Date Wed, 20 Jun (JST) From Kuroki Gen Message-Id Subject Part 4
|
|
|
- なお じゅふく
- 7 years ago
- Views:
Transcription
1 Part generator 3 3 L 7 4 Manin triple 8 5 KP Hamiltonian 10 6 n-component KP 12 7 nonlinear Schrödinger Hamiltonian 13 http//wwwmathtohokuacjp/ kuroki/hyogen/soliton-4txt TEX , 1
2 Date Wed, 20 Jun (JST) From Kuroki Gen Message-Id Subject Part 4 http//wwwmathtohokuacjp/~kuroki/hyogen/soliton-10txt http//wwwmathtohokuacjp/~kuroki/hyogen/soliton-11txt http//wwwmathtohokuacjp/~kuroki/hyogen/soliton-2txt http//wwwmathtohokuacjp/~kuroki/hyogen/soliton-3txt Part 3 Lie algebra Hamiltonian KP nonlinear Schrödinger Lie algebra Hamiltonian, R C Nonlinear Schrödinger (NLS) Hamiltonian 7 NLS Davey-Stewartson (DS) ( 2-component KP) Hamiltonian 1 R derivation = / x (differential algebra) (R, ), R associative algebra, R R (fg) = (f)g + f (g) (f, g R), f = (f), f (n) = n (f), etc R (subalgebra C of constants) C = { f R f = (f) = 0 } R, C 11, (1) R = R 1 = C[[x]], C = C (2) R = R 2 = M(n, R 1 ), C = M(n, C) (3) R = R 3 = C((x)), C = C (4) R = R 4 = M(n, R 3 ) = M(n, C((x))), C = M(n, C) (5) R = R 5 = C (S 1 ) = {S 1 C }, C = C (6) R = R 6 = M(n, R 5 ) = M(n, C (S 1 )), C = M(n, C) 2
3 (R, ) D = D R E = E R R D = D R = R[ ] = { M a i i M Z 0, a i R }, m=0 E = E R = R(( 1 )) = { a i i M Z, ai R } m m D E f = f + f, 1 f = f 1 f 2 + f 3 f 4 +, f R, D E associative algebra with 1 E 1 -adic topology, x n f = ( ) n f (k) x n k, f x n = ( ) n ( 1) k f (k) x n k k k k 0 k 0, ( n k) E Lie subalgebras E +, E E + = D, E = R[[ 1 ]] 1, E = E + E ( ) 2 generator 21 n, n { A E n A = A n } = C(( 1 )) A E A = i M A i i, A i R (A i = 0 if i > M) n A = A n = A i C (i M) ), Leibnitz, [ n, A] = i M ( n j [ n, A i ] i = i M n 1 ( ) n A (n j) i i+j = j j=0 k M+n 1 n 1 j=0 ( ) n A (n j) k j k j 3
4 , i > M A i = 0, [ n, A] = 0, ( ) n 0 = A n 1 M A M C 0 = ( ) ( ) ( ) n n n A M + A M 1 = A n 2 n 1 n 1 M 1 A M 1 C 0 = ( ) ( ) ( ) n n n A M + + A M 2 = A n 3 n 1 n 1 M 2 A M 2 C, i M A i C 22 a, b m, n a m b n, A E, (a m )A = A(b n ) = A = 0 A E A = i M A i i, A i R (A i = 0 if i > M) A 0 A M 0, (a m )A = a i M A(b n ) = b k M+n m j=0 ( ) m A (m j) i i+j = a j k M+m A k n k m j=0 ( ) m A (m j) k j k, j a m b n (1) a 0 b = 0 (2) a = 0 b 0 (3) ab 0 m > n (4) ab 0 m < n (5) ab 0 m = n a b 4
5 , (1) (2), (a m )A A(b n ) 0, (a m )A A(b n ), (3), (a m )A A(b n ) M + m, aa M 0, (a m )A A(b n ), (4), (a m )A A(b n ) M + n, ba M 0, (a m )A A(b n ), (5), (a m )A A(b n ) M + m, (a b)a M 0, (a m )A A(b n ) e 1,, e S C = { A R A = 0 } (1) e e S = 1, (2) e a e b = e a δ a,b C C e 23 C e = { A C e a A = Ae a } C e = { S a=1 e a Ae a A C } A = b,c e bae c, A C e, b c e b Ae c = 0 e a A = Ae a, 0 = e b (e a A Ae a )e c = (δ a,b δ a,c )e b Ae c, b c a = b e b Ae c = 0 c 1,, c S n 1,, n S a b = c a n1 c b n S, P D P = c 1 e 1 n c S e S n S generator P P 24, { A E P A = AP } = C e (( 1 )), A P A C e 5
6 { A E P A = AP } C e (( 1 )) C e, A E,,, P A = AP, A a,b = e a Ae b e a P Ae b = (c a n a )A a,b, e a AP e b = A a,b (c b n b ) (c a n a )A a,b = A a,b (c b n b ) 21 A a,a C(( 1 )), 22, a b A a,b = 0, 23, A C e (( 1 )) 25 F, F C F R = M(n, F ) {1,, n} {K 1,, K S }, e a = (E ij ) i K a E ii,, C = M(n, C F ) C e C e = S a=1 i,j K a C F E ij, C e K a 26 (nonlinear Schrödinger (NLS) ) 25 n = 2,,, S = 2, e 1 = E 11, e 2 = E 22 (E ij ) C e = C F e 1 C F e 2 = diag(c F, C F ) P = e 1 m e 2 m = diag( m, m ), A P, A diag(c F, C F ), S = 1, e 1 = E 11 + E 22 = ( ) 6
7 , C e = M(2, C F ), P = e 1 m = diag( m, m ), A P, A M(2, C F ) 3 L G G = 1 + E G A E, A n n, A + A 2 + A 3 +, A E, (1 A) 1 = 1 + A + A 2 + A E, G G Lie algebra E P D (1) e e S = 1 (2) e a e b = e a δ a,b (3) c 1,, c S (4) n 1,, n S (5) a b = c a na c b n b (6) P = c 1 e 1 n c S e S n S G G (C e ) G (C e ) = G C e (( 1 )) = 1 + C e [[ 1 ]] 1 W G, L = W P W 1 L, W L 31 W, V G, W P W 1 = V P V 1 = W 1 V 1 + C e [[ 1 ]] 1 W QW 1 = V QV 1 QW 1 V = W 1 V Q, 24, W 1 V G (C e ) 7
8 32 {P L } = { W P W 1 W G } = G /G (C e ) 33 (NLS ) 25 n = 2,,, S = 2, e 1 = E 11, e 2 = E 22 (E ij ) C e = C F e 1 C F e 2 = diag(c F, C F ) P = e 1 m e 2 m = diag( m, m ), W G P, W 1 + diag(c F [[ 1 ]] 1, C F [[ 1 ]] 1 ) m, S = 1, e 1 = E 11 + E 22 = ( ), C e = M(2, C F ), P = e 1 m = diag( m, m ), W G P, W 1 + M(2, C F [[ 1 ]] 1 ) m 4 Manin triple R restr (1) restr(ab) = restr(ba) (A, B R) (2) A R, restr(ab) = 0 B = 0 8
9 (3) restr(a ) = 0 (A R) 41 (1) R = C((x)), restr(f) = Res x=0 (f dx) (f R) (2) R = M(n, C((x))), restr(f ) = Res(tr(F ) dx) (F R) x=0 tr(f ) trace (3) R = C (S 1 ), restr(f) = f dx (f R) S 1 (4) R = M(n, C (S 1 )), restr(f ) = tr(f ) dx S 1 (F R) tr(f ) trace (5) R = C[[x]] (R) = R, restr R restr E trace trace(p ) = restr(a 1 ) (P = a i i E), E bilinear form, P, Q = trace(p Q) (P, Q E) 42 E trace, (1) trace(p Q) = trace(qp ) (P, Q E), (2) P E, trace(p Q) = 0 Q = 0 (3), E nondegenerate symmetric bilinear form (4), E +, E isotropic (, E +, E + = 0, E, E = 0 E + E, ) (5) AB, C = A, BC (A, B, C R) (6) [A, B], C = A, [B, C] (A, B, C R) (3), (4), (6), (E, E +, E ) Manin triple Manin triple http//wwwmathtohokuacjp/~kuroki/hyogen/classical-r-3txt r Part 3 10 Manin triples and the double of Lie bialgebras, E, E +, E Lie bialgebras 9
10 5 KP Hamiltonian, KP linear (= first) Poisson bracket Hamiltonian (quadratic Poisson bracket ), E = C((x))(( 1 )),, E trace invariant nondegenerate bilinear form, trace(a) = Res x=0 (a 1 dx) (A = a i i E), A, B = trace(ab) (A, B E) A E, A A + E + = D, A A E A = A + A, A + E + = D, A E E r-bracket [A, B] r = [A +, B + ] [A, B ] (A, B E) r-bracket E Lie algebra Lie algera E r A E A +, A r +, r E E 51 A, L, M E,, [M, L] = 0, L, [A, M] r = r +[M, L] + [r (M), L], A L, [A, M] r = [M, L], A = [M +, L], A [A, M] r = [r + (A), M] + [A, r (M)],, [M, L] = 0,, M = M + M L, [A, M] r = L, [r + (A), M] + [A, r (M)] = [M, L], r + (A) + [r (M), L], A = r +[M, L], A + [r (M), L], A = r +[M, L] + [r (M), L], A L, [A, M] r = [M, L], A [M, L] = [M + M, L] = [M +, L] 10
11 52,, E = E, E r Lie algebra [, ] r E Poisson {, } 1 {F, G} 1 (L) = L, [ F (L), G(L)] r (F, G E ), F (L) E F (L), A = df (L)(A) = [df (L + sa)/ds] s=0 {, } 1 KP linear Poisson bracket first Poisson bracket 53 (E, E +, E ) Manin triple, linear Poisson bracket, quadratic Poisson bracket Sklyanin bracket 54 E linear function a(l) = A, L = trace(al), da(l) = trace(a dl), da(l)(b) = trace(ab) = A, B, a(l) = A 55 E H m, H m (L) = 1 m + 1 trace(lm+1 ), dh m (L) = trace(l m dl), dh m (L)(A) = trace(l m A) = L m, A H m (L) = L m 51 54, 55, A E, {a, H m } 1 (L) = [(L m ), L], A = [(L m ) +, L], A, L {, H m } 1 E {L, H m } 1 (L), {L, H m } 1 (L) = [(L m ), L] = [(L m ) +, L], Hamiltonian H m Poisson bracket {, } 1 Hamilton Lax L t m = [(L m ), L] = [(L m ) +, L], KP hierarchy 11
12 6 n-component KP, E = E n = M(n, E 1 ), E 1 = C((x))(( 1 )),, E trace invariant nondegenerate bilinear form, trace(a) = Res x=0 (tr(a 1) dx) (A = A i i E), A, B = trace(ab) (A, B E) A E, A A + E + = D, A A E A = A + A, A + E + = D, A E E r-bracket [A, B] r = [A +, B + ] [A, B ] (A, B E) r-bracket E Lie algebra Lie algera E r A E A +, A r +, r E E 51 61,, E = E, E r Lie algebra [, ] r E Poisson {, } 1 {F, G} 1 (L) = L, [ F (L), G(L)] r (F, G E ), F (L) E F (L), A = df (L)(A) = [df (L + sa)/ds] s=0 {, } 1 n-component KP linear Poisson bracket first Poisson bracket 62 (E, E +, E ) Manin triple, linear Poisson bracket, quadratic Poisson bracket Sklyanin bracket n-component KP generators P P basis P = diag(c[ ],, C[ ]) D P i,m = E ii m (E ij, i = 1,, n, m = 1, 2, 3, ) 12
13 P basis t i,m, G = 1 + M(n, C((x))[[ 1 ]] 1 ) flow W t i,m = (L i,m ) W, L i,m = W P i,m W 1 (W G ) n-compinent KP hierarchy (n-ckp), A P, L A = W AW 1, L A Lax L A t i,m = [(L i,m ), L A ] = [(L i,m ) +, L A ] Q P, n-ckp Q-reduction constraint L Q (L Q ) = 0, L Q = (L Q ) + (Q-reduction) Q = c i,m P i,m P, [ ] ci,m W = 0 (Q-reduction) t i,m 7 nonlinear Schrödinger Hamiltonian, nonlinear Schrödinger (NLS) linear (= first) Poisson bracket Hamiltonian, nonlinear Schrödinger (NLS) hierarchy 2-component KP hierarchy Q = diag(, ) Q-reduction constraint Q-reduction constraint W diag(, )W 1 = diag(, ) 13
14 , 33,, W 1 + M(n, C[[ 1 ]] 1 ), W x = 0 Q-reduction, P 1,m = E 11 m = diag( m, 0), P 2,m = E 22 m = diag(0, m ), t 1,m, t 2,m derivation 1,m, 2,m 1,m = Q-reduction,, 2,m = t 1,m t 2,m ( 1,m + 2,m )W = 0,, s m = t 1,m + t 2,m, t m = t 1,m t 2,m, Q-reduction, sm = 1,m + 2,m, tm = 1,m 2,m sm W = 0, t m tm W = (L m ) W, L m = W diag( m, m )W 1 L m, Q = diag(, ), L m = Q m 1 L 1 ( ) 33, W L m C 1 + diag(c F [[ 1 ]] 1, C F [[ 1 ]] 1 ) 14
15 L m W m,, L 1 (0) = W (0) diag(, )W (0) 1, Lax L 1 well-defined tm L 1 = [(L m ), L 1 ] = [(L m ) +, L 1 ] Lax W, W (t) L 1 (t) C 71 ( ) (1-component) KP hierarchy 1 NLS hierarchy E H m H m (L) = 1 2 trace(qm 1 L 2 ) (L E), Q = diag(, ), H m linear (= first) Poisson bracket Hamilton NLS Lax, NLS L 1 L Q = diag(, ),, dh m (L) = trace(q m 1 L dl), dh m (L)(A) = trace(q m 1 LA) = Q m 1 L, A H m (L) = Q m 1 L, KP, Q = diag(, ) L, {L, H m } 1 (L) = [(Q m 1 L), L] = [(Q m 1 L) +, L], Hamilton, Q = diag(, ) L, tm L = [(Q m 1 L), L] = [(Q m 1 L) +, L], ( ) L m = Q m 1 L 1, NLS L 1 Lax 72 Q = diag(, ) L, L H m (L) = 0, dh m (L) 1 L m L = L 1 L KP L m = L m, NLS L m = Q m 1 L 15
16 73 Q diag(, ), L Q, Lax Hamiltonian t L = [(Q m L n ), L] = [(Q m L n ) +, L] H(L) = 1 n + 1 trace(qm L n+1 ) Hamilton, Lax pair (L, M + ) M Q 1,, Q K L M = f(q 1,, Q K ; L), Lax t L = [M, L] = [M +, L] Hamiltonian H(L) = trace(f (Q 1,, Q K ; L)), F (x 1,, x K ; y) = f(x 1,, x K ; y) dy Hamilton, 74 Hamiltonian Lax L Hamiltonian vector field, m, NLS L m L m = L m 1, L m Hamiltonian, H m (L) = 1 m + 1 trace(lm+1 1 ), NLS L, L L 1, L 0 = W diag(1, 1)W 1 ( ) L, L m = Q m L 0, Hamiltonian, H m (L) = 1 2 trace(qm L 2 ) 16
1 n A a 11 a 1n A =.. a m1 a mn Ax = λx (1) x n λ (eigenvalue problem) x = 0 ( x 0 ) λ A ( ) λ Ax = λx x Ax = λx y T A = λy T x Ax = λx cx ( 1) 1.1 Th
1 n A a 11 a 1n A = a m1 a mn Ax = λx (1) x n λ (eigenvalue problem) x = ( x ) λ A ( ) λ Ax = λx x Ax = λx y T A = λy T x Ax = λx cx ( 1) 11 Th9-1 Ax = λx λe n A = λ a 11 a 12 a 1n a 21 λ a 22 a n1 a n2
20 9 19 1 3 11 1 3 111 3 112 1 4 12 6 121 6 122 7 13 7 131 8 132 10 133 10 134 12 14 13 141 13 142 13 143 15 144 16 145 17 15 19 151 1 19 152 20 2 21 21 21 211 21 212 1 23 213 1 23 214 25 215 31 22 33
x V x x V x, x V x = x + = x +(x+x )=(x +x)+x = +x = x x = x x = x =x =(+)x =x +x = x +x x = x ( )x = x =x =(+( ))x =x +( )x = x +( )x ( )x = x x x R
V (I) () (4) (II) () (4) V K vector space V vector K scalor K C K R (I) x, y V x + y V () (x + y)+z = x +(y + z) (2) x + y = y + x (3) V x V x + = x (4) x V x + x = x V x x (II) x V, α K αx V () (α + β)x
25 7 18 1 1 1.1 v.s............................. 1 1.1.1.................................. 1 1.1.2................................. 1 1.1.3.................................. 3 1.2................... 3
20 6 4 1 4 1.1 1.................................... 4 1.1.1.................................... 4 1.1.2 1................................ 5 1.2................................... 7 1.2.1....................................
( ) ( 40 )+( 60 ) Schrödinger 3. (a) (b) (c) yoshioka/education-09.html pdf 1
2009 1 ( ) ( 40 )+( 60 ) 1 1. 2. Schrödinger 3. (a) (b) (c) http://goofy.phys.nara-wu.ac.jp/ yoshioka/education-09.html pdf 1 1. ( photon) ν λ = c ν (c = 3.0 108 /m : ) ɛ = hν (1) p = hν/c = h/λ (2) h
II Time-stamp: <05/09/30 17:14:06 waki> ii
II [email protected] 18 1 30 II Time-stamp: ii 1 1 1.1.................................................. 1 1.2................................................... 3 1.3..................................................
II 2 3.,, A(B + C) = AB + AC, (A + B)C = AC + BC. 4. m m A, m m B,, m m B, AB = BA, A,, I. 5. m m A, m n B, AB = B, A I E, 4 4 I, J, K
II. () 7 F 7 = { 0,, 2, 3, 4, 5, 6 }., F 7 a, b F 7, a b, F 7,. (a) a, b,,. (b) 7., 4 5 = 20 = 2 7 + 6, 4 5 = 6 F 7., F 7,., 0 a F 7, ab = F 7 b F 7. (2) 7, 6 F 6 = { 0,, 2, 3, 4, 5 },,., F 6., 0 0 a F
koji07-01.dvi
2007 I II III 1, 2, 3, 4, 5, 6, 7 5 10 19 (!) 1938 70 21? 1 1 2 1 2 2 1! 4, 5 1? 50 1 2 1 1 2 2 1?? 2 1 1, 2 1, 2 1, 2, 3,... 3 1, 2 1, 3? 2 1 3 1 2 1 1, 2 2, 3? 2 1 3 2 3 2 k,l m, n k,l m, n kn > ml...?
(2018 2Q C) [ ] R 2 2 P = (a, b), Q = (c, d) Q P QP = ( ) a c b d (a c, b d) P = (a, b) O P ( ) a p = b P = (a, b) p = ( ) a b R 2 {( ) } R 2 x = x, y
(2018 2Q C) [ ] R 2 2 P = (a, b), Q = (c, d) Q P QP = a c b d (a c, b d) P = (a, b) O P a p = b P = (a, b) p = a b R 2 { } R 2 x = x, y R y 2 a p =, c q = b d p + a + c q = b + d q p P q a p = c R c b
(2016 2Q H) [ ] R 2 2 P = (a, b), Q = (c, d) Q P QP = ( ) a c b d (a c, b d) P = (a, b) O P ( ) a p = b P = (a, b) p = ( ) a b R 2 {( ) } R 2 x = x, y
(2016 2Q H) [ ] R 2 2 P = (a, b), Q = (c, d) Q P QP = a c b d (a c, b d) P = (a, b) O P a p = b P = (a, b) p = a b R 2 { } R 2 x = x, y R y 2 a p =, c q = b d p + a + c q = b + d q p P q a p = c R c b
さくらの個別指導 ( さくら教育研究所 ) A 2 P Q 3 R S T R S T P Q ( ) ( ) m n m n m n n n
1 1.1 1.1.1 A 2 P Q 3 R S T R S T P 80 50 60 Q 90 40 70 80 50 60 90 40 70 8 5 6 1 1 2 9 4 7 2 1 2 3 1 2 m n m n m n n n n 1.1 8 5 6 9 4 7 2 6 0 8 2 3 2 2 2 1 2 1 1.1 2 4 7 1 1 3 7 5 2 3 5 0 3 4 1 6 9 1
A S- hara/lectures/lectures-j.html r A = A 5 : 5 = max{ A, } A A A A B A, B A A A %
A S- http://www.math.kyushu-u.ac.jp/ hara/lectures/lectures-j.html r A S- 3.4.5. 9 phone: 9-8-444, e-mail: [email protected], http://www.math.kyushu-u.ac.jp/ hara/lectures/lectures-j.html Office
140 120 100 80 60 40 20 0 115 107 102 99 95 97 95 97 98 100 64 72 37 60 50 53 50 36 32 18 H18 H19 H20 H21 H22 H23 H24 H25 H26 H27 1 100 () 80 60 40 20 0 1 19 16 10 11 6 8 9 5 10 35 76 83 73 68 46 44 H11
1 = = = (set) (element) a A a A a A a A a A {2, 5, (0, 1)}, [ 1, 1] = {x; 1 x 1}. (proposition) A = {x; P (x)} P (x) x x a A a A Remark. (i) {2, 0, 0,
2005 4 1 1 2 2 6 3 8 4 11 5 14 6 18 7 20 8 22 9 24 10 26 11 27 http://matcmadison.edu/alehnen/weblogic/logset.htm 1 1 = = = (set) (element) a A a A a A a A a A {2, 5, (0, 1)}, [ 1, 1] = {x; 1 x 1}. (proposition)
B's Recorderマニュアル_B's Recorderマニュアル
5 Part 6 - 8 9 - 0 5 A C B AB A B A B C 7-6 - 8 9-5 0 5 7 A D B C E F A B C D F E 6 9 8 0 Part - - 5 5 7 6 9-7 6 8 0 5 5-6 7 9 8 5-5 50 5 5 5 -6 5 55 5 57-7 56 59 8 7 6 58 0 8 9 6 6 7 6 5 60 7 5 6 6-8
B's Recorderマニュアル
2 3 4 5 Part 1 6 1-1 8 9 1-2 10 11 12 13 A B C A C B AB A B 14 15 17 1-4 2 1 16 1-3 18 19 1-5 2 1 20 21 22 23 24 25 A B C D E F A B C D E F 26 27 28 29 30 31 Part 2 32 2-1 2-2 1 2 34 35 5 37 4 3 36 6 2-3
1 Abstract 2 3 n a ax 2 + bx + c = 0 (a 0) (1) ( x + b ) 2 = b2 4ac 2a 4a 2 D = b 2 4ac > 0 (1) 2 D = 0 D < 0 x + b 2a = ± b2 4ac 2a b ± b 2
1 Abstract n 1 1.1 a ax + bx + c = 0 (a 0) (1) ( x + b ) = b 4ac a 4a D = b 4ac > 0 (1) D = 0 D < 0 x + b a = ± b 4ac a b ± b 4ac a b a b ± 4ac b i a D (1) ax + bx + c D 0 () () (015 8 1 ) 1. D = b 4ac
i I II I II II IC IIC I II ii 5 8 5 3 7 8 iii I 3........................... 5......................... 7........................... 4........................ 8.3......................... 33.4...................
1/68 A. 電気所 ( 発電所, 変電所, 配電塔 ) における変圧器の空き容量一覧 平成 31 年 3 月 6 日現在 < 留意事項 > (1) 空容量は目安であり 系統接続の前には 接続検討のお申込みによる詳細検討が必要となります その結果 空容量が変更となる場合があります (2) 特に記載
1/68 A. 電気所 ( 発電所, 変電所, 配電塔 ) における変圧器の空き容量一覧 平成 31 年 3 月 6 日現在 < 留意事項 > (1) 空容量は目安であり 系統接続の前には 接続検討のお申込みによる詳細検討が必要となります その結果 空容量が変更となる場合があります (2) 特に記載のない限り 熱容量を考慮した空き容量を記載しております その他の要因 ( 電圧や系統安定度など ) で連系制約が発生する場合があります
AI n Z f n : Z Z f n (k) = nk ( k Z) f n n 1.9 R R f : R R f 1 1 {a R f(a) = 0 R = {0 R 1.10 R R f : R R f 1 : R R 1.11 Z Z id Z 1.12 Q Q id
1 1.1 1.1 R R (1) R = 1 2 Z = 2 n Z (2) R 1.2 R C Z R 1.3 Z 2 = {(a, b) a Z, b Z Z 2 a, b, c, d Z (a, b) + (c, d) = (a + c, b + d), (a, b)(c, d) = (ac, bd) (1) Z 2 (2) Z 2? (3) Z 2 1.4 C Q[ 1] = {a + bi
untitled
[email protected] http://www.image.med.osaka-u.ac.jp/member/yoshi/ II Excel, Mathematica Mathematica Osaka Electro-Communication University (2007 Apr) 09849-31503-64015-30704-18799-390 http://www.image.med.osaka-u.ac.jp/member/yoshi/
LINEAR ALGEBRA I Hiroshi SUZUKI Department of Mathematics International Christian University
LINEAR ALGEBRA I Hiroshi SUZUKI Department of Mathematics International Christian University 2002 2 2 2 2 22 2 3 3 3 3 3 4 4 5 5 6 6 7 7 8 8 9 Cramer 9 0 0 E-mail:hsuzuki@icuacjp 0 3x + y + 2z 4 x + y
1 Introduction 1 (1) (2) (3) () {f n (x)} n=1 [a, b] K > 0 n, x f n (x) K < ( ) x [a, b] lim f n (x) f(x) (1) f(x)? (2) () f(x)? b lim a f n (x)dx = b
1 Introduction 2 2.1 2.2 2.3 3 3.1 3.2 σ- 4 4.1 4.2 5 5.1 5.2 5.3 6 7 8. Fubini,,. 1 1 Introduction 1 (1) (2) (3) () {f n (x)} n=1 [a, b] K > 0 n, x f n (x) K < ( ) x [a, b] lim f n (x) f(x) (1) f(x)?
Basic Math. 1 0 [ N Z Q Q c R C] 1, 2, 3,... natural numbers, N Def.(Definition) N (1) 1 N, (2) n N = n +1 N, (3) N (1), (2), n N n N (element). n/ N.
Basic Mathematics 16 4 16 3-4 (10:40-12:10) 0 1 1 2 2 2 3 (mapping) 5 4 ε-δ (ε-δ Logic) 6 5 (Potency) 9 6 (Equivalence Relation and Order) 13 7 Zorn (Axiom of Choice, Zorn s Lemma) 14 8 (Set and Topology)
/ 2 n n n n x 1,..., x n 1 n 2 n R n n ndimensional Euclidean space R n vector point R n set space R n R n x = x 1 x n y = y 1 y n distance dx,
1 1.1 R n 1.1.1 3 xyz xyz 3 x, y, z R 3 := x y : x, y, z R z 1 3. n n x 1,..., x n x 1. x n x 1 x n 1 / 2 n n n n x 1,..., x n 1 n 2 n R n n ndimensional Euclidean space R n vector point 1.1.2 R n set
21 1 1 1 2 2 5 7 9 11 13 13 14 18 18 20 28 28 29 31 31 34 35 35 36 37 37 38 39 40 56 66 74 89 99 - ------ ------ -------------- ---------------- 1 10 2-2 8 5 26 ( ) 15 3 4 19 62 2,000 26 26 5 3 30 1 13
x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y)
x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 1 1977 x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y) ( x 2 y + xy 2 x 2 2xy y 2) = 15 (x y) (x + y) (xy
1 1.1 [ ]., D R m, f : D R n C -. f p D (df) p : (df) p : R m R n f(p + vt) f(p) : v lim. t 0 t, (df) p., R m {x 1,..., x m }, (df) p (x i ) =
2004 / D : 0,.,., :,.,.,,.,,,.,.,,.. :,,,,,,,., web page.,,. C-613 e-mail tamaru math.sci.hiroshima-u.ac.jp url http://www.math.sci.hiroshima-u.ac.jp/ tamaru/index-j.html 2004 D - 1 - 1 1.1 [ ].,. 1.1.1
働く女性の母性健康管理、母性保護に関する法律のあらまし
17 1 3 3 12 3 13 10 19 21 22 22 23 26 28 33 33 35 36 38 39 1 I 23 2435 36 4/2 4/3 4/30 12 13 14 15 16 (1) 1 2 3 (2) 1 (1) (2)(1) 13 3060 32 3060 38 10 17 20 12 22 22 500 20 2430m 12 100 11 300m2n 2n
linearal1.dvi
19 4 30 I 1 1 11 1 12 2 13 3 131 3 132 4 133 5 134 6 14 7 2 9 21 9 211 9 212 10 213 13 214 14 22 15 221 15 222 16 223 17 224 20 3 21 31 21 32 21 33 22 34 23 341 23 342 24 343 27 344 29 35 31 351 31 352
<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202E646F63>
電気電子数学入門 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/073471 このサンプルページの内容は, 初版 1 刷発行当時のものです. i 14 (tool) [ ] IT ( ) PC (EXCEL) HP() 1 1 4 15 3 010 9 ii 1... 1 1.1 1 1.
I. (CREMONA ) : Cremona [C],., modular form f E f. 1., modular X H 1 (X, Q). modular symbol M-symbol, ( ) modular symbol., notation. H = { z = x
I. (CREMONA ) : Cremona [C],., modular form f E f. 1., modular X H 1 (X, Q). modular symbol M-symbol, ( ). 1.1. modular symbol., notation. H = z = x iy C y > 0, cusp H = H Q., Γ = PSL 2 (Z), G Γ [Γ : G]
1 8, : 8.1 1, 2 z = ax + by + c ax by + z c = a b +1 x y z c = 0, (0, 0, c), n = ( a, b, 1). f = n i=1 a ii x 2 i + i<j 2a ij x i x j = ( x, A x), f =
1 8, : 8.1 1, z = ax + by + c ax by + z c = a b +1 x y z c = 0, (0, 0, c), n = ( a, b, 1). f = a ii x i + i
A(6, 13) B(1, 1) 65 y C 2 A(2, 1) B( 3, 2) C 66 x + 2y 1 = 0 2 A(1, 1) B(3, 0) P 67 3 A(3, 3) B(1, 2) C(4, 0) (1) ABC G (2) 3 A B C P 6
1 1 1.1 64 A6, 1) B1, 1) 65 C A, 1) B, ) C 66 + 1 = 0 A1, 1) B, 0) P 67 A, ) B1, ) C4, 0) 1) ABC G ) A B C P 64 A 1, 1) B, ) AB AB = 1) + 1) A 1, 1) 1 B, ) 1 65 66 65 C0, k) 66 1 p, p) 1 1 A B AB A 67
漸化式のすべてのパターンを解説しましたー高校数学の達人・河見賢司のサイト
https://www.hmg-gen.com/tuusin.html https://www.hmg-gen.com/tuusin1.html 1 2 OK 3 4 {a n } (1) a 1 = 1, a n+1 a n = 2 (2) a 1 = 3, a n+1 a n = 2n a n a n+1 a n = ( ) a n+1 a n = ( ) a n+1 a n {a n } 1,
phs.dvi
483F 3 6.........3... 6.4... 7 7.... 7.... 9.5 N (... 3.6 N (... 5.7... 5 3 6 3.... 6 3.... 7 3.3... 9 3.4... 3 4 7 4.... 7 4.... 9 4.3... 3 4.4... 34 4.4.... 34 4.4.... 35 4.5... 38 4.6... 39 5 4 5....
A11 (1993,1994) 29 A12 (1994) 29 A13 Trefethen and Bau Numerical Linear Algebra (1997) 29 A14 (1999) 30 A15 (2003) 30 A16 (2004) 30 A17 (2007) 30 A18
2013 8 29y, 2016 10 29 1 2 2 Jordan 3 21 3 3 Jordan (1) 3 31 Jordan 4 32 Jordan 4 33 Jordan 6 34 Jordan 8 35 9 4 Jordan (2) 10 41 x 11 42 x 12 43 16 44 19 441 19 442 20 443 25 45 25 5 Jordan 26 A 26 A1
平成 15 年度 ( 第 25 回 ) 数学入門公開講座テキスト ( 京都大学数理解析研究所, 平成 ~8 15 月年 78 日開催月 4 日 ) X 2 = 1 ( ) f 1 (X 1,..., X n ) = 0,..., f r (X 1,..., X n ) = 0 X = (
1 1.1 X 2 = 1 ( ) f 1 (X 1,..., X n ) = 0,..., f r (X 1,..., X n ) = 0 X = (X 1,..., X n ) ( ) X 1,..., X n f 1,..., f r A T X + XA XBR 1 B T X + C T QC = O X 1.2 X 1,..., X n X i X j X j X i = 0, P i
(1) θ a = 5(cm) θ c = 4(cm) b = 3(cm) (2) ABC A A BC AD 10cm BC B D C 99 (1) A B 10m O AOB 37 sin 37 = cos 37 = tan 37
4. 98 () θ a = 5(cm) θ c = 4(cm) b = (cm) () D 0cm 0 60 D 99 () 0m O O 7 sin 7 = 0.60 cos 7 = 0.799 tan 7 = 0.754 () xkm km R km 00 () θ cos θ = sin θ = () θ sin θ = 4 tan θ = () 0 < x < 90 tan x = 4 sin
1. 2 P 2 (x, y) 2 x y (0, 0) R 2 = {(x, y) x, y R} x, y R P = (x, y) O = (0, 0) OP ( ) OP x x, y y ( ) x v = y ( ) x 2 1 v = P = (x, y) y ( x y ) 2 (x
. P (, (0, 0 R {(,, R}, R P (, O (0, 0 OP OP, v v P (, ( (, (, { R, R} v (, (, (,, z 3 w z R 3,, z R z n R n.,..., n R n n w, t w ( z z Ke Words:. A P 3 0 B P 0 a. A P b B P 3. A π/90 B a + b c π/ 3. +
I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT
I (008 4 0 de Broglie (de Broglie p λ k h Planck ( 6.63 0 34 Js p = h λ = k ( h π : Dirac k B Boltzmann (.38 0 3 J/K T U = 3 k BT ( = λ m k B T h m = 0.067m 0 m 0 = 9. 0 3 kg GaAs( a T = 300 K 3 fg 07345
空き容量一覧表(154kV以上)
1/3 A. 電気所 ( 発電所, 変電所, 配電塔 ) における変圧器の空き容量 覧 < 留意事項 > (1) 空容量は 安であり 系統接続の前には 接続検討のお申込みによる詳細検討が必要となります その結果 空容量が変更となる場合があります (2) 熱容量を考慮した空き容量を記載しております その他の要因 ( や系統安定度など ) で連系制約が発 する場合があります (3) 表 は 既に空容量がないため
2 7 V 7 {fx fx 3 } 8 P 3 {fx fx 3 } 9 V 9 {fx fx f x 2fx } V {fx fx f x 2fx + } V {{a n } {a n } a n+2 a n+ + a n n } 2 V 2 {{a n } {a n } a n+2 a n+
R 3 R n C n V??,?? k, l K x, y, z K n, i x + y + z x + y + z iv x V, x + x o x V v kx + y kx + ky vi k + lx kx + lx vii klx klx viii x x ii x + y y + x, V iii o K n, x K n, x + o x iv x K n, x + x o x
30
3 ............................................2 2...........................................2....................................2.2...................................2.3..............................
2/8 一次二次当該 42 AX 変圧器 なし 43 AY 変圧器 なし 44 BA 変圧器 なし 45 BB 変圧器 なし 46 BC 変圧器 なし
1/8 A. 電気所 ( 発電所, 変電所, 配電塔 ) における変圧器の空き容量一覧 < 留意事項 > (1) 空容量は目安であり 系統接続の前には 接続検討のお申込みによる詳細検討が必要となります その結果 空容量が変更となる場合があります (2) 特に記載のない限り 熱容量を考慮した空き容量を記載しております その他の要因 ( や系統安定度など ) で連系制約が発生する場合があります (3)
20 4 20 i 1 1 1.1............................ 1 1.2............................ 4 2 11 2.1................... 11 2.2......................... 11 2.3....................... 19 3 25 3.1.............................
Part () () Γ Part ,
Contents a 6 6 6 6 6 6 6 7 7. 8.. 8.. 8.3. 8 Part. 9. 9.. 9.. 3. 3.. 3.. 3 4. 5 4.. 5 4.. 9 4.3. 3 Part. 6 5. () 6 5.. () 7 5.. 9 5.3. Γ 3 6. 3 6.. 3 6.. 3 6.3. 33 Part 3. 34 7. 34 7.. 34 7.. 34 8. 35
ٽ’¬24flNfix+3mm-‡½‡¹724
571 0.0 31,583 2.0 139,335 8.9 310,727 19.7 1,576,352 100.0 820 0.1 160,247 10.2 38,5012.4 5,7830.4 9,5020.6 41,7592.7 77,8174.9 46,425 2.9 381,410 24.2 1,576,352 100.0 219,332 13.9 132,444 8.4 173,450
1 a b = max{a, b}, a b = mi{a, b} a 1 a 2 a a 1 a = max{a 1,... a }, a 1 a = mi{a 1,... a }. A sup A, if A A A A A sup A sup A = + A if A = ± y = arct
27 6 2 1 2 2 5 3 8 4 13 5 16 6 19 7 23 8 27 N Z = {, ±1, ±2,... }, R =, R + = [, + ), R = [, ], C =. a b = max{a, b}, a b = mi{a, b}, a a, a a. f : X R [a < f < b] = {x X; a < f(x) < b}. X [f] = [f ],
1 I 1.1 ± e = = - = C C MKSA [m], [Kg] [s] [A] 1C 1A 1 MKSA 1C 1C +q q +q q 1
1 I 1.1 ± e = = - =1.602 10 19 C C MKA [m], [Kg] [s] [A] 1C 1A 1 MKA 1C 1C +q q +q q 1 1.1 r 1,2 q 1, q 2 r 12 2 q 1, q 2 2 F 12 = k q 1q 2 r 12 2 (1.1) k 2 k 2 ( r 1 r 2 ) ( r 2 r 1 ) q 1 q 2 (q 1 q 2
Relaxation scheme of Besse t t n = n t, u n = u(t n ) (n = 0, 1,,...)., t u(t) = F (u(t)) (1). (1), u n+1 u n t = F (u n ) u n+1 = u n + tf (u n )., t
RIMS 011 5 3 7 relaxation sheme of Besse splitting method Scilab Scilab http://www.scilab.org/ Google Scilab Scilab Mathieu Colin Mathieu Colin 1 Relaxation scheme of Besse t t n = n t, u n = u(t n ) (n
I
I [email protected] 27 6 A A. /a δx = lim a + a exp π x2 a 2 = lim a + a = lim a + a exp a 2 π 2 x 2 + a 2 2 x a x = lim a + a Sic a x = lim a + a Rect a Gaussia Loretzia Bilateral expoetial Normalized
all.dvi
38 5 Cauchy.,,,,., σ.,, 3,,. 5.1 Cauchy (a) (b) (a) (b) 5.1: 5.1. Cauchy 39 F Q Newton F F F Q F Q 5.2: n n ds df n ( 5.1). df n n df(n) df n, t n. t n = df n (5.1) ds 40 5 Cauchy t l n mds df n 5.3: t
1 29 ( ) I II III A B (120 ) 2 5 I II III A B (120 ) 1, 6 8 I II A B (120 ) 1, 6, 7 I II A B (100 ) 1 OAB A B OA = 2 OA OB = 3 OB A B 2 :
9 ( ) 9 5 I II III A B (0 ) 5 I II III A B (0 ), 6 8 I II A B (0 ), 6, 7 I II A B (00 ) OAB A B OA = OA OB = OB A B : P OP AB Q OA = a OB = b () OP a b () OP OQ () a = 5 b = OP AB OAB PAB a f(x) = (log
i
009 I 1 8 5 i 0 1 0.1..................................... 1 0.................................................. 1 0.3................................. 0.4........................................... 3
QCD 1 QCD GeV 2014 QCD 2015 QCD SU(3) QCD A µ g µν QCD 1
QCD 1 QCD GeV 2014 QCD 2015 QCD SU(3) QCD A µ g µν QCD 1 (vierbein) QCD QCD 1 1: QCD QCD Γ ρ µν A µ R σ µνρ F µν g µν A µ Lagrangian gr TrFµν F µν No. Yes. Yes. No. No! Yes! [1] Nash & Sen [2] Riemann
50 2 I SI MKSA r q r q F F = 1 qq 4πε 0 r r 2 r r r r (2.2 ε 0 = 1 c 2 µ 0 c = m/s q 2.1 r q' F r = 0 µ 0 = 4π 10 7 N/A 2 k = 1/(4πε 0 qq
49 2 I II 2.1 3 e e = 1.602 10 19 A s (2.1 50 2 I SI MKSA 2.1.1 r q r q F F = 1 qq 4πε 0 r r 2 r r r r (2.2 ε 0 = 1 c 2 µ 0 c = 3 10 8 m/s q 2.1 r q' F r = 0 µ 0 = 4π 10 7 N/A 2 k = 1/(4πε 0 qq F = k r
等質空間の幾何学入門
2006/12/04 08 [email protected] i, 2006/12/04 08. 2006, 4.,,.,,.,.,.,,.,,,.,.,,.,,,.,. ii 1 1 1.1 :................................... 1 1.2........................................ 2 1.3......................................
モノグラフ・中学生の世界 Vol.62
q w e r t y u i o!0!1!2 !3!4!5!6!7!8 !9 @0 @1 q w q q w e r q w e qw qw qw qw q qw q w e r q w q w z x qw q w e q w r t y u i o!0!1!2!3!4!5!6!7!8
s d
s d s s s q 1w d d d d s s q 1w q1w d s d d d d q1w d w w d d 4q 5q 6q 7q 8q 21q 41q 00q 10q 12q 70q 71q 81q 9q 31q d s d d s d s d d d d s d s q 1w q1w d d d d d
a n a n ( ) (1) a m a n = a m+n (2) (a m ) n = a mn (3) (ab) n = a n b n (4) a m a n = a m n ( m > n ) m n 4 ( ) 552
3 3.0 a n a n ( ) () a m a n = a m+n () (a m ) n = a mn (3) (ab) n = a n b n (4) a m a n = a m n ( m > n ) m n 4 ( ) 55 3. (n ) a n n a n a n 3 4 = 8 8 3 ( 3) 4 = 8 3 8 ( ) ( ) 3 = 8 8 ( ) 3 n n 4 n n
all.dvi
72 9 Hooke,,,. Hooke. 9.1 Hooke 1 Hooke. 1, 1 Hooke. σ, ε, Young. σ ε (9.1), Young. τ γ G τ Gγ (9.2) X 1, X 2. Poisson, Poisson ν. ν ε 22 (9.) ε 11 F F X 2 X 1 9.1: Poisson 9.1. Hooke 7 Young Poisson G
2 2 MATHEMATICS.PDF 200-2-0 3 2 (p n ), ( ) 7 3 4 6 5 20 6 GL 2 (Z) SL 2 (Z) 27 7 29 8 SL 2 (Z) 35 9 2 40 0 2 46 48 2 2 5 3 2 2 58 4 2 6 5 2 65 6 2 67 7 2 69 2 , a 0 + a + a 2 +... b b 2 b 3 () + b n a
4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5.
A 1. Boltzmann Planck u(ν, T )dν = 8πh ν 3 c 3 kt 1 dν h 6.63 10 34 J s Planck k 1.38 10 23 J K 1 Boltzmann u(ν, T ) T ν e hν c = 3 10 8 m s 1 2. Planck λ = c/ν Rayleigh-Jeans u(ν, T )dν = 8πν2 kt dν c
16 B
16 B (1) 3 (2) (3) 5 ( ) 3 : 2 3 : 3 : () 3 19 ( ) 2 ax 2 + bx + c = 0 (a 0) x = b ± b 2 4ac 2a 3, 4 5 1824 5 Contents 1. 1 2. 7 3. 13 4. 18 5. 22 6. 25 7. 27 8. 31 9. 37 10. 46 11. 50 12. 56 i 1 1. 1.1..
000 001
all-round catalogue vol.2 000 001 002 003 AA0102 AA0201 AA0701 AA0801 artistic brushes AA0602 AB2701 AB2702 AB2703 AB2704 AA0301 AH3001 AH3011 AH3101 AH3201 AH3111 AB3201 AB3202 AB2601 AB2602 AB0701 artistic
. Mac Lane [ML98]. 1 2 (strict monoidal category) S 1 R 3 A S 1 [0, 1] C 2 C End C (1) C 4 1 U q (sl 2 ) Drinfeld double. 6 2
2014 6 30. 2014 3 1 6 (Hopf algebra) (group) Andruskiewitsch-Santos [AFS09] 1980 Drinfeld (quantum group) Lie Lie (ribbon Hopf algebra) (ribbon category) Turaev [Tur94] Kassel [Kas95] (PD) [email protected]
211 [email protected] 1 R *1 n n R n *2 R n = {(x 1,..., x n ) x 1,..., x n R}. R R 2 R 3 R n R n R n D D R n *3 ) (x 1,..., x n ) f(x 1,..., x n ) f D *4 n 2 n = 1 ( ) 1 f D R n f : D R 1.1. (x,
