Size: px
Start display at page:

Download ""

Transcription

1

2

3 i Newton Galilei , (tangent vector) (curvature) (Geodesics)

4 ii (Tetrad) Newton

5 Newton Newton f = m a (1.1.1) 3. Newton ( ) (inertial system) Galilei Galilei 2 Newton 1 Isaac Newton ( ) ( ) 2 Galileo Galilei ( ) ( )

6 2 1 2 S S S S x x. t = 0 t = 0 t = 0 2 S S x v S t ( ) x, y, z S x, y, z ( 1.1) 1.1: x = x vt, y = y, z = z, t = t (1.1.2) S S dx dt d 2 x dt 2 = dx dt v, dy dt = dy dt, dz dt = dz dt, (1.1.3) = d2 x dt, d 2 y 2 dt 2 = d2 y dt, d 2 z 2 dt 2 = d2 z dt 2 (1.1.4) S Newton m d2 x dt 2 = f (1.1.5) f S. S f f = f (1.1.4) (1.1.5) m d2 x dt 2 = f (1.1.6)

7 S (1.1.5) Galilei ( ) ( ) / ( 3 ( 1-2 ) 10 ( 0.5 %) ) 30km/s ( % ) Galilei ( ) Kepler 3 Kepler ( ) Kepler Newton Johannes Kepler

8 S S S S S 1 S x, y, z, t x, y, z, t 1 2. xy x y xz x z z = 0 z = 0 y = 0 y = 0 x, t y = κ(v)y, z = κ(v)z (1.2.1) κ x, y, z, t v y, z. v v κ. κ(v) v S S S x v y = κ( v)y, z = κ( v)z (1.2.2). (1.2.1), (1.2.2) (κ( v )) 2 = 1 κ( v ) = ±1 (1.2.3) v 0 y y, z z κ( v ) = 1 y = y, z = z (1.2.4)

9 t = t = 0 S O t O c S P ( (x, y, z)) t s 2 x 2 + y 2 + z 2 (ct) 2 = 0 (1.2.5) S P S (x, y, z ) P S t s 2 x 2 + y 2 + z 2 (ct ) 2 = 0 (1.2.6) x, y, z, t x, y, z, t 1 ( ) (1.2.5) (1.2.6) ( ) s 2 0 s 2 = α(v)s 2 (1.2.7) α(v) x, y, z, t v s 2 x 2 + y 2 + z 2 (ct) 2 = x 2 + y 2 + z 2 (ct ) 2 = s 2 (1.2.8) 4. (x, t) (x, t ) x 2 (ct) 2 = x 2 (ct ) 2 (1.2.9) x = ax + bt, t = fx + gt (1.2.10) a, b, f, g v (1.2.10) (1.2.9) x, t a 2 c 2 f 2 = 1 ab c 2 fg = 0 (1.2.11) g 2 b 2 /c 2 = 1

10 6 1 a = ± cosh θ, b = c sinh θ = ca tanh θ, ( ) (1.2.12) f = ± 1 c sinh θ, g = cosh θ = cf tanh θ θ tanh θ = b ca ( ) (1.2.13) θ S O S v x O x = y = z = 0 ax + bt = 0, y = 0, z = 0 (1.2.14) x = b a t (1.2.15) b a = v (1.2.16) tanh θ = v c β = v c (1.2.17) cosh θ = (1 tanh 2 θ) 1/2 = 1 1 β 2 sinh θ = β 1 β 2 (1.2.18) x = ± x vt 1 β 2, (1.2.19)

11 t = ± t (v/c2 )x 1 β 2 (1.2.20) v 0 x x, t t x = x vt, 1 β 2 t = t (v/c2 )x 1 β 2 (1.2.21) Lorentz 4 Poincaré 5 Einstein Einstein 2 2 Lorentz (1.2.21) x = x + vt 1 β 2, t = t + (v/c 2 )x 1 β 2 (1.2.22). (1.2.21) v v, (t, x, y, z) (t, x, y, z ). S S (1.2.21) Lorentz Lorentz. Lorentz Lorentz Maxwelll 6 Galilei Galilei Michelson 7 -Morley 8 Newton 4 Hendrik Antoon Lorentz ( ) Jules Henri Poincaré ( ) 6 James Clerk Maxwell ( ) ( ) 7 Albert Abraham Michelson ( ) Edward Morley ( )

12 Galilei Lorentz ( Eötvös (1885,1889, )) (, glücklichste Gedanke meines Lebens ) ( ) ) ( ), ( ) 3

13 , R n R n R n U U a ( ) ɛ [ n ] 1/2 x a (x µ y µ ) 2 < ɛ µ=1 x U U (open set) R n 1. R n 2. U 1, U 2, U k U 1 U 2 U k R n 3. ( ) {U λ } λ Λ λ Λ U λ R n

14 10 2 R n (topology) R n X O 3 O X (topology) X O (X, O) (topological space) 1. X O O 2. U 1, U 2, U k O U 1 U 2 U k O 3. {U λ } λ Λ, U λ O λ Λ U λ O X U O (U O) U X 2 (X, O) (Y, O ) f : X Y Y U f 1 (U) X ( : ɛ δ ) U, V f : U V (1 1)

15 (X, O) (Y, O ) f : X Y f (homeomorphism) 1. f : X Y 2. f : X Y f 1 : Y X Hausdorff X 2 x, y x U y V U V = X Hausdorff R n Hausdorff Hausdorff M M {U α } U α n R n ψ α 1. p M 1 U α M = α U α 2. ψ α : U α R n ψ α (U α ) R n ψ α U α ψ α (U α ) (homeomorphism) 3. U α U β ( : ) ψ β ψ 1 α : ψ α (U α U β ) ψ β (U α U β ) ψ α (U α U β )( R n ) ψ β (U α U β )( R n ) C ( ) {U α, ψ α } M n C U α ψ α (chart,local coordinates) {U α, ψ α } (atlas)

16 {U α, ψ α } {V λ, φ λ } U α V λ φ λ ψ 1 α : ψ α (U α V λ ) φ λ (U α V λ ) ψ α (U α V λ ) φ λ (U α V λ ) C 2 {U α, ψ α } {V λ, φ λ } M 2. M paracompact [ 1] n R n [ 2] 2 S 2 S 2 = {(x 1, x 2, x 3 ) R 3 (x 1 ) 2 + (x 2 ) 2 + (x 3 ) 2 = 1} S 2 O ± i (i = 1, 2, 3) O ± i = {(x 1, x 2, x 3 ) S 2 ± x i > 0} O ± i (i = 1, 2, 3), f + 1 (x 1, x 2, x 3 ) = (x 2, x 3 ) D = {(x, y) R 2 x 2 + y 2 < 1} f ± i (f ± j ) 1 C S 2 2 n M n M M p M M p M (p, p ) M M M, N

17 M ψ α : U α ψ α (U α ) M ψ β : U β ψ β (U β ) M M φ αβ : U αβ ψ αβ (U αβ ) R n+n U αβ = U α U β, ψ αβ (p, p ) = [ψ α (p), ψ β (p )] M M n + n M M M M (product manifold) [ 3] n S 1 n S 1 S 1 n n (n-torus ) m M f p M (U, ψ) f ψ 1 R m ψ(u) M f C M C F(M) M f, g F(M) a R f + g af f + g F(M), af F(M) fg fg F(M) C m M n N f : M N M p (U, ψ) f(p) N (V, φ) φ f ψ 1 C f p C f M C f

18 14 2 M N C f : M N C (1 1 ) C f (diffeomorphism) M N (diffeomorphic) 2? n 4 n ( ) n = 4 n ( ) ( (Exotic Differentiable Structures) S. K. Donaldson 1982, Seiberg-Witten 1994) n n 6 n (Exotic sphere, J. W. Milnor 1956) R( ) C( ) K V V K

19 V 2 a, b a, b V a + b ( ) (a) (b) (a + b) + c = a + (b + c) a + b = b + a (c) a V a + 0 = a V 0 0 (d) a V a + ( a) = 0 V a a 2. V a K λ a λ V λa (a) (b) (c) (d) (λµ)a = λ(µa) 1a = a λ(a + b) = λa + λb (λ + µ)a = λa + µa K V, K

20 V r a 1,, a r r λ 1,, λ r λ 1 a λ r a r = 0 λ 1 = = λ r = 0 a 1,, a r 1 V n 1 (n + 1) 1 n V dim V = n n V n 1 {a 1,, a n } V (basis) V x 1 x = n x i a i i= (tangent vector) S 2 3 R 3 p R n? ( )

21 v = (v 1,..., v n ) (directional derivative) µ vµ ( / x µ ), ( ) (Leibnitz) d df(x) (f(x)g(x)) = g(x) + f(x)dg(x) dx dx dx M M R C F(M) p M v v : F(M) R 1. v(f + g) = v(f) + v(g), v(af) = av(f) 2. v(fg) = f(p)v(g) + g(p)v(f) ( f, g F(M), a R) p V p (M) V p (M) v V p (M) (v 1 + v 2 )(f) = v 1 (f) + v 2 (f) (av)(f) = a(v(f)). c v V p (M) v(c) = 0. f F(M) cf v(cf) = cv(f) v(cf) = cv(f) + f(p)v(c)

22 18 2 f(p)v(c) = 0 f v(c) = M n M p(p M) p V p (M) V p (M) dim V p (M) = n. dim V p (M) = n V p (M) n 1 V p (M) p O ψ : O U( ψ(o)) R n f F(M) f ψ 1 : U R C µ = 1,..., n X µ : F(M) R X µ (f) = x (f µ ψ 1 ) (2.2.1) ψ(p) (x 1,, x n ) R n X 1,..., X n 1 X 1,..., X n, V p (M) R n ( 2 ) F : R n R C a = (a 1,..., a n ) R n F (x) = F (a) + n (x µ a µ )H µ (x), ( x µ R n ) (2.2.2) µ=1 C H µ H µ (a) = F x µ (2.2.3) x=a F = f ψ 1 a = ψ(p) f(q) = f(p) + n [x µ ψ(q) x µ ψ(p)]h µ (ψ(q)), ( q O) (2.2.4) µ=1 ( p q O ). v V p (M) v X 1,..., X n

23 f v (2.2.4) v v 0 n v(f) = v[f(p)] + [x µ ψ(q) x µ ψ(p)] v(h µ ψ) q=p + = µ=1 n (H µ ψ(q)) v[x µ ψ x µ ψ(p)] q=p µ=1 n (H µ ψ(p))v(x µ ψ) (2.2.5) µ=1 (2.2.3) H µ ψ(p) X µ (f) f F(M) n v(f) = v µ X µ (f) (2.2.6) µ=1 v µ x µ ψ v v µ = v(x µ ψ) (2.2.7) v X µ n v = v µ X µ (2.2.8) µ= V p (M) {X µ } (coordinate basis) X µ / x µ ψ {X µ} {X µ} X µ (chain rule; ) X µ = n ν=1 x ν x µ X ν (2.2.9) ψ(p) x ν ψ ψ 1 ν (2.2.8),(2.2.9) v v ν v µ v ν = n µ=1 v µ x ν x µ (2.2.10)

24 20 2 (2.2.10) M C ( )R( R ) M C C : R M C p M C T V p (M) f F(M) T (f) f C : R R p (T (f) = d(f C)/dt) ψ X µ M x µ ψ M C R n x µ (t) f F(M) T (f) = d dt (f C) = µ x (f µ ψ 1 ) dxµ dt = µ dx µ dt X µ(f) (2.2.11) T µ T µ = dxµ dt (2.2.12) p M p V p (M) q M V q (M) V q (M) V p (M) q p 3 ( ) p q 0 V p (M) V q (M) M v p M v p V p (M) V p (M) V q (M) v f F(M) C, p M v p (f) v(f) M f v(f) v X µ v v µ

25 (oneparameter group of diffeomorphism) φ t C R M M t R φ t : M M t, s R φ t φ s = φ t+s ( φ t=0 ) φ t v p M φ t (p) : R M t = 0 p φ t (orbit) t = 0 v p M 1 v v M v v (integral curves) (M p M 1 p v p? p ( ) dx µ dt = v µ (x 1,..., x n ) (2.2.13) R n v µ { / x µ } v µ t = 0 v v φ t 1 2 v w, [v, w] [v, w](f) = v(w(f)) w(v(f)) (2.2.14) v w (commutator) 2 X µ X ν 0 0 X 1,, X n

26 ( ) ( ) 3 3 (3 ) 3 ) 1 p n ) p l F F n l ( n, l) F (stress tensor) V ( V = V p (M) ) V R f : V R a, b V λ R f(a + b) = f(a) + f(b) f(λa) = λf(a)

27 V V f, g V (f + g)(a) = f(a) + g(a) (µf)(a) = µf(a) V V V (dual vector space) V (dual vectors) V ω e 1,..., e n V e 1,..., e n V e µ (e ν ) = δ µ ν (2.3.1) µ = ν δ µ ν = 1 0 {e µ } V V {e µ } dim V = dim V e µ e µ V V (isomorphism) {e µ } V V V ( V 2 ) V = (V ) (V ) V v V, V R v V ω V v (ω ) = ω (v) V V 1 dim V = dim V V V V V ( (dual) 2 ) V V V (k, l) (tensor) T

28 24 2 T : V }. {{.. V } } V. {{.. V } R k l χ j, ω 1,, ω k V u i, v 1,, v l V λ, µ R T (ω 1,, ω k, ; v 1,, λu i + µv i,, v l ) =λt (ω 1,, ω k, ; v 1,, u i,, v l ) + µt (ω 1,, ω k, ; v 1,, v i,, v l ) T (ω 1,, λω j + µχ j,, ω k ; v 1,, v l ) =λt (ω 1,, ω j,, ω k ; v 1,, v l ) + µt (ω 1,, χ j,, ω k ; v 1,, v l ) ) (0, 1) (1, 0) V V V (1, 0) (k, l) T (k, l) V {e µ } V {e µ } T (k, l) n k+l ( n = dim V = dim V ) 2 i ( ) j (contraction) C : T (k, l) T (k 1, l 1) T (k, l) n C(T ) = T (..., e σ,... ;..., e σ,...) (2.3.2) σ=1 {e σ } V {e σ } T i j σ C(T ) {e µ } 2 (k, l) T (k, l ) T

29 (k + k, l + l ) T T (k + k ) v 1,..., v k+k (l + l ) w 1,..., w l+l T T (v 1,..., v k+k ; w 1,..., w l+l ) = T (v 1,..., v k ; w 1,..., w l )T (v k+1,..., v k+k ; w l+1,..., w l+l ) T T (outer product) {e µ } V {e ν } n k+l {e µ1 e µk e ν 1 e ν l } T (k, l) (k, l) T T = T µ 1 µ k ν1 ν l e µ1 e µk e ν 1 e ν l (2.3.3) T µ 1 µ k ν1 ν l T {e µ } (components) T (2.3.3) T µ 1 µ k ν1 ν l T C(T ) (C(T )) µ 1 µ k 1 ν1 ν l 1 = n T µ 1 σ µ k 1 ν1 σ ν l 1 (2.3.4) σ=1 T T µ 1 µ k ν 1 ν S = T T l S µ 1 µ k+k ν1 ν l+l = T µ 1 µ k ν1 ν l T µ k+1 µ k+k νl+1 ν l+l (2.3.5) V M p V p (M) V p (M) p (cotangent space)

30 26 2 V p (M) (cotangent vector) V p (M) (contravariant) Vp (M) (covariant) 2 2 V p (M) / x 1,..., / x n Vp (M) dx 1,..., dx n [dx µ dx µ ( / x ν ) = δ µ ν ] v v µ = n µ=1 v µ x µ x µ (2.3.6) ω {dx µ } ω µ (2.3.1) (2.3.6) ω µ = n µ=1 ω µ x µ x µ (2.3.7) (k, l) T T µ 1 µ k ν 1 ν l = n T µ1 µk x µ 1 ν1 ν l x µ 1 µ 1 ν l x µ k x µ k x ν 1 x ν 1 xν l x ν l (2.3.8) (2.3.8) (tensor transformation law) M p V p (M) ( ) v ω (C ) v ω(v) (k, l) T ω 1,..., ω k v 1,..., v l T (ω 1,..., ω k ; v 1,..., v l ) (metirc) 2 2 2

31 g V p (M) V p (M) (0, 2) (symmetric), v 1, v 2 V p (M) g(v 1, v 2 ) = g(v 2, v 1 ) (nondegenerate), v V p (M) g(v, v 1 ) = 0 v 1 = 0 M (metric) g (0, 2) ( ) g g µν g = µ,ν g µν dx µ dx ν (2.3.9) g ds 2 (2.3.9) ds 2 = g µν dx µ dx ν (2.3.10) µ,ν (2.3.10) g p (orthonormal basis) e 1,..., e n µ ν g(e µ, e ν ) = 0 µ = ν g(e µ, e ν ) = ±1 p g(e µ, e µ ) = +1 g(e µ, e µ ) = 1 + (signature) (positive definite) ( ) p M g V p (M) (0,2) V p (M) V p (M) R g v g(, v) V p (M) Vp (M) g 1 1

32 28 2 g 1 1 paracompact (1 )Riemann paracompact 1 (1 ) Lorentz T µ 1 µ k ν1 ν l (1),(2)

33 (abstract index notation) (k, l), k l T a 1 a k b1 b l T abc de (3, 2) (2.3.4) ) T abc de 2 1 T abc be (2, 1) 2 T abc de S a b T abc des f g (4, 3) T µνλ σρ T abc de g (0, 2) g ab v a g ab v b v a (= g ab v b ) g ab V p (M) Vp (M) g ab g ab (2, 0) (g 1 ) ab g ab g ab g bc = δ a c δ a c (V p (M) V p (M) ) ω a g ab ω b ω a (3, 2) T abc de T a b cde g bf g dh g ej T afc hj (0, 2) T ab (v a, w a ) T ab v a w b T ab

34 30 2 (v a, w a ) T ab v b w a T ba T ab = T ba T ab (0, 2) T ab T (ab) = 1 2 (T ab + T ba ) (2.4.1) T [ab] = 1 2 (T ab T ba ) (2.4.2) (0, l) T a1 a l T (a1 a l ) = 1 T aπ(1) a l! π(l) (2.4.3) π T [a1 a l ] = 1 δ π T aπ(1) a l! π(l) (2.4.4) π 1,..., l π δ π 1, 1 T (ab)c [de] = 1 4 [T abc de + T bac de T abc ed T bac ed] (2.4.5) (0, l) T a1 a l 1 (differential 1-form) T a1 a l = T [a1 a l ] (2.4.6)

35 g ab M (intrinsic) ) 3.2 ( 5 ) 2 p q V p (M) V q (M) p q

36 ? 3 1 (M, g ab ) ) 3.1 M (derivative operator) ( (covariant derivative) ), (k, l) (k, l + 1) 5 T a 1 a k b1 b l T (k, l) T c T a 1 a k b1 b l a ( a 5 1. : A, B T (k, l) α, β R c (αa a 1 a k b1 b l +βb a 1 a k b1 b l ) = α c A a 1 a k b1 b l +β c B a 1 a k b1 b l 2. Leibnitz :

37 A T (k, l), B T (k, l ) e [A a 1 a k b1 b l B c 1 c k d1 d l ] = [ e A a 1 a k b1 b l ]B c 1 c k d1 d l + A a 1 a k b1 b l [ e B c 1 c k d1 d l ] 3. : A T (k, l) d (A a 1 c a k b1 c b l ) = d A a 1 c a k b1 c b l 4. : f F(M) t a V p (M) t(f) = t a a f 5. (Torsion free): f F(M) a b f = b a f 5 5 ) v a, w b a f [v, w](f) = v{w(f)} w{v(f)} = v a a (w b b f) w a a (v b b f) = {v a a w b w a a v b } b f (3.1.1) [v, w] b = v a a w b w a a v b (3.1.2) ( ) ψ { / x µ } {dx µ } (ordinary derivative) a

38 34 3 T a 1 a k b1 b l T µ 1 µ k ν1 ν l c T a 1 a k b1 b l (T µ 1 µ k ν1 ν l )/ x σ 5 ( ) ψ a ψ a ct a 1 a k b1 b l T a 1 a k b1 b l? (4) 2 a a 2 ω b f a (fω b ) a (fω b ) Leibnitz a (fω b ) a (fω b ) = ( a f)ω b + f a ω b ( a f)ω b f a ω b = f( a ω b a ω b ) (3.1.3) ( (4) ) p a ω b a ω b ω b p (3.1.3) a ω b a ω b p ω b. a ω b a ω b p ω b ω b p ω b ω b ω b. ω b ω b p 0 (2 2 ) p 0 f (α) µ (α) b ω b ω b = n α=1 f (α) µ (α) b (3.1.4) (3.1.3) p a (ω b ω b ) a (ω b ω b ) = α { a (f (α) µ (α) b ) a (f (α) µ (α) b )} = α f (α) ( a µ (α) b a µ (α) b ) = 0 (3.1.5)

39 p f (α) = 0 a ω b a ω b = a ω b a ω b (3.1.6) a a p p (0, 2) (1) ( a a ) p (1, 2) C c ab 2 a a a ω b = a ω b C c abω c (3.1.7) C c ab (5) C c ab ω b = b f = b f a b f = a b f C c ab c f (3.1.8) a b f a b f a b C c ab = C c ba (3.1.9) (3.1.9) a a (3.1.7) (4) t a ω a (4) ( a a )(ω b t b ) = 0 (3.1.10) ( a a )(ω b t b ) = (C c abω c )t b + ω b ( a a )t b (3.1.11) ω b ω b [( a a )t b + C b act c ] = 0 (3.1.12) a t b = a t b + C b act c (3.1.13)

40 36 3 a a C c ab T T (k, l) a T b 1 b k c1 c l = a T b 1 b k c1 c l + i C b i ad T b 1 d b k c1 c l j C d ac j T b 1 b k c1 d c l (3.1.14) 2 a a C c ab a C c ab (3.1.14) a n C c ab n 2 (n + 1)/2 (3.1.14) a a C c ab Γ c ab (Christoffel symbol) a t b = a t b + Γ b act c (3.1.15) (3.1.15) Γ b ac a a t a C v a t a a v b = 0 (3.1.16) (parallelly transported) t a a T b 1 b k c1 c l = 0 (3.1.17) (3.1.15) (3.1.16) t a a v b + t a Γ b acv c = 0 (3.1.18)

41 t dv ν dt + t µ Γ ν µλv λ = 0 (3.1.19) µ,λ v a v a v a (3.1.19) p p q V p (M) V q (M) (connection) g ab 2 v a w a g ab v a w b (3.1.16) v b w c t a a (g bc v b w c ) = 0 (3.1.20) t a v b w c a g bc = 0 (3.1.21) (3.1.21) a g bc = 0 (3.1.22) a a g ab a g bc = 0 a. a a C c ab

42 38 3 C c ab C c ab (3.1.14) C c ab 0 = a g bc = a g bc C d abg dc C d acg bd (3.1.23) C cab + C bac = a g bc (3.1.24) C cba + C abc = b g ac (3.1.25) C bca + C acb = c g ab (3.1.26) (3.1.24) (3.1.25) (3.1.26) C c ab (3.1.9) 2C cab = a g bc + b g ac c g ab (3.1.27) C c ab = 1 2 gcd { a g bd + b g ad d g ab } (3.1.28) C c ab (3.1.22) g ab a, ((3.1.22) ) (3.1.14) (3.1.28) a a Γ c ab = 1 2 gcd { a g bd + b g ad d g ab } (3.1.29) Γ ρ µν = 1 { g ρσ gνσ 2 x + g µσ µ x g } µν ν x σ σ (3.1.30)

43 3.2. (curvature) (curvature) C p q V p (M) V q (M) Riemann Riemann a ω a f fω a 2 a b (fω c ) = a (ω c b f + f b ω c ) = ( a b f)ω c + b f a ω c + a f b ω c + f a b ω c (3.2.1) b a (fω c ) (3.2.1) 3 b a (fω c ) ( a b b a )(fω c ) = f( a b b a )ω c (3.2.2) ( (3.1.3) ) p ( a b b a )ω c p ω c ( a b b a ) p p (0, 3) ω c a b ω c b a ω c = R abc d ω d (3.2.3) R abc d R abc d Riemann R abc d p M p 2 S t s 3.3 s = 0

44 40 3 t t = t s t s v a p S ) v a v a ω a v a ω a t v a ω a δ 1 δ 1 = t t (va ω a ) ( t/2,0) (3.2.4) t 2 δ 1 δ 1 = tt b b (v a ω a ) ( t/2,0) = tv a T b b ω a ( t/2,0) (3.2.5) T b s (3.1.16) T b b v a = 0 δ 2, δ 3, δ 4 2 t δ 1 δ 3 δ 1 + δ 3 = t{v a T b b ω a ( t/2,0) v a T b b ω a ( t/2, s) } (3.2.6) δ 2 δ 4 s 0 t s 1 v a ω a v a ) t s 1 v a ω a 2 (3.2.6) 1 t = t/2 ( t/2, 0) ( t/2, s) v a T b b ω a s 1 ( t/2, s) v a ( t/2, 0) v a 1 ) 1 ( t/2, s) T b b ω a, ( t/2, 0) (T b b ω a ) ss c c (T b b ω a ) (S c t ) t, s 2 δ 1 + δ 3 = t s v a S c c (T b b ω a ) (3.2.7)

45 3.2. (curvature) 41 p δ 2 δ 4 v a ω a δ(v a ω a ) = t s v a {T c c (S b b ω a ) S c c (T b b ω a )} = t s v a T c S b ( c b b c )ω b = t s v a T c S b R cba d ω d (3.2.8) 2 T a S a (2 2 (3.1.2) ) Riemann (3.2.3) (3.2.8) ω a v a ( t s 2 ) δv a = t s v d T c S b R cbd a (3.2.9) Riemann (3.2.3) (3.1.14) Riemann t a ω a 5 (3.2.3) 0 = ( a b b a )(t c ω c ) = a (ω c b t c + t c b ω c ) b (ω c a t c + t c a ω c ) = ω c ( a b b a )t c + t c ( a b b a )ω c = ω c ( a b b a )t c + t c ω d R abc d (3.2.10) ( a b b a )t c = R abd c t d (3.2.11) T c 1 c k d1 d l k ( a b b a )T c 1 c k c d1 d l = R i abe T c 1 e c k d1 d l + i=1 l R e abdj T c 1 c k d1 e d l (3.2.12) Riemann 4 j=1

46 R abc d = R bac d (3.2.13) 2. R [abc] d = 0 (3.2.14) 3. a ( a g bc = 0 ) R abcd = R abdc (3.2.15) 4. Bianchi [a R bc]d e = 0 (3.2.16) (1) R abc d (3.2.3) (2) ω a a [a b ω c] = 0 (3.2.17) (3.1.14) a a C c ab = Γ c ab (3.1.9) ω d 0 = 2 [a b ω c] = [a b ω c] [b a ω c] = R [abc] d ω d (3.2.18) (2) (3) (3.2.12) g ab 0 = ( a b b a )g cd = R abc e g ed + R abd e g ce = R abcd + R abdc (3.2.19) 1,2,3 Riemann R abcd = R cdab (3.2.20) (4) Bianchi (3.2.12) ( a b b a ) c ω d = R abc e e ω d + R abd f c ω f (3.2.21) a ( b c ω d c b ω d ) = a (R bcd e ω e ) = ω e a R bcd e + R bcd e a ω e (3.2.22)

47 3.2. (curvature) 43 (3.2.21) (3.2.22) a, b, c R [abc] e e ω d + R [ab d f c] ω f = ω e [a R bc]d e + R [bc d e a] ω e (3.2.23) d 1 (3.2.14) 2 ω e ω e [a R bc]d e = 0 (3.2.24) (4) (Bianchi ) Riemann trace trace 0 (1) (3) Riemann (1 3 ) Ricci R ac R ac = R abc b (3.2.25) (3.2.20) R ac R ac = R ca (3.2.26) R Ricci R = R a a (3.2.27) trace 0 Weyl C abcd n 3 R abcd = C abcd + 2 n 2 (g 2 a[cr d]b g b[c R d]a ) (n 1)(n 2) Rg a[cg d]b (3.2.28) Weyl Riemann (1),(2),(3) trace 0 (conformal tensor)

48 44 3 Bianchi (3.2.16) R ab a R bcd a + b R cd c R bd = 0 (3.2.29) d b d a R c a + b R c b c R = 0 (3.2.30) a G ab = 0 (3.2.31) G ab = R ab 1 2 Rg ab (3.2.32) G ab Einstein Einstein Bianchi 2 (3.2.31) Einstein 3.3 (Geodesics) a (geodesic) ( ) T a T a a T b = 0 (3.3.1) T a a T b = αt b (3.3.2) α (3.3.2) (3.3.1) (3.3.1)

49 3.3. (Geodesics) 45 (3.3.1) affine parametrization ψ R n x µ (t) (3.1.19) T a T µ dt µ + Γ µ σνt σ T ν = 0 (3.3.3) dt σ,ν (2.2.12) T µ T µ = dxµ dt (3.3.4) d 2 x µ dt 2 + σ,ν Γ µ dx σ dx ν σν dt dt = 0 (3.3.5) (3.3.5) n x µ (t) n 2 x µ dx µ /dt (3.3.5) p M T a V p (M) p T a (exponential map) V p (M) M T a V p (M) (M p T a ) p affine M T a affine t = V p (M) V p (M) n R n p Riemann p R n (3.3.5) Christoffel

50 46 3 Γ µ σν p Riemann a g ab Gaussian 2 S (n M (n 1) ) p S S V p (S) M V p (M) (n 1) V p (S) ( g ab ) n a V p (M) n a S Riemann n a V p (S) n a g ab n a n b = 0 n a V p (S) S p S g ab n a n b = ±1 n a Gaussian p S p n a S ( 1 ) (x 1,, x n 1 ) S ( ) t p S x 1,, x n 1 S p S ( ) q (x 1,, x n 1, t) Gaussian (t ) S t S 0 = S S t n a S t ) X a 1,..., X a n 1 X a n b b (n a X a ) = n a n b b X a = n a X b b n a = 1 2 Xb b (n a n a ) = 0 (3.3.6) 2 n a X b M ) 3 S n a n a = ±1

51 3.3. (Geodesics) 47 n a n a M S n a X a = 0 (3.3.6) S ( ) Riemann g ab M C C l l = (g ab T a T b ) 1/2 dt (3.3.7) T a C t Lorentz ( + +) g ab T a T b < 0 g ab T a T b = 0 g ab T a T b > 0 (3.3.7) 0 τ τ = ( g ab T a T b ) 1/2 dt (3.3.8) Lorentz ) s = s(t) S a = (dt/ds)t a l = (g ab S a S b ) 1/2 ds = (g ab T a T b 1/2 dt ) ds = l (3.3.9) ds 1 R n (3.3.7) l = b a [ µ,ν g µν dx µ dt ] 1/2 dx ν dt (3.3.10) dt

52 48 3 C(a) = p C(b) = q l Lagrangian l δl = b a [ µ,ν g µν dx µ dt dx ν dt ] 1/2 { α,β g αβ dx α dt d(δx β ) dt σ g αβ dxα δxσ xσ dt (3.3.11) ( ) g ab T a T b = 1 = µ,ν g µν dx µ dt { } b dx α d(δx β ) 0 = g αβ + 1 g αβ dx α dx β a dt dt 2 x σ dt dt δxσ dt α,β σ { b = d ) } dx (g α αβ + 1 g αλ dx α dx λ δx β dt (3.3.12) dt dt 2 x β dt dt a α,β δx β δx β (3.3.12) α g αβ d 2 x α dt 2 α,λ λ dx ν dt g αβ dx λ dx α x λ dt dt + 1 g αλ dx α dx λ 2 x β dt dt = 0 (3.3.13) α,λ Γ σ αλ (3.1.30) (3.3.13) (3.3.5) 2 affine ) Lagrangian } dx β dt dt L = µ,ν g µν dx µ dt dx ν dt (3.3.14) Γ µ σν Lagrangian

53 3.3. (Geodesics) 49 (3.3.14) Euler-Lagrange (3.3.5) Γ µ σν Riemann Lorentz 2 2 Einstein (4 3 γ s (t) 1 s R γ s affine t (t, s) γ s (t) 1 ( ) γ s (t) 2 Σ Σ s t T a = ( / t) a T a a T b = 0 (3.3.15) X a = ( / s) a (deviation vector) X a γ s (t) affine t t = b(s)t + c(s) X a T a dγ s (t ) ds = γ s(t ) s + γ s(t) dt t ds?? g ab X a T a s t g ab T a T b t ) s X a T a

54 50 3 T b b X a = X b b T a (3.3.16) (3.3.6) X a T a γ s (t) s t C(s) t = 0 ( ) γ s (t) affine t = 0 X a T a = 0 X a T a = 0 v a = T b b X a v a a a = T c c v a = T c c (T b b X a ) (3.3.17) a a Riemann a a = T c c (T b b X a ) = T c c (X b b T a ) = (T c c X b )( b T a ) + X b T c c b T a = (X c c T b )( b T a ) + X b T c b c T a R cbd a X b T c T d = X c c (T b b T a ) R cbd a X b T c T d = R cbd a X b T c T d (3.3.18) (3.3.18) (geodesic deviation equation) a a = 0 R abc d = 0 ( - v a = T b b X a = 0 - ) R abcd a a

55 Christoffel Γ c ab ω a (3.2.3) b ω c = b ω c Γ d bcω d (3.4.1) a b ω c = a ( b ω c Γ d bcω d ) Γ e ab( e ω c Γ d ecω d ) Γ e ac( b ω e Γ d beω d ) (3.4.2) R abc d ω d = [ 2 [a Γ d b]c + 2Γ e c[aγ d b]e]ω d (3.4.3) Γ c ab (3.1.9) (3.4.3) ω d ω d R abc d R σ µνρ = x ν Γσ µρ x µ Γσ νρ + (Γ α µργ σ αν Γ α νργ σ αµ) (3.4.4) α g ab R abc d g µν (3.1.30) Γ σ µν (3.4.4) R µνρ σ Ricci (3.4.4) R µρ = ν = ν R µνρ ν ( ) x ν Γν µρ Γ ν x µ νρ + (Γ α µργ ν αν Γ α νργ ν αµ) ν α,ν (3.4.5) g µν g ab g µν (g µν ) (g µν ) g g = det(g µν ) (3.4.6)

56 52 3 Christoffel Γ a ab (3.1.30) Γ a aµ = Γ ν νµ = 1 g να g να (3.4.7) 2 x µ ν ν,α ν,α (3.4.9) g να g να x µ Γ a aµ = 1 1 g 2 g x = µ = 1 g a T a = a T a + Γ a abt b = µ g x µ (3.4.8) x µ ln g (3.4.9) 1 g x ( g T µ ) (3.4.10) µ (Tetrad) a R abc d { / x µ } (nonholonomic) (e µ ) a (e µ ) a (e ν ) a = η µν (3.4.11) η µν = diag( 1,, 1, 1, 1) 4 {(e µ ) a } tetrad (3.4.11) η µν (e µ ) a (e ν ) b = δ a b (3.4.12) µ,ν

57 ω aµν = (e µ ) b a (e ν ) b (3.4.13) ω λµν = (e λ ) a (e µ ) b a (e ν ) b (3.4.14) ω aµν = (e µ ) b a (e ν ) b = (e ν ) b a (e µ ) b = ω aνµ (3.4.15) ω aµν = ω aνµ (3.4.16)

58

59 R 3 R 3 (x 1, x 2, x 3 ) (Cartesian coordinates) R (x 1, x 2, x 3 ) 2 x x D D 2 = (x 1 x 1 ) 2 + (x 2 x 2 ) 2 + (x 3 x 3 ) 2 (4.1.1) 2 h ab (4.1.1) 2 (δd) 2 = (δx 1 ) 2 + (δx 2 ) 2 + (δx 3 ) 2 (4.1.2) ((2.3.10) ) ds 2 = (dx 1 ) 2 + (dx 2 ) 2 + (dx 3 ) 2 (4.1.3) h ab = h µν (dx µ ) a (dx ν ) b (4.1.4) µ,ν (h µν = diag(1, 1, 1)) h ab h ab

60 56 4 (4.1.4) a h bc = 0 (4.1.5) h ab Γ a bc (3.2.3), h ab (3.3.5) (3.3.7) (4.1.1) (4.1.4) ( ) Riemann R 3 Riemann R 3 0 (4.1.1) Riemann R Taylor ) )

61 R 4 x 1, x 2, x 3 t R 4 (global inertial coordinate system) 10 Poincaré 1 1 t = x 0, x 1, x 2, x 3 2 x x I(c = 1 ) I = (x 0 x 0 ) 2 + (x 1 x 1 ) 2 + (x 2 x 2 ) 2 + (x 3 x 3 ) 2 (4.2.1) (4.2.1) (metric of spacetime) η ab 3 η ab = η µν (dx µ ) a (dx ν ) b (4.2.2) µ,ν=0 η µν = diag( 1, 1, 1, 1) {x µ } η µν a a η bc = 0 (4.2.3) η ab 0 η ab η ab, Lorentz R 4

62 58 4 η ab 2 (proper) Poincaré ) η ab T a T b 0 ( ) (proper time) τ τ = ( η ab T a T b ) 1/2 dt (4.2.4) t (t ) T a τ ) τ u a 4 (4-velocity) τ 4 u a u a = 1 (4.2.5)

63 u a a u b = 0 (4.2.6) a η ab (4.2.6) 0 ( (4.2.26) ) m m 4 p a p a = mu a (4.2.7) )4 v a E = p a v a (4.2.8) 4 p a v a = u a (4.2.8) E = mc 2 c = 1 η ab 4 (stressenergy-momentum) T ab 4 v a T ab v a v b T ab v a v b 0 (4.2.9) x a v a T ab v a x b x a y a v a T ab x a y b x a y a

64 60 4 T ab = ρu a u b + P (η ab + u a u b ) (4.2.10) u a 4 T ab ρ P a T ab = 0 (4.2.11) (4.2.11) ρ, P, u a u b u a a ρ + (ρ + P ) a u a = 0 (4.2.12) (P + ρ)u a a u b + (η ab + u a u b ) a P = 0 (4.2.13) P ρ, u µ = (1, v), vdp/dt P ρ t + (ρ v) = 0 (4.2.14) { } v ρ + ( v ) v = P t (4.2.15) (4.2.11) (4.2.14) Euler (4.2.15) (4.2.11) 4 v a 1 b v a = 0 T ab J a = T ab v b (4.2.16) 4 (4.2.11) a J a = 0 (4.2.17) (4.2.17), 4 V 3 S J a n a ds = 0 (4.2.18) S

65 n a 4.1 (4.2.18) (4.2.11) (4.2.11) 2 Klein- Gordon a a φ m 2 φ = 0 (4.2.19) φ T ab = a φ b φ 1 2 η ab( c φ c φ + m 2 φ 2 ) (4.2.20) T ab (4.2.9) (4.2.19) (4.2.11) E B F ab F ab = F ba F ab 6 4 v a E a = F ab v b (4.2.21) B a = 1 2 ɛ ab cd F cd v b (4.2.22) ɛ abcd ɛ abcd ɛ abcd = 24 ɛ 0123 = 1 F ab Maxwell a F ab = 4πj b (4.2.23) [a F bc] = 0 (4.2.24)

66 62 4 j a 4 F ab 0 = b a F ab = 4π b j b (4.2.25) Maxwell b j b = 0 J a q F ab u a a u b = q m F b cu c (4.2.26) Lorentz F ab T ab = 1 4π {F ac F b c 14 η abf de F de } (4.2.27) T ab (4.2.9) j a = 0 Maxwell a T ab = 0 j a 0 T ab Poincaré (4.2.24) A a ( ) F ab = a A b b A a (4.2.28) A a Maxwell a ( a A b b A a ) = 4πj b (4.2.29) χ a χ A a (4.2.28) F ab χ Lorentz a a χ = b A b (4.2.30) a A a = 0 (4.2.31)

67 (4.2.29) a a A b = 4πj b (4.2.32) Maxwell ( ) A a = C a exp(is) (4.2.33) C a S (phase) j a = 0 ((4.2.32) ) a a S = 0 (4.2.34) a S a S = 0 (4.2.35) ((4.2.31) ) C a a S = 0 (4.2.36) f a f f t a t a a f = 0 (4.2.35) S k a = a S k a k a = 0 (4.2.35) 0 = b ( a S a S) = 2( a S)( b a S) = 2( a S)( a b S) = 2k a a k b (4.2.37) k a (4.2.35) (4.2.37) a a ) Lorentz 4 v a ) ω = v a a S = v a k a (4.2.38)

68 64 4 (4.2.33) S = 3 k µ x µ (4.2.39) µ=0 {x µ } k µ k µ Fourier Maxwell 0 (4.2.37) Maxwell (support) p p Maxwell 4.3 Maxwell Maxwell Coulomb Newton Einstein ( ) (4.2.6) (4.2.26) ( ) F ab

69 ( ) Newton ( ) 2 ( ) 2 (3.3.18) 980cms 2 Newton 980cms 2 (

70 66 4 ( ) η ab R 4 ( R 4 ) ( ) g ab R 4 (a priori) Einstein g ab M 2 (1) g ab (2) g ab R 4 4 u a ρ P

71 F ab 2 η ab g ab η ab a g ab a 4 u a (g ab ) u a a u b = 0 (4.3.1) a g ab a b = u a a u b 0 f b = ma b m ) ( ) m q F ab Lorentz u a a u b = q m F b cu c (4.3.2) g ab F b c = g bd F dc 4 p a = mu a (4.3.3) E = p a v a (4.3.4) v a 4 T ab T ab = ρu a u b + P (g ab + u a u b ) (4.3.5) a T ab = 0 (4.3.6) u a a ρ + (ρ + P ) a u a = 0 (4.3.7) (P + ρ)u a a u b + (η ab + u a u b ) a P = 0 (4.3.8)

72 68 4 (4.3.6) v a a v b = 0 a (T ab v b ) = 0 Gauss 4 J a = T ab v b (v b ) (4.2.18) v a v a = 1 (a v b) = 0 v a (4.3.6) b v a 0 (4.3.6) (4.3.6) (4.3.6) Klein-Gordon, η ab g ab, a a a a φ m 2 φ = 0 (4.3.9) T ab = a φ b φ 1 2 g ab( c φ c φ + m 2 φ 2 ) (4.3.10) a T ab = 0 (4.2.19) α a a φ m 2 φ αrφ = 0 (4.3.11) (4.3.11) α = 1/6 Maxwell a F ab = 4πj b (4.3.12) [a F bc] = 0 (4.3.13)

73 (4.2.27) η ab g ab T ab = 1 {F ac F c b 14 } 4π g abf de F de (4.3.14) (4.3.13) A a ( ) Lorentz A a Maxwell (4.2.32) a a A b R d ba d = 4πj b (4.3.15) Maxwell (4.2.32) (4.2.15) Ricci R d ba d (4.3.15) (4.3.15) a j a = 0 Maxwell A a = C a exp(is) (4.3.16) C a (4.3.16) (4.3.15) j b = 0 b b C a Ricci a S a S = 0 (4.3.17) k a = a S? Newton φ 2 (tidal acceleration) ( x ) φ x 2 (3.3.18) R cbd a v c x b v d v a 4 x a R cbd a v c v d b a φ (4.3.18)

74 70 4 Poisson 2 φ = 4πρ (4.3.19) ρ ( ) G = c = 1 T ab T ab v c v d ρ (4.3.20) v a 4 (4.3.18) (4.3.20) (4.3.19) R cad a v c v d = 4πT cd v c v d R cd = 4πT cd c T cd = 0 Bianchi (3.2.31) c (R cd 1 2 g cdr) = 0 R cd 4πT cd d R = 0 R T = T a a G ab = R ab 1 2 Rg ab = 8πT ab (4.3.21) Bianchi Bianchi (4.3.21) (4.3.21) R = 8πT (4.3.22) R ab = 8π(T ab 1 2 g abt ) (4.3.23) (c = 1 ) T ρ = T ab v a v b (4.3.23) R ab v a v b 4πT ab v a v b (4.3.21) Einstein 1915 Einstein

75 Lorentz g ab M g ab Einstein (4.3.21) Einstein 3 1 R µν g µν 3 4 R µν g µν g µν 2 Einstein Einstein (4.3.21) Maxwell (4.2.32) j a T ab j a Maxwell A a T ab Einstein g ab g ab T ab T ab Einstein Einstein a T ab = 0 a T ab = 0 T ab Einstein P = 0 ( ) a T ab = 0 (4.3.8) a T ab = 0 (Fock 1939; Geroch and Yang 1975) Einstein (geodesic hypothesis) Einstein

76 72 4 a T ab = 0 (Papapetrou 1951; Dixon 1974). 4.4 η ab g ab = η ab + γ ab (4.4.1) γ ab ( η ab γ ab γ µν 1 (4.4.1) Einstein g ab γ ab η ab a γ ab g ab g ab η ab η ab 1 g ab η ac η bd g cd g ab = η ab γ ab (4.4.2) (4.4.1) (4.4.2) γ ab 2 Einsein γ ab 1 Christoffel Γ c ab = 1 2 ηcd ( a γ bd + b γ ad d γ ad ) (4.4.3)

77 γ ab 1 Ricci (3.4.5) R (1) ab = cγ c ab a Γ c cb = c (b γ a)c 1 2 c c γ ab 1 2 a b γ, (4.4.4) γ = γ c c 1 Einstein G (1) ab = R(1) ab 1 2 η abr (1) = c (b γ a)c 1 2 c c γ ab 1 2 a b γ 1 2 η ab( c d γ cd c c γ) (4.4.5) γ ab = γ ab 1 2 η abγ (4.4.6) γ ab Einstein G (1) ab = 1 2 c c γ ab + c (b γ a)c 1 2 η ab c d γ cd = 8πT ab (4.4.7) C φ : M M g ab φ g ab φ φ. 2 γ ab γ ab η ab 2 2 ξ a C Lie γ ab γ ab + L ξ η ab C L ξ η ab a L ξ η ab = a ξ b + b ξ a (4.4.8) γ ab γ ab + a ξ b + b ξ a (4.4.9)

78 74 4 A µ A µ + a χ γ ab C (2.3.8) (2.3.8) γ ab γ ab + a ξ b + b ξ a 1 Einstein b b ξ a = b γ ab (4.4.10) ξ a (4.4.9) b γ ab = 0 (4.4.11) Lorentz Einstein c c γ ab = 16πT ab (4.4.12) Maxwell (4.2.32) (T ab = 0) (4.4.11) (4.4.12) Fiertz Pauli (1939) η ab Newton η ab T ab ρt a t b (4.4.13)

79 t a = ( / x 0 ) a (4.4.13) T ab ( ) ( ) γ ab (4.4.12) (4.4.12) µ = ν = 0 µ, ν 2 γ µν = 0 (4.4.14) 2 γ 00 = 16πρ (4.4.15) 2 Laplace (4.4.14) γ µν = 0 γ µν = constant 0 ). Newton γ ab γ ab = γ ab 1 2 η ab γ = (4t a t b + 2η ab )φ (4.4.16) φ 1 4 γ 00 Poisson 2 φ = 4πρ (4.4.17) d 2 x µ dτ + ( ) ( ) dx Γ µ ρ dx σ 2 ρσ = 0 (4.4.18) dτ dτ ρ,σ x µ (τ) 2 dx a /dτ (1, 0, 0, 0) τ t d 2 x µ dt 2 = Γ µ 00 (4.4.19)

80 76 4 (4.4.16) µ = 1, 2, 3 Γ µ 00 = 1 γ 00 2 x µ = φ x µ (4.4.20) φ a = φ (4.4.21) a = d 2 x/dt 2 η ab (4.4.17) (4.4.21), Newton Newton Newton Newton ( ) Newton η ab 1 T ab = 2t (a J b) ρt a t b (4.4.22) J b = T ab t a 4 Einstein γ ab a a γ 0µ = 16πJ µ (4.4.23) A a = 1 4 γ abt b Lorentz Maxwell J a γ ab γ ab a = E 4 v B (4.4.24)

81 E B A a 4 Lorentz (q = m ) (Lense-Thirring 4 4,Gravity Probe B (2004)) Maxwell Einstein ( (4.4.11) (4.4.12) ) a γ ab = 0 (4.4.25) c c γ ab = 0 (4.4.26) (4.4.25) b b ξ a = 0 (4.4.27) γ ab γ ab + a ξ b + b ξ a (4.4.25) Lorentz A a b b χ = 0 (4.4.28) A a A a + a χ (j a = 0) A 0 Coulomb radiation t = t 0 2 χ = A (4.4.29)

82 78 4 (4.4.28) t = t 0 (4.4.29) χ/ t = A 0 χ f (4.2.32) (4.4.28) f = A 0 + χ/ t (4.4.30) a a f = 4πj 0 (4.4.31) t = t 0 f = 0 (4.4.32) f t = A χ t t = A + 2 χ = 0 (4.4.33) 2 (4.4.32) (4.4.33) (4.4.31) f = 0 A a A a + a χ Lorentz A 0 = 0 (T ab = 0) radiation γ = 0, γ 0µ = 0 (µ = 1, 2, 3) (4.4.27) γ 00 = 0 radiation t = t 0 ( 2 ξ ) 0 t + ξ = γ (4.4.34a) 2 [ 2 ξ 0 + ( ξ t )] = γ t (4.4.34b) ξ µ t + ξ 0 x = γ µ 0µ (µ = 1, 2, 3) (4.4.34c) 2 ξ µ + ( ) ξ0 = γ 0µ (µ = 1, 2, 3) (4.4.34d) x µ t t ξ 0, ξ 1, ξ 2, ξ 3 (4.4.27) xi a ξ a (4.4.25) γ = 0 γ 0µ = 0 (µ = 1, 2, 3)

83 γ 00 = 0 γ = 0 γ ab = γ ab µ = 1, 2, 3 γ 0µ = 0 (4.4.25) γ 00 t = 0 (4.4.35) Einstein (4.4.12) 2 γ 00 = 16πT 00 (4.4.36) T 00 = 0 (4.4.36) γ 00 γ 00 = 0 radiation Einstein ( ) 3 γ ab = H ab exp i k µ x µ (4.4.37) H ab k µ k µ = η µν k µ k ν = 0 (4.4.38) µ,nu µ (4.4.26) radiation (ν = 0, 1, 2, 3 ) µ=0 3 k µ H µν = 0 µ=0 H 0ν = 0 3 H µ µ = 0 µ=0 (4.4.39a) (4.4.39b) (4.4.39c) (4.4.39a) (4.4.39b) ν H 0νk ν = H µν 10 H ab Einstein

84 80 4? 2 2 (3.3.18) η ab 2 d 2 X µ dt 2 = ν R µ ν00x ν (4.4.40) (X a ) radiation (γ 00 = 0 ) (3.4.4) Riemann R ν00µ = 1 2 γ µν (radiationguage) (4.4.41) 2 t 2 2? Einstein γ ab (4.4.12) γ µν (x) = 4 Λ T µν (x ) x x ds(x ) (4.4.42) Λ x ds = r 2 drdω γ ab (4.4.11) a T ab (4.4.42) ( radiation )

85 Fourier η ab t ˆ γ µν (ω, x) = 1 2π γ µν (t, x) exp(iωt)dt (4.4.43) T µν Fourier (4.4.42) ˆTµν (ω, x ˆ γ ) µν (ω, x) = 4 exp(iω x x )d 3 x (4.4.44) x x exp(iω x x ) (4.4.42) ˆ γ µν ˆ γ 0ν (4.4.11) 3 ˆ γ νµ iωˆ γ 0µ = (4.4.45) x ν (far zone) R 1/ω R exp(iω x x ) exp(iω x x )/ x x exp(iωr)/r ˆT ab { 3 } ˆT µν d 3 x = x ( ˆT αν x µ αν ˆT ) a x a xµ σ=1 = iω ˆT 0ν x µ = iω ( 2 ˆT 0ν x µ + ˆT 0µ x ν ) { = iω 3 } 2 x ( ˆT 0β x µ x ν 0β ˆT ) β x β xµ x ν β=1 = ω2 ˆT 00 x µ x ν (4.4.46) 2 2 Gauss T ab ˆ γ µν (ω, x) = 2ω2 3 µ=1 exp(iωr) ˆq µν (ω) (µ, ν = 1, 2, 3) (4.4.47) R

86 82 4 ˆq µν 4 q µν = 3 T 00 x µ x ν d 3 x (4.4.48) (4.4.47) ˆ γ µν (t, x) = 2 d 2 q µν 3R dt 2 (µ, ν = 1, 2, 3) (4.4.49) t = t R G (1) ab [γ cd] = 0 (4.4.50) R (2) ab = 1 2 γcd a b γ cd γ cd c [a γ b]d ( aγ cd ) b γ cd + ( d γ c b) [d γ c]a d(γ dc c γ ab ) 1 4 ( c γ) c γ ab ( d γ cd 1 2 c γ) [a γ b]c (4.4.51) G (1) ab [γ(2) cd ] + G(2) ab [γ cd] = 0 (4.4.52) G (1) ab [γ(2) cd ] = 8πt ab (4.4.53) t ab = 1 8π G(2) ab [γ cd] (4.4.54) E = t 00 d 3 x (4.4.55) Σ E = t 00 ds a (4.4.56) Σ E = P dt (4.4.57) P = (4.4.58) Q µν = q µν 1 3 δ µνq (4.4.59) M L Ω P rod = 2G 45c 5 M 2 L 4 Ω 6, (4.4.60)

87 (input) (Kirshner et al. 1981) X γ 3K 5 4 3K

88 84 5 (instant of time) (space) : ( ) (homogeneous) 5.1 ( ) Σ t 1 t p, q Σ t g ab (isometry) p q ( C ) 1 (isotropic) ( ) u a ( 5.2) p 2 s a 1, s a 2 V p p u a ) p u a s a 1 sa 2 g ab u a Σ t u a Σ t u a Σ t g ab p Σ t g ab Σ t Σ t h ab (t) Σ t (i) p Σ t q Σ t h ab (ii) Σ t 2 Σ t

89 h ab (3) R abc d 3 h ab p (3) R ab cd p 2 W L : W W (3.2.20) L (h ab W ) W L p 2 p L L L = KI (5.1.1) (3) R ab cd = Kδ c [aδ d b] (5.1.2) (3) R abcd = Kh c[a h b]d (5.1.3) (i) K Σ t (ii) K (5.1.3) Bianchi (3.2.16) 0 = D [e (3) R ab]cd = (D [e K)h c a h b]d (5.1.4) D a Σ t h ab a D a 4 g ab 3 (5.1.4) D e K = 0 0 K Σ t (5.1.3) (K = constant ) (space of constant curvature) K 2 ( ) (isometric) (Eisenhart 1949) Σ t K

90 86 5 K 3 4 R 4 x 2 + y 2 + z 2 + w 2 = R 2 (5.1.5) 3 ds 2 = dψ 2 + sin 2 ψ(dθ 2 + sin 2 θdφ 2 ) (5.1.6) K = 0 3 ds 2 = dx 2 + dy 2 + dz 2 (5.1.7) K 3 4 (Minkowski ) t 2 x 2 y 2 z 2 = R 2 (5.1.8) ds 2 = dψ 2 + sinh 2 ψ(dθ 2 + sin 2 θdφ 2 ) (5.1.9) K = (closed) (open) 4 g ab g ab = u a u b + h ab (t) (5.1.10) t h ab (t) Σ t (a) (b) (c) 4

91 (a) (b) (c) τ 2 τ dψ 2 + sin 2 ψ(dθ 2 + sin 2 θdφ 2 ) ds 2 = dτ 2 + a 2 (τ) dx 2 + dy 2 + dz 2 (5.1.11) dψ 2 + sinh 2 ψ(dθ 2 + sin 2 θdφ 2 ) 3 3 [ dψ 2 + ψ 2 (dθ 2 + sin 2 θdφ 2 ) ] (5.1.11) Robertson-Walker 3 a(τ) a(τ) Einstein 5.2 (5.1.11) Einstein (4.3.21) 1 T ab (Einstein ) (grain of dust) (pressure)

92 88 5 T ab = ρu a u b (5.2.1) ρ ( ) 3K 0 P = ρ/3 5 4 T ab Einstein T ab T ab = ρu a u b + P (g ab + u a u b ) (5.2.2) T ab T ab (5.1.11) G ab (5.2.2) 8πT ab G ab u b T ab u b ) Einstein 0 G ab (5.1.1) Einstein Einstein G ττ = 8πT ττ = 8πρ (5.2.3) G = 8πT = 8πP (5.2.4) G ττ = G ab u a u b G = G ab s a s b s a

93 G ττ G a(τ) ds 2 = dτ 2 + a 2 (τ)(dx 2 + dy 2 + dz 2 ) (5.2.5) (3.1.30) 0 Γ τ xx = Γ τ yy = Γ τ zz = aȧ, (5.2.6) Γ x xτ = Γ x τx = Γ y yτ = Γ y τy = Γ z zτ = Γ z τz = ȧ/a, (5.2.7) ȧ = da/dτ (3.4.5) Ricci R ττ = 3ä/a, (5.2.8) R = a 2 R xx = ä a + 2ȧ2 a 2 (5.2.9) (ä ) R = R ττ + 3R = 6 a + ȧ2 a 2 (5.2.10) G ττ = R ττ R = 3ȧ2 /a 2 = 8πρ, (5.2.11) G = R 1 2 R = 2ä a ȧ2 = 8πP. (5.2.12) a2 2 3ä/a = 4π(ρ + 3P ) (5.2.13) 3ȧ 2 /a 2 = 8πρ 3k/a 2, (5.2.14) 3ä/a = 4π(ρ + 3P ) (5.2.15) 3 k = +1, k = 0, k = 1 (P = 0) P = ρ/3

94 90 5 Dust Radiation Spatial Geometry P = 0 P = 1ρ 3 3-sphere,k = +1 a = 1C(1 cos η) a = C 2 [1 (1 τ/ C ) 2 ] 1/2 τ = 1 C(η sin η) 2 Flat, k = 0 a = (9C/4) 1/3 τ 2/3 a = (4C ) 1/4 τ 1/2 Hyperboloid,k = 1 a = 1C(cosh η 1 ) a = C 2 [(1 + τ/ C ) 2 1] 1/2 τ = 1 C(sinh η η) 2 5.1: Robertson-Walker 5-1 ρ > 0 P 0 (5.2.15) ä < 0 ȧ > 0, ȧ < 0 ) ( ) τ 2 R R v dr dτ = R da a dτ = HR (5.2.16) H(τ) = ȧ/a (Hubble) ( H ) (5.2.16) R v 2 (5.2.16)

95 G ab + Λg ab = 8πT ab (5.2.17) Λ (cosmological constant) G ab g ab (Lovelock 1972). (5.2.17) Einstein Λ 0 Newton Λ Newton ) Λ Λ = 0 ȧ > 0 (5.2.15) ä < 0 T = a/ȧ = H 1 a = 0 a H 1 (5.2.14) a 2

96 92 5 τ (5.2.15) ä (P = 0) ρ + 3(ρ + P )ȧ/a = 0 (5.2.18) ρa 3 = constant (5.2.19) (P = ρ/3) ρa 4 = constant (5.2.20) a a 3 a 3 (5 3 a 1 (5.2.19) (5.2.20) (a 0) k = 0 1 (5.2.14) ȧ 0 P 0 a ρ a 3 ( ) a ρa 2 0 k = 0 ȧ τ 0 k = 1 τ ȧ 1 k = 1 (5.2.14) 1 a 2 a a c a c τ a a c (5.2.15) ä k = +1 a c 3

97 (5.2.14) (5.2.15) (5.2.19) (5.2.20) ρ (5.2.14) ȧ 2 C/a + k = 0 (5.2.21) (C = 8πρa 3 /3 ) ȧ 2 C /a 2 + k = 0 (5.2.22) (C = 8πρa 4 /3 ) Robertson-Walker (5.1.11) P 1 τ 1 ω 1 P 2 τ 2 2 ω 2 2 (1), (4 3 ) (2) 4 u a k a ω = k a u a (5.3.1) ( (4.2.38) ) k a (5.3.1) C-3 ξ a Killing ( C ) (isometries) 1 t a t a ξ a

98 94 5 (5.3.6) 3 Killing ξ a k a P 1 Σ 1 k a P 2 Σ 2 k a P 1 Σ 1 ( / x) a k a ( / y) a = k a ( / z) a = 0 ( / y) a ( / z) a Killing P 2 0 k a P 2 Σ 2 ( / x) a ξ a = ( / x) a Killing ξ a P 1 ξ a P 2 ξ a Σ 1 Σ 2 a (ξ a ξ a ) 1/2 P1 = a(τ 1) (5.3.2) (ξ a ξ a ) 1/2 P2 a(τ 2 ) k a u a (k a ) Σ P 1 k a u a 1 = k a [ξ a /(ξ b ξ b ) 1/2 ] P1 (5.3.3) ω 1 = [(k a ξ a )/(ξ b ξ b ) 1/2 ] P1 (5.3.4) ω 2 = [(k a ξ a )/(ξ b ξ b ) 1/2 ] P2 (5.3.5) Killing (k a ξ a ) P1 = (k a ξ a ) P2 ω 2 = (ξb ξ b ) 1/2 P1 = a(τ 1) ω 1 (ξ b ξ b ) 1/2 P2 a(τ 2 ) (5.3.6) (5.3.2)

99 z z = λ 2 λ 1 λ 1 = ω 1 ω 2 1 = a(τ 2) a(τ 1 ) 1 (5.3.7) R τ 2 τ 1 a(τ 2 ) a(τ 1 ) + (τ 2 τ 1 )ȧ (5.3.8) z ȧ R = HR (5.3.9) a Hubble a(τ) τ P? Robertson- Walker P ( ) P P (particle horizon) Robertson-Walker Robertson-Walker ( 5.1 ) dt 2 = dτ 2 + a 2 (τ)(dx 2 + dy 2 + dz 2 ) (5.3.10) t = dτ a(τ) (5.3.11)

100 96 5 τ t (5.3.10) ds 2 = a 2 (t)( dt 2 + dx 2 + dy 2 + dz 2 ) (5.3.12) Minkowski (?) (conformally flat) (5.3.12) ds 2 = dt 2 + dx 2 + dy 2 + dz 2 (5.3.13) (5.3.12) 2 (5.3.13) P τ 0 t (5.3.11) τ 0 a(τ) ατ (α ) Robertson-Walker Minkowski Robertson-Walker t = constant Minkowski k = 0 a(τ) τ 2/3 P > 0 a(τ) Einstein Robertson-Walker (5.3.11) τ 0 τ 0 a(τ) (5.2.14) k

101 Robertson-Walker (a) (b) Robertson-Walker Robertson-Walker 2 Misner 1969 Robertson-Walker (inflationary phase) Robertson-Walker

102 Robertson-Walker a ( ) 1000 (5.2.19) (5.2.20) a 1000 a (k = 0, ±1) a ρ τ τ k = 0 a(τ) = (4C ) 1/4 τ 1/2 (5.4.1) 3 ρ = 32πGτ 2 (5.4.2) G c ρ ρ = n i=1 α i g i π c 5 (kt )4 (5.4.3)

103 n g i α i 1, 7/8 kt 0 (5.4.3) (5.4.1), (5.4.2), (5.4.3) T ρ 1/4 a 1 (5.3.6) ) ) t E a, (5.4.1) t E a/ȧ = 2τ (5.4.4) t I 1 nσc a3 σ τ 3/2 /σ(t ) (5.4.5) n a 3 σ σ (5.4.4) (5.4.5) σ t I t E, t I > t E (T ), ( ) t I t E a 1/1000 Robertson-Walker (G /c 3 ) 1/ cm

104 100 5 (τ = s ρ gcm 3 ) 2 T ab λg ab (λ ) (phase) de Sitter (1) (2) C CP ( ) (3) t E

105 τ = 1 ρ gcm 3 T K (ω ω/a) (T T/a) T 2K τ 1.5 1/6 ( 1MeV τ = 4 ρ = gcm 3 T K 0.5MeV 1.4 τ K 4 He 4 He ( K) ( 2 H) 2 H

106 K 4 He He 25% 4 He 2 H, 3 He, 7 Li 4 He 2 H 2 H He 2 H 25% % 4000K τ K 10 4 (recombination) T 2.7K ( ) Penzias Wilson (1965).

107 M ( M ) 10 5 M τ 10 3 τ 10 7 ( ) ? k = 0, 1 k = 1? 5 2 (5.2.14),(5.2.15) ȧ/a q P 0 q = äa/a 2 (5.4.6) H 2 = 8πGρ/3 k c 2 /a 2 (5.4.7) q = 4πGρ 3H 2 (5.4.8) Ω = 8πGρ/3H 2 (5.4.9) Ω q = Ω/2 (k = 1) Ω > 1 ρ > ρ c 3H 2 /8πG

108

109 (static) (spherically symmetric) Einstein Ricci 0 4 Lorentz (stationary) 1 φ t (time translation symmetry) Killing ξ a ( ) Σ (static) Frobenius Killing ξ a ξ [a b ξ c] = 0 (6.1.1) Σ ξ a 0 Σ Σ ξ a ξ a 0 Σ {x µ } ds 2 = V 2 (x 1, x 2, x 3 )dt µ,ν=1 h µν (x 1, x 2, x 3 )dx µ dx ν (6.1.2) V 2 = ξ a ξ a dtdx µ ξ a Σ

110 106 6 (6.1.2) t t t t + const. (6.1.1) ξ a (twist) (6.1.1) (spherically symmetric ) (isometry group) SO(3) 2 SO(3) r = (A/4π) 1/2 (6.1.3) (θ, φ) 2 ds 2 = r 2 (dθ 2 + sin 2 θdφ 2 ) (6.1.4) 3 r ( R 3 R S 2 r r (radial coordinate) ds 2 = f(r)dt 2 + h(r)dr 2 + r 2 (dθ 2 + sin 2 θdφ 2 ) (6.1.5) (6.1.5) (e 0 ) a = f 1/2 (dt) a (6.1.6a) (e 1 ) a = h 1/2 (dr) a (6.1.6b) (e 2 ) a = r(dθ) a (6.1.6c) (e 3 ) a = r sin θ(dφ) a (6.1.6d)

111 a [a (e 0 ) b] = 1 2 f 1/2 f (dr) [a (dt) b], (6.1.7) [a (e 1 ) b] = 0, (6.1.8) [a (e 2 ) b] = (dr) [a (dθ) b], (6.1.9) [a (e 3 ) b] = sin θ(dr) [a (dφ) b] + r cos θ(dθ) [a (dφ) b], (6.1.10) f = df/dr 1 2 f 1/2 f (dr) [a (dt) b] = h 1/2 (dr) [a ω b]01 + r(dθ) [a ω b]02 + r sin θ(dφ) [a ω b]03, (6.1.11) 0 = f 1/2 (dt) [a ω b]01 + r(dθ) [a ω b]12 + r sin θ(dφ) [a ω b]13, (6.1.12) (dr) [a (dθ) b] = f 1/2 (dt) [a ω b]20 + h 1/2 (dr) [a ω b]21 + r sin θ(dφ) [a ω b]23, (6.1.13) sin θ(dr) [a (dφ) b] + r cos θ(dθ) [a (dφ) b] = f 1/2 (dt) [a ω b]30 + h 1/2 (dr) [a ω b]31 + r(dθ) [a ω b]32, (6.1.14)

tomocci ,. :,,,, Lie,,,, Einstein, Newton. 1 M n C. s, M p. M f, p d ds f = dxµ p ds µ f p, X p = X µ µ p = dxµ ds µ p. µ, X µ.,. p,. T M p.

tomocci ,. :,,,, Lie,,,, Einstein, Newton. 1 M n C. s, M p. M f, p d ds f = dxµ p ds µ f p, X p = X µ µ p = dxµ ds µ p. µ, X µ.,. p,. T M p. tomocci 18 7 5...,. :,,,, Lie,,,, Einstein, Newton. 1 M n C. s, M p. M f, p d ds f = dxµ p ds µ f p, X p = X µ µ p = dxµ ds µ p. µ, X µ.,. p,. T M p. M F (M), X(F (M)).. T M p e i = e µ i µ. a a = a i

More information

Einstein 1905 Lorentz Maxwell c E p E 2 (pc) 2 = m 2 c 4 (7.1) m E ( ) E p µ =(p 0,p 1,p 2,p 3 )=(p 0, p )= c, p (7.2) x µ =(x 0,x 1,x 2,x

Einstein 1905 Lorentz Maxwell c E p E 2 (pc) 2 = m 2 c 4 (7.1) m E ( ) E p µ =(p 0,p 1,p 2,p 3 )=(p 0, p )= c, p (7.2) x µ =(x 0,x 1,x 2,x 7 7.1 7.1.1 Einstein 1905 Lorentz Maxwell c E p E 2 (pc) 2 = m 2 c 4 (7.1) m E ( ) E p µ =(p 0,p 1,p 2,p 3 )=(p 0, p )= c, p (7.2) x µ =(x 0,x 1,x 2,x 3 )=(x 0, x )=(ct, x ) (7.3) E/c ct K = E mc 2 (7.4)

More information

QCD 1 QCD GeV 2014 QCD 2015 QCD SU(3) QCD A µ g µν QCD 1

QCD 1 QCD GeV 2014 QCD 2015 QCD SU(3) QCD A µ g µν QCD 1 QCD 1 QCD GeV 2014 QCD 2015 QCD SU(3) QCD A µ g µν QCD 1 (vierbein) QCD QCD 1 1: QCD QCD Γ ρ µν A µ R σ µνρ F µν g µν A µ Lagrangian gr TrFµν F µν No. Yes. Yes. No. No! Yes! [1] Nash & Sen [2] Riemann

More information

K E N Z U 2012 7 16 HP M. 1 1 4 1.1 3.......................... 4 1.2................................... 4 1.2.1..................................... 4 1.2.2.................................... 5................................

More information

TOP URL 1

TOP URL   1 TOP URL http://amonphys.web.fc2.com/ 1 6 3 6.1................................ 3 6.2.............................. 4 6.3................................ 5 6.4.......................... 6 6.5......................

More information

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2 2005 9/8-11 2 2.2 ( 2-5) γ ( ) γ cos θ 2πr πρhr 2 g h = 2γ cos θ ρgr (2.1) γ = ρgrh (2.2) 2 cos θ θ cos θ = 1 (2.2) γ = 1 ρgrh (2.) 2 2. p p ρgh p ( ) p p = p ρgh (2.) h p p = 2γ r 1 1 (Berry,1975) 2-6

More information

TOP URL 1

TOP URL   1 TOP URL http://amonphys.web.fc2.com/ 1 30 3 30.1.............. 3 30.2........................... 4 30.3...................... 5 30.4........................ 6 30.5.................................. 8 30.6...............................

More information

『共形場理論』

『共形場理論』 T (z) SL(2, C) T (z) SU(2) S 1 /Z 2 SU(2) (ŜU(2) k ŜU(2) 1)/ŜU(2) k+1 ŜU(2)/Û(1) G H N =1 N =1 N =1 N =1 N =2 N =2 N =2 N =2 ĉ>1 N =2 N =2 N =4 N =4 1 2 2 z=x 1 +ix 2 z f(z) f(z) 1 1 4 4 N =4 1 = = 1.3

More information

: 2005 ( ρ t +dv j =0 r m m r = e E( r +e r B( r T 208 T = d E j 207 ρ t = = = e t δ( r r (t e r r δ( r r (t e r ( r δ( r r (t dv j =

: 2005 ( ρ t +dv j =0 r m m r = e E( r +e r B( r T 208 T = d E j 207 ρ t = = = e t δ( r r (t e r r δ( r r (t e r ( r δ( r r (t dv j = 72 Maxwell. Maxwell e r ( =,,N Maxwell rot E + B t = 0 rot H D t = j dv D = ρ dv B = 0 D = ɛ 0 E H = μ 0 B ρ( r = j( r = N e δ( r r = N e r δ( r r = : 2005 ( 2006.8.22 73 207 ρ t +dv j =0 r m m r = e E(

More information

1.1 foliation M foliation M 0 t Σ t M M = t R Σ t (12) Σ t t Σ t x i Σ t A(t, x i ) Σ t n µ Σ t+ t B(t + t, x i ) AB () tα tαn µ Σ t+ t C(t + t,

1.1 foliation M foliation M 0 t Σ t M M = t R Σ t (12) Σ t t Σ t x i Σ t A(t, x i ) Σ t n µ Σ t+ t B(t + t, x i ) AB () tα tαn µ Σ t+ t C(t + t, 1 Gourgoulhon BSSN BSSN ϕ = 1 6 ( D i β i αk) (1) γ ij = 2αĀij 2 3 D k β k γ ij (2) K = e 4ϕ ( Di Di α + 2 D i ϕ D i α ) + α ] [4π(E + S) + ĀijĀij + K2 3 (3) Ā ij = 2 3Āij D k β k 2αĀikĀk j + αāijk +e

More information

( )

( ) 7..-8..8.......................................................................... 4.................................... 3...................................... 3..3.................................. 4.3....................................

More information

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d S I.. http://ayapin.film.s.dendai.ac.jp/~matuda /TeX/lecture.html PDF PS.................................... 3.3.................... 9.4................5.............. 3 5. Laplace................. 5....

More information

July 28, H H 0 H int = H H 0 H int = H int (x)d 3 x Schrödinger Picture Ψ(t) S =e iht Ψ H O S Heisenberg Picture Ψ H O H (t) =e iht O S e i

July 28, H H 0 H int = H H 0 H int = H int (x)d 3 x Schrödinger Picture Ψ(t) S =e iht Ψ H O S Heisenberg Picture Ψ H O H (t) =e iht O S e i July 8, 4. H H H int H H H int H int (x)d 3 x Schrödinger Picture Ψ(t) S e iht Ψ H O S Heisenberg Picture Ψ H O H (t) e iht O S e iht Interaction Picture Ψ(t) D e iht Ψ(t) S O D (t) e iht O S e ih t (Dirac

More information

25 7 18 1 1 1.1 v.s............................. 1 1.1.1.................................. 1 1.1.2................................. 1 1.1.3.................................. 3 1.2................... 3

More information

K E N Z U 01 7 16 HP M. 1 1 4 1.1 3.......................... 4 1.................................... 4 1..1..................................... 4 1...................................... 5................................

More information

( ) ( )

( ) ( ) 20 21 2 8 1 2 2 3 21 3 22 3 23 4 24 5 25 5 26 6 27 8 28 ( ) 9 3 10 31 10 32 ( ) 12 4 13 41 0 13 42 14 43 0 15 44 17 5 18 6 18 1 1 2 2 1 2 1 0 2 0 3 0 4 0 2 2 21 t (x(t) y(t)) 2 x(t) y(t) γ(t) (x(t) y(t))

More information

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2 No.2 1 2 2 δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i δx j (5) δs 2 = δx i δx i + 2 u i δx i δx j = δs 2 + 2s ij δx i δx j

More information

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 初版 1 刷発行時のものです. 微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. ttp://www.morikita.co.jp/books/mid/00571 このサンプルページの内容は, 初版 1 刷発行時のものです. i ii 014 10 iii [note] 1 3 iv 4 5 3 6 4 x 0 sin x x 1 5 6 z = f(x, y) 1 y = f(x)

More information

211 kotaro@math.titech.ac.jp 1 R *1 n n R n *2 R n = {(x 1,..., x n ) x 1,..., x n R}. R R 2 R 3 R n R n R n D D R n *3 ) (x 1,..., x n ) f(x 1,..., x n ) f D *4 n 2 n = 1 ( ) 1 f D R n f : D R 1.1. (x,

More information

Note.tex 2008/09/19( )

Note.tex 2008/09/19( ) 1 20 9 19 2 1 5 1.1........................ 5 1.2............................. 8 2 9 2.1............................. 9 2.2.............................. 10 3 13 3.1.............................. 13 3.2..................................

More information

2009 2 26 1 3 1.1.................................................. 3 1.2..................................................... 3 1.3...................................................... 3 1.4.....................................................

More information

CKY CKY CKY 4 Kerr CKY

CKY CKY CKY 4 Kerr CKY ( ) 1. (I) Hidden Symmetry and Exact Solutions in Einstein Gravity Houri-Y.Y: Progress Supplement (2011) (II) Generalized Hidden Symmetries and Kerr-Sen Black Hole Houri-Kubiznak-Warnick-Y.Y: JHEP (2010)

More information

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) II 214-1 : October 2, 214 Version : 1.1 Kawahira, Tomoki TA (Kondo, Hirotaka ) http://www.math.nagoya-u.ac.jp/~kawahira/courses/14w-biseki.html pdf 1 2 1 9 1 16 1 23 1 3 11 6 11 13 11 2 11 27 12 4 12 11

More information

( ; ) C. H. Scholz, The Mechanics of Earthquakes and Faulting : - ( ) σ = σ t sin 2π(r a) λ dσ d(r a) =

( ; ) C. H. Scholz, The Mechanics of Earthquakes and Faulting : - ( ) σ = σ t sin 2π(r a) λ dσ d(r a) = 1 9 8 1 1 1 ; 1 11 16 C. H. Scholz, The Mechanics of Earthquakes and Faulting 1. 1.1 1.1.1 : - σ = σ t sin πr a λ dσ dr a = E a = π λ σ πr a t cos λ 1 r a/λ 1 cos 1 E: σ t = Eλ πa a λ E/π γ : λ/ 3 γ =

More information

IA

IA IA 31 4 11 1 1 4 1.1 Planck.............................. 4 1. Bohr.................................... 5 1.3..................................... 6 8.1................................... 8....................................

More information

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt S I. x yx y y, y,. F x, y, y, y,, y n http://ayapin.film.s.dendai.ac.jp/~matuda n /TeX/lecture.html PDF PS yx.................................... 3.3.................... 9.4................5..............

More information

A 2 3. m S m = {x R m+1 x = 1} U + k = {x S m x k > 0}, U k = {x S m x k < 0}, ϕ ± k (x) = (x 0,..., ˆx k,... x m ) 1. {(U ± k, ϕ± k ) 0 k m} S m 1.2.

A 2 3. m S m = {x R m+1 x = 1} U + k = {x S m x k > 0}, U k = {x S m x k < 0}, ϕ ± k (x) = (x 0,..., ˆx k,... x m ) 1. {(U ± k, ϕ± k ) 0 k m} S m 1.2. A A 1 A 5 A 6 1 2 3 4 5 6 7 1 1.1 1.1 (). Hausdorff M R m M M {U α } U α R m E α ϕ α : U α E α U α U β = ϕ α (ϕ β ϕβ (U α U β )) 1 : ϕ β (U α U β ) ϕ α (U α U β ) C M a m dim M a U α ϕ α {x i, 1 i m} {U,

More information

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT I (008 4 0 de Broglie (de Broglie p λ k h Planck ( 6.63 0 34 Js p = h λ = k ( h π : Dirac k B Boltzmann (.38 0 3 J/K T U = 3 k BT ( = λ m k B T h m = 0.067m 0 m 0 = 9. 0 3 kg GaAs( a T = 300 K 3 fg 07345

More information

TOP URL 1

TOP URL   1 TOP URL http://amonphys.web.fc.com/ 1 19 3 19.1................... 3 19.............................. 4 19.3............................... 6 19.4.............................. 8 19.5.............................

More information

量子力学A

量子力学A c 1 1 1.1....................................... 1 1............................................ 4 1.3.............................. 6 10.1.................................. 10......................................

More information

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2)

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2) 3 215 4 27 1 1 u u(x, t) u tt a 2 u xx, a > (1) D : {(x, t) : x, t } u (, t), u (, t), t (2) u(x, ) f(x), u(x, ) t 2, x (3) u(x, t) X(x)T (t) u (1) 1 T (t) a 2 T (t) X (x) X(x) α (2) T (t) αa 2 T (t) (4)

More information

TOP URL 1

TOP URL   1 TOP URL http://amonphys.web.fc.com/ 3.............................. 3.............................. 4.3 4................... 5.4........................ 6.5........................ 8.6...........................7

More information

0406_total.pdf

0406_total.pdf 59 7 7.1 σ-ω σ-ω σ ω σ = σ(r), ω µ = δ µ,0 ω(r) (6-4) (iγ µ µ m U(r) γ 0 V (r))ψ(x) = 0 (7-1) U(r) = g σ σ(r), V (r) = g ω ω(r) σ(r) ω(r) (6-3) ( 2 + m 2 σ)σ(r) = g σ ψψ (7-2) ( 2 + m 2 ω)ω(r) = g ω ψγ

More information

( 12 ( ( ( ( Levi-Civita grad div rot ( ( = 4 : 6 3 1 1.1 f(x n f (n (x, d n f(x (1.1 dxn f (2 (x f (x 1.1 f(x = e x f (n (x = e x d dx (fg = f g + fg (1.2 d dx d 2 dx (fg = f g + 2f g + fg 2... d n n

More information

II 1 II 2012 II Gauss-Bonnet II

II 1 II 2012 II Gauss-Bonnet II II 1 II 212 II Gauss-Bonnet II 1 1 1.1......................................... 1 1.2............................................ 2 1.3.................................. 3 1.4.............................................

More information

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5.

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5. A 1. Boltzmann Planck u(ν, T )dν = 8πh ν 3 c 3 kt 1 dν h 6.63 10 34 J s Planck k 1.38 10 23 J K 1 Boltzmann u(ν, T ) T ν e hν c = 3 10 8 m s 1 2. Planck λ = c/ν Rayleigh-Jeans u(ν, T )dν = 8πν2 kt dν c

More information

22 2 24 3 I 7 1 9 1.1.......................... 10 1.1.1 Newton Galilei........ 10 1.1.2.......................... 11 1.1.3..................... 12 1.1.4........................ 13 1.1.5.....................

More information

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T NHK 204 2 0 203 2 24 ( ) 7 00 7 50 203 2 25 ( ) 7 00 7 50 203 2 26 ( ) 7 00 7 50 203 2 27 ( ) 7 00 7 50 I. ( ν R n 2 ) m 2 n m, R = e 2 8πε 0 hca B =.09737 0 7 m ( ν = ) λ a B = 4πε 0ħ 2 m e e 2 = 5.2977

More information

all.dvi

all.dvi 5,, Euclid.,..,... Euclid,.,.,, e i (i =,, ). 6 x a x e e e x.:,,. a,,. a a = a e + a e + a e = {e, e, e } a (.) = a i e i = a i e i (.) i= {a,a,a } T ( T ),.,,,,. (.),.,...,,. a 0 0 a = a 0 + a + a 0

More information

20 4 20 i 1 1 1.1............................ 1 1.2............................ 4 2 11 2.1................... 11 2.2......................... 11 2.3....................... 19 3 25 3.1.............................

More information

1990 IMO 1990/1/15 1:00-4:00 1 N N N 1, N 1 N 2, N 2 N 3 N 3 2 x x + 52 = 3 x x , A, B, C 3,, A B, C 2,,,, 7, A, B, C

1990 IMO 1990/1/15 1:00-4:00 1 N N N 1, N 1 N 2, N 2 N 3 N 3 2 x x + 52 = 3 x x , A, B, C 3,, A B, C 2,,,, 7, A, B, C 0 9 (1990 1999 ) 10 (2000 ) 1900 1994 1995 1999 2 SAT ACT 1 1990 IMO 1990/1/15 1:00-4:00 1 N 1990 9 N N 1, N 1 N 2, N 2 N 3 N 3 2 x 2 + 25x + 52 = 3 x 2 + 25x + 80 3 2, 3 0 4 A, B, C 3,, A B, C 2,,,, 7,

More information

I A A441 : April 15, 2013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida )

I A A441 : April 15, 2013 Version : 1.1 I   Kawahira, Tomoki TA (Shigehiro, Yoshida ) I013 00-1 : April 15, 013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida) http://www.math.nagoya-u.ac.jp/~kawahira/courses/13s-tenbou.html pdf * 4 15 4 5 13 e πi = 1 5 0 5 7 3 4 6 3 6 10 6 17

More information

30

30 3 ............................................2 2...........................................2....................................2.2...................................2.3..............................

More information

Part () () Γ Part ,

Part () () Γ Part , Contents a 6 6 6 6 6 6 6 7 7. 8.. 8.. 8.3. 8 Part. 9. 9.. 9.. 3. 3.. 3.. 3 4. 5 4.. 5 4.. 9 4.3. 3 Part. 6 5. () 6 5.. () 7 5.. 9 5.3. Γ 3 6. 3 6.. 3 6.. 3 6.3. 33 Part 3. 34 7. 34 7.. 34 7.. 34 8. 35

More information

Einstein ( ) YITP

Einstein ( ) YITP Einstein ( ) 2013 8 21 YITP 0. massivegravity Massive spin 2 field theory Fierz-Pauli (FP ) Kinetic term L (2) EH = 1 2 [ λh µν λ h µν λ h λ h 2 µ h µλ ν h νλ + 2 µ h µλ λ h], (1) Mass term FP L mass =

More information

meiji_resume_1.PDF

meiji_resume_1.PDF β β β (q 1,q,..., q n ; p 1, p,..., p n ) H(q 1,q,..., q n ; p 1, p,..., p n ) Hψ = εψ ε k = k +1/ ε k = k(k 1) (x, y, z; p x, p y, p z ) (r; p r ), (θ; p θ ), (ϕ; p ϕ ) ε k = 1/ k p i dq i E total = E

More information

SO(2)

SO(2) TOP URL http://amonphys.web.fc2.com/ 1 12 3 12.1.................................. 3 12.2.......................... 4 12.3............................. 5 12.4 SO(2).................................. 6

More information

構造と連続体の力学基礎

構造と連続体の力学基礎 II 37 Wabash Avenue Bridge, Illinois 州 Winnipeg にある歩道橋 Esplanade Riel 橋6 6 斜張橋である必要は多分無いと思われる すぐ横に道路用桁橋有り しかも塔基部のレストランは 8 年には営業していなかった 9 9. 9.. () 97 [3] [5] k 9. m w(t) f (t) = f (t) + mg k w(t) Newton

More information

Euler, Yang-Mills Clebsch variable Helicity ( Tosiaki Kori ) School of Sciences and Technology, Waseda Uiversity (i) Yang-Mills 3 A T (T A) Poisson Ha

Euler, Yang-Mills Clebsch variable Helicity ( Tosiaki Kori ) School of Sciences and Technology, Waseda Uiversity (i) Yang-Mills 3 A T (T A) Poisson Ha Euler, Yang-ills Clebsch variable Helicity Tosiaki Kori ) School of Sciences and Technology, Waseda Uiversity i) Yang-ills 3 A T T A) Poisson Hamilton ii) Clebsch parametrization iii) Y- Y-iv) Euler,v)

More information

main.dvi

main.dvi SGC - 70 2, 3 23 ɛ-δ 2.12.8 3 2.92.13 4 2 3 1 2.1 2.102.12 [8][14] [1],[2] [4][7] 2 [4] 1 2009 8 1 1 1.1... 1 1.2... 4 1.3 1... 8 1.4 2... 9 1.5... 12 1.6 1... 16 1.7... 18 1.8... 21 1.9... 23 2 27 2.1

More information

all.dvi

all.dvi 38 5 Cauchy.,,,,., σ.,, 3,,. 5.1 Cauchy (a) (b) (a) (b) 5.1: 5.1. Cauchy 39 F Q Newton F F F Q F Q 5.2: n n ds df n ( 5.1). df n n df(n) df n, t n. t n = df n (5.1) ds 40 5 Cauchy t l n mds df n 5.3: t

More information

201711grade1ouyou.pdf

201711grade1ouyou.pdf 2017 11 26 1 2 52 3 12 13 22 23 32 33 42 3 5 3 4 90 5 6 A 1 2 Web Web 3 4 1 2... 5 6 7 7 44 8 9 1 2 3 1 p p >2 2 A 1 2 0.6 0.4 0.52... (a) 0.6 0.4...... B 1 2 0.8-0.2 0.52..... (b) 0.6 0.52.... 1 A B 2

More information

( ) LAN LAN tex ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 1

( ) LAN LAN tex ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 1 ( ) LAN LAN tex ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 1 1 4 2 17 3 Coulomb 23 4 43 5 49 6 51 7 53 8 58 9 66 10 74 11 Lienard-Wiechert potential 78 12 86 13 89 14 Laplace 114 15 138 16 152 17 162 18 166 19 191

More information

Untitled

Untitled II 14 14-7-8 8/4 II (http://www.damp.tottori-u.ac.jp/~ooshida/edu/fluid/) [ (3.4)] Navier Stokes [ 6/ ] Navier Stokes 3 [ ] Reynolds [ (4.6), (45.8)] [ p.186] Navier Stokes I 1 balance law t (ρv i )+ j

More information

24 I ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x

24 I ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x 24 I 1.1.. ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x 1 (t), x 2 (t),, x n (t)) ( ) ( ), γ : (i) x 1 (t),

More information

1 ( ) Einstein, Robertson-Walker metric, R µν R 2 g µν + Λg µν = 8πG c 4 T µν, (1) ( ds 2 = c 2 dt 2 + a(t) 2 dr 2 ) + 1 Kr 2 r2 dω 2, (2) (ȧ ) 2 H 2

1 ( ) Einstein, Robertson-Walker metric, R µν R 2 g µν + Λg µν = 8πG c 4 T µν, (1) ( ds 2 = c 2 dt 2 + a(t) 2 dr 2 ) + 1 Kr 2 r2 dω 2, (2) (ȧ ) 2 H 2 1 ( ) Einstein, Robertson-Walker metric, R µν R 2 g µν + Λg µν = 8πG c 4 T µν, (1) ( ds 2 = c 2 dt 2 + a(t) 2 dr 2 ) + 1 Kr 2 r2 dω 2, (2) (ȧ ) 2 H 2 = 8πG a 3c 2 ρ Kc2 a 2 + Λc2 3 (3), ä a = 4πG Λc2 (ρ

More information

Z: Q: R: C: sin 6 5 ζ a, b

Z: Q: R: C: sin 6 5 ζ a, b Z: Q: R: C: 3 3 7 4 sin 6 5 ζ 9 6 6............................... 6............................... 6.3......................... 4 7 6 8 8 9 3 33 a, b a bc c b a a b 5 3 5 3 5 5 3 a a a a p > p p p, 3,

More information

) a + b = i + 6 b c = 6i j ) a = 0 b = c = 0 ) â = i + j 0 ˆb = 4) a b = b c = j + ) cos α = cos β = 6) a ˆb = b ĉ = 0 7) a b = 6i j b c = i + 6j + 8)

) a + b = i + 6 b c = 6i j ) a = 0 b = c = 0 ) â = i + j 0 ˆb = 4) a b = b c = j + ) cos α = cos β = 6) a ˆb = b ĉ = 0 7) a b = 6i j b c = i + 6j + 8) 4 4 ) a + b = i + 6 b c = 6i j ) a = 0 b = c = 0 ) â = i + j 0 ˆb = 4) a b = b c = j + ) cos α = cos β = 6) a ˆb = b ĉ = 0 7) a b = 6i j b c = i + 6j + 8) a b a b = 6i j 4 b c b c 9) a b = 4 a b) c = 7

More information

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4 1. k λ ν ω T v p v g k = π λ ω = πν = π T v p = λν = ω k v g = dω dk 1) ) 3) 4). p = hk = h λ 5) E = hν = hω 6) h = h π 7) h =6.6618 1 34 J sec) hc=197.3 MeV fm = 197.3 kev pm= 197.3 ev nm = 1.97 1 3 ev

More information

sec13.dvi

sec13.dvi 13 13.1 O r F R = m d 2 r dt 2 m r m = F = m r M M d2 R dt 2 = m d 2 r dt 2 = F = F (13.1) F O L = r p = m r ṙ dl dt = m ṙ ṙ + m r r = r (m r ) = r F N. (13.2) N N = R F 13.2 O ˆn ω L O r u u = ω r 1 1:

More information

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x [ ] IC. f(x) = e x () f(x) f (x) () lim f(x) lim f(x) x + x (3) lim f(x) lim f(x) x + x (4) y = f(x) ( ) ( s46). < a < () a () lim a log xdx a log xdx ( ) n (3) lim log k log n n n k=.3 z = log(x + y ),

More information

1 nakayama/print/ Def (Definition ) Thm (Theorem ) Prop (Proposition ) Lem (Lemma ) Cor (Corollary ) 1. (1) A, B (2) ABC

1   nakayama/print/ Def (Definition ) Thm (Theorem ) Prop (Proposition ) Lem (Lemma ) Cor (Corollary ) 1. (1) A, B (2) ABC 1 http://www.gem.aoyama.ac.jp/ nakayama/print/ Def (Definition ) Thm (Theorem ) Prop (Proposition ) Lem (Lemma ) Cor (Corollary ) 1. (1) A, B (2) ABC r 1 A B B C C A (1),(2),, (8) A, B, C A,B,C 2 1 ABC

More information

2000年度『数学展望 I』講義録

2000年度『数学展望 I』講義録 2000 I I IV I II 2000 I I IV I-IV. i ii 3.10 (http://www.math.nagoya-u.ac.jp/ kanai/) 2000 A....1 B....4 C....10 D....13 E....17 Brouwer A....21 B....26 C....33 D....39 E. Sperner...45 F....48 A....53

More information

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10%

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10% 1 2006.4.17. A 3-312 tel: 092-726-4774, e-mail: hara@math.kyushu-u.ac.jp, http://www.math.kyushu-u.ac.jp/ hara/lectures/lectures-j.html Office hours: B A I ɛ-δ ɛ-δ 1. 2. A 1. 1. 2. 3. 4. 5. 2. ɛ-δ 1. ɛ-n

More information

A

A A04-164 2008 2 13 1 4 1.1.......................................... 4 1.2..................................... 4 1.3..................................... 4 1.4..................................... 5 2

More information

O x y z O ( O ) O (O ) 3 x y z O O x v t = t = 0 ( 1 ) O t = 0 c t r = ct P (x, y, z) r 2 = x 2 + y 2 + z 2 (t, x, y, z) (ct) 2 x 2 y 2 z 2 = 0

O x y z O ( O ) O (O ) 3 x y z O O x v t = t = 0 ( 1 ) O t = 0 c t r = ct P (x, y, z) r 2 = x 2 + y 2 + z 2 (t, x, y, z) (ct) 2 x 2 y 2 z 2 = 0 9 O y O ( O ) O (O ) 3 y O O v t = t = 0 ( ) O t = 0 t r = t P (, y, ) r = + y + (t,, y, ) (t) y = 0 () ( )O O t (t ) y = 0 () (t) y = (t ) y = 0 (3) O O v O O v O O O y y O O v P(, y,, t) t (, y,, t )

More information

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0 1 1 1.1 1.) T D = T = D = kn 1. 1.4) F W = F = W/ = kn/ = 15 kn 1. 1.9) R = W 1 + W = 6 + 5 = 11 N. 1.9) W b W 1 a = a = W /W 1 )b = 5/6) = 5 cm 1.4 AB AC P 1, P x, y x, y y x 1.4.) P sin 6 + P 1 sin 45

More information

* 1 2014 7 8 *1 iii 1. Newton 1 1.1 Newton........................... 1 1.2............................. 4 1.3................................. 5 2. 9 2.1......................... 9 2.2........................

More information

2017 II 1 Schwinger Yang-Mills 5. Higgs 1

2017 II 1 Schwinger Yang-Mills 5. Higgs 1 2017 II 1 Schwinger 2 3 4. Yang-Mills 5. Higgs 1 1 Schwinger Schwinger φ 4 L J 1 2 µφ(x) µ φ(x) 1 2 m2 φ 2 (x) λφ 4 (x) + φ(x)j(x) (1.1) J(x) Schwinger source term) c J(x) x S φ d 4 xl J (1.2) φ(x) m 2

More information

熊本県数学問題正解

熊本県数学問題正解 00 y O x Typed by L A TEX ε ( ) (00 ) 5 4 4 ( ) http://www.ocn.ne.jp/ oboetene/plan/. ( ) (009 ) ( ).. http://www.ocn.ne.jp/ oboetene/plan/eng.html 8 i i..................................... ( )0... (

More information

1. 2 P 2 (x, y) 2 x y (0, 0) R 2 = {(x, y) x, y R} x, y R P = (x, y) O = (0, 0) OP ( ) OP x x, y y ( ) x v = y ( ) x 2 1 v = P = (x, y) y ( x y ) 2 (x

1. 2 P 2 (x, y) 2 x y (0, 0) R 2 = {(x, y) x, y R} x, y R P = (x, y) O = (0, 0) OP ( ) OP x x, y y ( ) x v = y ( ) x 2 1 v = P = (x, y) y ( x y ) 2 (x . P (, (0, 0 R {(,, R}, R P (, O (0, 0 OP OP, v v P (, ( (, (, { R, R} v (, (, (,, z 3 w z R 3,, z R z n R n.,..., n R n n w, t w ( z z Ke Words:. A P 3 0 B P 0 a. A P b B P 3. A π/90 B a + b c π/ 3. +

More information

21 2 26 i 1 1 1.1............................ 1 1.2............................ 3 2 9 2.1................... 9 2.2.......... 9 2.3................... 11 2.4....................... 12 3 15 3.1..........

More information

Morse ( ) 2014

Morse ( ) 2014 Morse ( ) 2014 1 1 Morse 1 1.1 Morse................................ 1 1.2 Morse.............................. 7 2 12 2.1....................... 12 2.2.................. 13 2.3 Smale..............................

More information

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α 18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α 2 ), ϕ(t) = B 1 cos(ω 1 t + α 1 ) + B 2 cos(ω 2 t

More information

006 11 8 0 3 1 5 1.1..................... 5 1......................... 6 1.3.................... 6 1.4.................. 8 1.5................... 8 1.6................... 10 1.6.1......................

More information

Dirac 38 5 Dirac 4 4 γ µ p µ p µ + m 2 = ( p µ γ µ + m)(p ν γ ν + m) (5.1) γ = p µ p ν γ µ γ ν p µ γ µ m + mp ν γ ν + m 2 = 1 2 p µp ν {γ µ, γ ν } + m

Dirac 38 5 Dirac 4 4 γ µ p µ p µ + m 2 = ( p µ γ µ + m)(p ν γ ν + m) (5.1) γ = p µ p ν γ µ γ ν p µ γ µ m + mp ν γ ν + m 2 = 1 2 p µp ν {γ µ, γ ν } + m Dirac 38 5 Dirac 4 4 γ µ p µ p µ + m 2 p µ γ µ + mp ν γ ν + m 5.1 γ p µ p ν γ µ γ ν p µ γ µ m + mp ν γ ν + m 2 1 2 p µp ν {γ µ, γ ν } + m 2 5.2 p m p p µ γ µ {, } 10 γ {γ µ, γ ν } 2η µν 5.3 p µ γ µ + mp

More information

I ( ) 2019

I ( ) 2019 I ( ) 2019 i 1 I,, III,, 1,,,, III,,,, (1 ) (,,, ), :...,, : NHK... NHK, (YouTube ),!!, manaba http://pen.envr.tsukuba.ac.jp/lec/physics/,, Richard Feynman Lectures on Physics Addison-Wesley,,,, x χ,

More information

6kg 1.1m 1.m.1m.1 l λ ϵ λ l + λ l l l dl dl + dλ ϵ dλ dl dl + dλ dl dl 3 1. JIS 1 6kg 1% 66kg 1 13 σ a1 σ m σ a1 σ m σ m σ a1 f f σ a1 σ a1 σ m f 4

6kg 1.1m 1.m.1m.1 l λ ϵ λ l + λ l l l dl dl + dλ ϵ dλ dl dl + dλ dl dl 3 1. JIS 1 6kg 1% 66kg 1 13 σ a1 σ m σ a1 σ m σ m σ a1 f f σ a1 σ a1 σ m f 4 35-8585 7 8 1 I I 1 1.1 6kg 1m P σ σ P 1 l l λ λ l 1.m 1 6kg 1.1m 1.m.1m.1 l λ ϵ λ l + λ l l l dl dl + dλ ϵ dλ dl dl + dλ dl dl 3 1. JIS 1 6kg 1% 66kg 1 13 σ a1 σ m σ a1 σ m σ m σ a1 f f σ a1 σ a1 σ m

More information

chap03.dvi

chap03.dvi 99 3 (Coriolis) cm m (free surface wave) 3.1 Φ 2.5 (2.25) Φ 100 3 r =(x, y, z) x y z F (x, y, z, t) =0 ( DF ) Dt = t + Φ F =0 onf =0. (3.1) n = F/ F (3.1) F n Φ = Φ n = 1 F F t Vn on F = 0 (3.2) Φ (3.1)

More information

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google I4 - : April, 4 Version :. Kwhir, Tomoki TA (Kondo, Hirotk) Google http://www.mth.ngoy-u.c.jp/~kwhir/courses/4s-biseki.html pdf 4 4 4 4 8 e 5 5 9 etc. 5 6 6 6 9 n etc. 6 6 6 3 6 3 7 7 etc 7 4 7 7 8 5 59

More information

(, Goo Ishikawa, Go-o Ishikawa) ( ) 1

(, Goo Ishikawa, Go-o Ishikawa) ( ) 1 (, Goo Ishikawa, Go-o Ishikawa) ( ) 1 ( ) ( ) ( ) G7( ) ( ) ( ) () ( ) BD = 1 DC CE EA AF FB 0 0 BD DC CE EA AF FB =1 ( ) 2 (geometry) ( ) ( ) 3 (?) (Topology) ( ) DNA ( ) 4 ( ) ( ) 5 ( ) H. 1 : 1+ 5 2

More information

x V x x V x, x V x = x + = x +(x+x )=(x +x)+x = +x = x x = x x = x =x =(+)x =x +x = x +x x = x ( )x = x =x =(+( ))x =x +( )x = x +( )x ( )x = x x x R

x V x x V x, x V x = x + = x +(x+x )=(x +x)+x = +x = x x = x x = x =x =(+)x =x +x = x +x x = x ( )x = x =x =(+( ))x =x +( )x = x +( )x ( )x = x x x R V (I) () (4) (II) () (4) V K vector space V vector K scalor K C K R (I) x, y V x + y V () (x + y)+z = x +(y + z) (2) x + y = y + x (3) V x V x + = x (4) x V x + x = x V x x (II) x V, α K αx V () (α + β)x

More information

1 1 3 ABCD ABD AC BD E E BD 1 : 2 (1) AB = AD =, AB AD = (2) AE = AB + (3) A F AD AE 2 = AF = AB + AD AF AE = t AC = t AE AC FC = t = (4) ABD ABCD 1 1

1 1 3 ABCD ABD AC BD E E BD 1 : 2 (1) AB = AD =, AB AD = (2) AE = AB + (3) A F AD AE 2 = AF = AB + AD AF AE = t AC = t AE AC FC = t = (4) ABD ABCD 1 1 ABCD ABD AC BD E E BD : () AB = AD =, AB AD = () AE = AB + () A F AD AE = AF = AB + AD AF AE = t AC = t AE AC FC = t = (4) ABD ABCD AB + AD AB + 7 9 AD AB + AD AB + 9 7 4 9 AD () AB sin π = AB = ABD AD

More information

i E B Maxwell Maxwell Newton Newton Schrödinger Newton Maxwell Kepler Maxwell Maxwell B H B ii Newton i 1 1.1.......................... 1 1.2 Coulomb.......................... 2 1.3.........................

More information

D.dvi

D.dvi 2005 3 3 1 7 1.1... 7 1.2 Brane... 8 1.3 AdS/CFT black hole... 9 1.4... 10 2 11 2.1 Kaluza-Klein... 11 2.1.1 Kazula-Klein 4... 11 2.1.2 Kaluza-Klein... 13 2.2 Brane... 14 2.2.1 Brane 4... 14 2.2.2 Bulk

More information

N/m f x x L dl U 1 du = T ds pdv + fdl (2.1)

N/m f x x L dl U 1 du = T ds pdv + fdl (2.1) 23 2 2.1 10 5 6 N/m 2 2.1.1 f x x L dl U 1 du = T ds pdv + fdl (2.1) 24 2 dv = 0 dl ( ) U f = T L p,t ( ) S L p,t (2.2) 2 ( ) ( ) S f = L T p,t p,l (2.3) ( ) U f = L p,t + T ( ) f T p,l (2.4) 1 f e ( U/

More information

II

II II 28 5 31 3 I 7 1 9 1.1.......................... 9 1.1.1 ( )................ 9 1.1.2........................ 14 1.1.3................... 15 1.1.4 ( )................. 16 1.1.5................... 17

More information

e a b a b b a a a 1 a a 1 = a 1 a = e G G G : x ( x =, 8, 1 ) x 1,, 60 θ, ϕ ψ θ G G H H G x. n n 1 n 1 n σ = (σ 1, σ,..., σ N ) i σ i i n S n n = 1,,

e a b a b b a a a 1 a a 1 = a 1 a = e G G G : x ( x =, 8, 1 ) x 1,, 60 θ, ϕ ψ θ G G H H G x. n n 1 n 1 n σ = (σ 1, σ,..., σ N ) i σ i i n S n n = 1,, 01 10 18 ( ) 1 6 6 1 8 8 1 6 1 0 0 0 0 1 Table 1: 10 0 8 180 1 1 1. ( : 60 60 ) : 1. 1 e a b a b b a a a 1 a a 1 = a 1 a = e G G G : x ( x =, 8, 1 ) x 1,, 60 θ, ϕ ψ θ G G H H G x. n n 1 n 1 n σ = (σ 1,

More information

II 2 II

II 2 II II 2 II 2005 yugami@cc.utsunomiya-u.ac.jp 2005 4 1 1 2 5 2.1.................................... 5 2.2................................. 6 2.3............................. 6 2.4.................................

More information

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0 1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0 0 < t < τ I II 0 No.2 2 C x y x y > 0 x 0 x > b a dx

More information

D 24 D D D

D 24 D D D 5 Paper I.R. 2001 5 Paper HP Paper 5 3 5.1................................................... 3 5.2.................................................... 4 5.3.......................................... 6

More information

II (10 4 ) 1. p (x, y) (a, b) ε(x, y; a, b) 0 f (x, y) f (a, b) A, B (6.5) y = b f (x, b) f (a, b) x a = A + ε(x, b; a, b) x a 2 x a 0 A = f x (

II (10 4 ) 1. p (x, y) (a, b) ε(x, y; a, b) 0 f (x, y) f (a, b) A, B (6.5) y = b f (x, b) f (a, b) x a = A + ε(x, b; a, b) x a 2 x a 0 A = f x ( II (1 4 ) 1. p.13 1 (x, y) (a, b) ε(x, y; a, b) f (x, y) f (a, b) A, B (6.5) y = b f (x, b) f (a, b) x a = A + ε(x, b; a, b) x a x a A = f x (a, b) y x 3 3y 3 (x, y) (, ) f (x, y) = x + y (x, y) = (, )

More information

振動と波動

振動と波動 Report JS0.5 J Simplicity February 4, 2012 1 J Simplicity HOME http://www.jsimplicity.com/ Preface 2 Report 2 Contents I 5 1 6 1.1..................................... 6 1.2 1 1:................ 7 1.3

More information

( ) 2002 1 1 1 1.1....................................... 1 1.1.1................................. 1 1.1.2................................. 1 1.1.3................... 3 1.1.4......................................

More information

untitled

untitled 0. =. =. (999). 3(983). (980). (985). (966). 3. := :=. A A. A A. := := 4 5 A B A B A B. A = B A B A B B A. A B A B, A B, B. AP { A, P } = { : A, P } = { A P }. A = {0, }, A, {0, }, {0}, {}, A {0}, {}.

More information

数学Ⅱ演習(足助・09夏)

数学Ⅱ演習(足助・09夏) II I 9/4/4 9/4/2 z C z z z z, z 2 z, w C zw z w 3 z, w C z + w z + w 4 t R t C t t t t t z z z 2 z C re z z + z z z, im z 2 2 3 z C e z + z + 2 z2 + 3! z3 + z!, I 4 x R e x cos x + sin x 2 z, w C e z+w

More information

[1] convention Minkovski i Polchinski [2] 1 Clifford Spin 1 2 Euclid Clifford 2 3 Euclid Spin 6 4 Euclid Pin Clifford Spin 10 A 12 B 17 1 Cliffo

[1] convention Minkovski i Polchinski [2] 1 Clifford Spin 1 2 Euclid Clifford 2 3 Euclid Spin 6 4 Euclid Pin Clifford Spin 10 A 12 B 17 1 Cliffo [1] convention Minkovski i Polchinski [2] 1 Clifford Spin 1 2 Euclid Clifford 2 3 Euclid Spin 6 4 Euclid Pin + 8 5 Clifford Spin 10 A 12 B 17 1 Clifford Spin D Euclid Clifford Γ µ, µ = 1,, D {Γ µ, Γ ν

More information

sin cos No. sine, cosine : trigonometric function π : π = 3.4 : n = 0, ±, ±, sin + nπ = sin cos + nπ = cos : parity sin = sin : odd cos = cos : even.

sin cos No. sine, cosine : trigonometric function π : π = 3.4 : n = 0, ±, ±, sin + nπ = sin cos + nπ = cos : parity sin = sin : odd cos = cos : even. 08 No. : No. : No.3 : No.4 : No.5 : No.6 : No.7 : No.8 : No.9 : No.0 : No. : sin cos No. sine, cosine : trigonometric function π : π = 3.4 : n = 0, ±, ±, sin + nπ = sin cos + nπ = cos : parity sin = sin

More information

/02/18

/02/18 3 09/0/8 i III,,,, III,?,,,,,,,,,,,,,,,,,,,,?,?,,,,,,,,,,,,,,!!!,? 3,,,, ii,,,!,,,, OK! :!,,,, :!,,,,,, 3:!,, 4:!,,,, 5:!,,! 7:!,,,,, 8:!,! 9:!,,,,,,,,, ( ),, :, ( ), ( ), 6:!,,, :... : 3 ( )... iii,,

More information

(2) Fisher α (α) α Fisher α ( α) 0 Levi Civita (1) ( 1) e m (e) (m) ([1], [2], [13]) Poincaré e m Poincaré e m Kähler-like 2 Kähler-like

(2) Fisher α (α) α Fisher α ( α) 0 Levi Civita (1) ( 1) e m (e) (m) ([1], [2], [13]) Poincaré e m Poincaré e m Kähler-like 2 Kähler-like () 10 9 30 1 Fisher α (α) α Fisher α ( α) 0 Levi Civita (1) ( 1) e m (e) (m) ([1], [], [13]) Poincaré e m Poincaré e m Kähler-like Kähler-like Kähler M g M X, Y, Z (.1) Xg(Y, Z) = g( X Y, Z) + g(y, XZ)

More information