II Lie Lie Lie ( ) 1. Lie Lie Lie

Size: px
Start display at page:

Download "II Lie Lie Lie ( ) 1. Lie Lie Lie"

Transcription

1 II Lie

2 II Lie Lie Lie ( ) 1. Lie Lie Lie

3 i Lie Lie 4 3 Lie Lie Lie Lie Lie Lie 35

4 1 1 C Lie Lie 1.1 Hausdorff M M {(U α, φ α )} α A (1) M = α A U α, (2) α A φ α U α R n φ α (U α ) R n φ α U α φ α (U α ) (3) α, β A U α U β φ β φ 1 α φ β (U α U β ) : φ α (U α U β ) (M, {(U α, φ α )} α A ) n {(U α, φ α )} α A M M dim M {(U α, φ α )} α A M 1.2 (M, {(U α, φ α )} α A ), (N, {(V i, ψ i )} i I ) M N (M N, {(U α V i, φ α ψ i )} (α,i) A I ) M N 1.3 (M, {(U α, φ α )} α A ) n M V ψ : V R n (1) ψ(v ) R n ψ : V ψ(v ) (2) α A ψ φ 1 α : φ α (U α V ) ψ(u α V ) (V, ψ) M ψ R n ψ 1,..., ψ n V (V ; ψ 1,..., ψ n ) 1.4 m M n N f (1) f (2) f(u) V M (U, φ) N (V, ψ) R m φ(u) R n ψ(v ) ψ f φ 1 C

5 2 1. f C M N C f f 1 : N M f 1 C f M N 1.5 M x C F x R v f, g F x r R v(f + g) = v(f) + v(g), v(rf) = rv(f), v(fg) = v(f)g(x) + f(x)v(g) v M x T x (M) M x 1.6 n M x (U, φ) U x F x f f φ 1 φ(v ) C (x 1,..., x n ) R n v i (f) = (f φ 1 ) x i v i T x (M) v i x i x 1.7 n M x T x (M) n (U; x 1,..., x n ) M x x i x (1 i n) T x (M) 1.8 F M N C x M, y = F (x) N v T x (M) φ(x) v (f) = v(f F ) (f F F (x) ) v : F F (x) R v N F (x) v = df x (v) df x : T x (M) T F (x) (N) 1.9 M O x M x X x X X O M (U; x 1,..., x n ) x X x (x i ) i U O C

6 X M x M (U; x 1,..., x n ) 1.7 X x T x (M) n X x = a i (x) x i x i x (1 i n) X x C n X x (x j ) = a i (x) x i x j = a j (x) x U x i x (1 i n) C 1.11 M M C C (M) M X(M) (1) M X, Y f C (M) x Z(f) = X(Y (f)) Y (X(f)) Z M Z = [X, Y ] [X, Y ] X Y Lie (2) (1) [, ] : X(M) X(M) X(M) X, Y, Z X(M) [X, Y ] + [Y, X] = 0, [[X, Y ], Z] + [[Y, Z], X] + [[Z, X], Y ] = 0 Jacobi (1) Z X Y X = i a i, x i Y = j b j x j Z(f) = i = i,j = i,j a i x i ( j ) f b j x j j ) 2 f ( bj f a i + b j x i x j x i x j ( ) b i a i f a j b j x j x j x i ( ) f b j a i x j x i i ( ) ai f 2 f b j + a i x i,j j x i x j x i

7 4 2. Lie Lie Z Lie [ a i, ] b j = ( ) b i a i a j b j. x i i x j j x i,j j x j x i 2 Lie Lie 2.1 G G G G; (x, y) xy, G G; x x 1 C G Lie ( e ) 2.2 V V GL(V ) Lie GL(R n ) GL(n, R) GL(V ) GL(V ) dim V = n End(V ) = {f : V V f } V End(V ) End(V ) n M n (R) M n (R) R n2 End(V ) R n2 End(V ) R n2 End(V ) End(V ) det : End(V ) R End(V ) GL(V ) = {f End(V ) det f 0} GL(V ) End(V ) GL(V ) n 2 GL(V ) GL(V ) GL(V ); (x, y) xy End(V ) C GL(V ) GL(V ); x x 1 End(V ) C (Cramer ) 2.3 Lie G g L g, R g L g : G G; x gx, R g : G G; x xg

8 5 g G X G g (dl g ) x (X x ) = X gx (x G) (dr g ) x (X x ) = X xg (x G) 2.4 Lie G e (U; x 1,..., x n ) g G (L g (U); x 1 L 1 g,..., x n L 1 g ) g 2.5 g [, ] : g g g X, Y, Z g [X, Y ] = [Y, X], [[X, Y ], Z] + [[Y, Z], X] + [[Z, X], Y ] = 0 g Lie Lie g h [, ] h g Lie Lie g Lie g Lie 2.6 M X(M) Lie [, ] Lie 2.7 V End(V ) X, Y [X, Y ] = XY Y X End(V ) Lie Lie gl(v ) gl(r n ) gl(n, R) [, ] : End(V ) End(V ) End(V ) End(V ) X, Y, Z [X, Y ] = XY Y X = [Y, X], [[X, Y ], Z] + [[Y, Z], X] + [[Z, X], Y ] = [XY Y X, Z] + [Y Z ZY, X] + [ZX XZ, Y ] = XY Z Y XZ ZXY + ZY X + Y ZX ZY X XY Z + XZY = 0. +ZXY XZY Y ZX + Y XZ End(V ) [, ] Lie

9 6 2. Lie Lie 2.8 G Lie G g g G Lie X(G) Lie α : g T e (G); X X e dim g = dim T e (G) = dim G 2.9 M, N f : M N M X, Y N X, Ỹ df x (X x ) = X f(x), df x (Y x ) = Ỹf(x) (x M) df x ([X, Y ] x ) = [ X, Ỹ ] f(x) (x M). (V ; y 1,..., y n ) N U = f 1 (V ) x i = y i f (1 i n) (U; x 1,..., x n ) M X, Y U n n X = a i, Y = b i x i x i V ( n ) X = df(x) = df a i = x i Ỹ = n (a i f 1 ) y k = x i y k n (b j f 1 ). y j j=1 n (a i f 1 ) y i Lie [ X, Ỹ ] = ( (a j f 1 ) (b i f 1 ) (b j f 1 ) (a ) i f 1 ). y i,j j y j y i ( ( ) ) b i a i df([x, Y ]) = df a j b j x i,j j x j x i = ( (a i f 1 ) b i f 1 (b j f 1 ) a ) i f 1 x i,j j x j y i

10 7 b i x j f 1 = b i f 1 x j, df([x, Y ]) = [ X, Ỹ ] a i x j f 1 = a i f 1 x j 2.8 g X(G) X, Y g g G (dl g ) x (X x ) = X gx (dl g ) x (Y x ) = Y gx (x G) L g : G G 2.9 (dl g ) x ([X, Y ] x ) = [X, Y ] gx (x G) [X, Y ] g g X(G) Lie α X g, α(x) = 0 g G X g = (dl g ) e (X e ) = 0 X = 0 Kerα = 0 α X T e (G) X g = (dl g ) e (X) X α (U; x 1,..., x n ) G e G G G; (x, y) xy e V V V = {xy x, y V } U X = n ξ i x i 2.4 g G (L g (V ); x 1 L 1 g,..., x n L 1 g ) g y i = x i L 1 g gx L g (V ) (x V ) X gx = (dl gx ) e (X) = d(l g L x ) e (X) = (dl g ) x (dl x ) e (X) ( n = (dl g ) x ξ i (x ) j L x ) (e) x i,j=1 i x j x n = ξ i (x j L x ) (e)(dl g ) x x i x j. x i,j=1 ( (dl g ) x ) ( ) x j (y k ) = x x j (y k L g ) = δ jk x e

11 8 3. Lie (dl g ) x x j = x y j gx X gx = n i,j=1 ξ i (x j L x ) (e) x i y j. gx G G G; (x, y) xy = L x (y) C i, j V R; x (x j L x ) (e) x i C j L g (V ) R; gx n ξ i (x j L x ) (e) x i C X G X α 2.10 Lie G Lie g Lie G Lie 2.11 Lie C f : G H f Lie f f 1 f 1 Lie f Lie Lie G H Lie f : g h [f(x), f(y )] = f([x, Y ]) (X, Y g) f Lie f f 1 f Lie Lie g h 3 Lie 3.1 G Lie U G e G = {U n n N} U n = {g 1... g n g i U} U 1 = {g 1 g U} e V = U U 1 e H = {V n n N} V U G = H g, h H m, n g V m, h V n gh V m+n H g = g 1... g m, g i V g 1 = gm 1... g1 1 g 1 i V

12 9 g 1 V m H H G V e V H h H L h (V ) h L h (V ) H H G G H G = H ( {L g (H) g G, g / H}) L g (H) G H G G G = H G Lie G G 0 G 0 G Lie τ : G G G; (g, h) gh 1 τ G 0 G 0 G G (e, e) τ(g 0 G 0 ) e = τ(e, e) τ(g 0 G 0 ) τ(g 0 G 0 ) G 0 G 0 G g G L g R g 1 L g R g 1(G 0 ) e = L g R g 1(e) L g R g 1(G 0 ) L g R g 1(G 0 ) G 0 G 0 G G 0 G τ : G G G C G 0 τ G0 : G 0 G 0 G 0 C G 0 Lie G 0 G Lie Lie G G V n Lie GL(V ) GL(n, R) Lie gl(v ) gl(n, R) v 1,..., v n V f End(V ) f v 1,..., v n R(f) f[v 1,..., v n ] = [v 1,..., v n ]R(f) R : End(V ) End(R n ) R R Lie R : gl(v ) gl(n, R)

13 10 4. R GL(V ) Lie R GL(V ) : GL(V ) GL(n, R) 4.2 GL(n, R) 2.2 gl(n, R) T e (GL(n, R)) gl(n, R) Lie GL(n, R) Lie g X gl(n, R) X g X g = (dl g ) e (X) (g GL(n, R)) : gl(n, R) g ; X X Lie 2.8 GL(n, R) = α 1 Lie (i, j)- 1 0 n E ij {E ij 1 i, j n} gl(n, R) {x ij 1 i, j n} x ij gl(n, R) GL(n, R) gl(n, R) e GL(n, R) X gl(n, R) t R e + tx GL(n, R) g GL(n, R) ( ) d X g = (dl g ) e (X) = (dl g ) e dt t=0 (e + tx) = d dt L g(e + tx) = d t=0 dt t=0 (g + tgx) n n n = x ij (gx) = x ik (g)x kj (X) g i,j=1 x ij i,j=1 k= Lie X, Y gl(n, R), g GL(n, R) ( n ) [ X, n n x ik (g)x kj (Y ) Ỹ ] k=1 g = x pr (g)x rq (X) x i,j,p,q=1 r=1 pq ( n ) n x ik (g)x kj (X) k=1 x pr (g)x rq (Y ) x r=1 pq x ij g { n n } n = x ir (g)x rk (X)x kj (Y ) x ir (g)x rk (Y )x kj (X) i,j=1 k,r=1 k,r=1 x ij. g x ij g

14 11 = n x ij (gxy gy X) i,j=1 = [X, Y ] g. x ij = g n x ij (g[x, Y ]) i,j=1 x ij g [ X, Ỹ ] = [X, Y ] Lie Lie : gl(n, R) g Lie gl(n, R) Lie GL(n, R) Lie g gl(n, R) GL(n, R) Lie 4.1 V gl(v ) GL(V ) Lie M X M I M c : I M dc dt (t) = X c(t) (t I) c X 5.2 M X M t 0 M x M X c : I M t 0 I, c(t 0 ) = x c 1, c 2 : I M c 1 (t 0 ) = c 2 (t 0 ) = x X c 1 = c 2 x M (U; x 1,..., x n ) X U X x = n a i (x) x i (x U) x U dc dt (t) = X c(t) (t I) n d(x i c(t)) dt x i = c(t) n a i (c(t)) x i c(t)

15 12 5. c d(x i c(t)) dt = a i (c(t)), x i c(t 0 ) = x i (x) (1 i n) Euclid a i C t 0 I c : I U c M (U; x 1,..., x n ) c 1 (I), c 2 (I) U x 1,..., x n dc 1 dt (t) = X c 1 (t), dc 2 dt (t) = X c 2 (t) (t I) Euclid c 1 = c 2 c 1 (I), c 2 (I) M 1 t 0 < s, s I 0 < ε t 0 < t 1 < < t k = s I i = (t i 1 ε, t i + ε) (1 i k) i c 1 (I i ), c 2 (I i ) M 1 c 1 (t 1 ) = c 2 (t 1 ),..., c 1 (t k ) = c 2 (t k ) c 1 (s) = c 2 (s) t 0 > s, s I c 1 (s) = c 2 (s) c 1 = c R Lie R Lie G Lie G 5.4 G Lie Lie g Lie g G 1 1 X g X c : R G c(0) = e 1 c G X g c G c 2.8 dc (0) g X c dt (1),(2) (1) X g X c : R G c(0) = e c G (2) 2 (1) 5.2 δ > 0 X a : ( δ, δ) G a(0) = e s < δ/2 s 1 b 1 (t) = a(s + t), b 2 (t) = a(s)a(t) ( t < δ/2)

16 13 t b 1 (t) X a(t) X L g a(t) X ( ) d d dt L ga(t) = (dl g ) a(t) dt a(t) = (dl g ) a(t) (X a(t) ) = X Lg a(t). b 2 (t) X 5.2 b 1 (0) = a(s) = a(s)e = a(s)a(0) = b 2 (0) b 1 (t) = b 2 (t) ( t < δ/2). a(s + t) = a(s)a(t) = a(t)a(s) ( s, t < δ/2) t R t/k < δ/2 k ( ) k t c(t) = a k c : R G t R t/k < δ/2, t/l < δ/2 k, l ( ) k ( ) kl ( ) l t t t a = a = a k kl l c k c(0) = a(0) = e c G t R t/k < δ/2 k t I s I s/k < δ/2 s I c(s) = a(s/k) k c I C c : R G C s, t R s/k, t/k < δ/4 k s/k, t/k, (s + t)/k < δ/2 ( s ) ( ) k k ( t ( s ) ( )) k t c(s)c(t) = a a = a a k k k k ( ) k s + t = a = c(s + t). k c : R G G c X s R t (s δ, s + δ) c(t) = c(s)c(t s) = L c(s) (c(t s)) ( ) d dt c(t) d = (dl c(s) ) e t=s dt t=0 c(t) = (dl c(s) ) e (X e ) = X c(s).

17 14 6. c X (2) X g G c dc(0) = X dt e c g X G c g X X e = dc(0) dt (1) g X G c dc(0) = X dt e c X X G c n M n (C) X M n (C) X = max{ Xv v C n, v 1} M n (C) e X = k=0 1 k! Xk e X 6.2 X, Y M n (C) P M n (C) (1) e P XP 1 = P e X P 1. (2) XY = Y X e X+Y = e X e Y (3) e X (e X ) 1 = e X. (4) d dt etx = e tx X = Xe tx. (1) M n (C) ( e P XP 1 ) 1 = k! (P XP 1 ) k 1 = k! P Xk P 1 1 = P k! Xk k=0 = P e X P 1. (2) XY = Y X (X + Y ) k = i=0 k=0 k=0 P 1 k ( ) k X i Y k i = k! i i!j! Xi Y j = k! 1 1 i! Xi j! Y j i+j=k i+j=k

18 15 ( e X+Y 1 = k! (X + Y 1 )k = 1 ) ( i! Xi j! Y ) j 1 1 = i! Xi j! Y j k=0 = e X e Y. k=0 i+j=k (3) X( X) = X 2 = ( X)X (2) e = e 0 = e X X = e X e X (e X ) 1 = e X (4) e tx i=0 j=0 d dt etx = d dt k=0 1 k! tk X k = = e tx X = Xe tx. 1 d k! dt tk X k = k=0 k=1 1 (k 1)! tk 1 X k = k=0 1 k! tk X k GL(n, R) GL(n, R) gl(n, R) X gl(n, R) = T e (GL(n, R)) GL(n, R) X 2.8 X g = gx (g GL(n, R)) X GL(n, R) c dc(t) dt = c(t)x (t R), c(0) = e c(t) = e tx 6.4 n A γ A (t) γ A (t) γ A (t) = (t λ 1 ) p 1... (t λ k ) p k : 1 γ A (t) = h 1(t) (t λ 1 ) + + h k(t) p 1 (t λ k ) p k h i (t) p i 1 γ A (t) 1 = h 1 (t) (t λ 1 ) + + h γ A (t) k(t) p 1 (t λ k ) p k γ A (t) (t λ i ) p i γ A(t) (t λ i ) t p i h i (t) h i (t) h i (t) t = λ i

19 16 7. t = λ i p i 1 γ A (t) π i (t) = h i (t) π (t λ i ) p i (t) t i 1 = π 1 (t) + + π k (t), (t λ i ) p i π i (t) = h i (t)γ A (t) P i = π i (A) I n = P P k. Cayley-Hamilton (A λ i I n ) p i P i = h i (A)γ A (A) = 0. e ta = = = k e ta P i = k e tλ ii n +t(a λ i I n ) P i k e λ iti n e t(a λ ii n ) P i = k k e λ it p i 1 e λ t it j j! (A λ ii n ) j P i. j=0 j=0 t j j! (A λ ii n ) j P i G Lie Lie g X g 5.4 X c : R G c(0) = e exp X = c(1) exp : g G exp Lie G GL(n, R) Lie gl(n, R) X e tx GL(n, R) 7.3 G Lie Lie g X g 5.4 G t exp tx X g 5.4 G t c(t, X) s R d dt c(st, X) = sx c(st,x) (t R)

20 17 t c(st, X) sx g c(st, X) = c(t, sx) t = 1 c(s, X) = c(1, sx) = exp sx. X g G t exp tx 7.4 G Lie Lie g G exp : g G C X 1,..., X n g u 1,..., u n u 1,..., u n g G (U; x 1,..., x n ) e U, x 1 (e) = = x n (e) = 0 n u i X i g c(t; u 1,..., u n ) d dt c(t; u 1,..., u n ) = n u i (X i ) c(t;u1,...,u n ) X i U n (X i ) x = a ji (x) j=1 x j x c(t; u 1,..., u n ) d dt x j(c(t; u 1,..., u n )) = n u i a ji (c(t; u 1,..., u n )) (t, u 1,..., u n ) (x 1 (c(t; u 1,..., u n )),..., x n (c(t; u 1,..., u n ))) 0 C ( n ) exp u i X i = c(1; u 1,..., u n ) exp : g G 0 N C X g p 1 p X N X O 1 p O N ( ) p 1 exp(z) = exp p Z (Z O) exp O C exp : g G C

21 Lie G Lie g G exp g 0 G e X g = T 0 (g) d exp 0 (X) = d dt exp(tx) t=0 = X e = α(x) d exp e = α : g T e (G) 2.8 d exp e exp g 0 G e 7.6 G Lie Lie g 7.5 exp g 0 G e ( U g n ) X 1,..., X n exp u i X i (u 1,..., u n ) U u 1 (e) = = u n (e) = 0 (u 1,..., u n ) g X 1,..., X n G (U; u 1,..., u n ) G 7.7 G Lie Lie g X, Y g, f C (G), g G (Xf)(g) = d dt t=0 f(g exp tx) ([X, Y ]f)(g) = s t f(g exp sx exp ty (exp sx) 1 ) s=t=0 X g t g exp tx t = 0 (Xf)(g) = X g (f) = d dt t=0 f(g exp tx) 2 (XY f)(g) = d ds s=0 (Y f)(g exp sx) = f(g exp sx exp ty ) s t = ( ) t s f(g exp sx exp ty (exp sx) 1 exp sx) s=0 t=0 = ( t s f(g exp sx exp ty (exp sx) 1 ) s=0 s=t=0 + ) s s=0 f(g exp ty exp sx) (Leibniz ) t=0 = s t f(g exp sx exp ty (exp sx) 1 ) + (Y Xf)(g). s=t=0

22 19 ([X, Y ]f)(g) = s t f(g exp sx exp ty (exp sx) 1 ). s=t=0 7.8 Lie G G Lie g X, Y [X, Y ] = 0 f C (G), g G ([X, Y ]f)(g) = s t f(g exp sx exp ty (exp sx) 1 ) = f(g exp ty ) s t = 0. s=t=0 s=t=0 [X, Y ] = Lie g X, Y [X, Y ] = 0 g 7.8 Lie Lie Lie Lie Lie Lie 8.2 G, H Lie Lie g, h f : G H Lie 2.8 α G : g T e (G), α H : h T e (H) df = α 1 H df e α G : g h Lie X g df e (X e ) T e (H) H df(x) g G x G df g (X g ) = df g (dl g ) e (X e ) = d(f L g ) e (X e ). (f L g )(x) = f(gx) = f(g)f(x) = (L f(g) f)(x) df g (X g ) = d(f L g ) e (X e ) = d(l f(g) f)(x e ) = (dl f(g) ) e df e (X e ) = df(x) f(g).

23 20 8. X, Y g df g (X g ) = df(x) f(g), df g (Y g ) = df(y ) f(g) (g G) Lie ( 2.9 ) df g ([X, Y ] g ) = [df(x), df(y )] f(g) (g G) df e ([X, Y ] e ) = [df(x), df(y )] e 2.8 [df(x), df(y )] H df([x, Y ]) = [df(x), df(y )]. df : g h Lie 8.3 Lie f : G H df = α 1 H df e α G : g h f 8.2 Lie Lie 8.4 A, B, C Lie Lie a, b, c A a f : A B, g : B C Lie d(g f) = dg df : a c d(id A ) = α 1 A d(g f) = α 1 C = α 1 C d(id A) e α A = α 1 A d(g f) e α A = α 1 C dg e α B α 1 B id T e (A) α A = id dg e df e α A df e α A = dg df 8.5 A, B Lie Lie a, b f : A B Lie df : a b Lie df d(f 1 ) = d(f f 1 ) = d(id B ) = id d(f 1 ) df = id d(f 1 ) = df 1 df Lie 8.6 G, H Lie Lie g, h f : G H Lie f(exp X) = exp(df(x)) (X g) exp G exp H

24 21 Lie Lie ( 8.1) t f(exp tx) H 5.4 Y h f(exp tx) = exp ty (t R) t = 0 ( ) = d dt t=0 f(exp tx) = df e (X e ) ( ) = d dt exp ty t=0 = Y e. df e (X e ) = Y e df(x) = Y f(exp tx) = exp(tdf(x)) t = 1 f(exp X) = exp(df(x)) 8.7 Lie G V G GL(V ) Lie G Lie g V g gl(v ) Lie g 8.8 Lie g X ad(x)(y ) = [X, Y ], Y g ad(x) gl(g) ad : g gl(g) Lie X, Y, Z g [ad(x), ad(y )](Z) = ad(x)ad(y )(Z) ad(y )ad(x)(z) = [X, [Y, Z]] [Y, [X, Z]] = [X, [Y, Z]] + [Y, [Z, X]] = [Z, [X, Y ]] (Jacobi ) = ad([x, Y ])(Z) [ad(x), ad(y )] = ad([x, Y ]) ad Lie 8.9 Lie g ad : g gl(g) g 8.10 Lie G g Ad(g) = d(l g R g 1) G Lie g Ad(g) GL(g) g exp(x)g 1 = exp(ad(g)x) (g G, X g) Ad : G GL(g) Lie Ad g L g R g 1 G 8.5 Ad(g) g Ad(g) GL(g) 8.6 g exp(x)g 1 = exp(ad(g)x) (g G, X g)

25 g, h G Ad(gh) = d(l gh R (gh) 1) = d(l g L h R g 1 R h 1) = d(l g R g 1 L h R h 1) = d(l g R g 1) d(l h R h 1) = Ad(g) Ad(h) Ad : G GL(g) Ad C GL(g) g X 1,..., X n θ 1,..., θ n GL(g) R; u θ i (u(x j )) G R; g θ i (ad(g)(x j )) C 2.8 θ i (Ad(g)(X j )) = θ i (α 1 G dl g dr g 1 α G (X j )) g C Ad g 7.7 X, Y g, f C (G), g G ([X, Y ]f)(g) = s t f(g exp sx exp ty (exp sx) 1 ) s=t=0 = ( ) f(g exp(ad(exp sx)ty )) s t t=0 s=0 = s ((Ad(exp sx)y )f(g)) s=0 = s ((Ad(exp sx)y )) s=0 f(g) d Ad(exp sx)y ds = [X, Y ] = ad(x)(y ) s=0 d Ad(exp sx) ds = ad(x) s=0 Ad ad 8.11 Lie G Ad : G GL(V ) G 8.12 V GL(V ) 7.2 GL(V ) g GL(V ), X gl(v ) Ad(g)X = d dt (getx g 1 ) = d t=0 dt t=0 etgxg 1 = gxg 1.

26 23 9 Lie 9.1 Lie H Lie G Lie H G H G 9.2 G Lie Lie g G Lie H ι : H G dι : h dι(h) Lie ι dι : h g 8.2 Lie H G dι : h dι(h) Lie dι(h) Lie H Lie dι h dι(h) 9.4 G Lie H G Lie G, H Lie g, h exp G, exp H X h exp G (X) = exp H (X) ι : H G ι Lie 8.6 X h ι(exp H (X)) = exp G (dι(x)) ι dι exp G (X) = exp H (X) 9.5 G Lie Lie g g = a + b g ϕ(x, Y ) = exp(x) exp(y ) C ϕ : a b G a, b 0 U, V G e W ϕ U V W dϕ 0 (X, Y ) a b dϕ 0 (X, Y ) = dϕ 0 ((X, 0) + (0, Y )) = dϕ 0 (X, 0) + dϕ 0 (0, Y ) = d dt exp(tx)) t=0 + d dt exp(ty ) t=0 = X e + Y e = α(x + Y ) dϕ 0 = α : g T e (G) 2.8 dϕ 0 a, b 0 U, V G e W ϕ U V W 9.6 G Lie H G H G H Lie

27 24 9. Lie g 1 { S = X g X n g {0}, exp X n H, lim X n = 0, lim n n } X n X n = X X S exp tx H (t R) X X n g {0}, exp X n H, lim X n = 0, lim n n n X n = X t R t = m n X n + r n, 0 r n < X n m n r n lim X n = 0 lim r n = 0 lim m n X n = t n n n exp X n tx = lim m n X n lim n n X n = lim m nx n. n exp tx = lim n exp m n X n = lim n (exp X n ) m n H (H ). h = {tx t R, X S} h g h X, Y h {0} exp tx, exp ty H (t R) t exp tx exp ty t = 0 e H 7.5 exp g 0 G e 0 I g c : I g c(0) = 0, exp(c(t)) = exp tx exp ty (t I) t = 0 ( ) dc α dt (0) = X e + Y e = α(x + Y ) 2.8 dc c(t) (0) = X + Y lim = X + Y dt t 0 t n 1 I n Z n = c( 1 ) n Z n 0 ( ( )) 1 exp Z n = exp c H, lim Z n = lim c n n lim n Z n Z n = lim n n ( ) 1 = c(0) = 0, n c ( ) ( 1 c 1 ( n c 1 ) = lim n) n 1 n n 1 n c ( 1 n ) = X + Y X + Y X+Y S X + Y h h g X+Y H H G g h h 1 : g = h + h 9.5 h, h 0 U, V G

28 25 e W ϕ : h h G; (X, Y ) exp(x) exp(y ) U V W h 0 N exp(n) H e exp(n) H e Euclid e e g n g n H, g n / exp(n) U N, g n W U g n X n U, Y n V g n = exp X n exp Y n g n / exp(n) Y n 0 Yn 1 Y n Y n X = lim n Y n Y n Y n h exp Y n = (exp X n ) 1 g n H, lim Y n = 0 X S h n exp(u) H e h X 1,..., X k x exp(u) exp 1 (x) = k x i (x)x i H G h H L h (exp(u)) H {(L h (exp(u)); x 1 L 1 h,..., x k L 1 h )} h H H H G H Lie τ : G G G; (g, h) gh 1 τ H τ H τ H : H H H (h 1, h 2 ) H H τ H (h 1, h 2 ) = h 1 h 1 2 G (W ; x 1,..., x n ) V = {z W x i (z) = 0 (k + 1 i n)} H h 1 h 1 2 x 1,..., x k H τ H H (h 1, h 2 ) H H U τ H (U) V U W ; (x, y) xy 1 C (x, y) x i (xy 1 ) U C τ H : U V C τ H C H Lie H G Lie Lie Lie Lie Lie 9.8 Lie G Lie H Lie g, h h = {X g exp tx H(t R), t exp tx H } H Lie h = {X g exp tx H(t R)}

29 Lie h = {X g exp tx H(t R), t exp tx H } h h X h, s R exp sx G (W ; x 1,..., x n ) V = {z W x i (z) = 0 (k + 1 i n)} H exp sx x 1,..., x k H t exp tx H s I exp tx V (t I) I W ; t exp tx C t x i (exp tx) I C t exp tx H C X h h h h = h H Lie H X g exp tx H(t R) t exp tx H h = {X g exp tx H(t R)} 9.9 Lie G Lie H, K Lie h, k H K G Lie Lie h k 9.10 Lie Lie 9.11 G GL(V ) Lie G Lie g 7.2 GL(V ) X g exp G (X) = e X g G, X g Ad G (g)x = d dt (getx g 1 ) = d t=0 dt t=0 etgxg 1 = gxg Lie 10.1 Lie g ρ : g gl(v ) v V h = {X g ρ(x)v = 0} h g Lie a, b R, X, Y h ρ(ax + by )v = aρ(x)v + bρ(y )v = 0, ρ([x, Y ])v = ρ(x)ρ(y )v ρ(y )ρ(x)v = 0 ax + by, [X, Y ] h h g Lie

30 Lie G ρ : G GL(V ) v V H = {g G ρ(g)v = v} H G Lie h H Lie h = {X g dρ(x)v = 0} g, h H ρ(gh 1 )v = ρ(g)ρ(h 1 )v = v gh 1 H H G ρ : G GL(V ) C ρ v : G V ; g ρ(g)v ρ v C H = ρ 1 v (v) G H G Lie ( ) 9.8 X h t R exp tx H ρ(exp tx)v = v t = = d dt t=0 ρ(exp tx)v = d dt etdρ(x) v = dρ(x)v. t=0 dρ(x)v = 0 X g t R ρ(exp tx)v = exp(tdρ(x))v = n=0 exp tx H 9.8 X h 1 n! (tdρ(x))n v = v 10.3 V det : GL(V ) GL(R) = R {0} GL(V ) det tr : gl(v ) gl(r) = R det : GL(V ) GL(R) = R {0} GL(V ) X gl(v ) X : V V λ i (1 i k) p i 6.4 det(e tx ) = k (e λit ) p i = k e p iλ i t. d dt det(etx ) = d t=0 dt k e p iλ i t = t=0 k p i λ i = tr(x) det tr

31 Lie 10.4 V SL(V ) = {g GL(V ) det g = 1} SL(V ) Lie SL(V ) SL(V ) Lie sl(v ) sl(v ) = {X gl(v ) trx = 0} R n Lie SL(n, R), sl(n, R) 10.5 V A : V V R G = {g GL(V ) A(gu, gv) = A(u, v) (u, v V )} G Lie g G Lie g = {X gl(v ) A(Xu, v) + A(u, Xv) = 0 (u, v V )} V V R M 2 (V, R) b, c R, B, C M 2 (V, R) (bb + cc)(u, v) = bb(u, v) + cc(u, v) (u, v V ) bb + cc M 2 (V, R) M 2 (V, R) g GL(V ), B M 2 (V, R) (ρ(g)b)(u, v) = B(g 1 u, g 1 v) (u, v V ) ρ(g)b M 2 (V, R) ρ(g) GL(M 2 (V, R)) g, h GL(V ), u, v V (ρ(gh)b)(u, v) = B((gh) 1 u, (gh) 1 v) = B(h 1 g 1 u, h 1 g 1 v) = (ρ(h)b)(g 1 u, g 1 v) = (ρ(g)(ρ(h)b))(u, v) ρ(gh) = ρ(g)ρ(h) ρ : GL(V ) GL(M 2 (V, R)) u, v V, B M 2 (V, R) g (ρ(g)b)(u, v) C ρ C ρ Lie ρ G = {g GL(V ) ρ(g)a = A} 10.2 G Lie G Lie ρ X gl(v ), B M 2 (V, R), u, v V (dρ(x)b)(u, v) = d dt (ρ(etx )B)(u, v) = d t=0 dt B(e tx u, e tx v) 10.2 = B(Xu, v) B(u, Xv) g = {X gl(v ) dρ(x)a = 0} = {X gl(v ) A(Xu, v) + A(u, Xv) = 0 (u, v V )}. t=0

32 V A V V A O(V ) = O(V ; A) 10.5 O(V ) Lie O(V ) O(V ) Lie o(v ) = o(v ; A) 10.5 o(v ) = {X gl(v ) A(Xu, v) + A(u, Xv) = 0 (u, v V )} R n Lie O(n), o(n) 10.7 O(n) n o(n) n 10.8 V A V SO(V ) = SO(V ; A) = SL(V ) O(V ; A) 9.9 SO(V ) Lie SO(V ) SO(V ) Lie so(v ) = so(v ; A) 9.9 so(v ) = sl(v ) o(v ) = o(v ) R n Lie SO(n), so(n) 10.9 V I : V V ; v 1v V GL R (V ) Lie gl R (V ) 8.12 g GL R (V ) Ad(g)I = gig 1 V GL C (V ) {g GL R (V ) Ad(g)I = I} 9.9 Lie GL C (V ) GL C (V ) Lie gl C (V ) 8.10 dad(x)t = ad(x)(t ) = XT T X (X, T gl R (V )) GL C (V ) = {g GL R (V ) gi = Ig}, gl C (V ) = {X gl R (V ) XI = IX} gl C (V ) V GL C (C n ), gl C (C n ) GL(n, C), gl(n, C) Lie G V G GL C (V ) Lie G Lie g V g gl C (V ) Lie g Lie G G Lie g

33 Lie ρ : G GL C (V ) G I V 8.6 X g I exp(tdρ(x))i 1 = Iρ(exp tx)i 1 = ρ(exp tx) = exp(tdρ(x)) t = 0 Idρ(X)I 1 = dρ(x) dρ(x) gl C (V ) dρ : g gl C (V ) g V det C : GL C (V ) GL C (C) = C {0} GL C (V ) det C tr C : gl C (V ) gl C (C) = C V det C SL C (V ) = {g GL C (V ) det C g = 1} SL C (V ) Lie SL C (V ) SL C (V ) Lie sl C (V ) sl C (V ) = {X gl C (V ) tr C X = 0} C n Lie SL(n, C), sl(n, C) V A V Hermite V A U(V ) = U(V ; A) 10.5 U(V ) Lie U(V ) U(V ) Lie u(v ) = u(v ; A) 10.5 u(v ) = {X gl C (V ) A(Xu, v) + A(u, Xv) = 0 (u, v V )} C n Hermite Lie U(n), u(n) U(n) n u(n) n Hermite V A V Hermite SU(V ) = SU(V ; A) = SL C (V ) U(V ; A) 9.9 SU(V ) Lie SU(V ) SU(V ) Lie su(v ) = su(v ; A) 9.9 su(v ) = sl C (V ) u(v ) C n Hermite Lie SU(n), su(n)

34 31 11 Lie Lie 11.1 Lie G Lie g g Lie h G Lie Lie h dimh = k g G H g = d(l g ) e (α(h)) H g T g (G) k g G H g H G k g X 1,..., X n X 1,..., X k h X i G 1 i k (X i ) g H g (g G) H G k X, Y H f i, g i C (G) X = k f i X i, Y = k g i X i f C (G) [X, Y ](f) = = = k k [f i X i, g j X j ](f) = {f i X i (g j X j (f)) g j X j (f i X i (f))} i,j=1 i,j=1 k {f i (X i g j )(X j f) + f i g j X i X j f g j (X j f i )(X i f) g j f i X j X i f} i,j=1 k {f i (X i g j )X j g j (X j f i )X i + f i g j [X i, X j ]}(f) i,j=1 [X, Y ] = k {f i (X i g j )X j g j (X j f i )X i + f i g j [X i, X j ]}. i,j=1 h g Lie [X i, X j ] h [X, Y ] H H G k Frobenius G e H H g G L g (H) G x H T gx (L g (H)) = d(l g ) x T x (H) = d(l g ) x H x = d(l g ) x d(l x ) e (α(h)) = d(l gx ) e (α(h)) = H gx L g (H) H g H L g 1(H) L g 1(H) H L g 1(H) L g 1(g) = e H L g 1(H) H g 1 L g 1(H) H g 1 H L g 1(H) H L g H L g (H) H H = L g (H) H G H G Lie H G G G 0 Lie 3.1

35 Lie Lie H G 0 τ H : H H G; (g, h) gh 1 C H G τ H (H H) H H H τ H : H H H C H Lie G Lie H H Lie h H G Lie Lie h 9.4 H,H G 7.5 H H U H = {U n n N} = H ( 3.1) H H ι : H H U h H L h 1 ι = ι L h 1 ι L h (U) ι : H H Lie 11.2 Lie G Lie H Lie g, h g G H g = d(l g ) e (α(h)) H G H H 11.3 g Lie g h X g, Y h [X, Y ] h h g 11.4 f : g h Lie kerf g X g, Y kerf f([x, Y ]) = [f(x), f(y )] = 0 [X, Y ] kerf kerf g 11.5 f : G H Lie kerf G Lie ( Lie ) G Lie g kerf g Lie kerdf g G f(g) H Lie Lie df(g) H Lie f kerf G kerf Lie kerf g Lie h 9.8 X g h exp tx kerf (t R) 8.6 f(exp tx) = exp(tdf(x)) f(exp tx) = e (t R) df(x) = 0 X kerdf h = kerdf 8.2 df Lie 11.4 kerdf g G 7.5 exp(g) G 3.1 G = {exp(g) n n N} f(g) = f( {(exp g) n n N}) = {(f(exp g)) n n N} = {(exp(df(g))) n n N} ( 8.2 ) f(g) df(g) Lie

36 V det R : GL R (V ) GL R (R) Lie ( 10.3) SL R (V ) = ker(det R ) GL R (V ) Lie SL R (V ) Lie sl R (V ) gl R (V ) W det C : GL C (W ) GL C (C) Lie SL C (W ) = ker(det C ) GL C (W ) Lie SL C (W ) Lie sl C (W ) gl C (W ) 11.7 Lie G Lie H G H Lie g, h h = {X g exp tx H(t R)} 9.8 h = {X g exp tx H(t R), t exp tx H } exp tx H(t R) X g t exp tx H f : R G; t exp tx C f(r) H H 3.1 H 11.2 H G f H f : R H C H 11.8 G Lie H Lie H H Lie G, H Lie g, h H G h g X g, Y h H G 8.10 exp(ad(exp sx)(ty )) = exp(sx) exp(ty ) exp(sx) 1 H (s, t R) Ad(exp sx)y h d Ad(exp sx)y ds = [X, Y ] ( 8.10) s=0 [X, Y ] h h g 11.9 G Lie H Lie G, H Lie g, h H G h g 11.8 H G h g h g 7.5 G U g

37 Lie Lie 0 V exp : V U exp(v h) H X g, Y h (exp X)(exp Y )(exp X) 1 = exp(ad(exp X)Y ) 8.6 Ad 8.10 Ad(exp X)Y = e adx 1 Y = n! (adx)n Y h (exp X) exp(v h)(exp X) 1 H 3.1 (exp X)H(exp X) 1 = = n=0 (exp X) exp(v h) n (exp X) 1 n=1 ((exp X) exp(v h)(exp X) 1 ) n H n=1 G = {U n n N} g G ghg 1 H H G g Lie ker(ad) = {X g Y g [X, Y ] = 0} g ( 11.4 ) f, g Lie Lie Lie df = dg f = g f, g Lie G Lie H Lie X g 8.6 f(exp X) = exp(df(x)) = exp(dg(x)) = g(exp X) f g exp(g) G = {exp(g) n n N} f g G Lie G Lie g G Ad G Lie Lie g G Z ( 8.10, 8.11) Z ker Ad g ker Ad d(l g Rg 1 ) g L g Rg 1 G g Z Z = ker Ad 11.5 Z G Lie Z g Lie ker dad = ker ad ( 8.10) g

38 Lie Lie G Lie Lie g G g 7.8 g g g G G G 12 Lie 12.1 U(n) exp : u(n) U(n) U(n) U(n) u g U(n) a 1,..., a n C a 1 g 1 ug =... g 1 ug U(n) a 1 = = a n = 1 θ 1,..., θ n R a i = e 1θ i (1 i n) a 1 1θ1 u = g... g 1 = exp Ad(g).... 1θn a n a n θ1... 1θn u(n) g U(n) 1θ1 Ad(g)... 1θn u(n) U(n) u(n) U(n) 12.2 SU(n) exp : su(n) SU(n) SU(n)

39 Lie 12.1 SU(n) u g U(n) θ 1,..., θ n R ( ) 1θ1 u = g exp... 1θn g 1. det u = 1 θ θ n = 2πk (k Z) e 1θ 1 = e 1(θ 1 2πk) θ 1 θ 1 2πk ( ) θ θ n = θ1... su(n) 1θn g U(n) Ad(g) 1θ1... su(n). 1θn SU(n) su(n) SU(n) 12.3 SO(n) exp : so(n) SO(n) SO(n) SO(n) U(n) 12.1 SO(n) u g U(n) θ 1,..., θ n R e 1θ 1 u = g... g 1. e 1θ n u u u g e 1θ 1 e 1θ 1... e 1θ k ( ) u = g e 1θ k g 1 ε 2k+1... εn

40 37 θ i / πz (1 i k), ε j = ±1 (2k + 1 j n) g = [g 1... g n ] ug 2i 1 = e 1θ i g 2i 1 (1 i k) u uḡ 2i 1 = e 1θiḡ 2i 1 (1 i k) g 2i ḡ 2i 1 g U(n) ( ) ε j R g j R n det u = 1 ε j = 1 ε j g ε 2k+1 = = ε 2l = 1, ε 2l+1 = = ε n = 1 1 i k h 2i 1 = 1 2 (g 2i 1 + ḡ 2i 1 ), h 2i = 1 2 (g 2i 1 ḡ 2i 1 ) h j = g j (2k + 1 j n) h = [h 1... h n ] U(n) h h O(n) 1 i k uh 2i 1 = 1 2 (e 1θ i g 2i 1 + e 1θiḡ 2i 1 ) = cos θ i h 2i 1 sin θ i h 2i uh 2i = 1 2 (e 1θ i g 2i 1 e 1θiḡ 2i 1 ) = sin θ i h 2i 1 + sin θ i h 2i θ i = π [ (k + 1 i l) ] R i = cos θ i sin θ i sin θ i cos θ i (1 i l) u = h R 1... R l h 1. X i = [ 0 θ i θ i 0 ] (1 i l) exp X i = R i X 1... u = exp Ad(h) X l

41 Lie X 1... Ad(h) X l o(n) = so(n) SO(n) so(n) SO(n) 12.4 O(n) 2 SO(n) {g O(n) det g = 1} det(o(n)) = {±1} SO(n) {g O(n) det g = 1} O(n) 12.3 SO(n) det h = 1 h O(n) {g O(n) det g = 1} = L h (SO(n)) SO(n) L h (SO(n)) O(n) O(n) = SO(n) L h (SO(n)) O(n) 12.5 GL(n, C) SL(n, C) X gl(n, C) (i, j) X ij T (n, C) = {X gl(n, C) X ii > 0(1 i n), X ij = 0(i > j)} T (n, C) gl(n, C) T (n, C) X T (n, C) det X = n X ii > 0 X GL(n, C) T (n, C) GL(n, C) T (n, C) GL(n, C) P : U(n) T (n, C) GL(n, C); (a, X) ax P P g GL(n, C) g = [g 1... g n ] g i C n g 1,..., g n C n C n Hermite g 1,... g n Gram-Schmidt b 1 = g 1, a 1 = 1 b 1 b 1 b k, a k (k 2) k 1 b k = g k g k, a i a i, a k = 1 b k b k. a 1,..., a n C n a k g 1,..., g k g k 1/ b k > 0 ( ) [a 1... a n ] = [g 1... g n ]X

42 39 X T (n, C) a = [a 1... a n ] a U(n) a = gx g = ax 1 X 1 T (n, C) g = P (a, X 1 ) P 12.1 U(n) T (n, C) GL(n, C) detx. S : GL(n, C) SL(n, C); X X S X SL(n, C) S(X) = X S(GL(n, C)) = SL(n, C) SL(n, C) 12.6 GL(n, R) 2 GL + (n, R) = {g GL(n, R) det g > 0}, {g GL(n, R) det g < 0} SL(n, R) 12.5 det : GL(n, R) GL(1, R) = R {0} GL + (n, R) GL(n, R) GL + (n, R) GL(n, R) Lie T (n, R) = gl(n, R) T (n, C) T (n, R) gl(n, R) T (n, R) T (n, R) GL + (n, R) P (SO(n) T (n, R)) = GL + (n, R) 12.5 g GL + (n, R) a O(n) X T (n, R) a = gx det g > 0, det X > 0 det a = 1 a SO(n) g = ax 1 X 1 T (n, R) P (SO(n) T (n, R)) = GL + (n, R) 12.3 SO(n) T (n, R) GL + (n, R) det 1 ({t R t > 0}) = GL + (n, R), det 1 ({t R t < 0}) = {g GL(n, R) det g < 0} GL(n, R) 2 GL(n, R) ST (n, R) = T (n, R) SL(n, R) S(T (n, R)) = ST (n, R) T (n, R) ST (n, R) g SL(n, R) a = gx, a SO(n), X T (n, R) det g = 1 det X = 1 P (SO(n) ST (n, R)) = SL(n, R) SO(n) SL(n, R)

43 Lie 12.7 V n B R (V ) = {(v 1,..., v n ) V n v 1,..., v n V } V B R (V ) B R (V ) V n GL R (V ) B R (V ) 2 n W W B C (W ) B C (W ) W n GL C (W ) B C (W ) V e 1,..., e n 1 T : gl R (V ) V n ; g (g(e 1 ),..., g(e n )) T T (GL R (V )) = B R (V ) B R (V ) V n GL R (V ) 12.6 B R (V ) 2 W T B C (W ) W n GL C (W ) 12.5 B C (W ) 12.8 V B R (V ) 1 V 12.7 V n V 2 u 1,..., u n v 1,..., v n V X GL(n, R)( (u 1... u n ) = (v 1... v n )X) GL + (n, R) n V 2 u 1,..., u n v 1,..., v n V X O(n)( (u 1... u n ) = (v 1... v n )X) SO(n)

1 Euclid Euclid Euclid

1 Euclid Euclid Euclid II 2000 1 Euclid 1 1.1..................................... 1 1.2..................................... 8 1.3 Euclid............. 19 1.4 3 Euclid............................ 22 2 28 2.1 Lie Lie..................................

More information

X G P G (X) G BG [X, BG] S 2 2 2 S 2 2 S 2 = { (x 1, x 2, x 3 ) R 3 x 2 1 + x 2 2 + x 2 3 = 1 } R 3 S 2 S 2 v x S 2 x x v(x) T x S 2 T x S 2 S 2 x T x S 2 = { ξ R 3 x ξ } R 3 T x S 2 S 2 x x T x S 2

More information

2 1 κ c(t) = (x(t), y(t)) ( ) det(c (t), c x (t)) = det (t) x (t) y (t) y = x (t)y (t) x (t)y (t), (t) c (t) = (x (t)) 2 + (y (t)) 2. c (t) =

2 1 κ c(t) = (x(t), y(t)) ( ) det(c (t), c x (t)) = det (t) x (t) y (t) y = x (t)y (t) x (t)y (t), (t) c (t) = (x (t)) 2 + (y (t)) 2. c (t) = 1 1 1.1 I R 1.1.1 c : I R 2 (i) c C (ii) t I c (t) (0, 0) c (t) c(i) c c(t) 1.1.2 (1) (2) (3) (1) r > 0 c : R R 2 : t (r cos t, r sin t) (2) C f : I R c : I R 2 : t (t, f(t)) (3) y = x c : R R 2 : t (t,

More information

2011de.dvi

2011de.dvi 211 ( 4 2 1. 3 1.1............................... 3 1.2 1- -......................... 13 1.3 2-1 -................... 19 1.4 3- -......................... 29 2. 37 2.1................................ 37

More information

( ),.,,., C A (2008, ). 1,, (M, g) (Riemannian symmetric space), : p M, s p : M M :.,.,.,, (, ).,, (M, g) p M, s p : M M p, : (1) p s p, (

( ),.,,., C A (2008, ). 1,, (M, g) (Riemannian symmetric space), : p M, s p : M M :.,.,.,, (, ).,, (M, g) p M, s p : M M p, : (1) p s p, ( ( ),.,,., C A (2008, ). 1,,. 1.1. (M, g) (Riemannian symmetric space), : p M, s p : M M :.,.,.,, (, ).,,. 1.2. (M, g) p M, s p : M M p, : (1) p s p, (2) s 2 p = id ( id ), (3) s p ( )., p ( s p (p) = p),,

More information

20 9 19 1 3 11 1 3 111 3 112 1 4 12 6 121 6 122 7 13 7 131 8 132 10 133 10 134 12 14 13 141 13 142 13 143 15 144 16 145 17 15 19 151 1 19 152 20 2 21 21 21 211 21 212 1 23 213 1 23 214 25 215 31 22 33

More information

A 2 3. m S m = {x R m+1 x = 1} U + k = {x S m x k > 0}, U k = {x S m x k < 0}, ϕ ± k (x) = (x 0,..., ˆx k,... x m ) 1. {(U ± k, ϕ± k ) 0 k m} S m 1.2.

A 2 3. m S m = {x R m+1 x = 1} U + k = {x S m x k > 0}, U k = {x S m x k < 0}, ϕ ± k (x) = (x 0,..., ˆx k,... x m ) 1. {(U ± k, ϕ± k ) 0 k m} S m 1.2. A A 1 A 5 A 6 1 2 3 4 5 6 7 1 1.1 1.1 (). Hausdorff M R m M M {U α } U α R m E α ϕ α : U α E α U α U β = ϕ α (ϕ β ϕβ (U α U β )) 1 : ϕ β (U α U β ) ϕ α (U α U β ) C M a m dim M a U α ϕ α {x i, 1 i m} {U,

More information

II 2 3.,, A(B + C) = AB + AC, (A + B)C = AC + BC. 4. m m A, m m B,, m m B, AB = BA, A,, I. 5. m m A, m n B, AB = B, A I E, 4 4 I, J, K

II 2 3.,, A(B + C) = AB + AC, (A + B)C = AC + BC. 4. m m A, m m B,, m m B, AB = BA, A,, I. 5. m m A, m n B, AB = B, A I E, 4 4 I, J, K II. () 7 F 7 = { 0,, 2, 3, 4, 5, 6 }., F 7 a, b F 7, a b, F 7,. (a) a, b,,. (b) 7., 4 5 = 20 = 2 7 + 6, 4 5 = 6 F 7., F 7,., 0 a F 7, ab = F 7 b F 7. (2) 7, 6 F 6 = { 0,, 2, 3, 4, 5 },,., F 6., 0 0 a F

More information

211 kotaro@math.titech.ac.jp 1 R *1 n n R n *2 R n = {(x 1,..., x n ) x 1,..., x n R}. R R 2 R 3 R n R n R n D D R n *3 ) (x 1,..., x n ) f(x 1,..., x n ) f D *4 n 2 n = 1 ( ) 1 f D R n f : D R 1.1. (x,

More information

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10%

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10% 1 2006.4.17. A 3-312 tel: 092-726-4774, e-mail: hara@math.kyushu-u.ac.jp, http://www.math.kyushu-u.ac.jp/ hara/lectures/lectures-j.html Office hours: B A I ɛ-δ ɛ-δ 1. 2. A 1. 1. 2. 3. 4. 5. 2. ɛ-δ 1. ɛ-n

More information

1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ =

1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ = 1 1.1 ( ). z = + bi,, b R 0, b 0 2 + b 2 0 z = + bi = ( ) 2 + b 2 2 + b + b 2 2 + b i 2 r = 2 + b 2 θ cos θ = 2 + b 2, sin θ = b 2 + b 2 2π z = r(cos θ + i sin θ) 1.2 (, ). 1. < 2. > 3. ±,, 1.3 ( ). A

More information

D 24 D D D

D 24 D D D 5 Paper I.R. 2001 5 Paper HP Paper 5 3 5.1................................................... 3 5.2.................................................... 4 5.3.......................................... 6

More information

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) II 214-1 : October 2, 214 Version : 1.1 Kawahira, Tomoki TA (Kondo, Hirotaka ) http://www.math.nagoya-u.ac.jp/~kawahira/courses/14w-biseki.html pdf 1 2 1 9 1 16 1 23 1 3 11 6 11 13 11 2 11 27 12 4 12 11

More information

d ϕ i) t d )t0 d ϕi) ϕ i) t x j t d ) ϕ t0 t α dx j d ) ϕ i) t dx t0 j x j d ϕ i) ) t x j dx t0 j f i x j ξ j dx i + ξ i x j dx j f i ξ i x j dx j d )

d ϕ i) t d )t0 d ϕi) ϕ i) t x j t d ) ϕ t0 t α dx j d ) ϕ i) t dx t0 j x j d ϕ i) ) t x j dx t0 j f i x j ξ j dx i + ξ i x j dx j f i ξ i x j dx j d ) 23 M R M ϕ : R M M ϕt, x) ϕ t x) ϕ s ϕ t ϕ s+t, ϕ 0 id M M ϕ t M ξ ξ ϕ t d ϕ tx) ξϕ t x)) U, x 1,...,x n )) ϕ t x) ϕ 1) t x),...,ϕ n) t x)), ξx) ξ i x) d ϕi) t x) ξ i ϕ t x)) M f ϕ t f)x) f ϕ t )x) fϕ

More information

Morse ( ) 2014

Morse ( ) 2014 Morse ( ) 2014 1 1 Morse 1 1.1 Morse................................ 1 1.2 Morse.............................. 7 2 12 2.1....................... 12 2.2.................. 13 2.3 Smale..............................

More information

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2 No.2 1 2 2 δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i δx j (5) δs 2 = δx i δx i + 2 u i δx i δx j = δs 2 + 2s ij δx i δx j

More information

Part () () Γ Part ,

Part () () Γ Part , Contents a 6 6 6 6 6 6 6 7 7. 8.. 8.. 8.3. 8 Part. 9. 9.. 9.. 3. 3.. 3.. 3 4. 5 4.. 5 4.. 9 4.3. 3 Part. 6 5. () 6 5.. () 7 5.. 9 5.3. Γ 3 6. 3 6.. 3 6.. 3 6.3. 33 Part 3. 34 7. 34 7.. 34 7.. 34 8. 35

More information

,.,. 2, R 2, ( )., I R. c : I R 2, : (1) c C -, (2) t I, c (t) (0, 0). c(i). c (t)., c(t) = (x(t), y(t)) c (t) = (x (t), y (t)) : (1)

,.,. 2, R 2, ( )., I R. c : I R 2, : (1) c C -, (2) t I, c (t) (0, 0). c(i). c (t)., c(t) = (x(t), y(t)) c (t) = (x (t), y (t)) : (1) ( ) 1., : ;, ;, ; =. ( ).,.,,,., 2.,.,,.,.,,., y = f(x), f ( ).,,.,.,., U R m, F : U R n, M, f : M R p M, p,, R m,,, R m. 2009 A tamaru math.sci.hiroshima-u.ac.jp 1 ,.,. 2, R 2, ( ).,. 2.1 2.1. I R. c

More information

III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F

III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F F 1 F 2 F, (3) F λ F λ F λ F. 3., A λ λ A λ. B λ λ

More information

Dynkin Serre Weyl

Dynkin Serre Weyl Dynkin Naoya Enomoto 2003.3. paper Dynkin Introduction Dynkin Lie Lie paper 1 0 Introduction 3 I ( ) Lie Dynkin 4 1 ( ) Lie 4 1.1 Lie ( )................................ 4 1.2 Killing form...........................................

More information

all.dvi

all.dvi 5,, Euclid.,..,... Euclid,.,.,, e i (i =,, ). 6 x a x e e e x.:,,. a,,. a a = a e + a e + a e = {e, e, e } a (.) = a i e i = a i e i (.) i= {a,a,a } T ( T ),.,,,,. (.),.,...,,. a 0 0 a = a 0 + a + a 0

More information

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y [ ] 7 0.1 2 2 + y = t sin t IC ( 9) ( s090101) 0.2 y = d2 y 2, y = x 3 y + y 2 = 0 (2) y + 2y 3y = e 2x 0.3 1 ( y ) = f x C u = y x ( 15) ( s150102) [ ] y/x du x = Cexp f(u) u (2) x y = xey/x ( 16) ( s160101)

More information

1. x { e 1,..., e n } x = x1 e1 + + x n en = (x 1,..., x n ) X, Y [X, Y ] Intrinsic ( ) Intrinsic M m P M C P P M P M v 3 v : C P R 1

1. x { e 1,..., e n } x = x1 e1 + + x n en = (x 1,..., x n ) X, Y [X, Y ] Intrinsic ( ) Intrinsic M m P M C P P M P M v 3 v : C P R 1 1. x { e 1,..., e n } x = x1 e1 + + x n en = (x 1,..., x n ) X, Y [X, Y ] Intrinsic ( ) Intrinsic M m P M C P P M P M v 3 v : C P R 1 f, g C P, λ R (1) v(f + g) = v(f) + v(g) (2) v(λf) = λv(f) (3) v(fg)

More information

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,. 9 α ν β Ξ ξ Γ γ o δ Π π ε ρ ζ Σ σ η τ Θ θ Υ υ ι Φ φ κ χ Λ λ Ψ ψ µ Ω ω Def, Prop, Th, Lem, Note, Remark, Ex,, Proof, R, N, Q, C [a, b {x R : a x b} : a, b {x R : a < x < b} : [a, b {x R : a x < b} : a,

More information

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2 II No.1 [n/] [1]H n x) H n x) = 1) r n! r!n r)! x)n r r= []H n x) n,, H n x) = 1) n H n x) [3] H n x) = 1) n dn x e dx n e x [4] H n+1 x) = xh n x) nh n 1 x) ) d dx x H n x) = H n+1 x) d dx H nx) = nh

More information

II I Riemann 2003

II I Riemann 2003 II I Remann 2003 Dfferental Geometry II Dfferental Geometry II I Dfferental Geometry I 1 1 1.1.............................. 1 1.2................................. 10 1.3.......................... 16 1.4.........................

More information

phs.dvi

phs.dvi 483F 3 6.........3... 6.4... 7 7.... 7.... 9.5 N (... 3.6 N (... 5.7... 5 3 6 3.... 6 3.... 7 3.3... 9 3.4... 3 4 7 4.... 7 4.... 9 4.3... 3 4.4... 34 4.4.... 34 4.4.... 35 4.5... 38 4.6... 39 5 4 5....

More information

21 2 26 i 1 1 1.1............................ 1 1.2............................ 3 2 9 2.1................... 9 2.2.......... 9 2.3................... 11 2.4....................... 12 3 15 3.1..........

More information

20 4 20 i 1 1 1.1............................ 1 1.2............................ 4 2 11 2.1................... 11 2.2......................... 11 2.3....................... 19 3 25 3.1.............................

More information

20 6 4 1 4 1.1 1.................................... 4 1.1.1.................................... 4 1.1.2 1................................ 5 1.2................................... 7 1.2.1....................................

More information

2 (2016 3Q N) c = o (11) Ax = b A x = c A n I n n n 2n (A I n ) (I n X) A A X A n A A A (1) (2) c 0 c (3) c A A i j n 1 ( 1) i+j A (i, j) A (i, j) ã i

2 (2016 3Q N) c = o (11) Ax = b A x = c A n I n n n 2n (A I n ) (I n X) A A X A n A A A (1) (2) c 0 c (3) c A A i j n 1 ( 1) i+j A (i, j) A (i, j) ã i [ ] (2016 3Q N) a 11 a 1n m n A A = a m1 a mn A a 1 A A = a n (1) A (a i a j, i j ) (2) A (a i ca i, c 0, i ) (3) A (a i a i + ca j, j i, i ) A 1 A 11 0 A 12 0 0 A 1k 0 1 A 22 0 0 A 2k 0 1 0 A 3k 1 A rk

More information

数学Ⅱ演習(足助・09夏)

数学Ⅱ演習(足助・09夏) II I 9/4/4 9/4/2 z C z z z z, z 2 z, w C zw z w 3 z, w C z + w z + w 4 t R t C t t t t t z z z 2 z C re z z + z z z, im z 2 2 3 z C e z + z + 2 z2 + 3! z3 + z!, I 4 x R e x cos x + sin x 2 z, w C e z+w

More information

24 I ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x

24 I ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x 24 I 1.1.. ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x 1 (t), x 2 (t),, x n (t)) ( ) ( ), γ : (i) x 1 (t),

More information

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x [ ] IC. f(x) = e x () f(x) f (x) () lim f(x) lim f(x) x + x (3) lim f(x) lim f(x) x + x (4) y = f(x) ( ) ( s46). < a < () a () lim a log xdx a log xdx ( ) n (3) lim log k log n n n k=.3 z = log(x + y ),

More information

2019 1 5 0 3 1 4 1.1.................... 4 1.1.1......................... 4 1.1.2........................ 5 1.1.3................... 5 1.1.4........................ 6 1.1.5......................... 6 1.2..........................

More information

..3. Ω, Ω F, P Ω, F, P ). ) F a) A, A,..., A i,... F A i F. b) A F A c F c) Ω F. ) A F A P A),. a) 0 P A) b) P Ω) c) [ ] A, A,..., A i,... F i j A i A

..3. Ω, Ω F, P Ω, F, P ). ) F a) A, A,..., A i,... F A i F. b) A F A c F c) Ω F. ) A F A P A),. a) 0 P A) b) P Ω) c) [ ] A, A,..., A i,... F i j A i A .. Laplace ). A... i),. ω i i ). {ω,..., ω } Ω,. ii) Ω. Ω. A ) r, A P A) P A) r... ).. Ω {,, 3, 4, 5, 6}. i i 6). A {, 4, 6} P A) P A) 3 6. ).. i, j i, j) ) Ω {i, j) i 6, j 6}., 36. A. A {i, j) i j }.

More information

2016 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 1 16 2 1 () X O 3 (O1) X O, O (O2) O O (O3) O O O X (X, O) O X X (O1), (O2), (O3) (O2) (O3) n (O2) U 1,..., U n O U k O k=1 (O3) U λ O( λ Λ) λ Λ U λ O 0 X 0 (O2) n =

More information

No.004 [1] J. ( ) ( ) (1968) [2] Morse (1997) [3] (1988) 1

No.004 [1] J. ( ) ( ) (1968) [2] Morse (1997) [3] (1988) 1 No.004 [1] J. ( ) ( ) (1968) [2] Morse (1997) [3] (1988) 1 1 (1) 1.1 X Y f, g : X Y { F (x, 0) = f(x) F (x, 1) = g(x) F : X I Y f g f g F f g 1.2 X Y X Y gf id X, fg id Y f : X Y, g : Y X X Y X Y (2) 1.3

More information

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 初版 1 刷発行時のものです. 微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. ttp://www.morikita.co.jp/books/mid/00571 このサンプルページの内容は, 初版 1 刷発行時のものです. i ii 014 10 iii [note] 1 3 iv 4 5 3 6 4 x 0 sin x x 1 5 6 z = f(x, y) 1 y = f(x)

More information

等質空間の幾何学入門

等質空間の幾何学入門 2006/12/04 08 tamaru@math.sci.hiroshima-u.ac.jp i, 2006/12/04 08. 2006, 4.,,.,,.,.,.,,.,,,.,.,,.,,,.,. ii 1 1 1.1 :................................... 1 1.2........................................ 2 1.3......................................

More information

.3. (x, x = (, u = = 4 (, x x = 4 x, x 0 x = 0 x = 4 x.4. ( z + z = 8 z, z 0 (z, z = (0, 8, (,, (8, 0 3 (0, 8, (,, (8, 0 z = z 4 z (g f(x = g(

.3. (x, x = (, u = = 4 (, x x = 4 x, x 0 x = 0 x = 4 x.4. ( z + z = 8 z, z 0 (z, z = (0, 8, (,, (8, 0 3 (0, 8, (,, (8, 0 z = z 4 z (g f(x = g( 06 5.. ( y = x x y 5 y 5 = (x y = x + ( y = x + y = x y.. ( Y = C + I = 50 + 0.5Y + 50 r r = 00 0.5Y ( L = M Y r = 00 r = 0.5Y 50 (3 00 0.5Y = 0.5Y 50 Y = 50, r = 5 .3. (x, x = (, u = = 4 (, x x = 4 x,

More information

ver Web

ver Web ver201723 Web 1 4 11 4 12 5 13 7 2 9 21 9 22 10 23 10 24 11 3 13 31 n 13 32 15 33 21 34 25 35 (1) 27 4 30 41 30 42 32 43 36 44 (2) 38 45 45 46 45 5 46 51 46 52 48 53 49 54 51 55 54 56 58 57 (3) 61 2 3

More information

9 2 1 f(x, y) = xy sin x cos y x y cos y y x sin x d (x, y) = y cos y (x sin x) = y cos y(sin x + x cos x) x dx d (x, y) = x sin x (y cos y) = x sin x

9 2 1 f(x, y) = xy sin x cos y x y cos y y x sin x d (x, y) = y cos y (x sin x) = y cos y(sin x + x cos x) x dx d (x, y) = x sin x (y cos y) = x sin x 2009 9 6 16 7 1 7.1 1 1 1 9 2 1 f(x, y) = xy sin x cos y x y cos y y x sin x d (x, y) = y cos y (x sin x) = y cos y(sin x + x cos x) x dx d (x, y) = x sin x (y cos y) = x sin x(cos y y sin y) y dy 1 sin

More information

n ξ n,i, i = 1,, n S n ξ n,i n 0 R 1,.. σ 1 σ i .10.14.15 0 1 0 1 1 3.14 3.18 3.19 3.14 3.14,. ii 1 1 1.1..................................... 1 1............................... 3 1.3.........................

More information

Note.tex 2008/09/19( )

Note.tex 2008/09/19( ) 1 20 9 19 2 1 5 1.1........................ 5 1.2............................. 8 2 9 2.1............................. 9 2.2.............................. 10 3 13 3.1.............................. 13 3.2..................................

More information

1 n A a 11 a 1n A =.. a m1 a mn Ax = λx (1) x n λ (eigenvalue problem) x = 0 ( x 0 ) λ A ( ) λ Ax = λx x Ax = λx y T A = λy T x Ax = λx cx ( 1) 1.1 Th

1 n A a 11 a 1n A =.. a m1 a mn Ax = λx (1) x n λ (eigenvalue problem) x = 0 ( x 0 ) λ A ( ) λ Ax = λx x Ax = λx y T A = λy T x Ax = λx cx ( 1) 1.1 Th 1 n A a 11 a 1n A = a m1 a mn Ax = λx (1) x n λ (eigenvalue problem) x = ( x ) λ A ( ) λ Ax = λx x Ax = λx y T A = λy T x Ax = λx cx ( 1) 11 Th9-1 Ax = λx λe n A = λ a 11 a 12 a 1n a 21 λ a 22 a n1 a n2

More information

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google I4 - : April, 4 Version :. Kwhir, Tomoki TA (Kondo, Hirotk) Google http://www.mth.ngoy-u.c.jp/~kwhir/courses/4s-biseki.html pdf 4 4 4 4 8 e 5 5 9 etc. 5 6 6 6 9 n etc. 6 6 6 3 6 3 7 7 etc 7 4 7 7 8 5 59

More information

( 3) b 1 b : b b f : a b 1 b f = f (2.7) g : b c g 1 b = g (2.8) 1 b b (identity arrow) id b f a b g f 1 b b c g (2.9) 3 C C C a, b a b Hom C (a, b) h

( 3) b 1 b : b b f : a b 1 b f = f (2.7) g : b c g 1 b = g (2.8) 1 b b (identity arrow) id b f a b g f 1 b b c g (2.9) 3 C C C a, b a b Hom C (a, b) h 2011 9 5 1 Lie 1 2 2.1 (category) (object) a, b, c, a b (arrow, morphism) f : a b (2.1) f a b (2.2) ( 1) f : a b g : b c (composite) g f : a c ( 2) f f a b g f g c g h (2.3) a b c d (2.4) h (g f) = (h

More information

1 1.1 [ ]., D R m, f : D R n C -. f p D (df) p : (df) p : R m R n f(p + vt) f(p) : v lim. t 0 t, (df) p., R m {x 1,..., x m }, (df) p (x i ) =

1 1.1 [ ]., D R m, f : D R n C -. f p D (df) p : (df) p : R m R n f(p + vt) f(p) : v lim. t 0 t, (df) p., R m {x 1,..., x m }, (df) p (x i ) = 2004 / D : 0,.,., :,.,.,,.,,,.,.,,.. :,,,,,,,., web page.,,. C-613 e-mail tamaru math.sci.hiroshima-u.ac.jp url http://www.math.sci.hiroshima-u.ac.jp/ tamaru/index-j.html 2004 D - 1 - 1 1.1 [ ].,. 1.1.1

More information

I

I I 2008 I i 1 1 1.1.............................. 1 1.2................................. 7 1.3......................... 13 2 23 2.1......................... 23 2.2............................... 31 3 37

More information

y π π O π x 9 s94.5 y dy dx. y = x + 3 y = x logx + 9 s9.6 z z x, z y. z = xy + y 3 z = sinx y 9 s x dx π x cos xdx 9 s93.8 a, fx = e x ax,. a =

y π π O π x 9 s94.5 y dy dx. y = x + 3 y = x logx + 9 s9.6 z z x, z y. z = xy + y 3 z = sinx y 9 s x dx π x cos xdx 9 s93.8 a, fx = e x ax,. a = [ ] 9 IC. dx = 3x 4y dt dy dt = x y u xt = expλt u yt λ u u t = u u u + u = xt yt 6 3. u = x, y, z = x + y + z u u 9 s9 grad u ux, y, z = c c : grad u = u x i + u y j + u k i, j, k z x, y, z grad u v =

More information

7. y fx, z gy z gfx dz dx dz dy dy dx. g f a g bf a b fa 7., chain ule Ω, D R n, R m a Ω, f : Ω R m, g : D R l, fω D, b fa, f a g b g f a g f a g bf a

7. y fx, z gy z gfx dz dx dz dy dy dx. g f a g bf a b fa 7., chain ule Ω, D R n, R m a Ω, f : Ω R m, g : D R l, fω D, b fa, f a g b g f a g f a g bf a 9 203 6 7 WWW http://www.math.meiji.ac.jp/~mk/lectue/tahensuu-203/ 2 8 8 7. 7 7. y fx, z gy z gfx dz dx dz dy dy dx. g f a g bf a b fa 7., chain ule Ω, D R n, R m a Ω, f : Ω R m, g : D R l, fω D, b fa,

More information

x = a 1 f (a r, a + r) f(a) r a f f(a) 2 2. (a, b) 2 f (a, b) r f(a, b) r (a, b) f f(a, b)

x = a 1 f (a r, a + r) f(a) r a f f(a) 2 2. (a, b) 2 f (a, b) r f(a, b) r (a, b) f f(a, b) 2011 I 2 II III 17, 18, 19 7 7 1 2 2 2 1 2 1 1 1.1.............................. 2 1.2 : 1.................... 4 1.2.1 2............................... 5 1.3 : 2.................... 5 1.3.1 2.....................................

More information

SO(2)

SO(2) TOP URL http://amonphys.web.fc2.com/ 1 12 3 12.1.................................. 3 12.2.......................... 4 12.3............................. 5 12.4 SO(2).................................. 6

More information

1W II K =25 A (1) office(a439) (2) A4 etc. 12:00-13:30 Cafe David 1 2 TA appointment Cafe D

1W II K =25 A (1) office(a439) (2) A4 etc. 12:00-13:30 Cafe David 1 2 TA  appointment Cafe D 1W II K200 : October 6, 2004 Version : 1.2, kawahira@math.nagoa-u.ac.jp, http://www.math.nagoa-u.ac.jp/~kawahira/courses.htm TA M1, m0418c@math.nagoa-u.ac.jp TA Talor Jacobian 4 45 25 30 20 K2-1W04-00

More information

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2)

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2) 3 215 4 27 1 1 u u(x, t) u tt a 2 u xx, a > (1) D : {(x, t) : x, t } u (, t), u (, t), t (2) u(x, ) f(x), u(x, ) t 2, x (3) u(x, t) X(x)T (t) u (1) 1 T (t) a 2 T (t) X (x) X(x) α (2) T (t) αa 2 T (t) (4)

More information

Step 2 O(3) Sym 0 (R 3 ), : a + := λ 1 λ 2 λ 3 a λ 1 λ 2 λ 3. a +. X a +, O(3).X. O(3).X = O(3)/O(3) X, O(3) X. 1.7 Step 3 O(3) Sym 0 (R 3 ),

Step 2 O(3) Sym 0 (R 3 ), : a + := λ 1 λ 2 λ 3 a λ 1 λ 2 λ 3. a +. X a +, O(3).X. O(3).X = O(3)/O(3) X, O(3) X. 1.7 Step 3 O(3) Sym 0 (R 3 ), 1 1 1.1,,. 1.1 1.2 O(2) R 2 O(2).p, {0} r > 0. O(3) R 3 O(3).p, {0} r > 0.,, O(n) ( SO(n), O(n) ): Sym 0 (R n ) := {X M(n, R) t X = X, tr(x) = 0}. 1.3 O(n) Sym 0 (R n ) : g.x := gxg 1 (g O(n), X Sym 0

More information

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0 1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0 0 < t < τ I II 0 No.2 2 C x y x y > 0 x 0 x > b a dx

More information

5. [1 ] 1 [], u(x, t) t c u(x, t) x (5.3) ξ x + ct, η x ct (5.4),u(x, t) ξ, η u(ξ, η), ξ t,, ( u(ξ,η) ξ η u(x, t) t ) u(x, t) { ( u(ξ, η) c t ξ ξ { (

5. [1 ] 1 [], u(x, t) t c u(x, t) x (5.3) ξ x + ct, η x ct (5.4),u(x, t) ξ, η u(ξ, η), ξ t,, ( u(ξ,η) ξ η u(x, t) t ) u(x, t) { ( u(ξ, η) c t ξ ξ { ( 5 5.1 [ ] ) d f(t) + a d f(t) + bf(t) : f(t) 1 dt dt ) u(x, t) c u(x, t) : u(x, t) t x : ( ) ) 1 : y + ay, : y + ay + by : ( ) 1 ) : y + ay, : yy + ay 3 ( ): ( ) ) : y + ay, : y + ay b [],,, [ ] au xx

More information

( 12 ( ( ( ( Levi-Civita grad div rot ( ( = 4 : 6 3 1 1.1 f(x n f (n (x, d n f(x (1.1 dxn f (2 (x f (x 1.1 f(x = e x f (n (x = e x d dx (fg = f g + fg (1.2 d dx d 2 dx (fg = f g + 2f g + fg 2... d n n

More information

tomocci ,. :,,,, Lie,,,, Einstein, Newton. 1 M n C. s, M p. M f, p d ds f = dxµ p ds µ f p, X p = X µ µ p = dxµ ds µ p. µ, X µ.,. p,. T M p.

tomocci ,. :,,,, Lie,,,, Einstein, Newton. 1 M n C. s, M p. M f, p d ds f = dxµ p ds µ f p, X p = X µ µ p = dxµ ds µ p. µ, X µ.,. p,. T M p. tomocci 18 7 5...,. :,,,, Lie,,,, Einstein, Newton. 1 M n C. s, M p. M f, p d ds f = dxµ p ds µ f p, X p = X µ µ p = dxµ ds µ p. µ, X µ.,. p,. T M p. M F (M), X(F (M)).. T M p e i = e µ i µ. a a = a i

More information

untitled

untitled 1 n m (ICA = independent component analysis) BSS (= blind source separation) : s(t) =(s 1 (t),...,s n (t)) R n : x(t) =(x 1 (t),...,x n (t)) R m 1 i s i (t) a ji R j 2 (A =(a ji )) x(t) =As(t) (1) n =

More information

1. 1 BASIC PC BASIC BASIC BASIC Fortran WS PC (1.3) 1 + x 1 x = x = (1.1) 1 + x = (1.2) 1 + x 1 = (1.

1. 1 BASIC PC BASIC BASIC BASIC Fortran WS PC (1.3) 1 + x 1 x = x = (1.1) 1 + x = (1.2) 1 + x 1 = (1. Section Title Pages Id 1 3 7239 2 4 7239 3 10 7239 4 8 7244 5 13 7276 6 14 7338 7 8 7338 8 7 7445 9 11 7580 10 10 7590 11 8 7580 12 6 7395 13 z 11 7746 14 13 7753 15 7 7859 16 8 7942 17 8 Id URL http://km.int.oyo.co.jp/showdocumentdetailspage.jsp?documentid=

More information

II R n k +1 v 0,, v k k v 1 v 0,, v k v v 0,, v k R n 1 a 0,, a k a 0 v 0 + a k v k v 0 v k k k v 0,, v k σ k σ dimσ = k 1.3. k

II R n k +1 v 0,, v k k v 1 v 0,, v k v v 0,, v k R n 1 a 0,, a k a 0 v 0 + a k v k v 0 v k k k v 0,, v k σ k σ dimσ = k 1.3. k II 231017 1 1.1. R n k +1 v 0,, v k k v 1 v 0,, v k v 0 1.2. v 0,, v k R n 1 a 0,, a k a 0 v 0 + a k v k v 0 v k k k v 0,, v k σ kσ dimσ = k 1.3. k σ {v 0,...,v k } {v i0,...,v il } l σ τ < τ τ σ 1.4.

More information

f(x) = x (1) f (1) (2) f (2) f(x) x = a y y = f(x) f (a) y = f(x) A(a, f(a)) f(a + h) f(x) = A f(a) A x (3, 3) O a a + h x 1 f(x) x = a

f(x) = x (1) f (1) (2) f (2) f(x) x = a y y = f(x) f (a) y = f(x) A(a, f(a)) f(a + h) f(x) = A f(a) A x (3, 3) O a a + h x 1 f(x) x = a 3 3.1 3.1.1 A f(a + h) f(a) f(x) lim f(x) x = a h 0 h f(x) x = a f 0 (a) f 0 (a) = lim h!0 f(a + h) f(a) h = lim x!a f(x) f(a) x a a + h = x h = x a h 0 x a 3.1 f(x) = x x = 3 f 0 (3) f (3) = lim h 0 (

More information

x (x, ) x y (, y) iy x y z = x + iy (x, y) (r, θ) r = x + y, θ = tan ( y ), π < θ π x r = z, θ = arg z z = x + iy = r cos θ + ir sin θ = r(cos θ + i s

x (x, ) x y (, y) iy x y z = x + iy (x, y) (r, θ) r = x + y, θ = tan ( y ), π < θ π x r = z, θ = arg z z = x + iy = r cos θ + ir sin θ = r(cos θ + i s ... x, y z = x + iy x z y z x = Rez, y = Imz z = x + iy x iy z z () z + z = (z + z )() z z = (z z )(3) z z = ( z z )(4)z z = z z = x + y z = x + iy ()Rez = (z + z), Imz = (z z) i () z z z + z z + z.. z

More information

K E N Z OU

K E N Z OU K E N Z OU 11 1 1 1.1..................................... 1.1.1............................ 1.1..................................................................................... 4 1.........................................

More information

II 2 II

II 2 II II 2 II 2005 yugami@cc.utsunomiya-u.ac.jp 2005 4 1 1 2 5 2.1.................................... 5 2.2................................. 6 2.3............................. 6 2.4.................................

More information

.1 z = e x +xy y z y 1 1 x 0 1 z x y α β γ z = αx + βy + γ (.1) ax + by + cz = d (.1') a, b, c, d x-y-z (a, b, c). x-y-z 3 (0,

.1 z = e x +xy y z y 1 1 x 0 1 z x y α β γ z = αx + βy + γ (.1) ax + by + cz = d (.1') a, b, c, d x-y-z (a, b, c). x-y-z 3 (0, .1.1 Y K L Y = K 1 3 L 3 L K K (K + ) 1 1 3 L 3 K 3 L 3 K 0 (K + K) 1 3 L 3 K 1 3 L 3 lim K 0 K = L (K + K) 1 3 K 1 3 3 lim K 0 K = 1 3 K 3 L 3 z = f(x, y) x y z x-y-z.1 z = e x +xy y 3 x-y ( ) z 0 f(x,

More information

all.dvi

all.dvi 29 4 Green-Lagrange,,.,,,,,,.,,,,,,,,,, E, σ, ε σ = Eε,,.. 4.1? l, l 1 (l 1 l) ε ε = l 1 l l (4.1) F l l 1 F 30 4 Green-Lagrange Δz Δδ γ = Δδ (4.2) Δz π/2 φ γ = π 2 φ (4.3) γ tan γ γ,sin γ γ ( π ) γ tan

More information

all.dvi

all.dvi 72 9 Hooke,,,. Hooke. 9.1 Hooke 1 Hooke. 1, 1 Hooke. σ, ε, Young. σ ε (9.1), Young. τ γ G τ Gγ (9.2) X 1, X 2. Poisson, Poisson ν. ν ε 22 (9.) ε 11 F F X 2 X 1 9.1: Poisson 9.1. Hooke 7 Young Poisson G

More information

v er.1/ c /(21)

v er.1/ c /(21) 12 -- 1 1 2009 1 17 1-1 1-2 1-3 1-4 2 2 2 1-5 1 1-6 1 1-7 1-1 1-2 1-3 1-4 1-5 1-6 1-7 c 2011 1/(21) 12 -- 1 -- 1 1--1 1--1--1 1 2009 1 n n α { n } α α { n } lim n = α, n α n n ε n > N n α < ε N {1, 1,

More information

( ) ( ) ( ) i (i = 1, 2,, n) x( ) log(a i x + 1) a i > 0 t i (> 0) T i x i z n z = log(a i x i + 1) i=1 i t i ( ) x i t i (i = 1, 2, n) T n x i T i=1 z = n log(a i x i + 1) i=1 x i t i (i = 1, 2,, n) n

More information

1 Ricci V, V i, W f : V W f f(v ) = Imf W ( ) f : V 1 V k W 1

1 Ricci V, V i, W f : V W f f(v ) = Imf W ( ) f : V 1 V k W 1 1 Ricci V, V i, W f : V W f f(v = Imf W ( f : V 1 V k W 1 {f(v 1,, v k v i V i } W < Imf > < > f W V, V i, W f : U V L(U; V f : V 1 V r W L(V 1,, V r ; W L(V 1,, V r ; W (f + g(v 1,, v r = f(v 1,, v r

More information

TOP URL 1

TOP URL   1 TOP URL http://amonphys.web.fc.com/ 3.............................. 3.............................. 4.3 4................... 5.4........................ 6.5........................ 8.6...........................7

More information

: , 2.0, 3.0, 2.0, (%) ( 2.

: , 2.0, 3.0, 2.0, (%) ( 2. 2017 1 2 1.1...................................... 2 1.2......................................... 4 1.3........................................... 10 1.4................................. 14 1.5..........................................

More information

1/1 lim f(x, y) (x,y) (a,b) ( ) ( ) lim limf(x, y) lim lim f(x, y) x a y b y b x a ( ) ( ) xy x lim lim lim lim x y x y x + y y x x + y x x lim x x 1

1/1 lim f(x, y) (x,y) (a,b) ( ) ( ) lim limf(x, y) lim lim f(x, y) x a y b y b x a ( ) ( ) xy x lim lim lim lim x y x y x + y y x x + y x x lim x x 1 1/5 ( ) Taylor ( 7.1) (x, y) f(x, y) f(x, y) x + y, xy, e x y,... 1 R {(x, y) x, y R} f(x, y) x y,xy e y log x,... R {(x, y, z) (x, y),z f(x, y)} R 3 z 1 (x + y ) z ax + by + c x 1 z ax + by + c y x +

More information

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d S I.. http://ayapin.film.s.dendai.ac.jp/~matuda /TeX/lecture.html PDF PS.................................... 3.3.................... 9.4................5.............. 3 5. Laplace................. 5....

More information

A11 (1993,1994) 29 A12 (1994) 29 A13 Trefethen and Bau Numerical Linear Algebra (1997) 29 A14 (1999) 30 A15 (2003) 30 A16 (2004) 30 A17 (2007) 30 A18

A11 (1993,1994) 29 A12 (1994) 29 A13 Trefethen and Bau Numerical Linear Algebra (1997) 29 A14 (1999) 30 A15 (2003) 30 A16 (2004) 30 A17 (2007) 30 A18 2013 8 29y, 2016 10 29 1 2 2 Jordan 3 21 3 3 Jordan (1) 3 31 Jordan 4 32 Jordan 4 33 Jordan 6 34 Jordan 8 35 9 4 Jordan (2) 10 41 x 11 42 x 12 43 16 44 19 441 19 442 20 443 25 45 25 5 Jordan 26 A 26 A1

More information

= π2 6, ( ) = π 4, ( ). 1 ( ( 5) ) ( 9 1 ( ( ) ) (

= π2 6, ( ) = π 4, ( ). 1 ( ( 5) ) ( 9 1 ( ( ) ) ( + + 3 + 4 +... π 6, ( ) 3 + 5 7 +... π 4, ( ). ( 3 + ( 5) + 7 + ) ( 9 ( ( + 3) 5 + ) ( 7 + 9 + + 3 ) +... log( + ), ) +... π. ) ( 3 + 5 e x dx π.......................................................................

More information

I, II 1, 2 ɛ-δ 100 A = A 4 : 6 = max{ A, } A A 10

I, II 1, 2 ɛ-δ 100 A = A 4 : 6 = max{ A, } A A 10 1 2007.4.13. A 3-312 tel: 092-726-4774, e-mail: hara@math.kyushu-u.ac.jp, http://www.math.kyushu-u.ac.jp/ hara/lectures/lectures-j.html Office hours: B A I ɛ-δ ɛ-δ 1. 2. A 0. 1. 1. 2. 3. 2. ɛ-δ 1. ɛ-n

More information

f : R R f(x, y) = x + y axy f = 0, x + y axy = 0 y 直線 x+y+a=0 に漸近し 原点で交叉する美しい形をしている x +y axy=0 X+Y+a=0 o x t x = at 1 + t, y = at (a > 0) 1 + t f(x, y

f : R R f(x, y) = x + y axy f = 0, x + y axy = 0 y 直線 x+y+a=0 に漸近し 原点で交叉する美しい形をしている x +y axy=0 X+Y+a=0 o x t x = at 1 + t, y = at (a > 0) 1 + t f(x, y 017 8 10 f : R R f(x) = x n + x n 1 + 1, f(x) = sin 1, log x x n m :f : R n R m z = f(x, y) R R R R, R R R n R m R n R m R n R m f : R R f (x) = lim h 0 f(x + h) f(x) h f : R n R m m n M Jacobi( ) m n

More information

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi) 0. A A = 4 IC () det A () A () x + y + z = x y z X Y Z = A x y z ( 5) ( s5590) 0. a + b + c b c () a a + b + c c a b a + b + c 0 a b c () a 0 c b b c 0 a c b a 0 0. A A = 7 5 4 5 0 ( 5) ( s5590) () A ()

More information

DVIOUT

DVIOUT A. A. A-- [ ] f(x) x = f 00 (x) f 0 () =0 f 00 () > 0= f(x) x = f 00 () < 0= f(x) x = A--2 [ ] f(x) D f 00 (x) > 0= y = f(x) f 00 (x) < 0= y = f(x) P (, f()) f 00 () =0 A--3 [ ] y = f(x) [, b] x = f (y)

More information

( ) ( )

( ) ( ) 20 21 2 8 1 2 2 3 21 3 22 3 23 4 24 5 25 5 26 6 27 8 28 ( ) 9 3 10 31 10 32 ( ) 12 4 13 41 0 13 42 14 43 0 15 44 17 5 18 6 18 1 1 2 2 1 2 1 0 2 0 3 0 4 0 2 2 21 t (x(t) y(t)) 2 x(t) y(t) γ(t) (x(t) y(t))

More information

4................................. 4................................. 4 6................................. 6................................. 9.................................................... 3..3..........................

More information

6.1 (P (P (P (P (P (P (, P (, P.101

6.1 (P (P (P (P (P (P (, P (, P.101 (008 0 3 7 ( ( ( 00 1 (P.3 1 1.1 (P.3.................. 1 1. (P.4............... 1 (P.15.1 (P.15................. (P.18............3 (P.17......... 3.4 (P................ 4 3 (P.7 4 3.1 ( P.7...........

More information

untitled

untitled 1 ( 12 11 44 7 20 10 10 1 1 ( ( 2 10 46 11 10 10 5 8 3 2 6 9 47 2 3 48 4 2 2 ( 97 12 ) 97 12 -Spencer modulus moduli (modulus of elasticity) modulus (le) module modulus module 4 b θ a q φ p 1: 3 (le) module

More information

IA hara@math.kyushu-u.ac.jp Last updated: January,......................................................................................................................................................................................

More information

201711grade1ouyou.pdf

201711grade1ouyou.pdf 2017 11 26 1 2 52 3 12 13 22 23 32 33 42 3 5 3 4 90 5 6 A 1 2 Web Web 3 4 1 2... 5 6 7 7 44 8 9 1 2 3 1 p p >2 2 A 1 2 0.6 0.4 0.52... (a) 0.6 0.4...... B 1 2 0.8-0.2 0.52..... (b) 0.6 0.52.... 1 A B 2

More information

6kg 1.1m 1.m.1m.1 l λ ϵ λ l + λ l l l dl dl + dλ ϵ dλ dl dl + dλ dl dl 3 1. JIS 1 6kg 1% 66kg 1 13 σ a1 σ m σ a1 σ m σ m σ a1 f f σ a1 σ a1 σ m f 4

6kg 1.1m 1.m.1m.1 l λ ϵ λ l + λ l l l dl dl + dλ ϵ dλ dl dl + dλ dl dl 3 1. JIS 1 6kg 1% 66kg 1 13 σ a1 σ m σ a1 σ m σ m σ a1 f f σ a1 σ a1 σ m f 4 35-8585 7 8 1 I I 1 1.1 6kg 1m P σ σ P 1 l l λ λ l 1.m 1 6kg 1.1m 1.m.1m.1 l λ ϵ λ l + λ l l l dl dl + dλ ϵ dλ dl dl + dλ dl dl 3 1. JIS 1 6kg 1% 66kg 1 13 σ a1 σ m σ a1 σ m σ m σ a1 f f σ a1 σ a1 σ m

More information

meiji_resume_1.PDF

meiji_resume_1.PDF β β β (q 1,q,..., q n ; p 1, p,..., p n ) H(q 1,q,..., q n ; p 1, p,..., p n ) Hψ = εψ ε k = k +1/ ε k = k(k 1) (x, y, z; p x, p y, p z ) (r; p r ), (θ; p θ ), (ϕ; p ϕ ) ε k = 1/ k p i dq i E total = E

More information

2009 IA 5 I 22, 23, 24, 25, 26, (1) Arcsin 1 ( 2 (4) Arccos 1 ) 2 3 (2) Arcsin( 1) (3) Arccos 2 (5) Arctan 1 (6) Arctan ( 3 ) 3 2. n (1) ta

2009 IA 5 I 22, 23, 24, 25, 26, (1) Arcsin 1 ( 2 (4) Arccos 1 ) 2 3 (2) Arcsin( 1) (3) Arccos 2 (5) Arctan 1 (6) Arctan ( 3 ) 3 2. n (1) ta 009 IA 5 I, 3, 4, 5, 6, 7 6 3. () Arcsin ( (4) Arccos ) 3 () Arcsin( ) (3) Arccos (5) Arctan (6) Arctan ( 3 ) 3. n () tan x (nπ π/, nπ + π/) f n (x) f n (x) fn (x) Arctan x () sin x [nπ π/, nπ +π/] g n

More information

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt S I. x yx y y, y,. F x, y, y, y,, y n http://ayapin.film.s.dendai.ac.jp/~matuda n /TeX/lecture.html PDF PS yx.................................... 3.3.................... 9.4................5..............

More information

2009 IA I 22, 23, 24, 25, 26, a h f(x) x x a h

2009 IA I 22, 23, 24, 25, 26, a h f(x) x x a h 009 IA I, 3, 4, 5, 6, 7 7 7 4 5 h fx) x x h 4 5 4 5 1 3 1.1........................... 3 1........................... 4 1.3..................................... 6 1.4.............................. 8 1.4.1..............................

More information

1. 1 A : l l : (1) l m (m 3) (2) m (3) n (n 3) (4) A α, β γ α β + γ = 2 m l lm n nα nα = lm. α = lm n. m lm 2β 2β = lm β = lm 2. γ l 2. 3

1. 1 A : l l : (1) l m (m 3) (2) m (3) n (n 3) (4) A α, β γ α β + γ = 2 m l lm n nα nα = lm. α = lm n. m lm 2β 2β = lm β = lm 2. γ l 2. 3 1. 1 A : l l : (1) l m (m 3) (2) m (3) n (n 3) (4) A 2 1 2 1 2 3 α, β γ α β + γ = 2 m l lm n nα nα = lm. α = lm n. m lm 2β 2β = lm β = lm 2. γ l 2. 3 4 P, Q R n = {(x 1, x 2,, x n ) ; x 1, x 2,, x n R}

More information

v v = v 1 v 2 v 3 (1) R = (R ij ) (2) R (R 1 ) ij = R ji (3) 3 R ij R ik = δ jk (4) i=1 δ ij Kronecker δ ij = { 1 (i = j) 0 (i

v v = v 1 v 2 v 3 (1) R = (R ij ) (2) R (R 1 ) ij = R ji (3) 3 R ij R ik = δ jk (4) i=1 δ ij Kronecker δ ij = { 1 (i = j) 0 (i 1. 1 1.1 1.1.1 1.1.1.1 v v = v 1 v 2 v 3 (1) R = (R ij ) (2) R (R 1 ) ij = R ji (3) R ij R ik = δ jk (4) δ ij Kronecker δ ij = { 1 (i = j) 0 (i j) (5) 1 1.1. v1.1 2011/04/10 1. 1 2 v i = R ij v j (6) [

More information

n (1.6) i j=1 1 n a ij x j = b i (1.7) (1.7) (1.4) (1.5) (1.4) (1.7) u, v, w ε x, ε y, ε x, γ yz, γ zx, γ xy (1.8) ε x = u x ε y = v y ε z = w z γ yz

n (1.6) i j=1 1 n a ij x j = b i (1.7) (1.7) (1.4) (1.5) (1.4) (1.7) u, v, w ε x, ε y, ε x, γ yz, γ zx, γ xy (1.8) ε x = u x ε y = v y ε z = w z γ yz 1 2 (a 1, a 2, a n ) (b 1, b 2, b n ) A (1.1) A = a 1 b 1 + a 2 b 2 + + a n b n (1.1) n A = a i b i (1.2) i=1 n i 1 n i=1 a i b i n i=1 A = a i b i (1.3) (1.3) (1.3) (1.1) (ummation convention) a 11 x

More information

Untitled

Untitled II 14 14-7-8 8/4 II (http://www.damp.tottori-u.ac.jp/~ooshida/edu/fluid/) [ (3.4)] Navier Stokes [ 6/ ] Navier Stokes 3 [ ] Reynolds [ (4.6), (45.8)] [ p.186] Navier Stokes I 1 balance law t (ρv i )+ j

More information