PowerPoint プレゼンテーション

Similar documents
スライド 1

untitled

Microsoft PowerPoint - 応物シンポジウム201003ナノワイヤ21.ppt

10 IDM NEC

スライド 1

untitled

untitled


MOSFET HiSIM HiSIM2 1

untitled

PowerPoint プレゼンテーション

( ) : 1997

パナソニック技報

DA DA シンポジウム DAS25 Design Automation Symposium 25/8/26 Gate Gate Source n Drain n Source n BOX Drain n 2 SOI 2 3 TCAD 4 PHITSTCAD (LSI)

PowerPoint プレゼンテーション

untitled

Front End Processes 新材料導入によるブレークスルーとその課題 主査 : 窪田通孝 ( ソニー ) *: : 国際対応 副主査 : 丹羽正昭 ( 松下 )* 豊島義明 / 水島一郎 ( 東芝 ) 幹事 : 中西俊郎 ( 富士通研 ) 委員 : 武田安弘 ( 三洋 ) 池田修二 (

ELECTRONIC IMAGING IN ASTRONOMY Detectors and Instrumentation 5 Instrumentation and detectors

スライド 1

c c SSIS SSIS 2001 LSI 2001 MIRAI NECASKA SELETE 21 5ISSCC LSI SSIS PR 60 70

1

3次元LSI集積化技術

untitled

T05_Nd-Fe-B磁石.indd

42 1 Fig. 2. Li 2 B 4 O 7 crystals with 3inches and 4inches in diameter. Fig. 4. Transmission curve of Li 2 B 4 O 7 crystal. Fig. 5. Refractive index

COE

燃焼圧センサ

untitled

MOSFET 6-2 CMOS 6-2 TTL Transistor Transistor Logic ECL Emitter Coupled Logic I2L Integrated


Rate of Oxidation of Liquid Iron by Pure Oxygen Shiro BAN-YA and Jae-Dong SHIM Synopsis: The rate of oxidation of liquid iron by oxygen gas has been s

Introduction to Microfabrication

2 3 v v S i i L L S i i E i v L E i v 3. L urren (A) approx. 60% E = V = 0 Ω L = 00 mh urren (A) app

16 (16) poly-si mJ/cm 2 ELA poly-si super cooled liquid, SCL [3] a-si poly-si [4] solid phase crystalization, SPC [5] mJ/cm 2 SPC SCL (di

1. Introduction SOI(Silicon-On-Insulator) Monolithic Pixel Detector ~µm) 2

VLSI工学

Fig. 1 Structure of a Sebaceous Follicle (Ref.1).

IEEE HDD RAID MPI MPU/CPU GPGPU GPU cm I m cm /g I I n/ cm 2 s X n/ cm s cm g/cm

PowerPoint プレゼンテーション

渡辺(2309)_渡辺(2309)

PowerPoint プレゼンテーション

CuおよびCu‐Sn系化合物のSn‐Pbはんだ濡れ性解析

PowerPoint プレゼンテーション

プラズマ核融合学会誌11月【81‐11】/小特集5

環境負荷低減に向けた低温接合技術

磁気測定によるオーステンパ ダクタイル鋳鉄の残留オーステナイト定量

1 1.1,,,.. (, ),..,. (Fig. 1.1). Macro theory (e.g. Continuum mechanics) Consideration under the simple concept (e.g. ionic radius, bond valence) Stru


global global mass region (matter ) & (I) M3Y semi-microscopic int. Ref.: H. N., P. R. C68, ( 03) N. P. A722, 117c ( 03) Proc. of NENS03 (to be

PowerPoint プレゼンテーション

Mott散乱によるParity対称性の破れを検証

光学

untitled

Quantitative Relationship between SAR and Temperature Rise inside Eyeball in a Realistic Human Head Model for 1.5 GHz-Microwave Exposure Kiyofumi Taka

Terahertz Color Scanner Takeshi YASUI Terahertz THz spectroscopic imaging is an interesting new tool for nondestructive testing, security screening, b

untitled

日立金属技報 Vol.34

devicemondai

03_委託テーマ発表資料(その2)(p.89-p.134).pdf

技術創造の社会的条件

研究成果報告書

F9222L_Datasheet.pdf

A Feasibility Study of Direct-Mapping-Type Parallel Processing Method to Solve Linear Equations in Load Flow Calculations Hiroaki Inayoshi, Non-member

<8B5A8F70985F95B632936EE7B22E696E6464>

(a) 1 (b) 3. Gilbert Pernicka[2] Treibitz Schechner[3] Narasimhan [4] Kim [5] Nayar [6] [7][8][9] 2. X X X [10] [11] L L t L s L = L t + L s

13 2 9

Table 1. Reluctance equalization design. Fig. 2. Voltage vector of LSynRM. Fig. 4. Analytical model. Table 2. Specifications of analytical models. Fig

ナノテクノロジ

支援財団研究活動助成 生体超分子を利用利用した 3 次元メモリデバイスメモリデバイスの研究 奈良先端科学技術大学院大学物質創成科学研究科小原孝介

1

特-7.indd

B1 Ver ( ), SPICE.,,,,. * : student : jikken. [ ] ( TarouOsaka). (, ) 1 SPICE ( SPICE. *1 OrCAD

Temperature Rise in a Birefringent Substrate by RF Discharge Plasma Koichi Takaki, Member, Kunioh Sayama, Student Member, Atsushi Takahashi, Student M


スライド 1

d > 2 α B(y) y (5.1) s 2 = c z = x d 1+α dx ln u 1 ] 2u ψ(u) c z y 1 d 2 + α c z y t y y t- s 2 2 s 2 > d > 2 T c y T c y = T t c = T c /T 1 (3.

Microsoft PowerPoint - 山形大高野send ppt [互換モード]

Bull. of Nippon Sport Sci. Univ. 47 (1) Devising musical expression in teaching methods for elementary music An attempt at shared teaching

研究成果報告書

2004/4/16 (Power Technology) O 2 ( ) (Information Technology) ( ) Gas (4H) GaN andgap (ev) Electron mobility (cm 2 /Vs)

42 3 u = (37) MeV/c 2 (3.4) [1] u amu m p m n [1] m H [2] m p = (4) MeV/c 2 = (13) u m n = (4) MeV/c 2 =

1.06μm帯高出力高寿命InGaAs歪量子井戸レーザ

Donald Carl J. Choi, β ( )


OPA134/2134/4134('98.03)

<4D F736F F D208F4390B38DC58F49938A8D6595A CA90858D48985F95B F8F43959C82B382EA82BD B5F2E646F6378>

untitled

IHIMU Energy-Saving Principle of the IHIMU Semicircular Duct and Its Application to the Flow Field Around Full Scale Ships IHI GHG IHIMU CFD PIV IHI M

PALL NEWS vol.126 November 2017

電子部品はんだ接合部の熱疲労寿命解析

THE INSTITUTE OF ELECTRONICS, INFORMATION AND COMMUNICATION ENGINEERS TECHNICAL REPORT OF IEICE.

Electron Ion Collider と ILC-N 宮地義之 山形大学

磁性物理学 - 遷移金属化合物磁性のスピンゆらぎ理論

1..FEM FEM 3. 4.

1/3 (b) (D)=330330(mm) M/(QD)=2.0 6 (F c )80 N/mm 2 120N/mm 2 F c RC 16- D22(SD490)16-D19(USD685) (PCa) 16 4 PC -RB6.2(SBPD p w =0.73% C

表紙

スライド 1

untitled

Microsoft PowerPoint - TMTinst_ _summerschool_akiyama

Transcription:

STRJ ITRS 2003 LSI 2004.3.4. MIRAI

100nmCMOS - Si SOI CMOS SOI MOSFET CMOS

100nmCMOS

trade-off Sub 100 nm CMOS trade-off x j (ext. conc.) Nsub Vdd Vth design EOT S or Si Nsub EOT

something S/D EOT SiGe high k Si SiGe SOI (2 Fin etc.

MOSFET Si SiGe Ge PD-SOI SOI FD-SOI (, FinFET, GAA etc.)

List of (Column IV) High Mobility Channels applicable to MOSFETs n-mosfet (high electron mobility) strained Si on relaxed Si 1-x Ge x virtual sub. pure Ge channel? (Ge problem in MOS interface high k / Ge MIS?) p-mosfet (high hole mobility) strained Si on relaxed Si 1-x Ge x virtual sub. strained Si 1-x Ge x on Si sub. (Si 1-x Ge x buried channel problems in C g, SCE etc.) pure Ge channel? strained-si channel for CMOS application (surface channel SiGe pmos and pure Ge CMOS under new gate insulator technology)

ITRS Technology Booster Factors ASIC HP (High Performance) (ITRS 2003 Edition) 130 90 (nm) 65 45 32 22 MOSFET (nm) 65 37 25 18 13 9 Mobility Improve F. 1x 1.3x 2.0x 2.0x 2.0x 2.0x Velocity Improve F. 1x 1x 1x 1.1x 1.1x 1.3x Eeff reduction F. 1x 1x 1x 0.6x 0.5x 0.5x Device Structure Bulk Bulk Bulk SOI DG DG I dsat 0 V dsat = L 1 µ 2 = 1 E eff C 1 1 + d + V ox _ el c gt W L E c V gt V 2ν µ eff dsat µ eff K mu µ eff 0 ν sat = K ν sat = Vs sat0 = mobility imp. F. velocity imp. F.

v s : v s = µ s E s N s source I sat = qn s source v s µ s % Mobility Shift Velocity vs. mobility shift for 45-nm NFET under applied uniaxial strain, δv/δµ=0.45-0.50 (at L g of sub 100 nm) I sat µ +4 Vgs = 1V Vgmi +2 0 % Velocity Shift Lochefeld et al., EDL(2001)591-2 -4 Vidi -2 0 +2 +4 +2 0-2 -4

Si Yamada et al, TED(1994)1513 Rim et al., TED(2000)1406 ν sat ν sat τ w

- Si SOI CMOS

SiGe MOSFET SOI G SiO 2 S n + poly-si n + Si n + Si 1-x Ge x SiGe Si Ge: 0 % x % Mizuno et al., IEDM(1999)934 Si Mizuno et al., EDL-21(2000)230 Takagi, IJHSES-10(2000)155 J. Welser et al., IEDM(1992) 1000 Takagi, IEICE, E85-C(2002)1064 D G SiO 2 S gate D p + n + Si n p + Si 1-x Ge x SiO 2

<100> spin -orbit Influence of Strain on Conduction and Valence Band Structures <001> E C <001> <010> degenerate E V strained Si SiGe 4 fold 6 fold degenerate heavy hole light hole without strain 2fold 2 fold <100> out-ofplane spin -orbit <001> <010> light k in-plane heavy tensile strain mobility enhancement reduction in (averaged) conductivity mass suppression of inter-valley scattering

Methods for Preparing Strained-Si Layers Bulk relaxed SiGe buffer technology - SiGe graded buffer technique - other techniques (low temperature buffer, SiGe buffer including damaged layer etc.) Relaxed SiGe-On-Insulator (SGOI) technology - Wafer bonding - Thermal melting of SiGe/SOI - SIMOX for SiGe/Si substrates - Ge condensation due to oxidation Single-layer strained-soi technology - Wafer bonding Other technologies - Use stressors (STI, capping layer(s), SiGe S/D, silicides, poly-si gate etc.)

Si CMOS 15-25 % Ion-Ioff improvement 100nm MOS Si trade-off 18% τ pd RO τ pd 6.5ps (T. Sanuki et al., IEDM2003, p. 65) (Wang et al., IEDM2003, p. 61)

SOI SOI substrates SiGe/Si substrates BOX SOI sub. BOX Si Si sub. Si 1-x Ge x (x>0.1) Si Si sub. Oxide (SiO 2 ) Higher Ge content Si 1-x Ge x (x>0.3) slip conventional SOI sub. SiGe epitaxy (Ge condensation) oxidation Ge SiGe epitaxy on Si sub SIMOX process Strained-Si epitaxy Si 1-x Ge x (x<0.15) Si sub. Si 1-x Ge x (x<0.1) Si sub. thin and strained SiGe O + implantation + high T anneal BOX strained Si layer

200 mm strained SOI wafer 1 T SGOI / T Si =90nm / 25nm Strain (%) 0.8 0.6 0.4 0.2 0.2 0.15 0.1 0.05 x eff Ge condensation for SiGe/SOI + regrowth of strained Si T Strained Si /T SGOI = 25nm/90nm effective Ge content: 21% 0 0-100 -50 0 50 100 Position (mm) Variation in strain Uniform in wafer scale Void free

Si MOSFET SiGe S/D pmos Intel, IEDM02, 03) Si STI capping layer, silicide SOI MOSFET (IEDM01) (02) IBM, Intel, TSMC, Princeton, 03) AMD, IBM (IEDM03)

Application of Strained-Si FET into 90 nm TN (Intel) (S. Thompson et al., IEDM2002, p. 61, T. Ghani et al., IEDM2003, p. 978) high hole mobility enhancement of 50 % even in high E eff at 17% of Ge content 20 % Ion improvement for both nmos and pmos pmos compressive strain due to SiGe S/D nmos tensile strain due to SiN films nmos pmos mobility vs E eff pmos

Strained-Si Directly-On-Insulator MOSFET ( K. Rim et al., IEDM (2003) p. 49) Fabrication of bonded single strained-soi sub. by smart cut Demonstration of n- and p-mosfets with L g of 60 nm

MOSFET SOI

MOSFET Wong et al, IEDM 1997 Lee et al, IEDM 1999 Hergernrother et al, IEDM 1999 Hisamoto et al, IEDM 1998, Huang et al, IEDM 1999

SOI SOI FD SOI (single gate) T SOI ~ L g /4 - L g /3 FinFET (double gate) T SOI (Fin T SOI ~ L g /2 - L g /1.5 SOI D. Hisamoto, T SOI =0.7L min (= L min /1.5 ) IEDM short course (2003)8

SOI 10nmMOSFET B. Doris et al., IEDM2002, p. 267 L g = 6 nm, 12 nm L g = 14 nm

Electron Mobility [cm 2 /Vsec] 400 200 SOI MOSFET (K. Uchida, H. Watanabe, A. Kinoshita, J. Koga, T. Numata and S. Takagi, IEDM(2002) 47) 4.08nm 3.37nm 2.99nm ~60nm T = 300K T SOI = 2.48nm Universal Mobility Enhancement 0.1 1 Effective Field [MV/cm] Hole Mobility [cm 2 /Vsec] ~60nm 7.03nm 5.49nm T = 300K Universal 3.57nm 3.08nm 2.88nm T SOI = 2.72nm 0.1 1 Effective Field [MV/cm] SOI 100 10

Electrical Properties of sub-1 nm Extremely-thin SOI (K. Uchida, J. Koga, and S. Takagi, IEDM (2003) p. 805) 1.0 nm 0.7 nm

SOI ~ K. Uchida et al., IEDM (2002)47 (a) (b) GOX SOI BOX Interface roughness Thickness fluctuation E C [ev] 0.15 Potential fluctuation V 0.1 (c) T SOI [nm] potential barrier due to quantum confinement effect Potential barrier due to larger quantum confinement effect E = T Electrons 1 6 δt SOI -limited 0.05 mobility µ r µ r TSOI Thermal Energy V 0 SOI 2 4 6 8 10 2 E F = E C E n = 2 n h V * 3 SOI 4m TSOI h * 2 8m tsoi electrons Si/SiGe; A. Gold, Phys. Rev. B35 (1987)723 GaAs/AlAs; H. Sakaki et al., APL (1987)1934 2

Mobility [cm 2 /Vsec] 1000 SOI 6 T SOI T=25K E eff =0.1MV/cm 100 2 3 4 δt SOI [atomic layer] 8 6 4 2 2 3 δt SOI should be smaller than this line 4 5 T SOI [nm] SOI 4nm MOSFET T SOI [nm] SOI T 6 SOI 3 SOI 6 7

MOSFET

MOSFET Ballistic S D S D CMOS Ballistic Ballistic Efficiency 0.4-0.7 for L g of 40-24 nm (Natori, SSDM2002, p.17) 0.4-0.5 for L g of 50 nm (Antoniadis, VLSI Symp.2002, p.2) v inj N source s I sat = qn s source v inj Ballistic

Carrier Injection Velocity [ cm/s ] Ballistic MOSFET 5x10 7 4x10 7 3x10 7 2x10 7 v Ballistic (100) 2 1/2 N s K. Natori, JAP76 (1994) 4879 inj k B T 12 v 2 th mx π V th 1/ 2 1.5x10 7 E 0 E V (ii) 0 F D 2 DOS 2D 4 4 4Ns vinj = vf = 3π 3π m 10 7 xd2 D M v D 10 11 10 12 10 13 10 14 2D = mxm 2 y Ns [ cm -2 ] E F (i) πh M v

I-V curves under full ballistic transport Drain Saturation Current [ µa/µm ] (S. Takagi, VLSI Symp. (2003) 115) 5000 4000 3000 2000 1000 Ion (45 nm TN) (2002) 0 0.0 0.1 0.2 0.3 0.4 0.5 0.6 (100) Si Strained Si (Ge=20%) (111) Ge (100) SOI (3nm) (111) GOI (3nm) I off = 3µA/µm const. T OX = 0.5 nm V g [ V ] Even under ballistic transport, SOI, strained Si, Ge, and GOI can provide higher current drive, because of higher injection velocity Ultra-thin GOI MOSFET is one of the most promising device structures beyond 45 nm TN

CMOS

Planar technology Non-planar technology Future New Channel Structure Families New channel materials SOI-based devices 3D structure (DG) devices ( S. Takagi et al., IEDM (2003) 57 ) PDSOI bulk Strained- Si, SiGe, SiGeC MOS FDSOI UTB SOI back gate controlled FDSOI Gate All Around MOS FinFET vertical FET strained-soi, SGOI PD Ge channel MOSFET strained-soi, SGOI FD GOI Ge-On- Insulator) MOS Strained SOI /GOI CMOS 3D strained-soi, SGOI, GOI MOS Technology Node

Strained-Si on nothing (SSON) Structure Strained-Si on nothing (SSON) structure applicable to DG strained-si MOSFET Confirm strain of 90-40 % in SSON region by nano-ed (electron diffraction) method relaxed SiGe Si sub. Gate electrode SSON channel BOX Strained-Si-on-nothing region K. Usuda et al., SOI conference 2003, p. 138 Si 0.72 Ge 0.28 layer Strained-Si layer BOX

Hole Mobility in SiGe-On-Insulator p-mosfet Strained-SiGe channel p-mosfet 2.3 time higher µ eff Surface channel structure (SiO 2 /SiGe interface) higher N ss Fully-depleted operation (T SiGe 20 nm) poly-si gate source SiGe SiO 2 Si gate oxide drain T. Tezuka, N. Sugiyama, T. Mizuno and S. Takagi, IEDM (2001) p. 946 Effective mobility (cm 2 /Vs) 1000 100 L/W=100/118 µm V d =-10 mv 10 5 10 6 Effective field (V/cm) Improvement and understanding of SiO 2 /SiGe interface properties are important pmosfet x=0.42 x=0.35 x=0.28 universal Si control

High k / Ge MISFETs C.-O. Chui et al., IEDM (2002) 437 A. Ritenour et al., IEDM (2003) 433 high k / Ge MIS high k / Ge MISFET

Dual channel CMOS using pure Ge pmos Strained Si Strained SiGe or Ge Relaxed SiGe (50% Ge) Dual Channel C.W. Leitz et al., MRS Proc. 686(2002)113 M.J. Lee et al., IEDM (2003) 429 Very high hole mobility can be obtained for strained-sige p- MOSFETs with high Ge contents

GOI (Ge-On-Insulator) Structure fabricated by Ge Condensation Technique SiGe Ge condensation Ge SiO 2 SiO 2 SOI BOX Si sub. SiGe BOX Si sub. Ge BOX Si sub. Cross-sectional TEM SiO 2 100nm Surface Oxide Ge BOX Residual Si conc. < 0.01 % S. Nakaharai et al., Appl. Phys. Lett., vol. 83 (2003) 3516 Cross-sectional TEM 10 nm 100nm 7 nm 7nm Surface Oxide Ge Ge BOX BOX

70nm CMOS Si MOS near term SOI CMOS Si SOI SOI Si GOI MOSFET NEDO