12 M 12 q/p q p = m 12 i 12/2 m 12 i 12 /2 m 12 m 12 = V tb V td V tb V td e 2iφ M (2.33) M 12 KM m 12 (Vtb Vtd φ )2 M φ 1 CP A CP ACP = η f e 2iφ D (2.34) η f f CP η f = ±1 A CP = η f Im(r fcp ) sin( Mt) = nf sin 2(φ M + φ D ) sin( Mt) (2.35) A f (t) φ CP M B A fcp (t) = sin 2φ CP sin( M t) (2.36) φ i BELLE φ 3 φ 1 : B J/ψ KS B J/ψ KL (2.37) φ 2 : B π + π (2.38) φ 3 : B D K (2.39) 11

2 BELLE B J/ψ K B J/ψ KS,L φ 1 Υ(4S) 1.59 GeV/c 2 B B 5.28 GeV/c 2 2 1.56 GeV/c 2 B B B Υ(4S) B Υ(4S) B.34 GeV/c B 8. GeV/c 3.5 GeV/c B 12

2.2. KEKB 2.2 KEKB 2.5: KEKB 2.5 KEKB KEKB (βγ =.42) ( 1 34 cm 2 s 1 ) (±11 mrad) 2.3 KEKB B B KEKB 3.5 GeV/c 8. GeV/c 13

2 BELLE γ γ BELLE γ =.42 E = 8. GeV E + = 3.5 GeV (2.4) 2.3 GeV B CP 1 3 1 4 B φ 1 B J/ψ KS (K L ) 3 1 fb 1 KEKB 1 fb 1 L =1 34 cm 2 s 1 B 1 8 25 KEKB HER LER E 8. GeV/c 3.5 GeV/c σe/e 7.7 1 4 7.8 1 4 I 1.1 A 2.6 A C 318 m θ x ±11 mrad IP β βx /βy.33 m/.1 m L 1 1 34 cm 2 sec 1 1 1.4 1 1 3.3 1 1 σz.4 cm sb.6 m 5 2.3: KEKB 14

2.2. KEKB L σ R R = Lσ ( ) 2 ( ) 1 cm 2 s 1 L 2.41 E (GeV) I ( ) ξ 2 βy (y ) L =2.2 1 34 ξ(1 + r)( EI ) βy ± (2.41) KEKB 8. GeV HER (High-Energy-Ring) 3.5 GeV LER (Low-Energy-Ring) 2 3km KEKB BELLE (LINAC) LER HER LER RF HER B-factory 1 fb 1 4 GeV 5 LER 2.6 A HER 1.1 A 6 cm(2 ns) (x, y, z) = (2 µm, 4 µm, 1cm) 2 15

2 BELLE 2.3 BELLE SVD CDC PID (Aerogel) TOF CsI KLM Superconducting Solenoid 2.6: BELLE B CP B J/ψ KS B J/ψ KS B B B J/ψ KS CP 16

2.3. BELLE KEKB 2.6 BELLE (IP) (+Z ) 47 cm Υ(4S) B BELLE B 1/2 (KEKB 95 µm ) π ±, π, KS, K L,e±,K ±,µ ± γ B BELLE Be ( ) (SVD) (CDC) SVD CDC (ACC) (TOF) CDC de/dx TOF γ CsI (ECL) 1.5 T KL µ K L /µ (KLM) 2.6 BELLE 8m 1, 5 z y x ( Interaction Point : IP ) θ z φ x BELLE 17

2 BELLE 2.4: BELLE 3 µm, 3 σ rφ 1 µm SVD r =3. 6.5 mm σ z =7 4 µm 23 θ 14 φ : 496 σ z 8 µm z : 496 :5 σ rφ = 13 µm CDC :3 σ z = 2 14 µm r =8.5 88 cm A :8.4 K σ pt /p t =.3% p 2 t +1 n 1.1 17 θ 15 C :1.7 K σ de/dx =6% 12 12 12 cm 3 blocks ACC 96/228 (Barrel/Endcap) N p.e. 6 FM-PMT readout < 2188 K/π 1.2 <p<3.5 GeV/c TOF 128φ 128 2 σ t = 1 ps r = 12 cm, 2.5 m-long Towered structure K/π 1.2 GeV/c σ E /E= ECL CsI(Tl) 6 6 3 cm 3 crystals 1.3%/ E Barrel: r = 125 162 cm 6624 σ pos =.5 cm/ E Endcap: z = 1152(f) E in GeV 12and + 196 cm 96(b) 15/14 (Barrel/Endcap) φ = θ = 3 mrad for K L KLM (47mm Fe + 44mm ) σ t = ns 2 RPC 1% hadron fakes Barrel: z and φ strips 21856 Endcap: θ and φ strips 16128 18

5 5 5 5 4 5 8 1 1 8 8 1 1 1 2.3. BELLE 2.3.1 SVD 3 3 d=13mm 4 3 3 2 2 R=58mm d=8mm 4 4 4 3 2 2 2 R=43.5mmR=3mm d=8mm R=2mm 6 7 6 6 8 6 7 8 6 7 7 7-2mm -15mm -1mm -5mm IP +5mm +1mm +15mm +2mm +25mm +3mm 2.7: SVD B CP B B 2.42 BELLE B B KEKB B 2 µm 1 µm SVD t t z cβγ = z z cβγ z, z B, B z (2.42) BELLE (DSSD : Double-sided Silicon Strip Detector) 19

2 BELLE SVD 3 8 r φ 5 µm r z 84 µm z δz 15 µm θ 23 <θ<14 2.3.2 CDC 2.8: CDC SVD (CDC : Central Drift Chamber) ( ) BELLE 1.5 T CDC (de/dx) 2

2.3. BELLE (β = v/c) CDC 8cm 88 cm 25 cm 3 5 axial 4 75 mrad stereo stereo z CDC de/dx =1 1 17 <θ<15 CDC 143 µm (2.43) σ pt p t =.25%p t.39% (2.44) de dx = 5.2% (2.45) 2.3.3 ACC ACC (Si 2 O) 1.2 GeV/c π/k c = c/n (n : ) n> 1 β = 1+ ( ) 2 m (2.46) p ACC 1.2 GeV/c π/k π K 21

2 BELLE n 1.1 1.2 2.9 2.1 12 12 12 cm 3 12 12 1 cm 3 fine-mesh(fm)pmt 1 2 1 n θ 1.1 1.2 FM-PMT (3 2.5 2 ) 33.7 <θ<12.8 13.6 <θ<33.4 2.5: Angle Index PMT diameter 33.3 65. 1.1 3in Barrel 65. 95. 1.15 2.5 in 95. 127.9 1.2 2in Endcap 13.6 33.4 1.1 3in 22

2.3. BELLE 2.9: ACC 2.1: ACC 23

2 BELLE 2.3.4 TOF Barrel TOF+TSC Forward Endcap TSC 2.11: TOF TOF CDC p T L T = L ( ) 2 m 1+ (2.47) c p m BELLE TOF 2 TOF TSC (Thin Scintilation Counter) TOF 4 6 255 cm 3 2 FM-PMT (Frequency Mode - Photo Multiplier Tube) TSC CsI CDC 24

2.3. BELLE.5 12 263 cm 3 2 FM-PMT 1 64 ACC ECL 1.2 m TOF 33.7 <θ<12.8 2.3.5 CsI ECL 2.12: ECL ECL (γ) (e) γ e B γ 2 MeV 3 GeV 25

2 BELLE 2.6: ECL θ coverage θ secg. φ seg. # ofcrystals Forward Endcap 11.7 31.5 13 48 128 1168 Barrel 32.2 128.7 46 144 6624 Backward Endcap 13.8 158.3 1 64 144 124 Bhabha 8 GeV ECL CsI (Tl) 5.5 5.5 cm 2 6.5 6.5 cm 2 3 cm 1 IP( ) 2.5 9, 43 1.2 m IP z =2. m z = 1. m 17. <θ<15. 32 129 1 2.6 2.3.6 BELLE 2.7 BELLE 1.5 T 26

2.3. BELLE Cryostat Inner Radius min 1.7 m Outer Radius max 2.9 m Total Length max 4.44 m Nominal Magnetic Field 1.5 T Cool Down Time 6 day Quench Recover Time 1 day 2.7: 2.3.7 KL /µ KLM KLM BELLE KL µ 47 mm 44 mm 14 15 14/14 K L ECL KLM KL µ π CDC KLM µ KLM 1 2cm K L/µ 3 3.3 2.3.8 BELLE 1 34 cm 2 s 1 BELLE B Hz 1 Hz 27

2 BELLE Belle Trigger System SVD Rφ Z Rφ Track Z Track Cathod Pads Combined Track CDC Stereo Wires Z Finder Z Track TSC ECL Axial Wires Hit 4x4 Sum Track Segment TSC Trigger Low Threshold High Threshold E Sum Rφ Track Cluster Count Cluster Count Threshold Topology Timing Global Decision Logic EFC Amp. Low Threshold Bhabha Logic High Threshold Two γ Logic KLM Hit µ hit Trigger Signal Gate/Stop > 2.2 µsec after event crossing Beam Crossing 2.13: BELLE 2.13 Global Decision Logic (GDL) GDL 28

2.4. 2 µs 15 MB/s 2.4 BELLE 1999 5 21 1 1999 5 8 ( 3) 1 12 ( 5) 2 1 8 ( 7) 1 12 ( 9) 2 12 1 fb 1 29

3 KL /µ KLM 3.1 3.1: KLM Barrel KL /µ KLM BELLE K L µ KL φ 1 B J/ψ K CP µ B J/ψ µ + µ 3

3.1. 3.2: KLM Endcap µ KLM µ B B B µ 3.1 3.2 KLM KLM RPC ( ) KL KLM KEKB 2 Hz KLM (.1 Hz/cm 2 ) e + e 1 1 4 Hz/cm 2 KL KLM KL 5cm( 3 mrad) 31

3 KL /µ KLM µ CsI ( 3 cm ) KLM 14 ( 66 cm) 2 GeV/c 5cm 5 cm KLM θ 25 <θ<145 µ 17 <θ<158 3.2 KLM BELLE 8 47 mm 44 mm 15 14 18 m 2 KLM RPC (Resistive Plate Counter) RPC KLM RPC 8 8 15 RPC 2 RPC 22 cm 151 267 cm ( ) 3.9 cm / 4 14 RPC / 135.5/331 cm 3.9 mm RPC 2 RPC 2 1 RPC 1 1 RPC 1 RPC 2 24 48 RPC 5 RPC RPC 1 1 RPC 1 112 112 RPC RPC 2 1 RPC 32

3.2. 2 z φ θ φ BELLE 1 5cm 5cm 3 3.2.1 Registive Plate Counter (RPC) KLM RPC RPC RPC 198 Santonico 1 mv ns BELLE 2.6 mm 1.8 mm RPC RPC 1 12 Ω cm.1 Hz/cm 2 KEK B RPC (Ar)/ / HFC134a (CH 2 FCF 3 ) 33

3 KL /µ KLM 3:8:62 1 (Butane-silver) 3.2.2 z 1 2 Endcap Forward 3 4 3 5 2 6 1 7 Barrel Forward 4 3 5 2 6 1 7 Barrel Backward 1 2 3 Endcap Backward 3.3: KLM KLM 3.1 3.2 (Forward) (Backward) 8 4 3.3 BELLE z e 1 7% (CH 3 CH 2 CH 2 CH 3 ) 3% ((CH 3 ) 3 CH) 34

3.2. 3.2.3 RPC RPC 12 φ 6 36 9 48 z 48 θ 48 φ 96 37984 z 4.5 cm φ 4.3 5.5 cm θ 3.6 cm φ / 1.86/4.76 cm KLM 3.1 KLM B E F B [B or E]KLM [F or B]S[Sector#]-[Layer#] (F/B) 8/8 4/4 (F/B) 15 /15 14 /14 z φ θ φ 4.5 cm 4.3 5.5 cm 3.6 cm 1.86 cm 4.76 cm 6 36 48 48 96 9 48 BS2 36 3.1: KLM 35

3 KL /µ KLM 3.3 KL /µ 3.3.1 BELLE 1999 5 µ KLM 2.3.7 µ KLM µ KLM φ φ φ KLM 3.3.2 e + e µ + µ MuPair e + e µ + µ µ KLM KLM MuPair KLM MuPair 3.4 e + e µ + µ e + e µ e + e 8. GeV 3.5 GeV µ 15.65 MeV/c 2 µ + µ 36

3.3. KL /µ e γ µ e + µ + 3.4: e + e µ + µ 3.5 5.4 GeV/c 3.6 3. GeV/c 8. GeV/c MuPair ECL 2. GeV (e, γ ECL µ ECL e, γ ) 2 ( ) 2 θ CM 176 <θ<184 CM 4.8 GeV/c < P < 5.6 GeV/c e + e θ φ 3.5 3.9 MuPair θ 3.1 KLM 37

3 KL /µ KLM x 1 2 6 4 35 5 3 4 25 3 2 2 15 1 1 5 1 2 3 4 5 6 7 8 9 1 GeV/c 1 2 3 4 5 6 7 8 9 1 GeV/c 3.5: 3.6: 4 18 35 16 14 3 12 25 1 2 8 15 6 4 1 2 5-1 -.8 -.6 -.4 -.2.2.4.6.8 1 cosθ -1 -.8 -.6 -.4 -.2.2.4.6.8 1 cosθ 3.7: cos θ 3.8: cos θ 14 12 GeV/c 1 9 8 1 7 8 6 5 6 4 4 3 2 2 1-3 -2-1 1 2 3 3.9: µ φ φ -1 -.8 -.6 -.4 -.2.2.4.6.8 1 3.1: cos θ cosθ 38

3.3. KL /µ 3.3.3 CDC CsI KLM KLM / 4 4 ( )/( ) >.75 KLM ɛ N KLM N µ KLM (3.1) 4 4 12 1 2 3 4 6 12 4 ɛ N N (3.2) 3.3.4 7 KLM 3.11 3.14 3.15 3.18 3 15 39

3 KL /µ KLM 5 KLM 3.19 3.42 3.2 1 1996 1 1 3.43 7 12 9 9 cm 3.44 3.44 1 7 Layer Layer1 Layer2 Layer3 Layer4 Layer5 Layer6 Layer7 Layer8 Layer9 Layer1 Layer11 Layer12 Layer13 Layer14 3.2: BKLMB-S1-L12 BKLMB-S2-L1 BKLMB-S2-L4 BKLMB-S6-L EKLMF-S-L9 2 3 3.3: KLM 4

3.3. KL /µ 3.11: Efficiency of BKLM-FS-L5 3.12: Efficiency of BKLM-BS-L5 3.13: Efficiency of EKLM-F-L5 3.14: Efficiency of EKLM-B-L5 41

3 KL /µ KLM 3.15: Denominator of BKLM-FS-L5 3.16: Denominator of BKLM-BS-L5 3.17: Denominator of EKLM-F-L5 3.18: Denominator of EKLM-B-L5 42

3.3. KL /µ Efficiency 1.9 Efficiency 1.9.8.8.7.7.6.6.5.5.4.4 14 145 15 155 16 165 day 14 145 15 155 16 165 day 3.19: efficiency vs day of BKLM-FS 3.2: efficiency vs day of BKLM-FS1 Efficiency 1.9 Efficiency 1.9.8.8.7.7.6.6.5.5.4.4 14 145 15 155 16 165 day 14 145 15 155 16 165 day 3.21: efficiency vs day of BKLM-FS2 3.22: efficiency vs day of BKLM-FS3 43

3 KL /µ KLM Efficiency 1.9 Efficiency 1.9.8.8.7.7.6.6.5.5.4.4 14 145 15 155 16 165 day 14 145 15 155 16 165 day 3.23: efficiency vs day of BKLM-FS4 3.24: efficiency vs day of BKLM-FS5 Efficiency 1.9 Efficiency 1.9.8.8.7.7.6.6.5.5.4.4 14 145 15 155 16 165 day 14 145 15 155 16 165 day 3.25: efficiency vs day of BKLM-FS6 3.26: efficiency vs day of BKLM-FS7 44

3.3. KL /µ Efficiency 1.9 Efficiency 1.9.8.8.7.7.6.6.5.5.4.4 14 145 15 155 16 165 day 14 145 15 155 16 165 day 3.27: efficiency vs day of BKLM-BS 3.28: efficiency vs day of BKLM-BS1 Efficiency 1.9 Efficiency 1.9.8.8.7.7.6.6.5.5.4.4 14 145 15 155 16 165 day 14 145 15 155 16 165 day 3.29: efficiency vs day of BKLM-BS2 3.3: efficiency vs day of BKLM-BS3 45

3 KL /µ KLM Efficiency 1.9 Efficiency 1.9.8.8.7.7.6.6.5.5.4.4 14 145 15 155 16 165 day 14 145 15 155 16 165 day 3.31: efficiency vs day of BKLM-BS4 3.32: efficiency vs day of BKLM-BS5 Efficiency 1.9 Efficiency 1.9.8.8.7.7.6.6.5.5.4.4 14 145 15 155 16 165 day 14 145 15 155 16 165 day 3.33: efficiency vs day of BKLM-BS6 3.34: efficiency vs day of BKLM-BS7 46

3.3. KL /µ Efficiency 1.9 Efficiency 1.9.8.8.7.7.6.6.5.5.4.4 14 145 15 155 16 165 day 14 145 15 155 16 165 day 3.35: efficiency vs day of EKLM-FS 3.36: efficiency vs day of EKLM-FS1 Efficiency 1.9 Efficiency 1.9.8.8.7.7.6.6.5.5.4.4 14 145 15 155 16 165 day 14 145 15 155 16 165 day 3.37: efficiency vs day of EKLM-FS2 3.38: efficiency vs day of EKLM-FS3 47

3 KL /µ KLM Efficiency 1.9 Efficiency 1.9.8.8.7.7.6.6.5.5.4.4 14 145 15 155 16 165 day 14 145 15 155 16 165 day 3.39: efficiency vs day of EKLM-BS 3.4: efficiency vs day of EKLM-BS1 Efficiency 1.9 Efficiency 1.9.8.8.7.7.6.6.5.5.4.4 14 145 15 155 16 165 day 14 145 15 155 16 165 day 3.41: efficiency vs day of EKLM-BS2 3.42: efficiency vs day of EKLM-BS3 48

3.3. KL /µ 3.43: 7 EKLM-FS-L12 49

3 KL /µ KLM 3.44: 9 EKLM-FS-L12 5

3.3. KL /µ 3.18 KLM θ>14 2 µ CDC θ =17 µ µ MuPair CDC 2 µ 3.45 x µ 1 µ 2 4 17 35 17 z µ 1 µ 2 3.45: µ CDC θ =17 µ + µ 51

3 KL /µ KLM 3.3 µ KL µ 52

4 J/ψ K c c J/ψ V cb B b d W V cs s d K 4.1: J/ψ K B J/ψ K 4.1 B J/ψ K CP φ 1 B J/ψ K 4.1 K KS π 4.1 ( ) Clebsh-gordan K S,K L 1/2 B K B B J/ψK K KSπ 1/6 (1.5 ±.17) 1 3 B J/ψK K K + π 2/3 (1.5 ±.17) 1 3 B + J/ψK + K + KS π+ 1/3 (1.48 ±.27) 1 3 B + J/ψK + K + K + π 1/3 (1.48 ±.27) 1 3 4.1: B J/ψ K K K S π K,K S,π 53

4 J/ψ K 1,, K CP ( 1) l CP(K S) CP(π ) l KS π CP(K )=( 1) 1 (+1) ( 1)=+1 J/ψ K CP J/ψ K (, ), (1, 1), ( 1, 1) 3 (, ) CP CP ( 1) l CP(J/ψ) CP(K )=( 1) (+1) (+1) = +1 (1, 1), ( 1, 1) CP CP {(1, 1)+( 1, 1)}/ 2 {(1, 1) ( 1, 1)}/ 2 CP f B f Γ(B (t) phys f) = 1 τ e t τ {Γ+ (1 + a(t)) + Γ (1 a(t))} (4.1) B f Γ( B (t) phys f) = 1 τ e t τ {Γ+ (1 a(t)) + Γ (1 + a(t))} (4.2) B phys ( B phys ) B ( B ) Γ + (Γ ) CP ( ) a(t) CP CP A(t) Γ(B phys (t) f) Γ( B phys (t) f) Γ(Bphys (t) f)+γ( B phys (t) f) = a(t)γ + Γ = a(t) Γ L Γ + +Γ Γ (4.3) Γ L Γ T Γ Γ L +Γ T =Γ CP CP CP J/ψ l + l J/ψ J/ψ e + e J/ψ µ + µ J/ψ (5.93 ±.1) 1 2 (5.88 ±.1) 1 2 4.2: J/ψ l + l KS K S π+ π (68.61 ±.28)% 4.1 B 54

4.1. ( ) 1 1.5 1 3 ( (5.93+5.88) 1 2) (.6861) 6 2.3 1 5 (4.4) 4.1 B J/ψ K, (J/ψ l + l,k KS π,ks π + π ) 1 1 Υ(4S) momentum of B 2 175 15 125 1 75 5 25.1.2.3.4.5.6.7.8.9 1 GeV/c 4.2: B 4.2 Υ(4S) B Υ(4S) B B B.3 GeV/c 4.3 B J/ψ 4.2 B Υ(4S) K 4.4 4.5 1 55

4 J/ψ K momentum of J/ψ 12 1 8 6 4 2.5 1 1.5 2 2.5 3 3.5 4 4.5 5 4.3: J/ψ GeV/c 4 momentum of e ± 4 momentum of µ ± 35 35 3 3 25 25 2 2 15 15 1 1 5 5.5 1 1.5 2 2.5 3 3.5 4 4.5 5 GeV/c 4.4: e ±.5 1 1.5 2 2.5 3 3.5 4 4.5 5 GeV/c 4.5: µ ± J/ψ e ±,µ ± e ±,µ ± 1 2.5 GeV/c 4.6 B K 4.2 B Υ(4S) K 4.7 4.8 K KS π KS π 4.9 4.1 π ± γ 56

4.2. momentum of K * 225 2 175 15 125 1 75 5 25.5 1 1.5 2 2.5 3 3.5 4 4.5 5 4.6: K GeV/c momentum of K S momentum of π 6 6 5 5 4 4 3 3 2 2 1 1.5 1 1.5 2 2.5 3 3.5 4 4.5 5 GeV/c 4.7: K S.5 1 1.5 2 2.5 3 3.5 4 4.5 5 GeV/c 4.8: π 4.2 BELLE B B Bhabha Mu Pair B hadron A J/ψ ψ η c c c 57

4 J/ψ K momentum of π ± momentum of γ 9 8 7 6 5 4 9 8 7 6 5 4 3 3 2 2 1 1.5 1 1.5 2 2.5 3 3.5 4 4.5 5 GeV/c 4.9: π ±.2.4.6.8 1 1.2 1.4 GeV/c 4.1: γ hadron A 4.3 good track IP P t >.1 GeV/c W #good track 3 E vis.4w z P z 1.W ECL.5W E ECL 1.8W 4.3: A hadron A R2 <.8 µ µid EID µid >.1 EID >.1 58

4.2. 2.5 4. GeV/c 2 e + e.8 rad ECL R2 N 2 s i j φ ij k P k (cos φ ij ) k Fox-Wolfram H k 4.5 H k = 1 s N N [ P i P ] j P k (cos φ ij ) (4.5) i j R2 = H 2 H (4.6) 4.2.1 J/ψ 4.2 l + l µ J/ψ l + l µid EID ID µid µ EID 1 1 B B q q 1 3 2 4.11 4.12 ID 4.13, 4.14 1 ID ID J/ψ 2 Generic MC 59

4 J/ψ K 1 6 1 6 1 5 1 5 1 4 1 4 1 3 1 3 1 2 1 2 1 1 1.1.2.3.4.5.6.7.8.9 1 4.11: Generic MC EID EID 1.1.2.3.4.5.6.7.8.9 1 4.12: GenericMC µid µid 1 EID.9 µ µid.8 EID.1 µid.1 1 4 ID Entries Mean RMS 1 28892.2487.4232 1 4 ID Entries Mean RMS 1 28892.5448.4818 1 3 1 3 1 2 1 2 1 1 1 1.1.2.3.4.5.6.7.8.9 1 4.13: MC EID EID.1.2.3.4.5.6.7.8.9 1 4.14: MC µid µid 6

4.2. 4.2.2 J/ψ 4.15 4.2 Generic MC EID µid 3 4.4 J/ψ EID µid 1.1.1 2.9.8.1.1 3 2.9.8 4.4: ID 4.15 4.2 J/ψ 4.4 3 4.4 ID 4.4 2 J/ψ 5mrad γ γ 4.21 4.22 ID J/ψ ( 4.17, 4.18) σ M e + e 5σ M µ + µ 3σ M e + e J/ψ 4.5 61

4 J/ψ K 7 12 6 1 5 8 4 6 3 4 2 1 2 2.8 2.85 2.9 2.95 3 3.5 3.1 3.15 3.2 3.25 3.3 GeV/c2 4.15: M e + e EID.1 & EID.1 2.8 2.85 2.9 2.95 3 3.5 3.1 3.15 3.2 3.25 3.3 4.16: M µ + µ µid.1 & µid.1 45 9 4 8 35 7 3 6 25 5 2 4 15 3 1 2 5 1 2.8 2.85 2.9 2.95 3 3.5 3.1 3.15 3.2 3.25 3.3 GeV/c 2 4.17: M e + e EID.9 & EID.1 2.8 2.85 2.9 2.95 3 3.5 3.1 3.15 3.2 3.25 3.3 GeV/c 2 4.18: M µ + µ µid.8 & µid.1 4 35 3 25 2 8 7 6 5 4 3 15 2 1 1 5 2.8 2.85 2.9 2.95 3 3.5 3.1 3.15 3.2 3.25 3.3 GeV/c 2 4.19: M e + e EID.9 & EID.9 2.8 2.85 2.9 2.95 3 3.5 3.1 3.15 3.2 3.25 3.3 b GeV/c 2 4.2: M µ + µ µid.8 & µid.8 62

4.2. 35 4 3 35 25 3 2 25 2 15 15 1 1 5 5 2.8 2.85 2.9 2.95 3 3.5 3.1 3.15 3.2 3.25 3.3 2.8 2.85 2.9 2.95 3 3.5 3.1 3.15 3.2 3.25 3.3 GeV/c 2 GeV/c 2 4.21: γ M e + e 4.22: γ M e + e GeV/c 2 3.3 3.25 3.2 3.15 3.1 3.5 3 2.95 2.9 2.85 2.8.5 1 1.5 2 2.5 3 3.5 4 4.5 5 GeV/c 4.23: J/ψ e + e µ + µ EID.9 µid.8 EID.1 µid.1 M e + e M J/ψ.431 GeV/c 2 M µ + µ M J/ψ.275 GeV/c 2 4.5: J/ψ 63

4 J/ψ K 4.3 K 4.3.1 K S KS 4.6 2π π 4 γ π ± KS 7 KS K S KS π+ π (68.61 ±.28)% KS π π (31.39 ±.28)% 4.6: KS ππ 14 12 1 8 6 4 2.47.48.49.5.51.52 GeV/c 2 4.24: M π + π K S 2 KS 4.24 dφ, dr, z dist 3 dφ 4.25 2 IP 64

4.3. K IP 11 1 dφ 11 1 4.25: dφ dr 2 z dist 2 z 2 SN 4.26 4.28 dφ dφ KS SN 4.26 KS SN ( )/( ) 1 4 25 225 SN 1.4 2 1.2 175 15 1 1 3 125 1.8.6 75.4 5 25.2.1.2.3.4.5.6.7.8.9.1 dφ.1.2.3.4.5.6.7.8.9.1 dφ cut.1.2.3.4.5.6.7.8.9.1 dφ cut 4.26: dφ 4.27: dφ 4.28: dφ SN dφ 65

4 J/ψ K 25 225 SN.2.19 1 4 2 175.18 15.17 125.16 1 3 1 75 5.15.14 25.13.5.1.15.2.25.3.35.4.45.5 dr.5.1.15.2.25.3.35.4.45.5 dr cut.12.5.1.15.2.25.3.35.4.45.5 dr cut 4.29: dr 4.3: dr 4.31: dr SN 25 225 SN.4.38 2.36 1 4 175 15.34.32 125.3 1.28 1 3 75 5.26.24 25.22.5 1 1.5 2 2.5 3 3.5 4 z-dist 4.32: z dist.5 1 1.5 2 2.5 3 3.5 4 4.5 5 zdist cut 4.33: z dist.2.5 1 1.5 2 2.5 3 3.5 4 4.5 5 zdist cut 4.34: z dist SN.2 rad 4.29 4.31 dr 4.32 4.34 z dist dr.2 cm z dist 3cm 4.35 3σ 4.7.4 GeV/c Pπ + π 2.7 GeV/c K S 4.7 4.3.2 π π 2γ 2 γ γ ECL IP 4.37 66

4.3. K 6 85.54 / 92 P1 423.9 14.59 P2.4978.3183E-4 P3.1858E-2.5262E-4 P4 112.8 1.29 GeV/c 2.52 5 P5.4979.137E-3 P6.457E-2.1682E-3 P7 47.46 1.146 P8-62.36 2.286.51 4.5 3.49 2.48 1.47.48.49.5.51.52 4.35: M π + π GeV/c 2.47.5 1 1.5 2 2.5 3 3.5 4 4.5 5 4.36: M π + π GeV/c dφ.2 cm dr.2 cm z dist 3cm M π + π M KS 6.4 MeV.4 GeV/c P π + π 2.7 GeV/c 4.7: K S γ 4.38 4.1 5 MeV γ M γγ 4.39 KS 3σ = 12 MeV 4.8 Pγγ 1.3 GeV/c 4.3.3 K KS π K 4.4, 4.41 KS π KS,π π 67

4 J/ψ K 14 4 35 12 3 1 8 25 2 6 15 4 1 2 5.12.125.13.135.14.145.15 4.37: M γγ GeV/c 2.2.4.6.8 1 1.2 1.4 4.38: M γγ E γ GeV 9 8 7 1.2 / 15 P1 3161. 52.58 P2.1342.7512E-4 P3.3998E-2.8433E-4 P4 6452. 295.7 P5 -.118E+5 2141. 6 5 4 3 2 1.12.125.13.135.14.145.15 4.39: E γ M γγ 4.4 M K S π 3 3σ = 12 MeV 3-68

4.4. 25 2 56.3 / 45 P1 97.66 6.982 P2.8865.387E-2 P3.3985E-1.4548E-2 P4 439.7 15.46 P5-339.4 15.61 8 7 6 5 15 4 1 3 5 2 1.7.75.8.85.9.95 1 1.5.5 1 1.5 2 2.5 3 3.5 4 4.5 5 4.4: M K S π 4.41: P K S π 4.4 4.4.1 B J/ψ K B B M bc Ebeam 2 P 2 B (4.7) E E beam E B (4.8) E beam (E beam =5.29 GeV) E B P B B B E =,M bc =5.28 4.42 E M bc E π γ ECL B E 5.27 M bc 5.29 M bc.1 E.2 69

4 J/ψ K de Count.5.4.3.2.1 -.1 -.2 -.3 -.4 -.5 6 5.2 5.22 5.24 5.26 5.28 5.3 MB 7 Count 6 5 4 3 2 1 -.5 -.4 -.3 -.2 -.1.1.2.3.4.5 E 5 4 3 2 1 5.2 5.22 5.24 5.26 5.28 5.3 M bc 4.42: E vs M bc 4.4.2 J/ψ KS B B B + B q q Continuum 1, B B B + B 4,, Continuum 2,, 4.8 5.825 fb 1 (* B 2 ) 4.8 7

4.5. MC ε 5.825 fb 1 J/ψ K K KSπ 1 482 4.82% 6.4 J/ψ KS 1 5 5 1 4 1.2 J/ψK K π 1 1 1 1 4 KS π 1 114 1.14% 3. J/ψK K π + 1 1 1 1 4 KL π 1 1 1 1 4 B B 4 12 3 1 6 9.8 B + B 4 3 7.5 1 7 2.6 Continuum 2 1.15 1 7 1.9 4.8: J/ψ KS J/ψ K (KSπ ) KS B B J/ψ KS π π J/ψ KS B K 4.5 BELLE 12 1 7 7 5.825 fb 1 4.43 4.44 M ee,m µµ 4.2.2 ID 4.43 4.17 4.44 4.18 4.43 4.17 EID 4.45 4.46 EID µid 4.11 4.12 71

4 J/ψ K Count 1 ID Entries Mean RMS 1 15518 3.49.1375 Count 12 ID Entries Mean RMS 1 62181 3.31.1312 1 8 8 6 6 4 4 2 2 2.8 2.85 2.9 2.95 3 3.5 3.1 3.15 3.2 3.25 3.3 mass J/psi(eeg) GeV 2.8 2.85 2.9 2.95 3 3.5 3.1 3.15 3.2 3.25 3.3 mass J/psi(µµ) GeV 4.43: M e + e 4.44: M µ + µ µid MUID 1 6 1 6 1 5 1 5 1 4 1 4 1 3 1 3 1 2 1 2 1 1 1.1.2.3.4.5.6.7.8.9 1 e ID 1.1.2.3.4.5.6.7.8.9 1 µ ID 4.45: EID 4.46: µid 4.47 M π + π 4.48 M γγ B 4.49 12 72

4.5. 35 3 25 2 15 1 5.47.48.49.5.51.52 9 8 7 6 5 4 3 2 1.12.125.13.135.14.145.15 4.47: M π + π 4.48: M γγ de Count.4.2 -.2 -.4 5.2 5.22 5.24 5.26 5.28 5.3 de vs MB ID 13 Entries 19 6 Mean 5.263 RMS.275E-1 MB ID 13 Entries 45 3 Mean.67E-1 RMS.228 Count 2.5 2 1.5 1.5 -.5 -.4 -.3 -.2 -.1.1.2.3.4.5 de E de 5 4 3 2 1 5.2 5.22 5.24 5.26 5.28 5.3 MB M bc MB 4.49: E vs M bc 73

4 J/ψ K 4.6 4.8 5.825 fb 1 14 12 12 J/ψ K Br(B J/ψK ) (1.3 ±.5) 1 3 (1.5 ±.17) 1 3 (PDG) 74

5 KLM KLM > 95% 3.3 1. RPC 2. EKLMF-S-L9 9 9 5% MuPair 5 J/ψ K 4.82% J/ψ,KS 5.825 fb 1 14 12 (1.3 ±.5) 1 3 (1.5 ±.17) 1 3 (PDG) KLM 75

5 MuPair KLM KLM π,k J/ψ K CP K K + π 76

A B B B B B B Ψ B (t) = a(t) B + b(t) B (A.1) ( ) a(t) Ψ B (t) = b(t) (A.2) Schrödinger i t Ψ B(t) = H Ψ B (t) = E Ψ B (t) (A.3) a(t) 2 + b(t) 2 = 1 (A.4) H 2 2 A.3 B B ( ) ( ) H 11 H 12 B H B B H B H = = H 21 H 22 B H B B H B (A.5) Ψ(t) = Ψ()e i(m i 2 Γ)t (A.6) H = M i 2 Γ (A.7) M(mass matrix) Γ(decay matrix) 2 2 ( ) ( ) m 11 m 12 Γ 11 Γ 12 M =, Γ= (A.8) m 21 m 22 Γ 21 Γ 22 77

A B B M, Γ CPT m 11 = m 11,m 22 = m 22,m 12 = m 12,m 21 = m 21,m 11 = m 22 Γ 11 =Γ 11, Γ 22 =Γ 22, Γ 12 =Γ 12, Γ 21 =Γ 21, Γ 11 =Γ 22 m 11 = m 22 = m Γ 11 =Γ 22 =Γ ( ) ( ) B H B B H B m i H = B H B B H B = Γ 2 m 12 i Γ12 2 m 12 i m 12 i Γ 2 (A.9) (A.1) (A.11) ( ) (Heavy) B H B L ( B H, B L ) (λ H,λ L ) B H = B L = 1 { p B q B } p 2 + q 2 1 { p B + q B } p 2 + q 2 (A.12) (A.13) λ H = m 11 i 2 Γ 11 pq M H i 2 Γ H (A.14) λ L = m 11 i 2 Γ 11 + pq M L i 2 Γ L (A.15) p = q = ( m 12 1 ) 1 2 Γ 2 12 ( m 12 i ) 1 2 2 Γ 12 (A.16) (A.17) M L,M H M M H + M L, M M H M L (A.18) 2 Γ/Γ 1 2 Γ H =Γ L Γ (A.19) 78

Schrödinger B H (t) = B H ()e i(m H i 2 Γ)t (A.2) B L (t) = B L ()e i(m L i 2 Γ)t (A.21) A.21 B, B B, B Bphys (t) t = B (B L () = B H () = 1/(2p)) t = t B phys t = B (B L () = B H ()=1/(2q)) t = t B phys = g + (t) B + q p g (t) B (A.22) B phys = p q g (t) B + g + (t) B (A.23) g + = e i(m 1 2 Γ)t cos Mt 2 g = ie i(m 1 2 Γ)t sin Mt 2 (A.24) (A.25) 79

[1] L.Wolfenstein, Phy.Rev.Lett. 51, (1983), 1945 [2] Belle Collaboration, Letter of Intent for A Study of CP Violation in B Mason Decays, KEK Report 94-2, (April 1994) [3], B B,, vol.46,no.7, (April 1994) [4], B,, Vol.49,No.9, (1994) [5] Y.Teramoto, 2D-readout of RPC s signals, KEK BELLE Note #18, (1994) [6] Belle Collaboration, KEKB B-Factory Design Report, KEK Report 95-7, (August 1995) [7] Belle Collaboration, BELLE Technical Design Report, KEK Report 95-1, (April 1995) [8] Belle Collaboration, BELLE Progress Report, KEK Progress Report 96-1, (March 1996) [9] K.Neichi et al., The Readout-strip width in KLM detctor, KEK BELLE Note #19, (1996) [1] K.Abe, Gas For KLM detector, KEK BELLE Note #145, (1996) [11], Belle b, Master s thesis,, (1996) [12] Belle Collaboration, BELLE Progress Report, KEK Progress Report 97-1, (March 1997) 8

[13], Belle KL /µ, Master s thesis,, (1997) [14], Flavor Dynamics and CP Violation,, (1998) [15], Study of Gas Mixture for Glass RPC at BELLE Experiment, Master s thesis,, (1998) [16] A.Alavi-Harati, et al., Obserbation of Direct CP Violation in K S, L ππdecays, Phy.Rev.Lett. 83,(July 1999), 22 [17], BELLE µ, Master s thesis,, (1999) [18], BELLE KL, (1999), Master s thesis, [19] BELLE Charmonium group, Event selection of B J/ψK S, KEK BELLE Note #318, (May 2) [2] R.Itoh,IPNS,KEK, Measurement of Polarization of J/ψ in B J/ψ + K and B + J/ψ + K + decays, KEK BELLE Note #344, (July 2) [21] BELLE Charmonium group, Update of Event Selection of B J/ψK S, KEK BELLE Note #346, (July 2) [22] M.Yamaga, et al., Measurement of sin 2φ 1 in B J/ψK L Decays, KEK BELLE Note #358, (October 2) 81

B-factory BELLE KEK BELLE 21 2 14 82