' , 24 :,,,,, ( ) Cech Index theorem 22 5 Stability 44 6 compact 49 7 Donaldson 58 8 Symplectic structure 63 9 Wall crossing 66 1

Size: px
Start display at page:

Download "' , 24 :,,,,, ( ) Cech Index theorem 22 5 Stability 44 6 compact 49 7 Donaldson 58 8 Symplectic structure 63 9 Wall crossing 66 1"

Transcription

1 , ,,., (KEK), ( ) ( )..,.,,,

2 ' , 24 :,,,,, ( ) Cech Index theorem 22 5 Stability 44 6 compact 49 7 Donaldson 58 8 Symplectic structure 63 9 Wall crossing

3 [ ] 1,,.., ( )., (complex structure), 0, (symplectic structure)., Yang-Mills, Einstein., ( ),.,.. de-rham,. de-rham,.?, Einstein..,., Cech,,.,,,. de-rham.,,,, Cech. de-rham, Cech, (1.1) 3

4 ,. Cech..,,,,.., 0,,.. m. g, f i (' 1 ' m ) i =1 n (1.2) f i j i (1.4).,,,.,, (1.3),(1.4), (1.4).,,,,,,.,, Yang-Mills (1.4),,,,, (1.4). (, 0,,,, n ( R n ),. A 1 A n n m m (1.5) 4

5 r i + A i (1.6) r i i + A i ' ' m (1.7)., (1.6), (1.4),., r i r j = r j r i (1.8) j i + A i A j ; A j A i (1.9).,,., (, R n ),,,., A i,.,,.,,,,,., (1.9),,..,., (1.9),., (1.8), r i ' =0 i =1 n (1.10),., (1.10) '(0).,, (1.10),, (1.8)., ', m ' ' 1 ' m (1.11) 5

6 , (1.10), ' j (0) = C A j (1.12)., (1.12) m, m m, g =(' 1 ' m ) (1.13).,., A,. A i 7;! g + g ;1 A i g i (1.14) (1.10),, g A 7;! 0 (1.15). (1.10), ' i base,., g (1.15)..,,,,., 1.,., Cech. 2 Cech Cech,, (1.15), (1.9),.,.,,,.,,,. 6

7 , g?,..., Cech, X.,. X = [ i2i U i X : U i : (2.1) G.,., Cech., ( ).,.,.,.,. G : ( : ( ) : +( ) (2.2),, C k C k (V G) 3 g i0 i k i 0 i k 2 I (2.3) V : [ U i (2.4) U i0 \\U ik ;! i0 i =0 (2.5), g U G,.,., k Cech. Cech,,,,. 7

8 (). g i0 i k 2 C k 7;! (g) i0 i k+1 (2.6) 2 C k+1, g (g) i0 i k+1 = X j (;1) j g i0 ^i j i k+1 (2.7) ( ^ij i j ). (g) 1234 = g 234 ; g g 124 ; g 123 (2.8).,.,,. C 1 C 2. C 1 ;! C 2 (2.9) C 1.,., 2.,, (g) 123 = g 23 g ;1 13 g 12 (2.10) =0 (2.11) ( g) 123 = (g) 12 ; (g) 13 +(g) 23 = g 2 ; g 1 ; (g 3 ; g 1 )+g 3 ; g 2 = 0 (2.12).,.,,.,,, =1 C k! C k+1,. 30, J.Giroux, Cohomologie non abelienneds, Lect. Note in Math. Springer

9 t U 1 U 2 S 1 1:, C 0 C 1 C 2 (2.10) 3,.,.,. X = S 1 = U 1 [ U 2 (2.13)., Cech. U 1 U 2 1. t S 1. U 1 U 2., C 1., g 12 G G. C 1 (S 1 G)=G G 3 g 12 : U 1 \ U 2 ;! =0 g 12 2 G g 12 2 G (2.14), C 0. C 0 (S 1 G) 3 g 1 : U 1 ;! G constant 3 g 2 : U 2 ;! G constant (2.15), (g) 12 = g 2 g ;1 1 9

10 . Cech H k (X G), (g) 12 =(g) 12 = g 2g ;1 1 (2.16) g 2 C k g =0 g ; g 0 = h g =0 g 0 = (g ; h) =0 =0 (2.17). g 12 = h () g 12 = g 12 (2.18).,. S 1. A, n n G. + A (2.19) r i r j ;r j r i =0 (2.20), 1,.,, ( ). (2.13) U 1 g 1, A g 1. U 2. S 1 = U 1 [ U 2 U 1 g 1! g 1 A U 2 g 2! g 2 A, S 1 A g, g.. (, ) U 1 \ U 2 g 1 = g 2 (2.21).,,. g 12 g 1 g 2 g 12 = g 2 g ;1 1 (2.22) 10

11 . (2.21) g 12 =1 (2.23). (2.21) 1, 1.,. =0 (2.24), g 12., g ;1 1 A g 2 A. (2.24). Cech. g 12 =1 (2.25) 2 g 1, g 2,,., A,,. h g 1 7;! hg 1, g 12. g 12 7;! g 2 g ;1 1 h ;1 (2.26) S 1 at G = H 1 (S 1 G) (2.27).?, (2.20). 11

12 ,,.,.,,.,., Cech,, Cech, H 1., Cech de-rham de-rham,, Cech.,., Cech. H 1. de-rham,. G. de-rham,.,,. H 1, H 0., A ;! A (2.28). H k k 3. H 0, H 1, H k,,.,., Cech ; (2.29) 12

13 , H 1.. H 1 : U 1 \ U 2 ;! G (2.30) de-rham ; (2.31),,.,. r i =. i + A i r i r j ;r j r i =0 j i +[A i A j ]=0 (2.33) M at G = (2:33) (,. F A =0, at) = f g 1 (2.34),,,,.,, Riemann 19, Riemann, Riemann.,. 3,,,.,. 13

14 U1 U2 M 2:. M = [U i U i C n (3.1), M ( 2).,,,. ( at U1 \ U 2! G ( ), ' i : U i ;! V i C n ' j ' ;1 i : C n ;! C n (3.2) (3.3) ' i,.,, ( ) ' j ' ;1 i.,., ' j ' ;1 i.,,. r i r j = r j r i r i + A i (3.4) 14

15 .,,. dx 1 dx n (3.5).., dx i ^ dx j = ;dx j ^ dx i (3.6).,. df = i dx i (3.7). 2,.,. ddf =0 (3.8) ddf = i dx i ) 2 f = dx j ^ dx i i j = 0 2 j = i (3.10) r i r j = r j r i (3.11) 15

16 . d A ' = X i = X i dx i + A i 'dx i i (r i ')dx i (3.12). (3.11).. d d 2 j = d A d A =0 (3.13) d A d A = d A ((r i ')dx i ) = (r j r i ')dx j ^ dx i (3.14) 2 j ;! d A ;! r i r j i ;! r i r j ' = r j r i ' (3.15)., ij, d A 2., (3.13) d A d A =0 A =0, Cech.,,. J =0 (3.16).. (3.13),, J ( ).,, 16

17 ,,.,, (3.13), A,, Cech., (3.16).,,,..,., R 2n, J x,. J x : 2n 2n (x 2 R 2n ) (3.17) J x J x = ;1 (3.18). R 2n C n, J x! (3.19) J x 0 I ;I 0. C n, J x p ;1.,,, p ;1. p ;1,. R 2n C n,.., J (3.16). J x x. C n R 2n z 1 z n (3.20) x 1 x n y 1 y n (3.21). C n R 2n p z i = x i + ;1 y i (3.22). dz i = dx i + p ;1 dy i dz i = dx i ; p ;1 dy i (3.23) 17

18 .,. dx 1 ^ dy 2 = 1 4 p ;1 (dz 1 + dz 1 ) ^ (dz 2 ; dz 2 ) (3.24) R 2n dx i dy j dz i dz i.,.,, i dz i dz i = i 2 ; p i =0 () f = i dz i dz 1 ^ dz 2 ^ dz 3 )= i dz i ^ dz 1 ^ dz 2 ^ dz 3 (3.28).,.,., = i dz i (3.29) d (3.30) 18

19 (3.16), J = 0 I ;I 0! (3.16)., 2 j i (3.32)., (3.16), J. (3.16), 2., d 2 =0 d 2 =0 () 8 >< =0 =0 (3.33)., J,,., (3.19),,,,.,., dz dz.. p. J p (dx i ) J p (dy i ). p =(x 1 y n ) (3.34) J p (dx i ) = X J p ki dx k + X J p k+n i dy k J p (dy i ) = X J p ki+n dx k + X J p k+n i+n dy k (3.35) 19

20 J ki ki? (2n 2n)., (3.19). J(dx i )=dy i J(dy i )=;dx i (3.36) Jdz i = J(dx i + p ;1 dy i )= p ;1 dz i Jdz i = ; p ;1 dz i (3.37). dz i dz i, J. (3.37), dz i J p ;1, dz i J ; p ;1., (3.37),.,, J 2 ;1, fdx 1 dy n g = (J p ;1 ) + (J ; p ;1 ) (3.38)., J p ;1 10, J ; p ;1 01., J (3.35),, J dz i dz i, (3.38). df J f J f (3.39), 2 J = )+(J 2 ) (3.40)., d 2 A = da + A ^ A (3.41).. J, 2 J =0 (3.42) 20

21 .,,. d 2 A =0 =) d A ' =0 J ' =0 (3.44) d A ' =0 (3.45), d 2 A =0 (3.46). (3.45), (3.46)., (3.44), (3.42). (3.44), J. (3.43) A =0,, J = 0 I ;I 0.,, (3.46) (3.42). J,?! ' J () Jd'= p ;1 d' (3.47).,,. (3.44), J. J + B 2 J =0 (3.48) 21

22 ( B (4.21) ),,,.,.,. 4 Index theorem deformation theory,,.,,,,,.,., index theorem deformation theory., 1. H 1, H k ,.,, Yang-Mills,, index theorem.., deformation theory index theorem.,. H 1 (M G) = M at G (4.1) G (4.1) H 1 (M G) ( ).,., G, M G, G, G (4.1).. G H.,,. 22

23 .,.., deformation theory. deformation theory,.,, d A d A =0 (4.2) A = A 0 + "A 1 + " 2 A 2 + (4.3). (4.3) (4.2),.,, 0 = d A d A = da + A ^ A., = da 0 + A 0 ^ A 0 + "da 1 + "A 0 ^ A 1 + "A 1 ^ A 0 + (4.4) d 2 A 0 =0 (4.5) da 0 + A 0 ^ A 0 =0 (4.6) 0=dA 1 + A 0 ^ A 1 + A 1 ^ A 0 (4.7).,, A 0, A 1 = A., d(a)+a 0 ^ A + A ^ A 0., = d A0 (A) =0 (4.8) d A0 (A) =0 (4.9)., A.,,., A 0,, A 0., (4.9).,. 23

24 ,, A(") =A 0 + "A + (4.10)., A(") A 0.,,,.,.,., g(") =1+"g 1 + (4.11) A(") = g(") ;1 A 0 = (1 + "g 1 ) ;1 d(1 + "g 1 ) + (1 + "g 1 ) ;1 A 0 (1 + "g 1 ) = "(dg 1 + A 0 g 1 ; g 1 A 0 )+ = d A0 g 1 (4.12)., (1+"g 1 ) ;1 =1; "g 1, 2.,,,., d A0 (A) =0 (4.13) A 0 + "A (4.14) A = d A0 g 1 (4.15), A 0 + "A., A = d A0 g 1 () A 0 + "A (4.16) H 1 DR(M A) = (d A u =0 ) u ; u 0 = d A v u u 0 (4.17) 24

25 . Cech, de-rham,. M..,.,, A(") () g(") ( A 0 g(") A(") ) (4.18).,.,, A 0 A(")... A(")..,, A 0. A 0 ) H 1 (M A) 2 J+"4J =0 J+"4J J + "B (4.21). J B =0 (4.22).,, B, J, p ;1, 1 = J (4.23) 25

26 (4.23) J B,., J B, B (4.22)., B. J B = X a ij i ^ dz j (4.24) 0 I ;I 0. (4.22)., B! (4.25) H 1 (M O(TM)) 3 [B] (4.26). H 1 1 (4.24) dz i 1. i. TM, O(TM). (4.26) M 1. H 1 Kodaira-Spencer index theorem,,, (tangent bundle) M 1,., (4.26)., 1, 1., 1,.,, H 1,.,, (4.23)., index theorem. H 1 (M A), H 1 (M A) Euler number X (M A) = (;1) k dim H k (M A) (4.27) k,,. 26

27 H 0, H 1., H 0, H 1, H 2.,,,., supersymmetry,. H 1?,., H k, H 1.. H 0, H 1,,.,.. (M A). (1) : H k (M A) =0 (k 2).., H 0 ; H 1., H 5,. 5,., H k (k 2).,., Riemann-Roch, Atiyah-Singer 50, Gauss-Bonnet.,., H k (k 2),. ( ) H k (k 2),, H 1..,. (2) : H k. 27

28 , H 1 (odd) ( ) H 2 (even) ( ), extended odd even,,.,, H 1, odd,.,.,, boson, fermion,., H 1 (M A) Euler number (M A), H 1,.,. m n. P 1 (x 1 x n ) P m (x 1 x n ) (4.28),, n m. M (3 p) =f (x 1 x n )jp i (x 1 x n )=0 i =1 m g (4.29) M p T p M p 2 M (JP i )(V )=0 i =1 m V 2 R n (4.30) (J Jacobi JP i $rp i ).,,., dp 1 dp m p., dp 1 dp m p M p.. 28

29 , H 1 V, H 2 dp a i, H 3 ( ) a i,. H 1 $fv jrp i (V )=0g H 2 $fa i j X a i dp i =0g H 3 $fa i g (4.31), H 2, ( ), H 2.., H 2, H 2 = H 3 = = 0, dp 1 dp m p,, H 1 dim H 1 = n ; m (4.32)., n m.,, dp dim H 1 n ; m.,.,.,, P i,., X k (;1) k dim H k = m ; n (4.33). H 3, dp, H 1 H 1 H 2 n ; m. H 1, H 2., (4.33)., index theorem.,.,? 29

30 ,,.,. P i, H 1 (M A) Euler number (M A), index theorem P i. (4.33) n m.,. ;,.,, H 1 $fvj rp i (V )=0g,, H 2 $fa i j P a i dp i =0g H 3 $fa i g,..,, index theorem,,.,, index (4.32),,.,, H 1 $fvjrp i (V )=0g (H 1 ),, H 1 $fv jrp i (V )=0g H 2 $fa i j P a i dp i = 0g m ; n.,.,,., (4.31). syzygy.,,, (4.31)., H 1,,,,., P 1 (x) = = P m (x) =0 rp 1 (V )= = rp m (V )=0, 30

31 , rp 1 (V ) rp m (V )., H 1 P 1 (x) = = P m (x) =0 rp 1 (V )= = rp m (V )=0,,,,.,.,,.,, 1. 1, 1, index theorem. Riemann. Riemann g : g = 3 3: ( 3) Riemann, = C 3g;3 (4.34). Riemann 1 k =0 1., l 1.,., X k H 0 ( g O(T g )) = 0 (;1) k dim H k ( g O(T g )) H k ( g O(T g )). 31

32 H 0 =0?,., genus 3 Riemann., g. X k (;1) k dim H k ( g O(T g )) Riemann-Roch,, g. Index theorem, index theorem, index theorem.., ( ), Yang-Mills, Einstein,. Yang-Mills d A F A =0 Einstein Ricci =0 (4.35) Yang-Mills,?. ( ) self-dual F A + F A =0 self-dual gravity W + =0 holomorphic curve ' : g! =0 (4.36) 32

33 ., (4.35), 2.., 4 d A 0-form(C 0 ) 4-form(C 4 ). C 0 d A! C 1 d A! C 2 d A! C 3 d A! C 4 (4.37) 0-form form 4, dx 1 dx 4. 2-form 6( = 4 C 2 ), dx i ^ dx j. 3-form 4, 4-form 1. n =4 d A : C k! C k+1 C 0 d! A C 1 d! A C 2 d! A C 3 d! A C form 1-form 2 - form 3 - form 4 - form ( ) : (4.38), 4+4=1+6+1., X C k = X C k (4.39).., de-rhame complex (4.38)... C 1 d A! C 2 (4.40), C 1 C 2 m n. d A f =0 (4.41),,.. 8 >< >: P 1 (f 1 f n ) P m (f 1 f n ) (4.42) 2 p.4.,. 33

34 n m. n = m., (4.40) 2. (4.42),. n = m (4.43), n m,. n>m. (4.42), m,, n ; m. n ; m.,.,.., m>n,. (n 6= m) n>m) 1 n<m) (4.44),,,,., (4.40) C 0. C 1, C 2, C 0. l n m, C 0! C 1! C 2 l n m ( ) ( ) ( ) ( (4.43)) (4.45) n = m + l (4.46).,.,,, (4.46). 34

35 , (4.45) C 3? C 3,, C 3,.,. Batalin-Vilkoviski formalism, ( ), C 3 C 4, (4.45),, (4.39).,,. Self duality -1, self dual. 4, 0! 1! 2! 3! (4.47) ( 4).., ( 3, 4 ).,,., self duality. 1 2,,. 0, 1, 2. 3,., 0, 1, 2 1, 4, 6, 6+16= 4. 3,,.., 4 d A d A =0 (4.48).,. 1, 2, 4,. (, )., (4.48) 2, 2 ( 2 ). 2 3-form. 2, 0 d! A 1 d! A (4.49) 35

36 , 1+1=2 2 at connection (= 1 + 6) 4. self duality. 2, 4 0 = ; (4.50) base 2 + base, dx 1 ^ dx 2 + dx 3 ^ dx 4 dx 1 ^ dx 3 ; dx 2 ^ dx 4 dx 1 ^ dx 4 + dx 2 ^ dx 4 (4.51) ^ = dx 1 ^ dx 2 ^ dx 3 ^ dx 4 = 2 4 (4.52). 4-form ; = ; (4.53) 3 3, self dual 0, 1, 2 + (4.54) 0! 1! (4.55) 1+3=4.,., 4., (4.50).., 0 d A! 1 d A! 2 d 2 A =0. 0 d A! 1 d A! 2 + d A 2 + part (, F A = da + A 2 +part, self dual 36

37 ., d 2 A =0 (d A 2 + part )., d 2 A =0 d A ' =0. d 2 A =0 d A ' =0., (d A 2 + part ) F A = F A + + F ; A F A + =0,. F A + =0. d 2 A =0 d A' =0,., 4, 3., 3,.,,, n de-rham j-complex, ( (4.55) 1+3=4).,., 4. [ ] 37

38 [ ],. Self duality -2 self dual geometry. self duality, 4,,,., 4, 4-form,, metric g ij.., tensor,, 1 4-form. : 4-form 1 (4.56) dx 1^dx 2^dx 3^dx 4.,,.,, k-form (n; k)-form. : k! n;k (4.57) Hodge (n = 4)., u u 2. u ^u = juj 2 (4.58)., n =4 u 2-form, Hodge g ij M. n =4 u : 2-form g ij! f(x)g ij (4.59) 4., Hodge 2-form invariant 4., Hodge 2 1,. 2-form, =1 (4.60) 2 + : u = u 2 ; : u = ;u (4.61) 38

39 , ; 3.,, 3, d A 2-form 0 d! A 1 d! A 2 + (2 ; ) (4.62) 1, 4, 3,.,, 1-form 1-form, 1-form. 2-form, Hodge form. 1 : 1-form 2 : 2-form u = u (4.63), 1. d 2 A =0, F A = da + A ^ A =0 (4.64), F A 2-form,, F A = F + A + F ; A (4.65). F + A =0 (4.66). self dual, Yang-Mills (2 ) 1., [(4.35),(4.36) ], 2 (4.62)., (4.66), deformation A = A 0 + "A (4.67), (4.66) d A A + d A A =0 (4.68). d + AA =0 (4.69). (4.62) 1, 4, 3. ( 1 ) A 4 dim G, G. ( 0 39

40 ), g(x), g(x) G. dim G. (4.66), dim G.,,,.,,,.,,., (4.62) supersymmetry, supersymmetric,.,, (4.66),, (4.64) 1.., 1,,., (4.66)., (4.66)..,,. (4.66)?,.,., (4.64),.,... F + A?, F + A A =0. 40

41 ,.,. 2-form 2 = (4.70). base, C 2 dz 1 ^ dz 2 dz i ^ dz j dz 1 ^ dz z 1 z 2 2 C 2 (4.71). (4.62), 2 = = ;.,, (4.62), 2 + = !! = dz 1 ^ dz 1 + dz 2 ^ dz 2 z i = dx i + idy i 2 ; (4.72). self dual., 2-form ( 2 = ) Riemann 2 = ; Kahler (4.72), F A =0 ) F A 20 02! (4.73).., F A 20 02,, de-rham d d d A. d A A A A ' d A ' 01 part.! F A 2 A : k l! k +1 l., F A : k l! + =0 k l 2 A =0 (4.75) 41

42 .,, (4.75) A. J, J. (4.62), 2 A =0 A' =0 local (4.76). 2, (4.75) A ' = 0., ',., d 2 A =0 ) g 01 =0 (4.77),, A 2 A =0 =0 (4.78)., holomorphic., g 01, M U i. M = [ i U i (4.79), U i \ U j, g ij, g ij : U i \ U j! GL(n C) (4.80)., M. g ij constant ) (4.81), (4.77)., g ij (4.58),. g ij ) (4.82), F A + =0 d 2 A =0,, holomorphic. 42

43 (4.77) A g., (4.78) A... A, A ' =0 '. base, A A (g') g., base, (g') =(@g)' + g@ A ' (4.83), F A + = 0.,. (4.82)., Serre GAGA 3,,,., compact, compact, GAGA. M compact g,,.,,. F + A.,, F A + =0 A =0 (4.84), ) (. 2 A =0 ) A F + A =0 (4.85)..., = !, F + A =0 3 Serre Geometry analitique et geometry algebrique,,. 43

44 !.,,,. (4.85). Seiberg-Witten. 5 Stability,. stability. Mumfold,, Hausdor. Hausdor? (5.1),, Hausdor?,., 2 3,. Hausdor,.. M = f g = (5.2), X=G : G compact Hausdor (5.3), G compact Hausdor. Lie compact (5.4). stability, stability,, 44

45 , Lie, Lie noncompact Hausdor., Lie compact?., C = X (5.5) C X = C=0 (5.6),. C X c C z, cz (= ) (5.7), C=C X =2 z 1 z 2 2 C z 1 = cz 2! (5.8) C, C X. 2.. Hausdor. Hausdor, z i 6=0 lim z i =0 (5.9). z i, limit p i =[z i ] 2 C=C X (5.10) lim[z i ] = [0] (5.11),.,. [z i ]=[z j ] (5.12),. lim p i (5.13) 0 p i unstable stable 45

46 ( ) unstable stable. unstable, stable,. fc 2 C j c 0=0g C X : noncompact (5.14) C X, C X. C X noncompact, noncompact. elementary,,, genus singular Riemann ( 4)., unstable.., X ( 5). X ", X singular, "., S 2 genus,,,. ( 5) S 2, S 2. X " "..., ( lim X" = X lim X " = X "0 " 0 6=0 X 6= X " ( X " " 6= 0 ) S 2 ε S 2 S 2 4: 5: 46

47 ", " singular., ", ". limit Hausdor,,. S 2, Riemann, essential.,, S 2 S 2? holo. : S 2! S 2 1 PSL(2 C) noncompact (5.15) 1 PSL(2 C) noncompact. Mumfold, noncompact.. stable = compact (5.16) Riemann. ( ' ' :! holo. 1 : 1 ) compact (5.17) Mumfold unstable, stable. stable, (5.18),,, unstable,,,., Hausdor,.., stable (5.19) ( 4), Riemann stable., S 2 [ S 2 X (5.20) 47

48 stable., Gromov-Witten invariant,,. g : genus g Riemann (g x ) (5.21) J : g (5.22) ' : g! (M J M ) (5.23) M :, ', ' J J M. Riemann J,, (Jacobi ') J = J M (Jacobi ') (5.24) ', J.,,,, u :! : dieo. : Diff() ' 7! ' u (5.25) J 7! u J (u J ) (5.26),,, dieo.,.,. stability, ( 6).,. S 2 S 2 S 2 1 6: 48

49 S 2,, S 2 S 2,.. (' ) ' :! M (5.27).,, u ' ( u :! ' u = ' =) (5.28) u holomorphic.,,. stability, stability.,. stable,, Hausdor, Mumfold. stability,,, stable, compact. Hausdor.,, Mumfold.... stability. 6 compact,, compact. compact, compact., A 0 (6.1) - local theory local theory, local theory, global theory, global 49

50 compact,, compact, M = n F A + =0o = (6.2) M = f(' )j J M ' = ' J g =Diff() (6.3) compact. compact, compact compact., singular object.. singular object,,. compact,,. compact 4, 2 A self dual gravity =0 (6.4) W + =0 (6.5) Riemann, W Weyl, W =0, fg ij f : (6.6) Weyl (W + ).,, 2. self-dual gravity. Atiyah-Singer,.,,, compact. compact, singular object. Riemann. compact.? compact singular, singular, singular. singular 50

51 ., singular. Riemann,,, singular., singular,,. singular Riemann,., ( 7)., ( 8). 7: X n 3 p (6.7) p 8: n n ; 1. X;p nonsingular (6.8) " ( ) n =2, 1 S 1.,, p, S 1,, ( 9). Riemann compact,, 1 S 1. 51

52 p 9: X n Riemann? n =2 Riemann. Riemann,,, compact, singular Riemann. singular,, compact, singular., Riemann, singular singular Riemann. Hausdor?., Hausdor, Riemann. ( 10) Hausdor 10: 52

53 , , 2, ( 11). p p + 1 (6.9).,,. +1 ;1 11:,, ( 12) Gauss : Bonnet. Riemann ( 11), 1, 2,. 53

54 p :, 4,, 3., 3 ( 13). Ricci > 0 (6.10) 3?.,,. Ricci.,, 3 3. conjecture,, Ricci Hamilton, Ricci > 0 =) S 3 = (6.11) conjecture., 1, S 3. S 3, 3. 3, 3..,. X " f " (z 1 z 2 z 3 )=0 (6.12) f 0 = gh (6.13) X 0 = fg =0[ h =0g (6.14) 54

55 2 g =0 ;1 14: h =0, ( 14). 6 4, 2.. S 2 ( 15), ( 16). S 2 S 2 S 2 S 2 15: 16: [ 14 ] Riemann,. compact, self-dual gravity.., d Ai F Ai =0 Z k FAi k 2,. lim F Ai? ( S ),. 55

56 ?.,. lim F Ai, A i A i F Ai codimension = 4 codimension? X S. dim X ; dim S =4 X 4 =) S (6.15),. 6, 2,.?..., F A. A = nx i=1 A i dx i n =4 (6.16) 4,, ( 17). 4 compact,. codimension 4, Z k FA k 2 Z F A ^ F A (6.17) 4. 56

57 17: +1 18:,,.,, ( 18)., 4-form 4. self-dual?, 4, 4 self-dual.,?., 4, codimension 4. F A ^ F A 4 () codim. 4 (6.18) 57

58 ,, singular 4-form codimension 4., singular 4-form =) codim. 4 (6.19),.?,?,, 1.,..., Z k FAi k 2 < C S C=1 mass (6.20) 7 Donaldson Donaldson.. topological eld theory,. topological eld theory invariant, Seiberg-Witten, n F + A =0 o = 58

59 Riemann ', ' holomorphic. f(' )j ' holo.g =Diff() ' :! M dieo..,.,, f g = invariant (7.1) invariant., X = f g = 1 f g = (7.2) X (7.3),. topological eld theory. X ( ) 1 2 k (7.4) topological eldtheory.,. Z 1 ^ 2 ^^ k = h 1 2 k i (7.5) invariant invariant Donaldson..,,,. M2X M : (7.6) : F + A =0 ; M metric g M =0 ; M J M (7.8) ' :! M (7.9) 59

60 ,, (7.5). ) g 0 m g 1 m., gt m [0-1]., t. t. t (7.10) ( 19)., M t ( t ) [ M t = M c (7.10) t=0 M 1 M 0 M t 19: Z cm d ( 1 ^ 2 ^^ k )=0 (7.11) Stokes, 1 ^ 2 ^^ k =0 (7.12) cm Z c M = M 1 ;M 0 (7.13) M 1 1 ^ 2 ^^ k ; Z M 0 1 ^ 2 ^^ k =0 (7.14),,.. 60

61 , ( compact )..,. J M. ' :! M ' holomorphic complex structure J J 2 M =1 (7.15)., '... Z Z 1 ^^ k = M(M JM 0 ) M(M J 1 M ) 1 ^^ k (7.16) (Gromov-Witten invariant, ) J M almost complex structure,.,. = f(j ')g Diff() (7.17). M. mix,, Gromov-Witten invariant (coupled gravity). almost complex structure, Gromov. Witten,,..... (7.16).. dl dt = X X : S2 l : S 2 l(;1) =p l(+1) =q (7.18), S 1.. S 1?. S 1. 61

62 p p X0 X1 q 20: q 21: X 0 ( 20) X 1 ( 21). X 0 X 1. X 0 =) X 1 "X 1 +(1; ")X 0 (0 " 1) (7.19),. " =1, dl dt = X 1 l(;1) =p l(+1) =q (7.20),.,.., ( 22). (p) (q),.,,. compact., f l X 0 f<0, ( ). f, 22.. ' :;! M 62

63 1 1 ε 22: 8 Symplectic structure symplectic structure, 2-form. d! =0! 2-form (8.1), J M!,. S 1, S 1 ( 23). S 1 l(0) S 1 l(1) 23: ' : S 1 [0 1] ;! M (8.2) ' holomorphic.,, J M! compatible (J M! tame ).,, (8.2)( 23), ', Z '!>0 (8.3), tame. Kahler Kahler, Kahler form!. J M,!. 63

64 (8.3)... Kahler... Riemann Kahler. M. M almost complex structure. almost,?, M almost,! J M,!(JX X) > 0 (8.4). (8.3)., f f, (8.3),,, f(l(1)) ; f(l(0)) > 0 (8.5).,, S 2,, 2. (8.5),.,,, 24:,. 64

65 1,.,, (8.5),.,, ( R '!<const.),.,, ', R '!<const., compact,. 24 noncompact,, symplectic structure, (8.4) J M, Donaldson. Z M 1 ^^ k tame J M J M : (8.6) tame J M (8.6) J M. Gromov Gromov-Witten,., almost complex structure, symplectic structure.!. almost complex structure,., complex structure,, almost complex structure, 1,,. 1, almost complex structure,, ;1..., symplectic structure, (8.1),,.!,. almost complex structure J 2 = ;1.. (8.1). symplectic structure,. almost complex structure 65

66 . almost complex structure. almost structure.., compact.,., Gromov-Witten, Kahler, J!, symplectic geometry!. 9 Wall crossing wall crossing,. Donaldson. open topological string., C n L i (L i ' R n i =1 k) (9.1)! = X dz i ^ dz i L i j! =0 (9.2)! L i. Lagrangian submanifold. C n R n, 2 ( 25). L 3 L 4 C n L 1 L 2 25: ' : D 2 ;! C n (' holomorphic) (9.3) '. '.. f ' j '(@D 2 ) L 1 [ L 2 [[L k g = M(L 1 L k ) (9.4) M,. L i., 66

67 Donaldson, wall crossing (9.4)., L?. topological open string. L D-brane, D-brane state,.. Donaldson, compact,. M(L 1 (t) L k (t)) M t (9.5) 1 + ( ) M t : ( 26),,. t, +1, +1. ( ). Donaldson.?,.,. ( ),.,,,. ( 27) compact,.,,., 67

68 : :. ( 28)., n =1. C 4 ( 29). L 4. ( (9.3), n =1), 1. Riemann 4.., ( 31). ( 33) , 31. ( 27),, ( 28).. 4 D z,, D w j w j< 1. 68

69 L 3 t<t0 C n=1 p p L 1 L 2 L 4 p 1 t<t 0 p 4 29: 30: L 3 t=t 0 p p 2 3 p 3 p2 ( ) 1 t=t 0 L 1 L 2 L 4 p 1 t=t 0 p 4 p 1 t>t 0 p 4 31: 32: L 3 t>t 0 p 3 p 2 L 1 L 2 L 4 p 1 t>t0 p 4 33: 34: 69

70 .,, ' : p i ;! L i \ L i+1 (9.6) D 2, 4., 31 t = t 0. t t 0, p 3 p 2. Riemann,,, ( 32). 31, 32, 32 ( ). ( ), Riemann.,., Riemann Riemann,,. 34 Riemann _. _, fd 2 4 g (9.7),. [0 1). compact, 34. [0 1]. 34.,,...,,.., Donaldson.. Donaldson. S 2 S 1, 2 S S 1 S 1 35:,. S 1. S 2 =S 1.,, 70

71 . 28.,, Donaldson well dendness. wall crossing. S 1,,.? Donaldson Riemann,. Seiberg-Witten d A d A =0 da + A ^ A =0 A 2 (10.2),, 3. 2,, 2.. (10.1) 2. 3, (10.1) 3. da + A ^ A + A ^ A ^ A =0-3-form. A 1-form da 2-form, A ^ A 2-form A ^ A ^ A 3-form,. de-rham,., 0! 1! 2! (10.3) de-rham complex : d 2 =0 (10.4) 71

72 d A d + A d A (10.5) d 2 A =0 de-rham deformation.. A 1-form, deform. odd *) even (10.6),,. (10.6) deform., A 1-form odd form. A odd form? d! d + A (10.7).,. (10.6) deform,. (d + A)(u) = du + A ^ u (10.8) (d + A) 2 =0 () da + A ^ A =0. (10.7), d,. 2.. Lie, L 1 -algebra m k (k =1 2 3 ) (10.9) m k (u 1 u k ) m 1 = d m 2 =[ ],. m k u 1 u k k,, m 1, m 2 Lie.. X l X 2S n m l (u (1) u (l;1) ) m n;l+1 (u (l) u (n) ) =0 (10.10) 72 S n : n

73 m 3? m 1, m 2 (10.9), m 3 (10.10)., m 1 m 1 =0! d 2 =0 n =2 (10.11) m 2 (u 1 m 2 (u 2 u 3 )) + m 2 (u 2 m 2 (u 3 u 1 )) + m 2 (u 3 m 2 (u 1 u 2 )) = 0 (10.12) n =3 (m 1 =0 ) m 1 =0, n =3, m 2 Lie Jacobi identity. [u 1 [u 2 u 3 ]] + [u 2 [u 3 u 1 ]] + [u 3 [u 1 u 2 ]] = 0 (10.13) m 2 [ ] u., Jacobi,.,. Lie,., a i i, deform, (d + A)(u) =du +[A u] (10.14) a X a i a i 2 i (10.15) d a =(d + a)(u) =du + X k2 m k (a a u) (10.16), d a., 2 d 2 a =0 (10.10),, m 3, da + X m k (a a)=0 (10.17) da +[a a] =0 (10.18) 73

74 ., open string. H k, a i. 2..? ( 36),,, S 2 interact. string. S 2 N N N N :,,?,,. index theorem.. Atiyah-Singer, Atiyah Singer, 3. de-rham Riemann Dirac, 10.,.,,. 74

75 ,,,??,,, Einstein, 2?,,.,.. Yang Mills Yang-Mills,.,,,,,.,..... ( ),,.... ( )?.... ( ) 75

C:/yokoyama/book/fubook/tft/tft5h/tft5h.dvi

C:/yokoyama/book/fubook/tft/tft5h/tft5h.dvi 1997.10 2000 10 15 ver. 2.72 i 1 1 1.1 : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 1 1.2 : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 1 1.3 :

More information

2.1 H f 3, SL(2, Z) Γ k (1) f H (2) γ Γ f k γ = f (3) f Γ \H cusp γ SL(2, Z) f k γ Fourier f k γ = a γ (n)e 2πinz/N n=0 (3) γ SL(2, Z) a γ (0) = 0 f c

2.1 H f 3, SL(2, Z) Γ k (1) f H (2) γ Γ f k γ = f (3) f Γ \H cusp γ SL(2, Z) f k γ Fourier f k γ = a γ (n)e 2πinz/N n=0 (3) γ SL(2, Z) a γ (0) = 0 f c GL 2 1 Lie SL(2, R) GL(2, A) Gelbart [Ge] 1 3 [Ge] Jacquet-Langlands [JL] Bump [Bu] Borel([Bo]) ([Ko]) ([Mo]) [Mo] 2 2.1 H = {z C Im(z) > 0} Γ SL(2, Z) Γ N N Γ (N) = {γ SL(2, Z) γ = 1 2 mod N} g SL(2,

More information

D-brane K 1, 2 ( ) 1 K D-brane K K D-brane Witten [1] D-brane K K K K D-brane D-brane K RR BPS D-brane

D-brane K 1, 2   ( ) 1 K D-brane K K D-brane Witten [1] D-brane K K K K D-brane D-brane K RR BPS D-brane D-brane K 1, 2 E-mail: sugimoto@yukawa.kyoto-u.ac.jp (2004 12 16 ) 1 K D-brane K K D-brane Witten [1] D-brane K K K K D-brane D-brane K RR BPS D-brane D-brane RR D-brane K D-brane K D-brane K K [2, 3]

More information

III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F

III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F F 1 F 2 F, (3) F λ F λ F λ F. 3., A λ λ A λ. B λ λ

More information

SUSY DWs

SUSY DWs @ 2013 1 25 Supersymmetric Domain Walls Eric A. Bergshoeff, Axel Kleinschmidt, and Fabio Riccioni Phys. Rev. D86 (2012) 085043 (arxiv:1206.5697) ( ) Contents 1 2 SUSY Domain Walls Wess-Zumino Embedding

More information

C:/KENAR/0p1.dvi

C:/KENAR/0p1.dvi 2{3. 53 2{3 [ ] 4 2 1 2 10,15 m 10,10 m 2 2 54 2 III 1{I U 2.4 U r (2.16 F U F =, du dt du dr > 0 du dr < 0 O r 0 r 2.4: 1 m =1:00 10 kg 1:20 10 kgf 8:0 kgf g =9:8 m=s 2 (a) x N mg 2.5: N 2{3. 55 (b) x

More information

0.,,., m Euclid m m. 2.., M., M R 2 ψ. ψ,, R 2 M.,, (x 1 (),, x m ()) R m. 2 M, R f. M (x 1,, x m ), f (x 1,, x m ) f(x 1,, x m ). f ( ). x i : M R.,,

0.,,., m Euclid m m. 2.., M., M R 2 ψ. ψ,, R 2 M.,, (x 1 (),, x m ()) R m. 2 M, R f. M (x 1,, x m ), f (x 1,, x m ) f(x 1,, x m ). f ( ). x i : M R.,, 2012 10 13 1,,,.,,.,.,,. 2?.,,. 1,, 1. (θ, φ), θ, φ (0, π),, (0, 2π). 1 0.,,., m Euclid m m. 2.., M., M R 2 ψ. ψ,, R 2 M.,, (x 1 (),, x m ()) R m. 2 M, R f. M (x 1,, x m ), f (x 1,, x m ) f(x 1,, x m ).

More information

A 2 3. m S m = {x R m+1 x = 1} U + k = {x S m x k > 0}, U k = {x S m x k < 0}, ϕ ± k (x) = (x 0,..., ˆx k,... x m ) 1. {(U ± k, ϕ± k ) 0 k m} S m 1.2.

A 2 3. m S m = {x R m+1 x = 1} U + k = {x S m x k > 0}, U k = {x S m x k < 0}, ϕ ± k (x) = (x 0,..., ˆx k,... x m ) 1. {(U ± k, ϕ± k ) 0 k m} S m 1.2. A A 1 A 5 A 6 1 2 3 4 5 6 7 1 1.1 1.1 (). Hausdorff M R m M M {U α } U α R m E α ϕ α : U α E α U α U β = ϕ α (ϕ β ϕβ (U α U β )) 1 : ϕ β (U α U β ) ϕ α (U α U β ) C M a m dim M a U α ϕ α {x i, 1 i m} {U,

More information

YITP50.dvi

YITP50.dvi 1 70 80 90 50 2 3 3 84 first revolution 4 94 second revolution 5 6 2 1: 1 3 consistent 1-loop Feynman 1-loop Feynman loop loop loop Feynman 2 3 2: 1-loop Feynman loop 3 cycle 4 = 3: 4: 4 cycle loop Feynman

More information

2

2 p1 i 2 = 1 i 2 x, y x + iy 2 (x + iy) + (γ + iδ) = (x + γ) + i(y + δ) (x + iy)(γ + iδ) = (xγ yδ) + i(xδ + yγ) i 2 = 1 γ + iδ 0 x + iy γ + iδ xγ + yδ xδ = γ 2 + iyγ + δ2 γ 2 + δ 2 p7 = x 2 +y 2 z z p13

More information

( 3) b 1 b : b b f : a b 1 b f = f (2.7) g : b c g 1 b = g (2.8) 1 b b (identity arrow) id b f a b g f 1 b b c g (2.9) 3 C C C a, b a b Hom C (a, b) h

( 3) b 1 b : b b f : a b 1 b f = f (2.7) g : b c g 1 b = g (2.8) 1 b b (identity arrow) id b f a b g f 1 b b c g (2.9) 3 C C C a, b a b Hom C (a, b) h 2011 9 5 1 Lie 1 2 2.1 (category) (object) a, b, c, a b (arrow, morphism) f : a b (2.1) f a b (2.2) ( 1) f : a b g : b c (composite) g f : a c ( 2) f f a b g f g c g h (2.3) a b c d (2.4) h (g f) = (h

More information

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4 1. k λ ν ω T v p v g k = π λ ω = πν = π T v p = λν = ω k v g = dω dk 1) ) 3) 4). p = hk = h λ 5) E = hν = hω 6) h = h π 7) h =6.6618 1 34 J sec) hc=197.3 MeV fm = 197.3 kev pm= 197.3 ev nm = 1.97 1 3 ev

More information

1 X X T T X (topology) T X (open set) (X, T ) (topological space) ( ) T1 T, X T T2 T T T3 T T ( ) ( ) T1 X T2 T3 1 X T = {, X} X (X, T ) indiscrete sp

1 X X T T X (topology) T X (open set) (X, T ) (topological space) ( ) T1 T, X T T2 T T T3 T T ( ) ( ) T1 X T2 T3 1 X T = {, X} X (X, T ) indiscrete sp 1 X X T T X (topology) T X (open set) (X, T ) (topological space) ( ) T1 T, X T T2 T T T3 T T ( ) ( ) T1 X T2 T3 1 X T = {, X} X (X, T ) indiscrete space T1 T2 =, X = X, X X = X T3 =, X =, X X = X 2 X

More information

Einstein ( ) YITP

Einstein ( ) YITP Einstein ( ) 2013 8 21 YITP 0. massivegravity Massive spin 2 field theory Fierz-Pauli (FP ) Kinetic term L (2) EH = 1 2 [ λh µν λ h µν λ h λ h 2 µ h µλ ν h νλ + 2 µ h µλ λ h], (1) Mass term FP L mass =

More information

0 = m 2p 1 p = 1/2 p y = 1 m = 1 2 d ( + 1)2 d ( + 1) 2 = d d ( + 1)2 = = 2( + 1) 2 g() 2 f() f() = [g()] 2 = g()g() f f () = [g()g()]

0 = m 2p 1 p = 1/2 p y = 1 m = 1 2 d ( + 1)2 d ( + 1) 2 = d d ( + 1)2 = = 2( + 1) 2 g() 2 f() f() = [g()] 2 = g()g() f f () = [g()g()] 8. 2 1 2 1 2 ma,y u(, y) s.t. p + p y y = m u y y p p y y m u(, y) = y p + p y y = m y ( ) 1 y = (m p ) p y = m p y p p y 2 0 m/p U U() = m p y p p y 2 2 du() d = m p y 2p p y 1 0 = m 2p 1 p = 1/2 p y

More information

QCD 1 QCD GeV 2014 QCD 2015 QCD SU(3) QCD A µ g µν QCD 1

QCD 1 QCD GeV 2014 QCD 2015 QCD SU(3) QCD A µ g µν QCD 1 QCD 1 QCD GeV 2014 QCD 2015 QCD SU(3) QCD A µ g µν QCD 1 (vierbein) QCD QCD 1 1: QCD QCD Γ ρ µν A µ R σ µνρ F µν g µν A µ Lagrangian gr TrFµν F µν No. Yes. Yes. No. No! Yes! [1] Nash & Sen [2] Riemann

More information

1 1, 2016 D B. 1.1,.,,. (1). (2). (3) Milnor., (1) (2)., (3). 1.2,.,, ( )..,.,,. 1.3, webpage,.,,.

1 1, 2016 D B. 1.1,.,,. (1). (2). (3) Milnor., (1) (2)., (3). 1.2,.,, ( )..,.,,. 1.3, webpage,.,,. 1 1, 2016 D B. 1.1,.,,. (1). (2). (3) Milnor., (1) (2)., (3). 1.2,.,, ( )..,.,,. 1.3, 2015. webpage,.,,. 2 1 (1),, ( ). (2),,. (3),.,, : Hashinaga, T., Tamaru, H.: Three-dimensional solvsolitons and the

More information

tomocci ,. :,,,, Lie,,,, Einstein, Newton. 1 M n C. s, M p. M f, p d ds f = dxµ p ds µ f p, X p = X µ µ p = dxµ ds µ p. µ, X µ.,. p,. T M p.

tomocci ,. :,,,, Lie,,,, Einstein, Newton. 1 M n C. s, M p. M f, p d ds f = dxµ p ds µ f p, X p = X µ µ p = dxµ ds µ p. µ, X µ.,. p,. T M p. tomocci 18 7 5...,. :,,,, Lie,,,, Einstein, Newton. 1 M n C. s, M p. M f, p d ds f = dxµ p ds µ f p, X p = X µ µ p = dxµ ds µ p. µ, X µ.,. p,. T M p. M F (M), X(F (M)).. T M p e i = e µ i µ. a a = a i

More information

(, Goo Ishikawa, Go-o Ishikawa) ( ) 1

(, Goo Ishikawa, Go-o Ishikawa) ( ) 1 (, Goo Ishikawa, Go-o Ishikawa) ( ) 1 ( ) ( ) ( ) G7( ) ( ) ( ) () ( ) BD = 1 DC CE EA AF FB 0 0 BD DC CE EA AF FB =1 ( ) 2 (geometry) ( ) ( ) 3 (?) (Topology) ( ) DNA ( ) 4 ( ) ( ) 5 ( ) H. 1 : 1+ 5 2

More information

Euler, Yang-Mills Clebsch variable Helicity ( Tosiaki Kori ) School of Sciences and Technology, Waseda Uiversity (i) Yang-Mills 3 A T (T A) Poisson Ha

Euler, Yang-Mills Clebsch variable Helicity ( Tosiaki Kori ) School of Sciences and Technology, Waseda Uiversity (i) Yang-Mills 3 A T (T A) Poisson Ha Euler, Yang-ills Clebsch variable Helicity Tosiaki Kori ) School of Sciences and Technology, Waseda Uiversity i) Yang-ills 3 A T T A) Poisson Hamilton ii) Clebsch parametrization iii) Y- Y-iv) Euler,v)

More information

r 1 m A r/m i) t ii) m i) t B(t; m) ( B(t; m) = A 1 + r ) mt m ii) B(t; m) ( B(t; m) = A 1 + r ) mt m { ( = A 1 + r ) m } rt r m n = m r m n B

r 1 m A r/m i) t ii) m i) t B(t; m) ( B(t; m) = A 1 + r ) mt m ii) B(t; m) ( B(t; m) = A 1 + r ) mt m { ( = A 1 + r ) m } rt r m n = m r m n B 1 1.1 1 r 1 m A r/m i) t ii) m i) t Bt; m) Bt; m) = A 1 + r ) mt m ii) Bt; m) Bt; m) = A 1 + r ) mt m { = A 1 + r ) m } rt r m n = m r m n Bt; m) Aert e lim 1 + 1 n 1.1) n!1 n) e a 1, a 2, a 3,... {a n

More information

Seiberg Witten 1994 N = 2 SU(2) Yang-Mills 1 1 3 2 5 2.1..................... 5 2.2.............. 8 2.3................................. 9 3 N = 2 Yang-Mills 11 3.1............................... 11 3.2

More information

応力とひずみ.ppt

応力とひずみ.ppt in yukawa@numse.nagoya-u.ac.jp 2 3 4 5 x 2 6 Continuum) 7 8 9 F F 10 F L L F L 1 L F L F L F 11 F L F F L F L L L 1 L 2 12 F L F! A A! S! = F S 13 F L L F F n = F " cos# F t = F " sin# S $ = S cos# S S

More information

3 exotica

3 exotica ( / ) 2013 2 23 embedding tensors (non)geometric fluxes exotic branes + D U-duality G 0 R-symmetry H dim(g 0 /H) T-duality 11 1 1 0 1 IIA R + 1 1 1 IIB SL(2, R) SO(2) 2 1 9 GL(2, R) SO(2) 3 SO(1, 1) 8

More information

koji07-02.dvi

koji07-02.dvi 007 I II III 1,, 3, 4, 5, 6, 7 5 4 1 ε-n 1 ε-n ε-n ε-n. {a } =1 a ε N N a a N= a a

More information

d ϕ i) t d )t0 d ϕi) ϕ i) t x j t d ) ϕ t0 t α dx j d ) ϕ i) t dx t0 j x j d ϕ i) ) t x j dx t0 j f i x j ξ j dx i + ξ i x j dx j f i ξ i x j dx j d )

d ϕ i) t d )t0 d ϕi) ϕ i) t x j t d ) ϕ t0 t α dx j d ) ϕ i) t dx t0 j x j d ϕ i) ) t x j dx t0 j f i x j ξ j dx i + ξ i x j dx j f i ξ i x j dx j d ) 23 M R M ϕ : R M M ϕt, x) ϕ t x) ϕ s ϕ t ϕ s+t, ϕ 0 id M M ϕ t M ξ ξ ϕ t d ϕ tx) ξϕ t x)) U, x 1,...,x n )) ϕ t x) ϕ 1) t x),...,ϕ n) t x)), ξx) ξ i x) d ϕi) t x) ξ i ϕ t x)) M f ϕ t f)x) f ϕ t )x) fϕ

More information

. Mac Lane [ML98]. 1 2 (strict monoidal category) S 1 R 3 A S 1 [0, 1] C 2 C End C (1) C 4 1 U q (sl 2 ) Drinfeld double. 6 2

. Mac Lane [ML98]. 1 2 (strict monoidal category) S 1 R 3 A S 1 [0, 1] C 2 C End C (1) C 4 1 U q (sl 2 ) Drinfeld double. 6 2 2014 6 30. 2014 3 1 6 (Hopf algebra) (group) Andruskiewitsch-Santos [AFS09] 1980 Drinfeld (quantum group) Lie Lie (ribbon Hopf algebra) (ribbon category) Turaev [Tur94] Kassel [Kas95] (PD) x12005i@math.nagoya-u.ac.jp

More information

2 R U, U Hausdorff, R. R. S R = (S, A) (closed), (open). (complete projective smooth algebraic curve) (cf. 2). 1., ( ).,. countable ( 2 ) ,,.,,

2 R U, U Hausdorff, R. R. S R = (S, A) (closed), (open). (complete projective smooth algebraic curve) (cf. 2). 1., ( ).,. countable ( 2 ) ,,.,, 15, pp.1-13 1 1.1,. 1.1. C ( ) f = u + iv, (, u, v f ). 1 1. f f x = i f x u x = v y, u y = v x.., u, v u = v = 0 (, f = 2 f x + 2 f )., 2 y2 u = 0. u, u. 1,. 1.2. S, A S. (i) A φ S U φ C. (ii) φ A U φ

More information

difgeo1.dvi

difgeo1.dvi 1 http://matlab0.hwe.oita-u.ac.jp/ matsuo/difgeo.pdf ver.1 8//001 1 1.1 a A. O 1 e 1 ; e ; e e 1 ; e ; e x 1 ;x ;x e 1 ; e ; e X x x x 1 ;x ;x X (x 1 ;x ;x ) 1 1 x x X e e 1 O e x x 1 x x = x 1 e 1 + x

More information

A11 (1993,1994) 29 A12 (1994) 29 A13 Trefethen and Bau Numerical Linear Algebra (1997) 29 A14 (1999) 30 A15 (2003) 30 A16 (2004) 30 A17 (2007) 30 A18

A11 (1993,1994) 29 A12 (1994) 29 A13 Trefethen and Bau Numerical Linear Algebra (1997) 29 A14 (1999) 30 A15 (2003) 30 A16 (2004) 30 A17 (2007) 30 A18 2013 8 29y, 2016 10 29 1 2 2 Jordan 3 21 3 3 Jordan (1) 3 31 Jordan 4 32 Jordan 4 33 Jordan 6 34 Jordan 8 35 9 4 Jordan (2) 10 41 x 11 42 x 12 43 16 44 19 441 19 442 20 443 25 45 25 5 Jordan 26 A 26 A1

More information

20 6 4 1 4 1.1 1.................................... 4 1.1.1.................................... 4 1.1.2 1................................ 5 1.2................................... 7 1.2.1....................................

More information

6. Euler x

6. Euler x ...............................................................................3......................................... 4.4................................... 5.5......................................

More information

2011de.dvi

2011de.dvi 211 ( 4 2 1. 3 1.1............................... 3 1.2 1- -......................... 13 1.3 2-1 -................... 19 1.4 3- -......................... 29 2. 37 2.1................................ 37

More information

I, II 1, 2 ɛ-δ 100 A = A 4 : 6 = max{ A, } A A 10

I, II 1, 2 ɛ-δ 100 A = A 4 : 6 = max{ A, } A A 10 1 2007.4.13. A 3-312 tel: 092-726-4774, e-mail: hara@math.kyushu-u.ac.jp, http://www.math.kyushu-u.ac.jp/ hara/lectures/lectures-j.html Office hours: B A I ɛ-δ ɛ-δ 1. 2. A 0. 1. 1. 2. 3. 2. ɛ-δ 1. ɛ-n

More information

Donaldson Seiberg-Witten [GNY] f U U C 1 f(z)dz = Res f(a) 2πi C a U U α = f(z)dz dα = 0 U f U U P 1 α 0 a P 1 Res a α = 0. P 1 Donaldson Seib

Donaldson Seiberg-Witten [GNY] f U U C 1 f(z)dz = Res f(a) 2πi C a U U α = f(z)dz dα = 0 U f U U P 1 α 0 a P 1 Res a α = 0. P 1 Donaldson Seib ( ) Donaldson Seiberg-Witten Witten Göttsche [GNY] L. Göttsche, H. Nakajima and K. Yoshioka, Donaldson = Seiberg-Witten from Mochizuki s formula and instanton counting, Publ. of RIMS, to appear Donaldson

More information

(2 X Poisso P (λ ϕ X (t = E[e itx ] = k= itk λk e k! e λ = (e it λ k e λ = e eitλ e λ = e λ(eit 1. k! k= 6.7 X N(, 1 ϕ X (t = e 1 2 t2 : Cauchy ϕ X (t

(2 X Poisso P (λ ϕ X (t = E[e itx ] = k= itk λk e k! e λ = (e it λ k e λ = e eitλ e λ = e λ(eit 1. k! k= 6.7 X N(, 1 ϕ X (t = e 1 2 t2 : Cauchy ϕ X (t 6 6.1 6.1 (1 Z ( X = e Z, Y = Im Z ( Z = X + iy, i = 1 (2 Z E[ e Z ] < E[ Im Z ] < Z E[Z] = E[e Z] + ie[im Z] 6.2 Z E[Z] E[ Z ] : E[ Z ] < e Z Z, Im Z Z E[Z] α = E[Z], Z = Z Z 1 {Z } E[Z] = α = α [ α ]

More information

13 0 1 1 4 11 4 12 5 13 6 2 10 21 10 22 14 3 20 31 20 32 25 33 28 4 31 41 32 42 34 43 38 5 41 51 41 52 43 53 54 6 57 61 57 62 60 70 0 Gauss a, b, c x, y f(x, y) = ax 2 + bxy + cy 2 = x y a b/2 b/2 c x

More information

main.dvi

main.dvi SGC - 70 2, 3 23 ɛ-δ 2.12.8 3 2.92.13 4 2 3 1 2.1 2.102.12 [8][14] [1],[2] [4][7] 2 [4] 1 2009 8 1 1 1.1... 1 1.2... 4 1.3 1... 8 1.4 2... 9 1.5... 12 1.6 1... 16 1.7... 18 1.8... 21 1.9... 23 2 27 2.1

More information

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT I (008 4 0 de Broglie (de Broglie p λ k h Planck ( 6.63 0 34 Js p = h λ = k ( h π : Dirac k B Boltzmann (.38 0 3 J/K T U = 3 k BT ( = λ m k B T h m = 0.067m 0 m 0 = 9. 0 3 kg GaAs( a T = 300 K 3 fg 07345

More information

Introduction SFT Tachyon condensation in SFT SFT ( ) at 1 / 38

Introduction SFT Tachyon condensation in SFT SFT ( ) at 1 / 38 ( ) 2011 5 14 at 1 / 38 Introduction? = String Field Theory = SFT 2 / 38 String Field : ϕ(x, t) x ϕ x / ( ) X ( σ) (string field): Φ[X(σ), t] X(σ) Φ (Φ X(σ) ) X(σ) & / 3 / 38 SFT with Lorentz & Gauge Invariance

More information

i Version 1.1, (2012/02/22 24),.,..,.,,. R-space,, ( R- space),, Kahler (Kähler C-space)., R-space,., R-space, Hermite,.

i Version 1.1, (2012/02/22 24),.,..,.,,. R-space,, ( R- space),, Kahler (Kähler C-space)., R-space,., R-space, Hermite,. R-space ( ) Version 1.1 (2012/02/29) i Version 1.1, (2012/02/22 24),.,..,.,,. R-space,, ( R- space),, Kahler (Kähler C-space)., R-space,., R-space, Hermite,. ii 1 Lie 1 1.1 Killing................................

More information

B [ 0.1 ] x > 0 x 6= 1 f(x) µ 1 1 xn 1 + sin sin x 1 x 1 f(x) := lim. n x n (1) lim inf f(x) (2) lim sup f(x) x 1 0 x 1 0 (

B [ 0.1 ] x > 0 x 6= 1 f(x) µ 1 1 xn 1 + sin sin x 1 x 1 f(x) := lim. n x n (1) lim inf f(x) (2) lim sup f(x) x 1 0 x 1 0 ( . 28 4 14 [.1 ] x > x 6= 1 f(x) µ 1 1 xn 1 + sin + 2 + sin x 1 x 1 f(x) := lim. 1 + x n (1) lim inf f(x) (2) lim sup f(x) x 1 x 1 (3) lim inf x 1+ f(x) (4) lim sup f(x) x 1+ [.2 ] [, 1] Ω æ x (1) (2) nx(1

More information

20 9 19 1 3 11 1 3 111 3 112 1 4 12 6 121 6 122 7 13 7 131 8 132 10 133 10 134 12 14 13 141 13 142 13 143 15 144 16 145 17 15 19 151 1 19 152 20 2 21 21 21 211 21 212 1 23 213 1 23 214 25 215 31 22 33

More information

Part () () Γ Part ,

Part () () Γ Part , Contents a 6 6 6 6 6 6 6 7 7. 8.. 8.. 8.3. 8 Part. 9. 9.. 9.. 3. 3.. 3.. 3 4. 5 4.. 5 4.. 9 4.3. 3 Part. 6 5. () 6 5.. () 7 5.. 9 5.3. Γ 3 6. 3 6.. 3 6.. 3 6.3. 33 Part 3. 34 7. 34 7.. 34 7.. 34 8. 35

More information

December 28, 2018

December 28, 2018 e-mail : kigami@i.kyoto-u.ac.jp December 28, 28 Contents 2............................. 3.2......................... 7.3..................... 9.4................ 4.5............. 2.6.... 22 2 36 2..........................

More information

Microsoft Word - 信号処理3.doc

Microsoft Word - 信号処理3.doc Junji OHTSUBO 2012 FFT FFT SN sin cos x v ψ(x,t) = f (x vt) (1.1) t=0 (1.1) ψ(x,t) = A 0 cos{k(x vt) + φ} = A 0 cos(kx ωt + φ) (1.2) A 0 v=ω/k φ ω k 1.3 (1.2) (1.2) (1.2) (1.1) 1.1 c c = a + ib, a = Re[c],

More information

第10章 アイソパラメトリック要素

第10章 アイソパラメトリック要素 June 5, 2019 1 / 26 10.1 ( ) 2 / 26 10.2 8 2 3 4 3 4 6 10.1 4 2 3 4 3 (a) 4 (b) 2 3 (c) 2 4 10.1: 3 / 26 8.3 3 5.1 4 10.4 Gauss 10.1 Ω i 2 3 4 Ξ 3 4 6 Ξ ( ) Ξ 5.1 Gauss ˆx : Ξ Ω i ˆx h u 4 / 26 10.2.1

More information

0 Intoduction 0.1 (localization fomula) T = U(1) M µ M T µ = M M T µ eff M T 2. M T M T Gauss µ µ eff (1) (2) Atiyah-Singe U(1) [At85]

0 Intoduction 0.1 (localization fomula) T = U(1) M µ M T µ = M M T µ eff M T 2. M T M T Gauss µ µ eff (1) (2) Atiyah-Singe U(1) [At85] v2.3 2005/02/11 12 Contents 0 Intoduction 2 0.1....................................... 2 0.2......................................... 2 1 U(1) Boel 3 1.1............................ 3 1.2..........................

More information

2 2.1 d q dt i(t = d p dt i(t = H p i (q(t, p(t H q i (q(t, p(t 1 i n (1 (1 X H = ( H H p k q k q k p k (2 ϕ H (t = (q 1 (t,, q n (t, p 1 (t,, p n (t

2 2.1 d q dt i(t = d p dt i(t = H p i (q(t, p(t H q i (q(t, p(t 1 i n (1 (1 X H = ( H H p k q k q k p k (2 ϕ H (t = (q 1 (t,, q n (t, p 1 (t,, p n (t (Clebsch parametrization, Helicity 1 Langer-Perline rylinski vortex Chern-Simons Atiyah-ott symplectic symplectic reduction Jackiw Jackiw Marsden- Weinstein ( Marsden-Weinstein Poisson Poisson Clebch parametrization

More information

Morse ( ) 2014

Morse ( ) 2014 Morse ( ) 2014 1 1 Morse 1 1.1 Morse................................ 1 1.2 Morse.............................. 7 2 12 2.1....................... 12 2.2.................. 13 2.3 Smale..............................

More information

2010 II / y = e x y = log x = log e x 2. ( e x ) = e x 3. ( ) log x = 1 x 1.2 Warming Up 1 u = log a M a u = M a 0

2010 II / y = e x y = log x = log e x 2. ( e x ) = e x 3. ( ) log x = 1 x 1.2 Warming Up 1 u = log a M a u = M a 0 2010 II 6 10.11.15/ 10.11.11 1 1 5.6 1.1 1. y = e x y = log x = log e x 2. e x ) = e x 3. ) log x = 1 x 1.2 Warming Up 1 u = log a M a u = M a 0 log a 1 a 1 log a a a r+s log a M + log a N 1 0 a 1 a r

More information

IA 2013 : :10722 : 2 : :2 :761 :1 (23-27) : : ( / ) (1 /, ) / e.g. (Taylar ) e x = 1 + x + x xn n! +... sin x = x x3 6 + x5 x2n+1 + (

IA 2013 : :10722 : 2 : :2 :761 :1 (23-27) : : ( / ) (1 /, ) / e.g. (Taylar ) e x = 1 + x + x xn n! +... sin x = x x3 6 + x5 x2n+1 + ( IA 2013 : :10722 : 2 : :2 :761 :1 23-27) : : 1 1.1 / ) 1 /, ) / e.g. Taylar ) e x = 1 + x + x2 2 +... + xn n! +... sin x = x x3 6 + x5 x2n+1 + 1)n 5! 2n + 1)! 2 2.1 = 1 e.g. 0 = 0.00..., π = 3.14..., 1

More information

1

1 1 1 7 1.1.................................. 11 2 13 2.1............................ 13 2.2............................ 17 2.3.................................. 19 3 21 3.1.............................

More information

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202E646F63>

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202E646F63> 電気電子数学入門 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/073471 このサンプルページの内容は, 初版 1 刷発行当時のものです. i 14 (tool) [ ] IT ( ) PC (EXCEL) HP() 1 1 4 15 3 010 9 ii 1... 1 1.1 1 1.

More information

21 2 26 i 1 1 1.1............................ 1 1.2............................ 3 2 9 2.1................... 9 2.2.......... 9 2.3................... 11 2.4....................... 12 3 15 3.1..........

More information

0. Intro ( K CohFT etc CohFT 5.IKKT 6.

0. Intro ( K CohFT etc CohFT 5.IKKT 6. E-mail: sako@math.keio.ac.jp 0. Intro ( K 1. 2. CohFT etc 3. 4. CohFT 5.IKKT 6. 1 µ, ν : d (x 0,x 1,,x d 1 ) t = x 0 ( t τ ) x i i, j, :, α, β, SO(D) ( x µ g µν x µ µ g µν x ν (1) g µν g µν vector x µ,y

More information

II Time-stamp: <05/09/30 17:14:06 waki> ii

II Time-stamp: <05/09/30 17:14:06 waki> ii II waki@cc.hirosaki-u.ac.jp 18 1 30 II Time-stamp: ii 1 1 1.1.................................................. 1 1.2................................................... 3 1.3..................................................

More information

1/68 A. 電気所 ( 発電所, 変電所, 配電塔 ) における変圧器の空き容量一覧 平成 31 年 3 月 6 日現在 < 留意事項 > (1) 空容量は目安であり 系統接続の前には 接続検討のお申込みによる詳細検討が必要となります その結果 空容量が変更となる場合があります (2) 特に記載

1/68 A. 電気所 ( 発電所, 変電所, 配電塔 ) における変圧器の空き容量一覧 平成 31 年 3 月 6 日現在 < 留意事項 > (1) 空容量は目安であり 系統接続の前には 接続検討のお申込みによる詳細検討が必要となります その結果 空容量が変更となる場合があります (2) 特に記載 1/68 A. 電気所 ( 発電所, 変電所, 配電塔 ) における変圧器の空き容量一覧 平成 31 年 3 月 6 日現在 < 留意事項 > (1) 空容量は目安であり 系統接続の前には 接続検討のお申込みによる詳細検討が必要となります その結果 空容量が変更となる場合があります (2) 特に記載のない限り 熱容量を考慮した空き容量を記載しております その他の要因 ( 電圧や系統安定度など ) で連系制約が発生する場合があります

More information

I (Analysis I) Lebesgue (Lebesgue Integral Theory) 1 (Seiji HIRABA) 1 ( ),,, ( )

I (Analysis I) Lebesgue (Lebesgue Integral Theory) 1 (Seiji HIRABA) 1 ( ),,, ( ) I (Analysis I) Lebesgue (Lebesgue Integral Theory) 1 (Seiji HIRABA) 1 ( ),,, ( ) 1 (Introduction) 1 1.1... 1 1.2 Riemann Lebesgue... 2 2 (Measurable sets and Measures) 4 2.1 σ-... 4 2.2 Borel... 5 2.3...

More information

1. x { e 1,..., e n } x = x1 e1 + + x n en = (x 1,..., x n ) X, Y [X, Y ] Intrinsic ( ) Intrinsic M m P M C P P M P M v 3 v : C P R 1

1. x { e 1,..., e n } x = x1 e1 + + x n en = (x 1,..., x n ) X, Y [X, Y ] Intrinsic ( ) Intrinsic M m P M C P P M P M v 3 v : C P R 1 1. x { e 1,..., e n } x = x1 e1 + + x n en = (x 1,..., x n ) X, Y [X, Y ] Intrinsic ( ) Intrinsic M m P M C P P M P M v 3 v : C P R 1 f, g C P, λ R (1) v(f + g) = v(f) + v(g) (2) v(λf) = λv(f) (3) v(fg)

More information

mugensho.dvi

mugensho.dvi 1 1 f (t) lim t a f (t) = 0 f (t) t a 1.1 (1) lim(t 1) 2 = 0 t 1 (t 1) 2 t 1 (2) lim(t 1) 3 = 0 t 1 (t 1) 3 t 1 2 f (t), g(t) t a lim t a f (t) g(t) g(t) f (t) = o(g(t)) (t a) = 0 f (t) (t 1) 3 1.2 lim

More information

等質空間の幾何学入門

等質空間の幾何学入門 2006/12/04 08 tamaru@math.sci.hiroshima-u.ac.jp i, 2006/12/04 08. 2006, 4.,,.,,.,.,.,,.,,,.,.,,.,,,.,. ii 1 1 1.1 :................................... 1 1.2........................................ 2 1.3......................................

More information

..3. Ω, Ω F, P Ω, F, P ). ) F a) A, A,..., A i,... F A i F. b) A F A c F c) Ω F. ) A F A P A),. a) 0 P A) b) P Ω) c) [ ] A, A,..., A i,... F i j A i A

..3. Ω, Ω F, P Ω, F, P ). ) F a) A, A,..., A i,... F A i F. b) A F A c F c) Ω F. ) A F A P A),. a) 0 P A) b) P Ω) c) [ ] A, A,..., A i,... F i j A i A .. Laplace ). A... i),. ω i i ). {ω,..., ω } Ω,. ii) Ω. Ω. A ) r, A P A) P A) r... ).. Ω {,, 3, 4, 5, 6}. i i 6). A {, 4, 6} P A) P A) 3 6. ).. i, j i, j) ) Ω {i, j) i 6, j 6}., 36. A. A {i, j) i j }.

More information

kougiroku7_26.dvi

kougiroku7_26.dvi 2005 : D-brane tachyon : ( ) 2005 8 7 8 :,,,,,,, 1 2 1.1 Introduction............................... 2 1.2......................... 6 1.3 Second Revolution (1994 )................... 11 2 Type II 26 2.1

More information

meiji_resume_1.PDF

meiji_resume_1.PDF β β β (q 1,q,..., q n ; p 1, p,..., p n ) H(q 1,q,..., q n ; p 1, p,..., p n ) Hψ = εψ ε k = k +1/ ε k = k(k 1) (x, y, z; p x, p y, p z ) (r; p r ), (θ; p θ ), (ϕ; p ϕ ) ε k = 1/ k p i dq i E total = E

More information

, x R, f (x),, df dx : R R,, f : R R, f(x) ( ).,, f (a) d f dx (a), f (a) d3 f dx 3 (a),, f (n) (a) dn f dx n (a), f d f dx, f d3 f dx 3,, f (n) dn f

, x R, f (x),, df dx : R R,, f : R R, f(x) ( ).,, f (a) d f dx (a), f (a) d3 f dx 3 (a),, f (n) (a) dn f dx n (a), f d f dx, f d3 f dx 3,, f (n) dn f ,,,,.,,,. R f : R R R a R, f(a + ) f(a) lim 0 (), df dx (a) f (a), f(x) x a, f (a), f(x) x a ( ). y f(a + ) y f(x) f(a+) f(a) f(a + ) f(a) f(a) x a 0 a a + x 0 a a + x y y f(x) 0 : 0, f(a+) f(a)., f(x)

More information

Macdonald, ,,, Macdonald. Macdonald,,,,,.,, Gauss,,.,, Lauricella A, B, C, D, Gelfand, A,., Heckman Opdam.,,,.,,., intersection,. Macdona

Macdonald, ,,, Macdonald. Macdonald,,,,,.,, Gauss,,.,, Lauricella A, B, C, D, Gelfand, A,., Heckman Opdam.,,,.,,., intersection,. Macdona Macdonald, 2015.9.1 9.2.,,, Macdonald. Macdonald,,,,,.,, Gauss,,.,, Lauricella A, B, C, D, Gelfand, A,., Heckman Opdam.,,,.,,., intersection,. Macdonald,, q., Heckman Opdam q,, Macdonald., 1 ,,. Macdonald,

More information

Gmech08.dvi

Gmech08.dvi 145 13 13.1 13.1.1 0 m mg S 13.1 F 13.1 F /m S F F 13.1 F mg S F F mg 13.1: m d2 r 2 = F + F = 0 (13.1) 146 13 F = F (13.2) S S S S S P r S P r r = r 0 + r (13.3) r 0 S S m d2 r 2 = F (13.4) (13.3) d 2

More information

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10%

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10% 1 2006.4.17. A 3-312 tel: 092-726-4774, e-mail: hara@math.kyushu-u.ac.jp, http://www.math.kyushu-u.ac.jp/ hara/lectures/lectures-j.html Office hours: B A I ɛ-δ ɛ-δ 1. 2. A 1. 1. 2. 3. 4. 5. 2. ɛ-δ 1. ɛ-n

More information

i

i 009 I 1 8 5 i 0 1 0.1..................................... 1 0.................................................. 1 0.3................................. 0.4........................................... 3

More information

A

A A 2563 15 4 21 1 3 1.1................................................ 3 1.2............................................. 3 2 3 2.1......................................... 3 2.2............................................

More information

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2 II No.1 [n/] [1]H n x) H n x) = 1) r n! r!n r)! x)n r r= []H n x) n,, H n x) = 1) n H n x) [3] H n x) = 1) n dn x e dx n e x [4] H n+1 x) = xh n x) nh n 1 x) ) d dx x H n x) = H n+1 x) d dx H nx) = nh

More information

25 7 18 1 1 1.1 v.s............................. 1 1.1.1.................................. 1 1.1.2................................. 1 1.1.3.................................. 3 1.2................... 3

More information

1 Euclid Euclid Euclid

1 Euclid Euclid Euclid II 2000 1 Euclid 1 1.1..................................... 1 1.2..................................... 8 1.3 Euclid............. 19 1.4 3 Euclid............................ 22 2 28 2.1 Lie Lie..................................

More information

f(x) = x (1) f (1) (2) f (2) f(x) x = a y y = f(x) f (a) y = f(x) A(a, f(a)) f(a + h) f(x) = A f(a) A x (3, 3) O a a + h x 1 f(x) x = a

f(x) = x (1) f (1) (2) f (2) f(x) x = a y y = f(x) f (a) y = f(x) A(a, f(a)) f(a + h) f(x) = A f(a) A x (3, 3) O a a + h x 1 f(x) x = a 3 3.1 3.1.1 A f(a + h) f(a) f(x) lim f(x) x = a h 0 h f(x) x = a f 0 (a) f 0 (a) = lim h!0 f(a + h) f(a) h = lim x!a f(x) f(a) x a a + h = x h = x a h 0 x a 3.1 f(x) = x x = 3 f 0 (3) f (3) = lim h 0 (

More information

Lebesgue Fubini L p Banach, Hilbert Höld

Lebesgue Fubini L p Banach, Hilbert Höld II (Analysis II) Lebesgue (Applications of Lebesgue Integral Theory) 1 (Seiji HIABA) 1 ( ),,, ( ) 1 1 1.1 1 Lebesgue........................ 1 1.2 2 Fubini...................... 2 2 L p 5 2.1 Banach, Hilbert..............................

More information

sin cos No. sine, cosine : trigonometric function π : π = 3.4 : n = 0, ±, ±, sin + nπ = sin cos + nπ = cos : parity sin = sin : odd cos = cos : even.

sin cos No. sine, cosine : trigonometric function π : π = 3.4 : n = 0, ±, ±, sin + nπ = sin cos + nπ = cos : parity sin = sin : odd cos = cos : even. 08 No. : No. : No.3 : No.4 : No.5 : No.6 : No.7 : No.8 : No.9 : No.0 : No. : sin cos No. sine, cosine : trigonometric function π : π = 3.4 : n = 0, ±, ±, sin + nπ = sin cos + nπ = cos : parity sin = sin

More information

Quiz x y i, j, k 3 A A i A j A k x y z A x A y A z x y z A A A A A A x y z P (x, y,z) r x i y j zk P r r r r r r x y z P ( x 1, y 1, z 1 )

Quiz x y i, j, k 3 A A i A j A k x y z A x A y A z x y z A A A A A A x y z P (x, y,z) r x i y j zk P r r r r r r x y z P ( x 1, y 1, z 1 ) Quiz x y i, j, k 3 A A i A j A k x y z A x A y A z x y z A A A A A A x y z P (x, y,z) x i y j zk P x y z P ( x 1, y 1, z 1 ) Q ( x, y, z ) 1 OP x1i y1 j z1k OQ x i y j z k 1 P Q PQ 1 PQ x x y y z z 1 1

More information

I No. sin cos sine, cosine : trigonometric function π : π =.4 : n = 0, ±, ±, sin + nπ = sin cos + nπ = cos : parity sin = sin : odd cos = cos : even.

I No. sin cos sine, cosine : trigonometric function π : π =.4 : n = 0, ±, ±, sin + nπ = sin cos + nπ = cos : parity sin = sin : odd cos = cos : even. I 0 No. : No. : No. : No.4 : No.5 : No.6 : No.7 : No.8 : No.9 : No.0 : I No. sin cos sine, cosine : trigonometric function π : π =.4 : n = 0, ±, ±, sin + nπ = sin cos + nπ = cos : parity sin = sin : odd

More information

30

30 3 ............................................2 2...........................................2....................................2.2...................................2.3..............................

More information

構造と連続体の力学基礎

構造と連続体の力学基礎 II 37 Wabash Avenue Bridge, Illinois 州 Winnipeg にある歩道橋 Esplanade Riel 橋6 6 斜張橋である必要は多分無いと思われる すぐ横に道路用桁橋有り しかも塔基部のレストランは 8 年には営業していなかった 9 9. 9.. () 97 [3] [5] k 9. m w(t) f (t) = f (t) + mg k w(t) Newton

More information

Basic Math. 1 0 [ N Z Q Q c R C] 1, 2, 3,... natural numbers, N Def.(Definition) N (1) 1 N, (2) n N = n +1 N, (3) N (1), (2), n N n N (element). n/ N.

Basic Math. 1 0 [ N Z Q Q c R C] 1, 2, 3,... natural numbers, N Def.(Definition) N (1) 1 N, (2) n N = n +1 N, (3) N (1), (2), n N n N (element). n/ N. Basic Mathematics 16 4 16 3-4 (10:40-12:10) 0 1 1 2 2 2 3 (mapping) 5 4 ε-δ (ε-δ Logic) 6 5 (Potency) 9 6 (Equivalence Relation and Order) 13 7 Zorn (Axiom of Choice, Zorn s Lemma) 14 8 (Set and Topology)

More information

20 4 20 i 1 1 1.1............................ 1 1.2............................ 4 2 11 2.1................... 11 2.2......................... 11 2.3....................... 19 3 25 3.1.............................

More information

X G P G (X) G BG [X, BG] S 2 2 2 S 2 2 S 2 = { (x 1, x 2, x 3 ) R 3 x 2 1 + x 2 2 + x 2 3 = 1 } R 3 S 2 S 2 v x S 2 x x v(x) T x S 2 T x S 2 S 2 x T x S 2 = { ξ R 3 x ξ } R 3 T x S 2 S 2 x x T x S 2

More information

1 a b = max{a, b}, a b = mi{a, b} a 1 a 2 a a 1 a = max{a 1,... a }, a 1 a = mi{a 1,... a }. A sup A, if A A A A A sup A sup A = + A if A = ± y = arct

1 a b = max{a, b}, a b = mi{a, b} a 1 a 2 a a 1 a = max{a 1,... a }, a 1 a = mi{a 1,... a }. A sup A, if A A A A A sup A sup A = + A if A = ± y = arct 27 6 2 1 2 2 5 3 8 4 13 5 16 6 19 7 23 8 27 N Z = {, ±1, ±2,... }, R =, R + = [, + ), R = [, ], C =. a b = max{a, b}, a b = mi{a, b}, a a, a a. f : X R [a < f < b] = {x X; a < f(x) < b}. X [f] = [f ],

More information

1 1, quandle.,., [Oht],., ( ).,..,.,Atiyah-Singer., :Poincare-Hopf,Gauss-Bonnet,Hirzebruch,Riemann- Roch-Hirzebruch,Rochlin,.,,Statement,,., ( )Statem

1 1, quandle.,., [Oht],., ( ).,..,.,Atiyah-Singer., :Poincare-Hopf,Gauss-Bonnet,Hirzebruch,Riemann- Roch-Hirzebruch,Rochlin,.,,Statement,,., ( )Statem 1 1, quandle,, [Oht],, (,,,Atiyah-Singer, :Poincare-Hopf,Gauss-Bonnet,Hirzebruch,Riemann- Roch-Hirzebruch,Rochlin,,,Statement,,, ( Statement, 11 X n C -,E i X (0 i m, D i : Γ(E i Γ(E i+1 0 Γ(E 0 D 0 Γ(E

More information

II 2 3.,, A(B + C) = AB + AC, (A + B)C = AC + BC. 4. m m A, m m B,, m m B, AB = BA, A,, I. 5. m m A, m n B, AB = B, A I E, 4 4 I, J, K

II 2 3.,, A(B + C) = AB + AC, (A + B)C = AC + BC. 4. m m A, m m B,, m m B, AB = BA, A,, I. 5. m m A, m n B, AB = B, A I E, 4 4 I, J, K II. () 7 F 7 = { 0,, 2, 3, 4, 5, 6 }., F 7 a, b F 7, a b, F 7,. (a) a, b,,. (b) 7., 4 5 = 20 = 2 7 + 6, 4 5 = 6 F 7., F 7,., 0 a F 7, ab = F 7 b F 7. (2) 7, 6 F 6 = { 0,, 2, 3, 4, 5 },,., F 6., 0 0 a F

More information

1 α X (path) α I = [0, 1] X α(0) = α(1) = p α p (base point) loop α(1) = β(0) X α, β α β : I X (α β)(s) = ( )α β { α(2s) (0 s 1 2 ) β(2s 1) ( 1 2 s 1)

1 α X (path) α I = [0, 1] X α(0) = α(1) = p α p (base point) loop α(1) = β(0) X α, β α β : I X (α β)(s) = ( )α β { α(2s) (0 s 1 2 ) β(2s 1) ( 1 2 s 1) 1 α X (path) α I = [0, 1] X α(0) = α(1) = p α p (base point) loop α(1) = β(0) X α, β α β : I X (α β)(s) = ( )α β { α(2s) (0 s 1 2 ) β(2s 1) ( 1 2 s 1) X α α 1 : I X α 1 (s) = α(1 s) ( )α 1 1.1 X p X Ω(p)

More information

D 24 D D D

D 24 D D D 5 Paper I.R. 2001 5 Paper HP Paper 5 3 5.1................................................... 3 5.2.................................................... 4 5.3.......................................... 6

More information

Date Wed, 20 Jun (JST) From Kuroki Gen Message-Id Subject Part 4

Date Wed, 20 Jun (JST) From Kuroki Gen Message-Id Subject Part 4 Part 4 2001 6 20 1 2 2 generator 3 3 L 7 4 Manin triple 8 5 KP Hamiltonian 10 6 n-component KP 12 7 nonlinear Schrödinger Hamiltonian 13 http//wwwmathtohokuacjp/ kuroki/hyogen/soliton-4txt TEX 2002 1 17

More information

0. I II I II (1) linear type: GL( ), Sp( ), O( ), (2) loop type: loop current Kac-Moody affine, hyperbolic (3) diffeo t

0. I II I II (1) linear type: GL( ), Sp( ), O( ), (2) loop type: loop current Kac-Moody affine, hyperbolic (3) diffeo t e-mail: koyama@math.keio.ac.jp 0. I II I II (1) linear type: GL( ), Sp( ), O( ), (2) loop type: loop current Kac-Moody affine, hyperbolic (3) diffeo type: diffeo universal Teichmuller modular I. I-. Weyl

More information

( ) ( 40 )+( 60 ) Schrödinger 3. (a) (b) (c) yoshioka/education-09.html pdf 1

( ) ( 40 )+( 60 ) Schrödinger 3. (a) (b) (c)   yoshioka/education-09.html pdf 1 2009 1 ( ) ( 40 )+( 60 ) 1 1. 2. Schrödinger 3. (a) (b) (c) http://goofy.phys.nara-wu.ac.jp/ yoshioka/education-09.html pdf 1 1. ( photon) ν λ = c ν (c = 3.0 108 /m : ) ɛ = hν (1) p = hν/c = h/λ (2) h

More information

No.004 [1] J. ( ) ( ) (1968) [2] Morse (1997) [3] (1988) 1

No.004 [1] J. ( ) ( ) (1968) [2] Morse (1997) [3] (1988) 1 No.004 [1] J. ( ) ( ) (1968) [2] Morse (1997) [3] (1988) 1 1 (1) 1.1 X Y f, g : X Y { F (x, 0) = f(x) F (x, 1) = g(x) F : X I Y f g f g F f g 1.2 X Y X Y gf id X, fg id Y f : X Y, g : Y X X Y X Y (2) 1.3

More information

24 I ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x

24 I ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x 24 I 1.1.. ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x 1 (t), x 2 (t),, x n (t)) ( ) ( ), γ : (i) x 1 (t),

More information

Siegel modular forms of middle parahoric subgroups and Ihara lift ( Tomoyoshi Ibukiyama Osaka University 1. Introduction [8] Ihara Sp(2, R) p

Siegel modular forms of middle parahoric subgroups and Ihara lift ( Tomoyoshi Ibukiyama Osaka University 1. Introduction [8] Ihara Sp(2, R) p Siegel modular forms of middle parahoric subgroups and Ihara lift ( Tomoyoshi Ibukiyama Osaka University 1. Introduction [8] Ihara 80 1963 Sp(2, R) p L holomorphic discrete series Eichler Brandt Eichler

More information

< 1 > (1) f 0 (a) =6a ; g 0 (a) =6a 2 (2) y = f(x) x = 1 f( 1) = 3 ( 1) 2 =3 ; f 0 ( 1) = 6 ( 1) = 6 ; ( 1; 3) 6 x =1 f(1) = 3 ; f 0 (1) = 6 ; (1; 3)

< 1 > (1) f 0 (a) =6a ; g 0 (a) =6a 2 (2) y = f(x) x = 1 f( 1) = 3 ( 1) 2 =3 ; f 0 ( 1) = 6 ( 1) = 6 ; ( 1; 3) 6 x =1 f(1) = 3 ; f 0 (1) = 6 ; (1; 3) < 1 > (1) f 0 (a) =6a ; g 0 (a) =6a 2 (2) y = f(x) x = 1 f( 1) = 3 ( 1) 2 =3 ; f 0 ( 1) = 6 ( 1) = 6 ; ( 1; 3) 6 x =1 f(1) = 3 ; f 0 (1) = 6 ; (1; 3) 6 y = g(x) x = 1 g( 1) = 2 ( 1) 3 = 2 ; g 0 ( 1) =

More information

Gauss Fuchs rigid rigid rigid Nicholas Katz Rigid local systems [6] Fuchs Katz Crawley- Boevey[1] [7] Katz rigid rigid Katz middle convolu

Gauss Fuchs rigid rigid rigid Nicholas Katz Rigid local systems [6] Fuchs Katz Crawley- Boevey[1] [7] Katz rigid rigid Katz middle convolu rigidity 2014.9.1-2014.9.2 Fuchs 1 Introduction y + p(x)y + q(x)y = 0, y 2 p(x), q(x) p(x) q(x) Fuchs 19 Fuchs 83 Gauss Fuchs rigid rigid rigid 7 1970 1996 Nicholas Katz Rigid local systems [6] Fuchs Katz

More information

untitled

untitled 1 kaiseki1.lec(tex) 19951228 19960131;0204 14;16 26;0329; 0410;0506;22;0603-05;08;20;0707;09;11-22;24-28;30;0807;12-24;27;28; 19970104(σ,F = µ);0212( ); 0429(σ- A n ); 1221( ); 20000529;30(L p ); 20050323(

More information

brother.\..2.ai

brother.\..2.ai 2004.3 95 pc 2 5 6 7 8 Q SC-370pc 9 HG-2614977766611312 HG-2514977766611329 HG-2414977766611336 HG-2314977766611343 HG-2214977766611350 HG-2114977766611367 TZ-FX2514977766621236 TZ-FX2414977766621229

More information

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0 1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0 0 < t < τ I II 0 No.2 2 C x y x y > 0 x 0 x > b a dx

More information