D.dvi

Size: px
Start display at page:

Download "D.dvi"

Transcription

1 2005 3

2

3 Brane AdS/CFT black hole Kaluza-Klein Kazula-Klein Kaluza-Klein Brane Brane Bulk brane Kaluza-Klein brane Einstein-Yang-Mills Einstein-Yang-Mills Einstein-Yang-Mills Einstein-Yang-Mills Bartnik-McKinnon Colored black hole Einstein-Yang-Mills Einstein-Yang-Mills Horizon

4 black hole big bang Friedmann big bang domain wall Schwarzschild-AdS domain wall domain wall bulk brane Schwarzschild-AdS bulk brane U(1) gauge bulk brane SU(2) gauge bulk brane black hole I (inner horizon ) II (inner horizon ) Energy A 85 A.1, Bianchi A B gauge 87 B.1 gauge B.1.1 gauge B.1.2 gauge B.1.3 tensor B.1.4 gauge... 91

5 5 B.2 SU(2) gauge B SU(2) gauge B SU(2) gauge C5 101 C.1 5 Einstein-Yang-Mills C C.2.1 ɛ = C.2.2 ɛ =

6

7 SU(2) U(1) gauge (Weinberg-Salam ) 3 SU(5), O(10) gauge ( ) 4 [1] [2] M 2 M scale anomaly anomaly 10 M 11 M 4 Einstein Einstein

8 Einstein [3] 4 Einstein big bang Hubble 3K [4] M 0 Einstein 4 Einstein potential r r 1 Newton Einstein n potential r n+3 Newton 1.2 Brane Newton compact Kaluza-Klein [5] 1 compact [6] Brane M [34] energy scale energy scale [7, 8] energy Newton [9] [10] brane 2 Kaluza-Klein brane 4 Brane energy Newton black hole brane 4 Einstein [11] brane brane P. Kraus brane 1 Randall-Sundrum Schwarzschild-anti de Sitter 4 domain wall 2 [12] domain wall Friedmann energy 2 big bang inflation [13] inflation 1 Einstein 4 Einstein 2 anti de Sitter AdS

9 1.3. AdS/CFT black hole 9 1 [14] [15] brane P. Kraus Schwarzschild-AdS domain wall [16] AdS/CFT black hole 1 AdS/CFT [17] AdS D-brane M D-brane M gauge gauge [18] black hole 1 black hole [19, 20] Black hole black hole black hole D-brane black hole 4 4 black hole brane [12] black hole black hole Schwarzschild black hole [21] Yang-Mills gauge Kaluza-Klein compact [22] gauge brane gauge brane [23] gauge gauge 4 [24] black hole [25] [26, 27] black hole [20] black hole 4 black hole gauge 5 black hole [28] 4 4 brane 3

10 Kaluza-Klein brane 4 3 gauge Einstein-Yang-Mills black hole 4 Einstein-Yang-Mills black hole 5 Einstein-Yang-Mills black hole 4 brane P. Kraus 5 Schwarzschild-AdS domain wall 5 domain wall 5 black hole 5 5 c = =1 c Planck [29, 30]

11 Kaluza-Klein Brane 2 4 Einstein Kaluza-Klein Kaluza-Klein 20 T. Kaluza, O. Klein [5] 4 compact Kazula-Klein 4 [5, 31, 32] Kazula-Klein 4 Kazula-Klein 5 Einstein 4 5 (M 5,g ab ) 4 (M 4,g αβ ) M 5 M 4 S 1 M 5 = M 4 S 1 (2.1) 5 Kaluza-Klein 2.1 S 1 5 g ab M 4 x α (α =1,, 4) S 1 y g ab (x α,y) = g ab (x α ) (2.2) 5 g ab 4 1 g ab dx a dx b = g αβ dx α dx β +Φ 2 (dy + A α dx α )(dy + A β dx β ) (2.3) g αβ, A α Φ x α A α Φ 5 y = y + ξ(x α ) (2.4)

12 : Kaluza-Klein 5 M 5 4 x α 1 y A α = A α α ξ, (2.5) Φ = Φ (2.6) A α Φ 5 U(1) gauge scalar gauge 5 Einstein 5 Einstein 5 Einstein-Hilbelt S = M5 dx 5 g 5 R (5) 16πG 5 (2.7) g 5 5 g ab R (5) g ab 5 Ricci scalar G (2.3) S = dx 4 [ Φ g 4 R (4) 1 M 4 16πG 4 4 Φ2 F αβ F αβ 2 α Φ α ] Φ 3 Φ 2 (2.8) g 4 4 g αβ R (4) g αβ 4 Ricci scalar F αβ A α F αβ = α A β β A α (2.9) y 4 G 4 G 4 = G 5 L (2.10)

13 2.1. Kaluza-Klein 13 L S 1 L = dy (2.11) S 1 5 Einstein (2.7) (2.8) 4 Einstein U(1) gauge scalar (2.8) scalar Φ ΦR (4) scalar Φ g αβ = Φ 2 3 gαβ (2.12) φ = 2lnΦ 3 (2.13) (2.8) S = M 4 dx 4 g πG 4 [ R (4) 1 4 e 3φ F αβ F αβ 1 ] 2 αφ α φ (2.14) [33] g 4 4 g αβ R (4) g αβ 4 Ricci scalar Kaluza-Klein 5 Einstein 4 Einstein n Einstein 4 Einstein [32, 22] n (M n,g ab ) 4 (M 4,g αβ ) compact (n 4) K n 4 M n = M 4 K n 4 (2.15) n K n 4 n Einstein 4 Einstein Lie gauge scalar 4 n (n 4) K n 4 L G 4 = G n L n 4 (2.16) n =5 5 K 1 = S 1 U(1) n>5 K n gauge scalar gauge Yang-Mills 3 1 K n 4 torus T n 4 gauge

14 Brane Kaluza-Klein Planck scale 4 brane [6] compact 3 (brane) M [34] [7, 8] brane 4 [11, 35] Brane 4 5 Einstein 4 5 (M 5,g ab ) 4 M 5 4 M 4 δ- 2 M 4 Z 2-5 Einstein 5 5 Einstein R (5) ab 1 2 g abr (5) = Λ 5 g ab +8πG 5 T (5) ab (2.17) R (5) ab R(5) g ab 5 Ricci tensor Ricci scalar G 5 5 Λ energy Λ 5 Λ 5 < 0 T (5) ab 5 energy- tensor M 4 y =0 T (5) ab = δ(y)s ab (2.18) δ- S ab brane energy- tensor S ab S ab = σq ab + τ ab (2.19) brane energy σ energy- tensor τ ab σ brane τ ab n a = 0 (2.20) n a M 4 vector Brane 2.2 (2.17) brane M 4 q ab = g ab n a n b (2.21) 2 M 5 bulk M 4 brane

15 2.2. Brane : Brane 5 M 5 4 x α 2 (brane) τ ab brane σ y brane brane Z 2-3 Gauss (A.10)-(A.12) R (4) ab 1 [ 2 q abr (4) = R (5) cd 1 ] 2 g cdr (5) q c a q d b + R (5) cd nc n d q ab + KK ab K c a K cb 1 2 q ab[k 2 K ab K ab ] R (5)c def n c q a d n e q b f (2.22) K ab M 4 K = K a a (2.17) Weyl tensor (A.4) R (4) ab 1 2 q abr (4) = 1 2 Λ 5q ab + 16πG 5 3 { [ T (5) cd q a c q d b + T (5) cd nc n d 1 ] } 4 T (5) q ab + KK ab K a c K cb 1 2 q ab[k 2 K ab K ab ] E ab (2.23) T (5) = T (5) a a E ab 5 Weyl tensor E ab = C (5) cdef nc q a d n e q b f (2.24) 5 energy- tensor T (5) ab (2.18) M 4 5 Einstein (2.17) δ- 1 Israel [36] [K ab Kq ab ] ± = 8πG 5 S ab (2.25) 3 A.2 [11]

16 16 2 [K ab ] ± = 8πG 5 [ S ab 1 3 S c c q ab ] (2.26) M 4 Z 2 - [X] ± = lim y +0 X lim y 0 X (2.27) lim K ab = lim K ab (2.28) y +0 y 0 (2.23) y 0 (2.26) brane R (4) ab 1 2 q abr (4) = Λ 4 q ab +8πG 4 τ ab +(8πG 5 ) 2 π ab E ab (2.29) π ab energy- tensor 2 π ab = 1 4 τ acτ c b ττ ab q abτ cd τ cd 1 24 q abτ 2 (2.30) τ = τ a a δ- lim y 0 T (5) ab =0 (2.17) 4 lim y 0 E ab 4 G 4 4 Λ 4 5 G 5 5 Λ 5 brane σ G 4 = 4πG2 5 σ (2.31) 3 Λ 4 = Λ πG 4σ (2.32) 4 G 4 brane σ 5 Einstein (2.17) brane (2.29) 4 Einstein energy- tensor 2 5 Weyl tensor Einstein (2.17) π ab E ab E ab 5 brane (2.17) π ab E ab 4 brane Codacci (A.13) 5 Einstein (2.17) D b K ab D a K = 8πG 5 T (5) cd nc q a d (2.33) y 0 (2.26) D b τ ab = 0 (2.34) brane

17 2.3. Kaluza-Klein brane Bulk brane brane 5 bulk bulk brane bulk [35] 5 energy- tensor (2.18) T (5) ab = δ(y)s ab + T ab (2.35) T ab bulk energy- tensor (2.29) brane R (4) ab 1 2 q abr (4) = Λ 4 q ab +8πG 4 τ ab +(8πG 5 ) 2 π ab E ab (8πG 5) 2 f ab (2.36) f ab bulk energy- f ab = T cd q a c q d b + [T cd nc n d 14 ] T q ab (2.37) T = T a a (2.34) brane D b τ ab = 8πG 5 T cd nc q a d (2.38) (2.38) brane energy bulk energy bulk Kaluza-Klein brane Kaluza-Klein Brane Kaluza-Klein brane 3 100GeV energy scale l cm (2.39) scale l 10 2 cm (2.40) scale 4 Newton scale [7] Kaluza-Klein brane

18 18 2 Kaluza-Klein L energy scale energy scale Kaluza-Klein L cm (2.41) energy scale Planck L cm (2.42) brane brane brane 4 energy 5 Λ 5 scale 5 AdS Newton energy [9] 5 AdS l5 scale ds 2 = g (0) ab dxa dx b = e y /l η αβ dx α dx β + dy 2 (2.43) 1 l 2 = Λ 5 6 (2.44) η αβ 4 Minkowski Cartesian brane y =0 g ab = g (0) ab + h ab (2.45) 5 (y ) h 55 = 0 (2.46) h 5α = 0 (2.47) 5 y gauge α h αβ = 0 (2.48) h α α = 0 (2.49)

19 2.3. Kaluza-Klein brane 19 gauge Einstein (2.17) 1 order [ 2y m2 e y /l + 1l 2 2l δ(y) ] ψ(y) = 0 (2.50) 4 h αβ h αβ (x α,y) = ψ(y)e ip γx γ (2.51) m m 2 = p γ p γ (2.52) 5 y =0 Z 2 - z = 2sgn(y)l(e y /2l 1) (2.53) Ψ(z) = ψ(y)e y /4l (2.54) (2.50) [ 1 ] 2 2 z + V (z) Ψ(z) = m 2 Ψ(z) (2.55) potential V (z) V (z) = 15 8( z +2l) 2 3 δ(z) (2.56) 4l (2.56) 2.3 z V (z) 0 z 0 V (z) z =0 δ- m =0 mode z =0 brane 4 mode m >0 mode mode Kaluza-Klein mode Kaluza-Klein mode compact spectrum z =0 potential energy Kaluza-Klein mode Green M potential U(r) U(r) = G ) 4M (1+ 2l2 r 3r 2 (2.57) G 4 G 4 = 2G 5 l (2.58) 4 Λ 4 0 (2.31) 5 scale l l 10 2 cm (2.59)

20 : Potential (2.56) z =0 δ(z) energy scale Planck scale M Pl = GeV (2.60) energy scale M EW = 10 3 GeV (2.61) Kaluza-Klein brane Kaluza-Klein 4 n (2.16) 4 G 4 G n L n 4 Kaluza-Klein energy scale brane brane scale 5 scale (2.58) l energy scale energy scale Planck scale energy scale G 5 l L. Randall R. Sundrum 5 2 brane G 5 l Planck scale energy scale [8] compact 5 (y ) S 1 compact 2 brane Z AdS (2.43) y =0 4 S 1 /Z 2 compact M [34]

21 2.3. Kaluza-Klein brane 21 y = y c brane y = y c y =0 brane y = y c brane y =0 brane y = y c brane AdS (2.43) 4 warp factor e yc/l 4 5 G 4 = 2G 5 l (1 e y c/l ) 1 (2.62) y = y c brane y c (2.58) y = y c energy scale energy scale m 0 warp factor y = y c brane energy scale m m = e y c/l m 0 (2.63) G 5, l, y c G 5, l y c G 4 m Planck scale energy scale y c /l 36 e yc/l energy scale m Planck scale m 0 G 1/3 5 l cm m GeV brane m =0 mode brane

22

23 23 3 Einstein-Yang-Mills Einstein-Yang-Mills 3.1 Einstein-Yang-Mills black hole Einstein-Yang-Mills 3.1 Einstein-Yang-Mills Einstein-Yang-Mills Yang-Mills gauge Yang-Mills Maxwell Maxwell gauge vector potential scalar potential A α =(φ, A) A = A grad ξ (3.1) φ = φ + ξ (3.2) t A α = A α α ξ (3.3) gauge gauge gauge gauge gauge Maxwell Yang-Mills gauge Weinberg-Salam Yang-Mills gauge (gauge ) U(1) U(1) 2 U 1, U 2 U 1 U 2 U(1) Yang-Mills U(1) Weinberg-Salam SU(2) U(1) SU(3) SU(5), O(10) 2.1 Kaluza-Klein 5 4

24 24 3 Einstein-Yang-Mills gauge U(1) 4 gauge gauge gauge ( gauge ) gauge Lie G G Lie g τ i i (i =1,, dim(g)) τ i g ijk τ i [τ i,τ j ] τ i τ j τ j τ i = g ijk τ k (3.4) 1 G gauge gauge A a Lie g M 1 A a = A i aτ i (3.5) gauge gauge gauge gauge g G A a = ga a g 1 +( a g)g 1 (3.6) Gauge Lie g M scalar V = V i τ i A a = A a + D a V (3.7) D a V = a V [A a,v] (3.8) g = expv = 1+V (3.9) 4 Maxwell gauge field strength Lie g M 2 F ab F ab = a A b b A a [A a,a b ] (3.10) 3 gauge Field strength F ab gauge (3.6) F ab = gf ab g 1 = F ab [F ab,v] (3.11) 1 Lie Einstein

25 Einstein-Yang-Mills 25 field strength (3.10) D [a F bc] = 0 (3.12) gauge Lagrangian Maxwell Tr 2 Lie L YM = 1 16πg 2 Tr(F abf ab ) (3.13) Tr(τ i τ j ) = δ ij (3.14) δ ij Kronecker s delta g 2 Yang-Mills L YM gauge Lagrangian L YM A a D a F ab = 0 (3.15) (3.12) (3.15) Yang-Mills Yang-Mills Yang-Mills Einstein Einstein-Yang-Mills Einstein-Hilbert Yang-Mills S = dx n [ R g 1 ] M n 16πG n 16πg 2 Tr(F abf ab ) (3.16) M n n S = dx n [ 1 g (R 2Λ) 1 ] M n 16πG n 16πg 2 Tr(F abf ab ) g ab Einstein (3.17) R ab 1 2 g abr +Λg ab = 8πG n T ab (3.18) Yang-Mills energy- tensor T ab 1 T ab = [F 4πg 2 Tr c a F bc 14 ] g abf cd F cd (3.19) Einstein-Yang-Mills 4 gauge SU(2) gauge SU(2) gauge SU(2) Lie su(2) [τ i,τ j ] = ε ijk τ k (3.20)

26 26 3 Einstein-Yang-Mills τ i (i =1, 2, 3) ε ijk τ i Pauli σ i τ i = 1 2i σi (3.21) 4 Einstein-Yang-Mills (3.16) [24] black hole black hole [25] [24, 25, 37] Einstein-Yang-Mills 4 dσ ds 2 = f(r)e 2δ(r) dt 2 + dr2 f(r) + r2 dσ 2 2 (3.22) dσ 2 2 = dθ 2 +sin 2 θdϕ 2 (3.23) f(r) f(r) = 1 2μ(r) r (3.24) r 2 δ(r), μ(r) μ(r) δ(r) lapse λ = ( G4 g 2 ) 1/2 (3.25) 4 SU(2) gauge B (B.88)-(B.91) gauge A = A t τ 3 dt + A r τ 3 dr +( φ 1 τ 1 φ 2 τ 2 )dθ +(φ 2 τ 1 φ 1 τ 2 cot θτ 3 )sinθdϕ (3.26) [38] gauge A r =0 Yang-Mills φ 2 =0 (3.26) A t φ 1 A t, φ 1 Yang-Mills part part part Reissner-Nordström black hole part part Einstein-Yang-Mills [39] A t =0 part SU(2) gauge A A = w(r)τ 1 dθ (w(r)τ 2 +cotθτ 3 )sinθdϕ (3.27)

27 Einstein-Yang-Mills 27 w(r) =φ 1 Field strength (3.10) F = w (r)τ 1 dr dθ w (r)τ 2 dr (sin θdϕ) (1 w(r) 2 )τ 3 dθ (sin θdϕ) (3.28) r Einstein (3.18) Yang-Mills (3.15) μ = fw r 2 (1 w2 ) (3.29) δ = 2w 2 r (3.30) (fe δ w ) + 2 r 2 e δ w(1 w 2 ) = 0 (3.31) r (3.29)-(3.31) w w w (3.32) w(r) w(r) Einstein-Yang-Mills (3.29)-(3.31) (3.29)-(3.31) 2 1 Schwarzschild 1 w = ±1 (3.33) μ = M (3.34) δ = 0 (3.35) w = 0 (3.36) μ = M 1 2r (3.37) δ = 0 (3.38) 1/g Reissner-Nordström Bartnik-McKinnon (3.29)-(3.31) 1989 R. Bartnik J. McKinnon [24] Bartnik-McKinnon Yang-Mills (3.12), (3.15) Einstein [40] Bartnik-McKinnon [24, 37]

28 28 3 Einstein-Yang-Mills 3.1: 4 Bartnik-McKinnon 1( [37] ) μ(r)( ) lapse δ(r)( ) n node Einstein-Yang-Mills (3.29)-(3.31) r =0,r = f(r h )=0 r = r h singular μ, w r =0 parameter b μ = 2b 2 r 3 + O(r 5 ) (3.39) w = 1+br 2 +( 4 5 b b2 )r 4 + O(r 6 ) (3.40) f(r) > 0 (3.41) r = μ, w parameter a, M μ = M a2 r 3 + O(r 4 ) (3.42) [ w = ± 1 a ] r + 3a2 6aM 4r 2 + O(r 3 ) (3.43) Parameter M μ ADM δ Einstein- Yang-Mills (3.29)-(3.31) δ μ, w t δ r = r = δ = 0 (3.44)

29 Einstein-Yang-Mills : 4 Bartnik-McKinnon 2( [37] ) Gauge potential w(r)( ) Q(r)( ) n node Einstein-Yang-Mills (3.29)-(3.31) parameter b 3.1, 3.2 n 2 n gauge w(r) node n w(r) n 0 node n Bartnik-McKinnon parameter b, M 3.1 Q(r) f(r) = 1 2M r + Q2 (r) r 2 (3.45) Q(r) Reissner-Nordström 3.2 Q(r) 3.1: 4 Bartnik-McKinnon node n parameter b ADM M n =5 n b M [41]

30 30 3 Einstein-Yang-Mills 3.3: 4 colored black hole ( [37] ) μ(r), lapse δ(r), gauge potential w(r)( ) Q(r)( ) n node Event horizon r h =1 1 r R n gauge Reissner-Nordström (3.36)-(3.37) Q(r) 0 r 1 R n r Schwarzschild Node n Q(r) ADM Colored black hole R. Bartnik J. McKinnon M. S. Volkov, D. V. Galt sov P. Bizon black hole [25] colored black hole Einstein-Maxwell black hole Kerr-Newmann black hole 3 (black hole [42]) Colored black hole [25, 37] Black hole [29] r =0 event horizon event horizon r = r h 2μ(r h ) = r h (3.46)

31 Einstein-Yang-Mills : 4 colored black hole ADM horizon r h ( [37] ) n node n =0 Schwarzschild black hole n = Reissner-Nordström black hole (3.31) w(r) w w h (1 wh 2 r=rh = ) r h [1 (1 wh 2)/r2 h ] (3.47) w h = w(r h ) event horizon r >r h (3.41) r = (3.42), (3.43) event horizon Einstein-Yang-Mills (3.29)-(3.31) parameter w h 3.3 event horizon r h =1 Colored black hole n n gauge w(r) event horizon node node n colored black hole parameter w h, M 3.2 (3.45) Q(r) 3.2: 4 colored black hole node n parameter w h ADM M n =4 n w h M

32 32 3 Einstein-Yang-Mills 3.5: 4 colored black hole event horizon ( [37] ) μ(r) gauge potential w(r) n node n =3 colored black hole ln μ(r) lapse δ(r) gauge potential w (r)/(20r) 3.3 Event horizon event horizon Q(r) gauge Reissner-Nordström (3.36)-(3.37) Event horizon Q(r) 0 Schwarzschild black hole ADM M horizon r h [20] Black hole entropy S Einstein black hole A A/4 r h entropy 3.4 M r h M colored black hole horizon r h Schwarzschild black hole colored black hole Schwarzschild black hole entropy colored black hole Schwarzschild black hole colored black hole horizon r h node horizon node colored black hole entropy event horizon event horizon parameter 2 [43] [37, 43] (3.46), (3.47) r<r h 3.5 μ, δ w event horizon μ r 0 μ 0

33 Einstein-Yang-Mills : (3.51), (3.52) ( [37] ) (a) (b) μ(r) (c) μ(r) (d) μ(r) (e) μ(r) r 0(τ ) cycle μ 0 r =0 μ, w r e x = w (3.48) e y = (1 w2 ) 2 fr 2 (3.49) ( ) r τ = ln (3.50) r 0 w (3.32) w > 0 (3.29)-(3.31) 2 ẋ = e y 1 (3.51) ẏ = 1+e y 2e 2x (3.52) τ (x, y) =(0, 0) τ attractor 3.6 r =0 τ x, y inner horizon inner horizon r = r (3.46), (3.47) 3 3 (3.46), (3.47) r h w h r w = w(r ) r 0

34 34 3 Einstein-Yang-Mills r <r<r h parameter r h Reissner-Nordström event horizon event horizon inner horizon Bartnik-McKinnon colored black hole SU(2) Einstein-Yang-Mills black hole black hole black hole [44, 45] Einstein-Yang-Mills-Higgs black hole [46] Einstein-Skyrme black hole [47] (Kaluza-Klein ) Einstein-Yang-Millsdilaton black hole [48] black hole [49] Einstein-Maxwell Einstein-Born-Infeld black hole [50] Brans-Dicke Yang-Mills-Higgs black hole [51] SU(2) gauge black hole [52] black hole [26, 27] black hole μ(r, t) = μ(r)+ɛμ 1 (r)e iωt (3.53) δ(r, t) = δ(r)+ɛδ 1 (r)e iωt (3.54) w(r, t) = w(r)+ɛw 1 (r)e iωt (3.55) ɛ gauge (3.26) φ 2 (r) =0 [26] (3.53)-(3.55) even-parity φ 2 (r) odd-parity (3.53)-(3.55) ɛ 1 order Schrödinger d2 w 1 dr 2 r tortoise + V (r )w 1 = ω 2 w 1 (3.56) dr dr = eδ f (3.57)

35 Einstein-Yang-Mills 35 r 0 r < black hole <r < (3.56) ω 2 < 0 4 mode Bartnik-McKinnon colored black hole n node n mode Bartnik-McKinnon colored black hole even-parity odd-parity n node n mode [27] colored black hole black hole black hole [20] even-parity 1 mode n =1 Bartnik-McKinnon intermediate attractor [53] black hole black hole gauge parameter n =1 Bartnik-McKinnon black hole colored black hole n node 2n mode 2000 J. Bjoraker Y. Hosotani Einstein-Yang-Mills black hole node [45] node mode Einstein-Yang-Mills 4 Einstein-Yang-Mills 5 Einstein-Yang-Mills M 11 1 S 1 /Z 2 compact S 1 /Z 2 compact 1 10 E 8 E 8 heterotic [34] brane 6 Kaluza-Klein compact 4 brane Kaluza-Klein 2 compact A. Lukas 6 Calabi-Yau 5 [21] 5 bulk dilaton scalar gauge A. Lukas gauge U(1) gauge compact 6 topology compact U(1) gauge 5 gauge ( SU(5) gauge ) brane gauge gauge ( SU(3) SU(2) 4 ω 2

36 36 3 Einstein-Yang-Mills U(1) gauge ) [23] brane gauge gauge brane 5 Einstein-Yang-Mills black hole [28] Einstein-Yang-Mills 5 Einstein-Yang-Mills 5 dσ f(t, r) ds 2 = f(t, r)e 2δ(t,r) dt 2 + dr2 f(t, r) + r2 dσ 2 3 (3.58) dσ 2 3 = dψ 2 +sin 2 ψ(dθ 2 +sin 2 θdϕ 2 ) (3.59) f(t, r) = 1 μ(t, r) r 2 + ɛ r2 l 2 (3.60) t, r 2 δ(t, r), μ(t, r) μ(t, r) δ(t, r) lapse black hole 4 λ = ( G5 g 2 ) 1/2 (3.61) Einstein-Yang-Mills (3.17) (3.60) 3 5 Λ 5 ɛ =0 5 Λ 5 Λ 5 > 0 ɛ = 1 Λ 5 < 0 ɛ =1 l scale parameter 6 Λ 5 = ɛ (λl) 2 (3.62) 5 gauge gauge SU(2) gauge B (B.127)-(B.131) (B.140)-(B.144) (B.127)-(B.131) SU(2) gauge part (B.140)-(B.144) part 4 SU(2) gauge part part 5 l scale λ

37 Einstein-Yang-Mills 37 SU(2) gauge part Einstein-Yang-Mills (B.127)-(B.131) A = A t τ 3 dt + A r τ 3 dr (3.63) gauge A r =0 Einstein (3.18) Yang-Mills (3.15) μ = 2 3 r3 (A t eδ ) 2 (3.64) μ = 0 (3.65) δ = 0 (3.66) [ (A t e δ) 2 ] [ (A t e δ) ] 2 6 ( + A r t e δ) 2 t r = 0 (3.67) = 0 (3.68) μ = M 2Q2 3r 2 (3.69) δ = 0 (3.70) A t = Q r 2 (3.71) Reissner-Nordström black hole 4 part Reissner-Nordström black hole SU(2) gauge part Einstein-Yang-Mills (B.140)-(B.144) A = τ 3 (Ẋdt + X dr + φdψ +cosθdϕ) +cosψ [(τ 1 sin X τ 2 cos X)dθ (τ 1 cos X + τ 2 sin X)sinθdϕ] + φ sin ψ [(τ 1 cos X + τ 2 sin X)dθ +(τ 1 sin X τ 2 cos X)sinθdϕ] (3.72) gauge X =0 6 SU(2) gauge A A = τ 3 (w(t, r)dψ +cosθdϕ) cos ψ [τ 2 dθ + τ 1 sin θdϕ]+w(t, r)sinψ [τ 1 dθ τ 2 sin θdϕ] (3.73) w(t, r) =φ field strength (3.10) F = [ẇ(t, τ 3 r)dt dψ + w (t, r)dr dψ (1 w(t, r) 2 )(sin ψdθ) (sin ψ sin θdϕ) ] [ẇ(t, + τ 1 r)dt (sin ψdθ)+w (t, r)dr (sin ψdθ)+(1 w(t, r) 2 )dψ (sin ψ sin θdϕ) ] [ẇ(t, τ 2 r)dt (sin ψ sin θdϕ)+w (t, r)dr (sin ψ sin θdϕ) (1 w(t, r) 2 )dψ (sin ψdθ) ] (3.74) 6 τ 1 -τ 2 X X

38 38 3 Einstein-Yang-Mills Einstein (3.18) μ = 2r [fw 2 + f 1 e 2δ ẇ 2 + (1 w2 ) 2 ] Yang-Mills (3.15) r 2 (3.75) μ = 4rfw ẇ (3.76) δ = 2 r [w 2 + f 2 e 2δ ẇ 2 ] (3.77) 1 r (rfe δ w ) + 2 r 2 e δ w(1 w 2 ) = ( f 1 e δ ẇ ) (3.78) t, r 4 Einstein-Yang-Mills (3.75)-(3.78) w w w (3.79) w(t, r) w(t, r) (3.75)-(3.78) 4 (3.29)-(3.31) (3.75), (3.78) r (3.75)-(3.78) t μ = 2r [fw 2 + (1 w2 ) 2 ] (3.80) r 2 δ = 2 r w 2 (3.81) 1 r (rfe δ w ) + 2 r 2 e δ w(1 w 2 ) = 0 (3.82) (3.80)-(3.82) 4 (3.29)-(3.31) 2 1 w = ±1 (3.83) μ = M (3.84) δ = 0 (3.85) ɛ =0 Schwarzschild ɛ = 1 Schwarzschild-dS ɛ =1 Schwarzschild-AdS 1 w = 0 (3.86) μ = M +2lnr (3.87) δ = 0 (3.88) 4 w =0 Yang-Mills part Reissner-Nordström (3.36)-(3.38) 5 w =0 Reissner-Nordström horizon

39 Einstein-Yang-Mills (3.86)-(3.88) r ɛ =0 Kretschmann R abcd R abcd ( ) 2 ln r R abcd R abcd 288 (as r ) (3.89) 0 ɛ = ±1 f(r) r 4 R abcd R abcd 40 l 2 (as r ) (3.90) f(r) 1+ɛ r2 l 2 (as r ) (3.91) ɛ =0 ɛ = ±1 AdS ds μ(r) r energy 1 [ G 5 M ADM = ds i j h ij η ij j h k ] k (3.92) 16π I 0 Arnowitt-Deser-Misner energy [54] η ab Minkovski Cartesian h ab r =0 (A.8) i 5 i =1,, 4 ds i I 0 ɛ =0 (3.86)-(3.88) M ADM 3π G 5 M ADM = lim r 8 λ2 (M +2lnr) (3.93) M ADM ln r order 3π/8 (3.75) μ = 3π dv[ T 0 0] (3.94) 8 factor ds Abbott-Deser energy [55] ɛ = 1 (3.86)-(3.88) M AD = M ADM (3.95) AdS energy AdS timelike Killing vector ξ I cross section C G 5 M ξ [C] = λ2 l E ab ξ a ds b (3.96) 16π C

40 40 3 Einstein-Yang-Mills [56] E ab Weyl tensor leading order part E ab = l2 Ω 2 C acbdn c n d (3.97) ds b cross section C Ω factor n a n a = a Ω (3.98) I vector ɛ = 1 (3.86)-(3.88) (3.96) [ 3π G 5 M ξ [C] = lim r 8 λ2 M +2lnr 7 ] 6 (3.99) energy (3.86)-(3.88) ( ɛ =0 ɛ = 1 ds ɛ =1 AdS ) energy 4 global monopole [57] global monopole O(3) scalar ds 2 = f m (r)dt 2 + dr2 f(r) + r2 dσ 2 2 (3.100) f m (r) r f m (r) = 1 α 2M r ( ) 1 + O r 2 (3.101) α M μ(r) (3.24) r μ(r) = M + αr ( ) O (3.102) r ADM energy t r (3.100) f m (r) r t = (1 α) 1/2 t (3.103) r = (1 α) 1/2 r (3.104) ds 2 = f m ( r)d t 2 + d r2 f m ( r) +(1 α) r2 dσ 2 2 (3.105) f m ( r) = 1 2 M r (3.106)

41 Einstein-Yang-Mills 41 M = (1 α) 3/2 M (3.107) (3.106) α U. Nucamendi D. Sudarsky ADM global monopole energy [58] 5 μ(r) r 2 order energy (3.86)-(3.88) μ(r) ln r order (3.86)-(3.88) r ( (A)dS ) energy Horizon (3.86)-(3.88) horizon (3.86)-(3.88) Riemann tensor scalar r =0 r =0 f(r) =0 1 M +2lnr r 2 + ɛ r2 l 2 = 0 (3.108) horizon ɛ horizon ɛ =0 (3.108) M>0 2 r ± black hole r <r + r + event horizon r inner horizon r =0 timelike (3.108) M =1 1 r = r d r d event horizon inner horizon horizon extreme black hole M <1 horizon r =0 ɛ =1 AdS (3.108) M>M cr 2 r ± M cr M cr = 1 2 ( 1+r 2 +cr ) 2lnr+cr (3.109) r +cr ( ) 1/2 r +cr = l l 2 2 (3.110) r <r + r + event horizon r inner horizon M cr l 1 l Λ 0 1 r =0 ɛ =0 timelike (3.108) M = M cr 1 r = r d r d event horizon inner horizon horizon extreme black hole M <M cr horizon r =0

42 42 3 Einstein-Yang-Mills ɛ = 1 ds DS cosmological horizon 1 horizon l>2 2 M min <M<M max M min, M max r ±cr M min = r cr 2 2lnr cr r4 cr l 2 (3.111) M max = r+cr 2 2lnr +cr r4 +cr l 2 (3.112) ( ) 1/2 r ±cr = l 1 ± 1 8l 2 2 (3.113) (3.108) 3 r = r ±,r c r (<r cr ) <r + (<r +cr ) <r c r + event horizon r inner horizon r c cosmological horizon M = M min r = r + event horizon inner horizon M = M max r + = r c event horizon cosmological horizon M <M min M>M max (3.108) 1 r =0 l 2 2 M min, M max M cr = 3 ln (3.114) 2 M = M cr 3 horizon l 2 2 M (3.108) 1 r =0 horizon parameter M black hole black hole black hole event horizon (3.86)-(3.88) Black hole Hawking T BH event horizon [ 1 T BH = 1 1 ] 2πr + r+ 2 +2ɛ r2 + l 2 (3.115) [59] black hole entropy 3 event horizon S = 1 2 π2 r 3 + (3.116) 7 black hole energy ADM π 2 dm T = T BH ds +ΦdQ (3.117)

43 Einstein-Yang-Mills : (3.86)-(3.88) horizon IH, EH, CH DH inner horizon, event horizon, cosmological horizon horizon ɛ, l M Horizon M<1 None ɛ =0 M =1 DH M>1 IH, EH M<M cr None ɛ =1 M = M cr DH M cr <M IH, EH M<M min IH ɛ = 1, l>2 2 M = M min IH, DH M min <M<M max IH, EH, CH M = M max DH, CH CH M>M max ɛ = 1, l 2 2 CH energy M T [58] Φ Q gauge potential 4 Yang-Mills gauge parameter dq =0 M T (3.115), (3.116) (3.117) M T = 3π 8 M (3.118) M =0 M T =0 energy M energy M T event horizon r + (3.108) M T = 3π [ ( ) ] r+ 2 1+ɛ r2 + 8 l 2 2lnr + (3.119) 3.7 (3.86)-(3.88) Reissner-Nordström M T r + energy black hole entropy 3.7 M T T BH parameter ɛ, l Hawking M T black hole Hawking energy (3.108), (3.115) dt BH = 2 1 3/r+ 2 2ɛr+/l 2 2 dm T 3π 2 r /r+ 2 +2ɛr+/l 2 2 (3.120) ɛ =0 1 <r + < 3 M r + > 3 M ɛ =1 l 2 6

44 44 3 Einstein-Yang-Mills 3.7: (3.86)-(3.88) energy M T event horizon r + Hawking T BH M T r + ɛ =0 ɛ =1 Reissner-Nordström Reissner-Nordström-AdS M T T BH ɛ =0 ɛ =1 l =6 l =4 ɛ = 1 l =5 l >2 6 r +cr <r + <r ch r + >r +ch M r ch <r + <r +ch M r ±ch ( r ±ch = l ) 1/2 1 ± l 2 (3.121) ɛ = 1 r cr <r + <r ch M r ch <r + r +cr M r ch ( r ch = l ) 1/ l 2 (3.122) Einstein-Yang-Mills 5 black hole ɛ =0 ɛ =1 AdS

45 Einstein-Yang-Mills 45 4 r =0 (3.75)-(3.78) r =0 parameter b μ(r) = 4b 2 r 4 + O(r 5 ) (3.123) δ(r) = 4b 2 r ( ) 4ɛ 3 b2 3b 8b2 r 4 + O(r 5 ) (3.124) 3l2 w(r) = 1+br 2 b ( ) 4ɛ 3b 8b2 r 4 + O(r 5 ) (3.125) 6 3l2 δ r =0 r =0 δ =0 r = t t = e δ( ) t (3.126) scale 4 horizon (3.41) r = 4 Einstein-Yang-Mills (3.75)-(3.78) r = μ(r) 8 C.1 5 energy r = ( AdS ) μ(r) O(r) order (3.75)-(3.78) ( AdS) ɛ =0 ɛ =1 ɛ =0 parameter b b min b min <b<0 (3.127) b min (3.128) parameter 4 Bartnik-McKinnon 5 parameter parameter 3.8 gauge potential w(r) Parameter b 0 w(r) 1 Yang-Mills instanton [61] gauge w node w(r) μ(r) ln r order μ(r) ln r order 8 Yang-Mills field strength r = black hole [60]

46 46 3 Einstein-Yang-Mills 3.8: 5 1 ɛ =0 b = 0.01, 0.1, 0.5 gauge potential w(r) ɛ =1 l =10 b = 0.01, 0.1, 0.5 gauge potential w(r) w(r) w(r) ±1 μ(r) w(r) 0 r C.2.1 w μ (C.52) (C.63) lapse Bartnik-McKinnon ɛ =1 ɛ =0 AdS parameter b b min <b<0 (3.129) b min scale parameter l l ( ) b min l b min Einstein-Yang-Mills parameter b [45] l =10 parameter b 3.8 gauge potential w(r) ɛ =0 0 W 0 1 W 0 parameter b b W 0 1 b min parameter b node 4 Einstein-Yang-Mills r 0 W 0 1 ɛ =1 4 5

47 Einstein-Yang-Mills : 5 2 ɛ =0 b = 0.01, 0.1, 0.5 μ(r) ɛ =1 l =10 b = 0.01, 0.1, 0.5 μ(r) gauge potential w(r) 3.9 μ(r) ln r order 4 ɛ =0 r μ(r) μ = M 0 +2(1 W0 2 )2 ln r (3.130) C black hole 5 black hole black hole event horizon 4 colored black hole black hole horizon event horizon r = r h ( ) μ(r h ) = rh 2 1+ɛ r2 h l 2 (3.131)

48 48 3 Einstein-Yang-Mills 3.10: 5 3 ɛ =0 b = 0.01, 0.1, 0.5 lapse δ(r) ɛ =1 l =10 b = 0.01, 0.1, 0.5 lapse δ(r) 3.4: ɛ =1 parameter b b min b min <b<0 (3.3.3 ) b s b s <b<0 (3.3.5 ) b crit domain wall b min <b<b crit domain wall ( ) l b min b s b crit l b min b s b crit b min b min b min b min b min b min b min

49 Einstein-Yang-Mills : 5 black hole 1 ɛ =0 black hole w h =0.99, 0.9, 0.5 gauge potential w(r) ɛ =1 l =10 black hole w h =0.99, 0.9, 0.5 gauge potential w(r) Yang-Mills (3.78) w w h (1 wh 2 (r h ) = ) r h [1 + 2ɛrh 2/l2 (1 wh 2)2 /rh 2] (3.132) w h = w(r h ) δ(r h ) = 0 (3.133) (3.126) r = 4 event horizon r>r h (3.41) black hole (3.75)-(3.78) r = μ(r) ( AdS ) black hole μ(r) O(r) order (3.75)-(3.78) ( AdS) black hole parameter r h 1 <w h < black hole ɛ =0 ɛ =1 black hole ɛ =0 gauge potential w(r) z =2lnr μ(r) w(r) ln r order ɛ =1 gauge potential w(r) W 0 μ(r) ln r order lapse δ(r) 4

50 50 3 Einstein-Yang-Mills 3.12: 5 black hole 2 ɛ =0 black hole w h =0.99, 0.9, 0.5 μ(r) ɛ =1 l =10 black hole w h =0.99, 0.9, 0.5 μ(r) black hole M T black hole Hawking T BH = eδ( ) 2πr h [1 (1 w2 h )2 r 2 h ] +2ɛ r2 h l 2 (3.134) [59] δ( ) = lim r δ(r) δ(r) event horizon (3.133) event horizon black hole entropy (3.116) black hole gauge Q gauge potential w(r) ɛ =1 w(r) w(r) W 0 dq =0 black hole M T 1 (3.117) ɛ =1 M T M T 3π [ M T = lim μ 2(1 w 2 ) 2 ln r ] (3.135) r 8 M T μ (3.130) (3π/8)M 0 ɛ =0 w(r) ɛ =1 μ (C.63) (3π/8)M 0 M T μ(r) ln r order

51 Einstein-Yang-Mills : 5 black hole 3 ɛ =0 black hole w h =0.99, 0.9, 0.5 lapse δ(r) ɛ =1 l =10 black hole w h =0.99, 0.9, 0.5 lapse δ(r) black hole [16] Event horizon μ, δ, w 3.14, 3.15 ɛ =0 ɛ = [43] inner horizon 2 event horizon μ r 0 μ 0 bounce μ 0 bounce r =0 bounce μ inner horizon inner horizon μ r 0 μ 0 bounce 0 f r = r 0 4 colord black hole black hole colord black hole event horizon r h parameter b inner horizon event horizon r h 5 black hole event horizon r h parameter b inner horizon event horizon

52 52 3 Einstein-Yang-Mills 3.14: 5 black hole 1 Event horizon r h =1 ɛ =1,w h =0.4 5 black hole event horizon μ(r) lapse δ(r) ( ) inner horizon ɛ =1,w h = black hole event horizon μ(r) lapse δ(r) inner horizon r h parameter b inner horizon black hole black hole even-parity μ(r, t) = μ 0 (r)+ɛμ 1 (r)e iωt (3.136) δ(r, t) = δ 0 (r)+ɛδ 1 (r)e iωt (3.137) w(r, t) = w 0 (r)+ɛw 1 (r)e iωt (3.138) ɛ μ 0 (r), δ 0 (r) w 0 (r) (3.53)-(3.55) Einstein-Yang-Mills (3.75)-(3.78) μ 0 (r), δ 0 (r) w 0 (r) Einstein-Yang-Mills (3.80)-(3.82)

53 Einstein-Yang-Mills : 5 black hole 1 Event horizon r h =1 ɛ =1,w h =0.4 ɛ =1,w h = black hole gauge potential w(r) ɛ 1 order μ 1 = 0 w 2 0 2r [2f 0 w w 1 r 2 μ 1 4(1 w2 0 )w ] 0 r 2 w 1 (3.139) μ 1 = 4rf 0 w 0 w 1 (3.140) δ 1 = 4 r w 0 w 1 (3.141) 1 ( ) r 3 (rf 0e δ 0 w 0 ) f0 1 μ 1 f 0 e δ 0 1 w 0 r 2 f 0 1 μ 1 + δ r (rf 0e δ 0 w 1 ) + 2 r 2 e δ 0 (1 3w 2 0 )w 1 = ω 2 f 1 0 eδ 0 w 1 (3.142) f 0 f 0 = 1 μ 0 r 2 + ɛr2 l 2 (3.143) (3.139) (3.140) (3.139), (3.141) (3.142) 4 tortoise r (3.57) w 1 χ = w 1 r 1/2 (3.144)

54 54 3 Einstein-Yang-Mills (3.142) (3.139), (3.140) (3.141) Schrödinger d2 χ dr 2 + V (r )χ = ω 2 χ (3.145) Potential V (r ) (3.139)-(3.142) V (r ) = f 0 e δ 0 { 2 r 2 e δ 0 (3w0 2 1) + r 1/2 (r 1/2 f 0 e δ 0 ) r } [ f0 e δ 0 w 0 2 ] (3.146) r ɛ =0 0 r < ɛ =1 0 r <r,max ɛ =0 black hole <r < ɛ =1 black hole <r <r,max r, <r <r, r, r =0 black hole event horizon r = r + r, r = 4 (3.145) ω 2 < 0 9 mode ω 2 > 0 Potential V (r ) (3.145) χ 10 r, <r <r, [ χ dχ ] r, [ r, dχ + dr r, r, dr 2 + V (r) χ 2 ] dr = ω 2 r, r, χ 2 dr (3.147) black hole potential V (r ) r = r, w 1 0 gauge energy flux χ dχ dr r =r, 0 (3.148) r = r, =0 w 1 =0 w 1 =0 χ dχ dr 0 (3.149) r =r, (3.145) ω 2 V (r ) > 0 ω 2 > 0 V (r ) mode black hole r = r, (3.148) r = r, = V (r ) 0 (3.145) 9 ω 2 10 χ χ

55 Einstein-Yang-Mills 55 event horizon r = r, = χ e iωr (3.150) event horizon ω 2 < 0 ω ω Im ω<0 (3.150) χ dχ dr 0 (3.151) r =r, (3.145) ω 2 V (r ) > 0 ω 2 > 0 ω 2 < 0 ω 2 > 0 V (r ) black hole mode (3.86)-(3.88) potential V (r ) V (r ) = f ] 0 [5M 4r lnr 9r 2 +3ɛ r4 l 2 (3.152) ɛ =0 ɛ = 1 V (r ) r ɛ =1 ( ) M > 1 5 l > ln r p +9r 2 p 3 r4 p l 2 M l r p ( ) r p = l l 2 12 (3.153) (3.154) (3.155) ɛ =1 V (r ) potential 3.16 ɛ =0 ɛ =1 potential potential (3.145) ω 2 [16] ɛ =0 mode ɛ =1 mode b s <b<0 b s l 3.4 l parameter b l (3.156) b s = b min w b s <b<0 gauge potential w node

56 56 3 Einstein-Yang-Mills 3.16: 5 potential V (r ) ɛ =0 potential V (r ) b = 0.01 b = 0.1 potential ɛ =1 l =10 potential V (r ) b = 0.01 b = 0.1 potential potential V (r ) r 5 node mode 4 [45, 26, 27] node ɛ =0 black hole mode ɛ =1 black hole node Einstein-Yang-Mills [16] 5 (3.58) r =const. 3 SO(4) 5 5 r r =const. 3 Euclid 3 SO(3, 1) E(3) 11 5 Einstein-Yang-Mills k 1, 0, 1 dσ 2 3,k 11 E(3) 3 Euclid ds 2 = f k (r)e 2δ(r) dt 2 + dr2 f k (r) + r2 dσ 2 3,k (3.157) dσ 2 3,k = dψ 2 + S k (ψ) 2 (dθ 2 +sin 2 θdϕ 2 ) (3.158)

57 Einstein-Yang-Mills 57 S k (ψ) S k (ψ) = sin ψ k =1 ψ k =0 sinh ψ k = 1 (3.159) dσ3,k 2 k 3 k =1 3 (3.59) 5 k =0 3 Euclid 5 k = f k (r) f k (r) = k μ(r) r 2 + ɛ r2 l 2 (3.160) r 2 δ(r), μ(r) μ(t, r) δ(t, r) lapse (3.61) λ l (3.62) SU(2) gauge B part A i t = 0 (3.161) A i r = 0 (3.162) A i ψ = (0, 0,w) (3.163) ( A i θ = ws k (ψ), ds ) k(ψ) dψ, 0 (3.164) ( A i ϕ = ds ) k(ψ) dψ sin θ, ws k(ψ)sinθ,cos θ (3.165) E(n) SO(3, 1) compact B.1 gauge (3.161)-(3.165) gauge (3.161)-(3.165) A = τ 3 (w(r)dψ +cosθdϕ) ds k(ψ) dψ field strength (3.10) [τ 2dθ + τ 1 sin θdϕ]+w(r)s k (ψ)[τ 1 dθ τ 2 sin θdϕ](3.166) F = [ τ 3 w (r)dr dψ (k w(r) 2 )(sin ψdθ) (sin ψ sin θdϕ) ] [ + τ 1 w (r)dr (sin ψdθ)+(k w(r) 2 )dψ (sin ψ sin θdϕ) ] [ τ 2 w (r)dr (sin ψ sin θdϕ) (k w(r) 2 )dψ (sin ψdθ) ] (3.167) k =1 w(r) =±1 k =0 w(r) =0 F =0 k = 1 F =0 w(r) k = 1 pure gauge gauge ansatz Gauge potential w(r) w(r) =±i pure gauge w(r)

58 58 3 Einstein-Yang-Mills 3.17: 5 (k =0) black hole 1 Event horizon r h =1 ɛ =1,w h =0.7 5 (k =0) black hole event horizon μ(r) lapse δ(r) ( ) inner horizon ɛ =1,w h = (k =0) black hole event horizon μ(r) lapse δ(r) inner horizon Einstein-Yang-Mills Einstein μ = 2r [f k w 2 + (k w2 ) 2 ] r 2 (3.168) δ = 2 r w 2 (3.169) Yang-Mills 1 r (rf ke δ w ) + 2 r 2 e δ w(k w 2 ) = 0 (3.170) k =1 (3.80)-(3.82) k =0 k = 1 k =0 (3.168)-(3.170) 1 μ = M (3.171) δ = 0 (3.172) w = 0 (3.173) (3.173) pure gauge black hole 1999 D. Birmingham Schwarzschild(-AdS) black hole k =0 [62] k =0 k =1 black hole (3.86)-(3.88) ( )

59 Einstein-Yang-Mills : 5 (k =0) black hole 2 Event horizon r h =1 ɛ =1,w h =0.7 ɛ =1,w h = (k =0) black hole gauge potential w(r) k = 1 (3.168)-(3.170) 1 μ = M +2lnr (3.174) δ = 0 (3.175) w = 0 (3.176) k =1 black hole (3.86)-(3.88) k = 1 μ = M black hole gauge (3.161)-(3.165) pure gauge Einstein black hole [62] μ, w k =0 k = 1 black hole horizon r = r h ( ) μ(r h ) = rh 2 k + ɛ r2 h l 2 (3.177) r = r h Yang-Mills (3.78) w (3.75)-(3.78) k =0 ( AdS) black hole parameter r h 1 <w h < , 3.18 black hole k = 1 ( AdS) black hole

60

61 energy scale 4 Einstein energy scale big bang Einstein big bang brane big bang brane 4.1 big bang big bang 4 Einstein big bang big bang [4] Friedmann big bang 3 (3.158) 4 ds 2 = dτ 2 + a 2 (τ) [ dψ 2 + S k (ψ) 2 (dθ 2 +sin 2 θdϕ 2 ) ] (4.1) Freidmann-Robertson-Walker k 1, 0, 1 S k (ψ) (3.159) τ a(τ) scale scale factor energy- tensor T αβ = (ρ + P )U α U β + Pg αβ (4.2) ρ, P U α energy 4 Einstein 2 H 2 + k a 2 = Λ πG 4 ρ (4.3) 3 ρ +3H(ρ + P ) = 0 (4.4)

62 62 4 H Hubble H = ȧ a Λ 4 τ (4.3) scale factor Friedmann (4.4) energy (4.4) energy ρ (4.5) P = (γ 1)ρ (4.6) ρ = ρ 0 ( a a 0 ) 3γ (4.7) a 0 ρ 0 = ρ(a 0 ) energy (dust ) γ =1 energy ρ a 3 ( ) γ =4/3 energy ρ a 4 γ =0 energy energy ρ (4.6) Friedmann (4.3) potential U(a) 1 2ȧ2 + U(a) = k 2 U(a) = 1 [ Λ πG ] 4C 0 a 2 3γ 3 (4.8) (4.9) scale factor a potential U(a) energy k/2 4.1 potential U(a) Λ 4 =0 dust (ρ a 4 ) k =0 k = 1 k =1 Friedmann 1929 Hubble scale factor energy 1965 A. Penzias R. W. Wilson big bang big bang big bang

63 4.1. big bang : Potential U(a) Λ 4 > 0, Λ 4 < 0 Λ 4 =0 potential ρ a 4 Friedmann (4.3) Hubble H 0 energy ρ 0 Λ 4 k Λ 4 =0 energy ρ 0 ρ cr =3H0 2/(8πG 4) ρ 0 /ρ cr 1% order 1 Friedmann (4.3) ρ/ρ cr 1 Planck scale order 1 horizon scale scale horizon scale horizon monopole scale inflation [13] big bang inflation 1 Friedmann (4.3) scale (4.6) k =0 scale factor a a t 2/(3γ) (4.10) (γ 2/3) 0

64 64 4 (4.7) scale factor energy ρ Ricci scalar R a =0 big bang Big bang Freidmann-Robertson-Walker [29, 14] big bang [15] domain wall Brane 1 brane big bang Brane [63] 5 bulk domain wall brane [16, 12] Schwarzschild-AdS domain wall brane 5 bulk [9] domain wall [12] big bang brane 3 brane 5 bulk bulk 3 ds 2 = f k (r)dt 2 + dr2 f k (r) + r2 dσ 2 3,k (4.11) dσ 2 3,k (3.158) f k(r) l 5 Λ 5 f k (r) = k M r 2 + r2 l 2 (4.12) l 2 = 6 Λ 5 (4.13) 1 Schwarzschild-AdS black hole [62] 2 M black hole k big bang k 5 bulk r =const. 1 l l = l/λ λ (3.61) 2 Schwarzschild-AdS r = a(τ) (4.14)

65 domain wall : Z 2-2 Schwarzschild-AdS r >a(τ) 2 r = a(τ) domain wall τ domain wall a(τ) scale factor brane 1 Z 2 - (4.11) 5 2 domain wall (4.14) 2 domain wall 4.2 domain wall Z 2 - domain wall energy- tensor S αβ = (ρ + P )U α U β + Pγ αβ (4.15) ρ, P U α energy 4 brane tensor energy ρ m P m brane σ ρ P ρ = ρ m + σ (4.16) P = P m σ (4.17) domain wall Einstein domain wall Domain wall Israel (2.26) [36] 5 (4.11) domain wall Gaussian normal ds 2 = dη 2 + γ αβ dx α dx β (4.18) domain wall γ αβ (2.26) [ [K αβ ] ± = 8πG 5 S αβ 1 ] 3 S μ μ γ αβ (4.19)

66 66 4 K αβ K αβ = 1 2 nμ μ γ αβ (4.20) n μ domain wall vector Domain wall 5 u a domain wall vector n a u a ( ) fk (a)+ȧ =, ȧ, 0, 0, 0 (4.21) f k (a) n a = ( ȧ ) f k (a), f k (a)+ȧ 2, 0, 0, 0 (4.22) τ n a domain wall domain wall K αβ K + ij (= K ij ) = fk (a)+ȧ 2 γ ij (4.23) a K + ττ (= K ττ ) = d da fk (a)+ȧ 2 (4.24) 3 (4.19) (4.15) (4.23) (4.15) (4.24) H 2 + f k(a) a 2 = (8πG 5) 2 ρ 2 (4.25) 36 ( ) d 2 fk (a)+ȧ da 2 = 4πG 5 3 ρ + P (4.26) domain wall H Hubble big bang (4.5) (4.25) (4.12), (4.16) (4.17) H 2 + k a 2 = Λ πG 4 ρ m + 4πG 4 3 3σ ρ2 m + M a 4 (4.27) G 4 Λ 4 (2.31) (2.32) 4 4 (2.31) brane σ (4.27) Friedmann (4.3) 2 big bang Friedmann (4.27) 3 domain wall energy brane Einstein (2.29) π ab brane Friedmann brane energy inflation [65] (4.27) 3 [64]

67 domain wall bulk Schwarzschild-AdS black hole brane Einstein (2.29) E ab 4 5 bulk a 4 big bang scale factor order 4.3 (4.26) (4.26) (4.25) ρ +3H(ρ + P ) = 0 (4.28) big bang energy (4.4) domain wall energy bulk domain wall energy domain wall (4.6) energy ρ domain wall (4.7) big bang domain wall 5 bulk brane 3.3 M dilaon scalar gauge [21, 23] 5 domain wall 5 bulk Schwarzschild-AdS (4.11) 5 bulk Schwarzschild-AdS domain wall [16] 5 bulk 3 ds 2 = f k (r)e 2δ(r) dt 2 + dr2 f k (r) + r2 dω 2 3,k (4.29) f k (r) Schwarzschild-AdS (4.12) k big bang k μ(r) f k (r) = k μ(r) r 2 + r2 l 2 (4.30) l 5 Λ 5 (4.13) 5 5 bulk 2 μ(r) δ(r) k = ɛ =1 k ɛ =1 μ(r) δ(r) lapse μ = M δ =0 (4.29) 4 5 bulk Weyl tensor part M 5 1

68 68 4 (4.14) domain wall (4.29) 5 2 domain wall (4.14) 2 domain wall domain wall Z 2 - Domain wall energy- tensor (4.15) domain wall Gaussian normal (4.18) Israel (4.19) domain wall Domain wall 5 u a domain wall vector n a ( ) u a = e δ(a) fk (a)+ȧ 2, ȧ, 0, 0, 0 (4.31) f k (a) ( ) n a = e δ(a) ȧ f k (a), f k (a)+ȧ 2, 0, 0, 0 (4.32) domain wall τ domain wall K αβ K + ij (= K ij ) = fk (a)+ȧ 2 γ ij a (4.33) K ττ + (= K ττ ) = d [e δ(a) ] eδ(a) f k (a)+ȧ da (4.34) (4.19) (4.15) (4.33) (4.15) (4.34) H 2 + f k(a) a 2 = (8πG 5) 2 ρ 2 (4.35) 36 e δ(a) d [e δ(a) ] f k (a)+ȧ da 2 = 4πG 5 ( 2 3 ρ + P ) (4.36) domain wall H Hubble big bang (4.5) (4.35) (4.30), (4.16) (4.17) H 2 + k a 2 = Λ πG 4 ρ m + 4πG 4 3 3σ ρ2 m + μ(a) a 4 (4.37) G 4 Λ 4 (2.31) (2.32) 4 4 (4.37) 3 Schwarzschild-AdS domain wall (4.27) 4 μ(r) μ(a) =M (4.27) (2.31) brane σ (4.37) Friedmann domain wall Friedmann domain wall energy 2

69 domain wall 69 5 bulk μ(a) 4.3 (4.36) Schwarschild-AdS domain wall brane energy bulk brane energy bulk energy bulk 5 bulk domain wall energy (4.36) (4.35) ρ +3H(ρ + P ) = ρȧ dδ(a) da (4.38) (4.28) ( (4.4)) δ(a) domain wall energy energy domain wall energy ρ domain wall big bang Schwarzschild-AdS domain wall brane σ 0 (4.38) P m = (γ 1)ρ m (4.39) ρ m +3γHρ m = δρ m (4.40) ρ m = ρ m,0 e δ δ 0 ( ) 3γ a (4.41) domain wall a 0 ρ m,0 = ρ m (a 0 ) δ 0 = δ(a 0 ) (4.7) lapse δ(a) a 6 energy domain wall 5 bulk AdS AdS δ(a) a domain wall energy energy ρ (4.7) case γ =0 ρ m energy big bang Schwarzschild-AdS brane energy ρ m lapse energy energy lapse δ(a) a brane σ 0 (4.39) (4.38) 6 3 a 0 ρ m +3γHρ m = δ(ρ m + σ) (4.42)

70 70 4 ( ρ m = e δ δ 0 a a 0 ) 3γ [ a ρ m,0 + σ da dδ(a) ] a 0 da e δ(a) a 3γ (4.43) domain wall brane (4.43) 2 energy lapse 5 bulk AdS AdS δ(a) a domain wall energy energy ρ (4.7) bulk brane 5 bulk domain wall big bang Friedmann (4.37) energy (4.38) bulk 5 Schwarzschild-AdS brane bulk U(1) gauge brane bulk SU(2) gauge brane domain wall (4.37) potential 1 2ȧ2 + U(a) = 0 (4.44) Potential U(a) U(a) = 1 [ k μ(a) 2 a 2 Λ 4 3 a2 8πG ( 4 ρ m (a)a )] 3 2σ ρ m(a) (4.45) potential U(a) energy ρ m (a) (4.43) Schwarzschild-AdS bulk brane 5 bulk 5 bulk Schwarzschild-AdS μ(r) δ(r) μ(r) = M (4.46) δ(r) = 0 (4.47) Lapse δ(a) domain wall energy (4.28) energy ρ m (4.7) potential U(a) (4.45) U(a) = 1 2 [ k M a 2 Λ 4 3 a2 8πG 4C 0 3 ( a (2 3γ) 1+ C )] 0 2σ a 3γ (4.48)

71 bulk brane : Brane potential U(a) 1 5 Schwarzschild-AdS bulk potential (4.48) bulk parameter k =1 k =0 k = 1 M =1 bulk parameter k = 1 M = 1 5 Reissner-Nordström-AdS bulk potential (4.52) bulk parameter k =1 k =0 k = 1 M =1 Q 2 =0.1 C 0 ρ m,0 a 0 domain wall energy ρ m 0 4 Λ 4 0 potential U(a) bulk event horizon 7 parameter M k =1 k =0 k = 1 M > l2 4 (4.49) event horizon M [62] 4.3 k = 1 M<0 potential U(a) a 0 k = 1 M<0 potential U(a) a 0 scale factor a bounce domain wall bounce catenary-type domain wall ρ m bounce 5 bulk bulk Schwarzschild-AdS k = 1 M<0 domain wall k = 1 M<0 catenary-type 7 Event horizon black hole brane

72 bulk M =0 r =0 black hole 5 bulk brane ( black hole ) U(1) gauge bulk brane 5 bulk U(1) gauge domain wall [66, 67] 5 bulk Reissner-Nordström-AdS μ(r) δ(r) μ(r) = M Q2 r 2 (4.50) δ(r) = 0 (4.51) lapse δ(a) bulk domain wall energy (4.28) energy ρ m (4.7) potential U(a) (4.45) U(a) = 1 Ma Q2 [k a 4 Λ 4 3 a2 8πG ( 4C 0 a (2 3γ) 1+ C )] 0 3 2σ a 3γ (4.52) potential (4.48) 3 5 Reissner-Nordström-AdS Q big bang γ =2 scale factor order domain wall energy ρ m 0 4 Λ 4 0 potential U(a) 4.3 Reissner-Nordström-AdS Q domain wall domain wall a bounce k domain wall k =0 k = 1 bounce catenary-type k =1 bounce Λ 4 =0 Reissner-Nordström-AdS black hole inner horizon (4.30) (4.52) Λ 4 =0 f k (a) > U(a) (4.53) f k (a) (4.30) domain wall bounce a = a b U(a b )=0 inner horizon a = a f(a )=0 f k (a) U(a) a a b < a (4.54) domain wall bounce inner horizon k =1 Penrose 4.4 inner horizon

73 bulk brane : Reissner-Nordström-AdS black hole Penrose domain wall domain wall Event horizon domain wall inner horizon inner horizon domain wall [67] domain wall 5 bulk U(1) gauge bulk Reissner-Nordström-AdS domain wall k =0 k = 1 catenary-type k =1 bounce inner horizon 5 bulk Schwarzschild-AdS bulk r =0 black hole 5 bulk U(1) gauge brane ( black hole )

74 SU(2) gauge bulk brane 5 bulk SU(2) gauge domain wall [16] brane Einstein-Yang-Mills black hole Λ 5 < 0 bulk domain wall 1 r μ(r) r domain wall domain wall (ɛ =1 ) black hole 5 bulk domain wall domain wall domain wall energy SU(2) gauge part Reissner-Nordström-AdS bulk domain wall k =1 domain wall k =0 k = 1 k =1 parameter b = λ 2 d2 w dr 2 (4.55) r=0 b min <b<0 λ (3.61) w(r) (3.73) gauge potential (b min ) b s <b<0 b min b s Λ 5 < 0 scale l Einstein-Yang-Mills scale λ l = l λ (4.56) domain wall Λ 4 =0 σ ρ m potential (4.45) domain wall U(a) < 0 a parameter b min <b<b crit (4.57) parameter domain wall b crit l 3.4 l domain wall parameter domain wall

75 bulk brane : Brane potential U(a) 2 5 bulk potential (4.45) 4 Λ bulk μ(a) lapse δ(a) k =1,l =0.1 b = 7.3 ( b s <b crit ) l (4.58) (2.31) (2.32) Λ 4 =0 G 5 = G 4l 2 (4.59) (4.58) g G 4 l (4.60) g 2 Yang-Mills g 2 l 4 order (4.60) domain wall parameter b s <b<b crit 4.5 domain wall bulk potential (4.45) Λ 4 =0 a 0.1 a 1 domain wall ρ m bounce 4 Λ 4 a Λ 4 < 0 8 Λ 4 > 0 catenary-type 8 parameter b

76 black hole 5 bulk black hole domain wall black hole k =1 domain wall black hole k =0 k = 1 domain wall k =0 black hole k = 1 black hole bulk domain wall k =1 k = 1 5 bulk μ(r) lapse δ(r) (3.87) (3.88) Lapse δ(a) bulk domain wall energy (4.28) energy ρ m (4.7) potential U(a) (4.45) U(a) = 1 [ k M 2 a 2 2lna a 2 Λ 4 3 a2 8πG ( 4C 0 a (2 3γ) 1+ C )] 0 3 2σ a 3γ (4.61) Schwarzschild-AdS bulk potential (4.48) 3 ln a/a 2 big bang (4.6) a potential a 0 domain wall potential U(a) domain wall inner horizon bulk I (inner horizon ) k =1 k = inner horizon 2 inner horizon I inner horizon II I 5 bulk μ(r) lapse δ(r) event horizon k = k = Λ 4 =0 bulk potential (4.45) potential U(a) a inner horizon black hole μ(r) r μ(r) μ 0 cycle potential U(a) 4.6 μ(a) 0 U(a) 0 1 m(r) 0 bounce U(a) domain wall bulk du(a)/da du(a)/da domain wall

77 bulk brane : Brane potential U(a) 3 I (inner horizon ) bulk potential 4 Λ 4 0 k =1,w h =0.4 k =0,w h =0.7 black hole potential (4.45) l =1 r h =1 a U(a) 1 U(a) 0 U(a) 0 II (inner horizon ) bulk potential 4 Λ 4 0 k =1,w h =0.701 k =0,w h =0.56 black hole potential (4.45) l =1 r h =1 a U(a) 1 U(a) 0 k =0 k =1 U(a max )=0 a max II (inner horizon ) II 5 black hole inner horizon 5 bulk μ(r) lapse δ(r) event horizon k = k = μ(r) (3.86)-(3.88) a ln r 4.6 Λ 4 =0 bulk potential (4.45) Inner horizon potential U(a) a 0 bulk domain wall a bounce domain wall k =0 bounce catenary-type k =1 domain wall bounce inner horizon 5 bulk U(1) SU(2) gauge

78 : bulk domain wall Bulk field 5 bulk k domain wall Bulk spacetime 5 bulk Sch-AdS 5 Schwarzschild-AdS (4.3.1 ) RN-AdS 5 Reissner-Nordström (4.3.2 ) particle-like 5 ( ) analytic BH 5 numerical BH I II I II ( ) Horizon 5 bulk event horizon (EH) inner horizon (IH) Evolution domain wall BB BC (big bang ) BB (big bang ) O C catenary-type Λ 4 =0 Bulk field k Bulk spacetime Horizon Evolution 1 EH BB BC 0 Sch-AdS BH EH BB -1 EH BB, C 1 EH + IH O U(1) or SU(2) part 0 RN-AdS BH EH + IH C -1 EH + IH C analytic BH EH + IH O 1 numerical BH I EH BB BC numerical BH II EH + IH O SU(2) part particle-like None O 0 numerical BH I EH BB numerical BH II EH + IH C -1 analytic BH EH + IH C domain wall Energy black hole lapse δ(r) r domain wall energy domain wall energy 5 bulk domain wall 5 5 bulk 4.5 lapse δ(a) du(a)/da (4.38) brane energy 5 bulk du(a)/da lapse δ(a) domain wall energy 5 black hole ( ) 5 bulk event horizon a lapse δ(a) domain wall energy

79 bulk brane 79 event horizon lapse δ(a) domain wall energy 5 bulk I lapse δ(a) domain wall energy 5 bulk domain wall domain wall energy 5 bulk domain wall energy 5 bulk energy domain wall a ( a ) domain wall energy (4.43) Einstein- Yang-Mills (3.81) gauge potential w (C.69) (4.43) 2 γ 2 8σW (γ 2) a 6 (4.62) γ =2 scale factor order γ =2 8σW 2 1 ln a a 6 (4.63) big bang (4.6) a Friedmann (4.37) μ(a)/a 4 μ (C.71) μ(a) a 4 = M 0 a 4 +(k W 0 2 ln a )2 a 4 (4.64) 1 a 4 2 a 4 ln a big bang (4.6) Brane γ =4/3 γ =1 dust

80

81 Einstein gauge Einstein-Yang-Mills black hole 4 1 brane 5 domain wall brane 5 Einstein-Yang-Mills brane Einstein-Yang-Mills 4 Einstein-Yang-Mills SU(2) gauge part colored black hole [24, 25] 5 Einstein-Yang-Mills [28] 4 Reissner-Nordström(-(A)dS) black hole horizon horizon Reissner-Nordström(-(A)dS) r 4 μ ln r 4 black hole 5 Λ parameter 5 Λ 5 parameter black hole 4 Λ 5 =0 Λ 5 < 0 4 [16] black hole black hole 4 4 brane Brane 5 (3+1) domain wall 5 bulk domain wall [16] 5 bulk μ lapse δ 2 Friedmann brane energy big bang

82 82 5 lapse δ brane energy energy 5 bulk μ brane domain wall 3 black hole 5 bulk SU(2) gauge brane lapse brane 5 bulk 5 5 bulk 5 bulk [15] brane 5.2 gauge gauge Einstein Yang-Mills M 0 Einstein Einstein [68] [69] black hole Einstein black hole [70] gauge field strength [71] gauge black hole [60] gauge black hole 1 gauge brane 1 [72]

83 COE ( )

84

85 85 A Riemann tensor Bianchi [29, 30] (M,g ab ) n A.1, Bianchi Riemann tensor R a bcd vector v a 2 R a bcdv b = 2 [c d] v a (A.1) Ricci tensor R ab, Ricci scalar R R a bcd Weyl tensor C abcd R abcd, R ab, R R ab = R c acb (A.2) R = R a a (A.3) C abcd = R abcd 2 n 2 (g 2 c[ar b]d g d[a R b]c )+ (n 1)(n 2) g c[ag b]d R (A.4) R abcd Bianchi R ab, R [e R ab]cd = 0 (A.5) [e R a]c = 1 2 d R eacd (A.6) e R = 2 c R ec (A.7) A.2 M M h ab h ab = g ab n a n b (A.8)

86 86 A n a M vector M timelike (n a spacelike vector) M spacelike (n a spacelike vector) + M K ab K ab = ( c n d )h a c h b d (A.9) Gauss (M,h ab ) Riemann tensor R a bcd R abcd, K ab R a bcd = R e fghh a eh f b h g c h h d ± K a ck bd K a dk bc (A.10) (M,h ab ) Ricci tensor R ab Ricci scalar R R abcd, R ab, R, K ab R ab = R cd h c a h d b R c defn c h d a n e h f b ± KK ab K c a K cb (A.11) R = R 2R ab n a n b ± K 2 K ab K ab (A.12) K = K a a Codacci K ab R ab D b K ab D a K = R cd n c q a d (A.13) D a (M,h ab )

87 87 B gauge gauge B.1 B SU(2) gauge [28, 38] B.1 gauge gauge [38] B.1.1 gauge Killing vector D Riemann M M N Lie S S Lie M compact M N Killing vector ξ n (n =1,,N) Killing vector ξ λ n (n =1,,N) ξ = λ nξn (B.1) Killing vector ξ M g ab ξ g ab = 0 (B.2) ξ ξ Lie Killng vector ξ vector Lie f mnp [ ξ m, ξ n ] a ξm b bξn a ξb n bξm a = f mnp ξp a (B.3) vector η tensor T ab... cd... Lie η T ab... cd... = 0 (B.4) vector η gauge A a gauge (3.6) A a η

88 88 B gauge gauge η Lie g M scalar W η A a = D a W = a W [A a,w] (B.5) gauge A a field strength η F ab = [F ab,w] (B.6) A a (3.6) W W = gwg 1 + η a ( a g)g 1 = W + η V [W, V ] (B.7) W (B.5) gauge gauge Killing vector ξ Lie g M scalar W (B.5) Lie g M 1 A a Killing vector N Killing vector ξ n λ n (B.1) (B.5) ξn A a = D a W n (B.8) W n Lie g M scalar W = λ n W n (B.9) Killing vector (B.3) W n ξm W n ξn W m [W m,w n ] f mnp W p = 0 (B.10) F ab F ab (B.5) ξn a F ab = D b Ψ m (B.11) Ψ n = ξna a a W n (B.12) ξm a ξb n F ab = f mnp Ψ p [Ψ m, Ψ n ] (B.13)

89 B.1. gauge 89 B.1.2 gauge M p M S X M N 1 M x a x a = (x α,y α ) (B.14) x α =const. X α,α α =1,,N, α =1,,D N Frobenius X Killing vector X Killing vector ξ ξ a = (0,ξ α ) (B.15) ξ y α x α N X X N S A α A α,w m y α Lie S Lie s s Killing vector Lie X Killing vector ξ n S vector ξ n R [ ξ R m, ξ R n ]ˆα = f mnp ξ Rˆα p (B.16) S vector ˆα 1 N vector ξ n R Killing vector ξ n S Lie J n s s S sj n = ξ Rs (B.17) n X 1 q X q R S S N N S/R X Rs S/R X y α R y ω (ω =1,,N N ) s 0 (y α ) Rs(y α ) 1 S y ˆα y ˆα = (y ω,y α ) (B.18) s(y ˆα ) = r(y ω )s 0 (y α ) (B.19) r R S vector ξ n R ξ Rˆα n = (ξn Rω,ξn Rα ) (B.20) 1 N N, D ξ Rα n = ξ α n (B.21)

90 90 B gauge W n (y α ) Lie g S scalar W n W n (y ˆα ) W n (y α ) (B.22) W n (B.10) W n ξ R m Wn ξ R n Wm [ W m, W n ] f mnp Wp = 0 (B.23) Lie g S vector Wˆα W n = ξ Rˆα n Wˆα (B.24) (B.7) Wˆα W n gauge W ˆα = Wˆα + ˆα V [ Wˆα,V] (B.25) (B.23) ˆα W ˆβ ˆβ Wˆα [ Wˆα, W ˆβ] = 0 (B.26) Wˆα S gauge 2 gauge Wˆα =0 W n =0 gauge gauge A α (y β ) Lie g S 1 Ā ˆα(y ˆβ) Ā ˆα (y ˆβ) (0,A α (y β )) (B.27) Ā ˆα A μ gauge gauge A μ (B.8) y α ξ RĀ ˆα n = D ˆα Wn (B.28) W n =0 gauge ξ RĀ ˆα n = 0 (B.29) S vector Ā ˆα B.1.3 tensor S vector ξ R tensor T ˆγˆδ... ˆα ˆβ... ξ RT ˆγˆδ... ˆα ˆβ... = 0 (B.30) 2 Field strength F μν 0 gauge gauge gauge gauge A μ =0

tomocci ,. :,,,, Lie,,,, Einstein, Newton. 1 M n C. s, M p. M f, p d ds f = dxµ p ds µ f p, X p = X µ µ p = dxµ ds µ p. µ, X µ.,. p,. T M p.

tomocci ,. :,,,, Lie,,,, Einstein, Newton. 1 M n C. s, M p. M f, p d ds f = dxµ p ds µ f p, X p = X µ µ p = dxµ ds µ p. µ, X µ.,. p,. T M p. tomocci 18 7 5...,. :,,,, Lie,,,, Einstein, Newton. 1 M n C. s, M p. M f, p d ds f = dxµ p ds µ f p, X p = X µ µ p = dxµ ds µ p. µ, X µ.,. p,. T M p. M F (M), X(F (M)).. T M p e i = e µ i µ. a a = a i

More information

20 4 20 i 1 1 1.1............................ 1 1.2............................ 4 2 11 2.1................... 11 2.2......................... 11 2.3....................... 19 3 25 3.1.............................

More information

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2 2005 9/8-11 2 2.2 ( 2-5) γ ( ) γ cos θ 2πr πρhr 2 g h = 2γ cos θ ρgr (2.1) γ = ρgrh (2.2) 2 cos θ θ cos θ = 1 (2.2) γ = 1 ρgrh (2.) 2 2. p p ρgh p ( ) p p = p ρgh (2.) h p p = 2γ r 1 1 (Berry,1975) 2-6

More information

: 2005 ( ρ t +dv j =0 r m m r = e E( r +e r B( r T 208 T = d E j 207 ρ t = = = e t δ( r r (t e r r δ( r r (t e r ( r δ( r r (t dv j =

: 2005 ( ρ t +dv j =0 r m m r = e E( r +e r B( r T 208 T = d E j 207 ρ t = = = e t δ( r r (t e r r δ( r r (t e r ( r δ( r r (t dv j = 72 Maxwell. Maxwell e r ( =,,N Maxwell rot E + B t = 0 rot H D t = j dv D = ρ dv B = 0 D = ɛ 0 E H = μ 0 B ρ( r = j( r = N e δ( r r = N e r δ( r r = : 2005 ( 2006.8.22 73 207 ρ t +dv j =0 r m m r = e E(

More information

006 11 8 0 3 1 5 1.1..................... 5 1......................... 6 1.3.................... 6 1.4.................. 8 1.5................... 8 1.6................... 10 1.6.1......................

More information

Einstein ( ) YITP

Einstein ( ) YITP Einstein ( ) 2013 8 21 YITP 0. massivegravity Massive spin 2 field theory Fierz-Pauli (FP ) Kinetic term L (2) EH = 1 2 [ λh µν λ h µν λ h λ h 2 µ h µλ ν h νλ + 2 µ h µλ λ h], (1) Mass term FP L mass =

More information

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT I (008 4 0 de Broglie (de Broglie p λ k h Planck ( 6.63 0 34 Js p = h λ = k ( h π : Dirac k B Boltzmann (.38 0 3 J/K T U = 3 k BT ( = λ m k B T h m = 0.067m 0 m 0 = 9. 0 3 kg GaAs( a T = 300 K 3 fg 07345

More information

量子力学 問題

量子力学 問題 3 : 203 : 0. H = 0 0 2 6 0 () = 6, 2 = 2, 3 = 3 3 H 6 2 3 ϵ,2,3 (2) ψ = (, 2, 3 ) ψ Hψ H (3) P i = i i P P 2 = P 2 P 3 = P 3 P = O, P 2 i = P i (4) P + P 2 + P 3 = E 3 (5) i ϵ ip i H 0 0 (6) R = 0 0 [H,

More information

A

A A04-164 2008 2 13 1 4 1.1.......................................... 4 1.2..................................... 4 1.3..................................... 4 1.4..................................... 5 2

More information

meiji_resume_1.PDF

meiji_resume_1.PDF β β β (q 1,q,..., q n ; p 1, p,..., p n ) H(q 1,q,..., q n ; p 1, p,..., p n ) Hψ = εψ ε k = k +1/ ε k = k(k 1) (x, y, z; p x, p y, p z ) (r; p r ), (θ; p θ ), (ϕ; p ϕ ) ε k = 1/ k p i dq i E total = E

More information

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5.

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5. A 1. Boltzmann Planck u(ν, T )dν = 8πh ν 3 c 3 kt 1 dν h 6.63 10 34 J s Planck k 1.38 10 23 J K 1 Boltzmann u(ν, T ) T ν e hν c = 3 10 8 m s 1 2. Planck λ = c/ν Rayleigh-Jeans u(ν, T )dν = 8πν2 kt dν c

More information

QCD 1 QCD GeV 2014 QCD 2015 QCD SU(3) QCD A µ g µν QCD 1

QCD 1 QCD GeV 2014 QCD 2015 QCD SU(3) QCD A µ g µν QCD 1 QCD 1 QCD GeV 2014 QCD 2015 QCD SU(3) QCD A µ g µν QCD 1 (vierbein) QCD QCD 1 1: QCD QCD Γ ρ µν A µ R σ µνρ F µν g µν A µ Lagrangian gr TrFµν F µν No. Yes. Yes. No. No! Yes! [1] Nash & Sen [2] Riemann

More information

4 2 Rutherford 89 Rydberg λ = R ( n 2 ) n 2 n = n +,n +2, n = Lyman n =2 Balmer n =3 Paschen R Rydberg R = cm 896 Zeeman Zeeman Zeeman Lorentz

4 2 Rutherford 89 Rydberg λ = R ( n 2 ) n 2 n = n +,n +2, n = Lyman n =2 Balmer n =3 Paschen R Rydberg R = cm 896 Zeeman Zeeman Zeeman Lorentz 2 Rutherford 2. Rutherford N. Bohr Rutherford 859 Kirchhoff Bunsen 86 Maxwell Maxwell 885 Balmer λ Balmer λ = 364.56 n 2 n 2 4 Lyman, Paschen 3 nm, n =3, 4, 5, 4 2 Rutherford 89 Rydberg λ = R ( n 2 ) n

More information

δ ij δ ij ˆx ˆx ŷ ŷ ẑ ẑ 0, ˆx ŷ ŷ ˆx ẑ, ŷ ẑ ẑ ŷ ẑ, ẑ ˆx ˆx ẑ ŷ, a b a x ˆx + a y ŷ + a z ẑ b x ˆx + b

δ ij δ ij ˆx ˆx ŷ ŷ ẑ ẑ 0, ˆx ŷ ŷ ˆx ẑ, ŷ ẑ ẑ ŷ ẑ, ẑ ˆx ˆx ẑ ŷ, a b a x ˆx + a y ŷ + a z ẑ b x ˆx + b 23 2 2.1 n n r x, y, z ˆx ŷ ẑ 1 a a x ˆx + a y ŷ + a z ẑ 2.1.1 3 a iˆx i. 2.1.2 i1 i j k e x e y e z 3 a b a i b i i 1, 2, 3 x y z ˆx i ˆx j δ ij, 2.1.3 n a b a i b i a i b i a x b x + a y b y + a z b

More information

( ; ) C. H. Scholz, The Mechanics of Earthquakes and Faulting : - ( ) σ = σ t sin 2π(r a) λ dσ d(r a) =

( ; ) C. H. Scholz, The Mechanics of Earthquakes and Faulting : - ( ) σ = σ t sin 2π(r a) λ dσ d(r a) = 1 9 8 1 1 1 ; 1 11 16 C. H. Scholz, The Mechanics of Earthquakes and Faulting 1. 1.1 1.1.1 : - σ = σ t sin πr a λ dσ dr a = E a = π λ σ πr a t cos λ 1 r a/λ 1 cos 1 E: σ t = Eλ πa a λ E/π γ : λ/ 3 γ =

More information

Gmech08.dvi

Gmech08.dvi 51 5 5.1 5.1.1 P r P z θ P P P z e r e, z ) r, θ, ) 5.1 z r e θ,, z r, θ, = r sin θ cos = r sin θ sin 5.1) e θ e z = r cos θ r, θ, 5.1: 0 r

More information

211 kotaro@math.titech.ac.jp 1 R *1 n n R n *2 R n = {(x 1,..., x n ) x 1,..., x n R}. R R 2 R 3 R n R n R n D D R n *3 ) (x 1,..., x n ) f(x 1,..., x n ) f D *4 n 2 n = 1 ( ) 1 f D R n f : D R 1.1. (x,

More information

YITP50.dvi

YITP50.dvi 1 70 80 90 50 2 3 3 84 first revolution 4 94 second revolution 5 6 2 1: 1 3 consistent 1-loop Feynman 1-loop Feynman loop loop loop Feynman 2 3 2: 1-loop Feynman loop 3 cycle 4 = 3: 4: 4 cycle loop Feynman

More information

untitled

untitled 20 11 1 KEK 2 (cosmological perturbation theory) CMB R. Durrer, The theory of CMB Anisotropies, astro-ph/0109522; A. Liddle and D. Lyth, Cosmological Inflation and Large-Scale Structure (Cambridge University

More information

1 ( ) Einstein, Robertson-Walker metric, R µν R 2 g µν + Λg µν = 8πG c 4 T µν, (1) ( ds 2 = c 2 dt 2 + a(t) 2 dr 2 ) + 1 Kr 2 r2 dω 2, (2) (ȧ ) 2 H 2

1 ( ) Einstein, Robertson-Walker metric, R µν R 2 g µν + Λg µν = 8πG c 4 T µν, (1) ( ds 2 = c 2 dt 2 + a(t) 2 dr 2 ) + 1 Kr 2 r2 dω 2, (2) (ȧ ) 2 H 2 1 ( ) Einstein, Robertson-Walker metric, R µν R 2 g µν + Λg µν = 8πG c 4 T µν, (1) ( ds 2 = c 2 dt 2 + a(t) 2 dr 2 ) + 1 Kr 2 r2 dω 2, (2) (ȧ ) 2 H 2 = 8πG a 3c 2 ρ Kc2 a 2 + Λc2 3 (3), ä a = 4πG Λc2 (ρ

More information

II ( ) (7/31) II ( [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Re

II ( ) (7/31) II (  [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Re II 29 7 29-7-27 ( ) (7/31) II (http://www.damp.tottori-u.ac.jp/~ooshida/edu/fluid/) [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Reynolds [ (4.6), (45.8)] [ p.186] Navier Stokes I Euler Navier

More information

18 2 F 12 r 2 r 1 (3) Coulomb km Coulomb M = kg F G = ( ) ( ) ( ) 2 = [N]. Coulomb

18 2 F 12 r 2 r 1 (3) Coulomb km Coulomb M = kg F G = ( ) ( ) ( ) 2 = [N]. Coulomb r 1 r 2 r 1 r 2 2 Coulomb Gauss Coulomb 2.1 Coulomb 1 2 r 1 r 2 1 2 F 12 2 1 F 21 F 12 = F 21 = 1 4πε 0 1 2 r 1 r 2 2 r 1 r 2 r 1 r 2 (2.1) Coulomb ε 0 = 107 4πc 2 =8.854 187 817 10 12 C 2 N 1 m 2 (2.2)

More information

K E N Z U 2012 7 16 HP M. 1 1 4 1.1 3.......................... 4 1.2................................... 4 1.2.1..................................... 4 1.2.2.................................... 5................................

More information

) a + b = i + 6 b c = 6i j ) a = 0 b = c = 0 ) â = i + j 0 ˆb = 4) a b = b c = j + ) cos α = cos β = 6) a ˆb = b ĉ = 0 7) a b = 6i j b c = i + 6j + 8)

) a + b = i + 6 b c = 6i j ) a = 0 b = c = 0 ) â = i + j 0 ˆb = 4) a b = b c = j + ) cos α = cos β = 6) a ˆb = b ĉ = 0 7) a b = 6i j b c = i + 6j + 8) 4 4 ) a + b = i + 6 b c = 6i j ) a = 0 b = c = 0 ) â = i + j 0 ˆb = 4) a b = b c = j + ) cos α = cos β = 6) a ˆb = b ĉ = 0 7) a b = 6i j b c = i + 6j + 8) a b a b = 6i j 4 b c b c 9) a b = 4 a b) c = 7

More information

80 4 r ˆρ i (r, t) δ(r x i (t)) (4.1) x i (t) ρ i ˆρ i t = 0 i r 0 t(> 0) j r 0 + r < δ(r 0 x i (0))δ(r 0 + r x j (t)) > (4.2) r r 0 G i j (r, t) dr 0

80 4 r ˆρ i (r, t) δ(r x i (t)) (4.1) x i (t) ρ i ˆρ i t = 0 i r 0 t(> 0) j r 0 + r < δ(r 0 x i (0))δ(r 0 + r x j (t)) > (4.2) r r 0 G i j (r, t) dr 0 79 4 4.1 4.1.1 x i (t) x j (t) O O r 0 + r r r 0 x i (0) r 0 x i (0) 4.1 L. van. Hove 1954 space-time correlation function V N 4.1 ρ 0 = N/V i t 80 4 r ˆρ i (r, t) δ(r x i (t)) (4.1) x i (t) ρ i ˆρ i t

More information

CKY CKY CKY 4 Kerr CKY

CKY CKY CKY 4 Kerr CKY ( ) 1. (I) Hidden Symmetry and Exact Solutions in Einstein Gravity Houri-Y.Y: Progress Supplement (2011) (II) Generalized Hidden Symmetries and Kerr-Sen Black Hole Houri-Kubiznak-Warnick-Y.Y: JHEP (2010)

More information

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α 18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α 2 ), ϕ(t) = B 1 cos(ω 1 t + α 1 ) + B 2 cos(ω 2 t

More information

Gauss Gauss ɛ 0 E ds = Q (1) xy σ (x, y, z) (2) a ρ(x, y, z) = x 2 + y 2 (r, θ, φ) (1) xy A Gauss ɛ 0 E ds = ɛ 0 EA Q = ρa ɛ 0 EA = ρea E = (ρ/ɛ 0 )e

Gauss Gauss ɛ 0 E ds = Q (1) xy σ (x, y, z) (2) a ρ(x, y, z) = x 2 + y 2 (r, θ, φ) (1) xy A Gauss ɛ 0 E ds = ɛ 0 EA Q = ρa ɛ 0 EA = ρea E = (ρ/ɛ 0 )e 7 -a 7 -a February 4, 2007 1. 2. 3. 4. 1. 2. 3. 1 Gauss Gauss ɛ 0 E ds = Q (1) xy σ (x, y, z) (2) a ρ(x, y, z) = x 2 + y 2 (r, θ, φ) (1) xy A Gauss ɛ 0 E ds = ɛ 0 EA Q = ρa ɛ 0 EA = ρea E = (ρ/ɛ 0 )e z

More information

Part () () Γ Part ,

Part () () Γ Part , Contents a 6 6 6 6 6 6 6 7 7. 8.. 8.. 8.3. 8 Part. 9. 9.. 9.. 3. 3.. 3.. 3 4. 5 4.. 5 4.. 9 4.3. 3 Part. 6 5. () 6 5.. () 7 5.. 9 5.3. Γ 3 6. 3 6.. 3 6.. 3 6.3. 33 Part 3. 34 7. 34 7.. 34 7.. 34 8. 35

More information

( ) ( 40 )+( 60 ) Schrödinger 3. (a) (b) (c) yoshioka/education-09.html pdf 1

( ) ( 40 )+( 60 ) Schrödinger 3. (a) (b) (c)   yoshioka/education-09.html pdf 1 2009 1 ( ) ( 40 )+( 60 ) 1 1. 2. Schrödinger 3. (a) (b) (c) http://goofy.phys.nara-wu.ac.jp/ yoshioka/education-09.html pdf 1 1. ( photon) ν λ = c ν (c = 3.0 108 /m : ) ɛ = hν (1) p = hν/c = h/λ (2) h

More information

50 2 I SI MKSA r q r q F F = 1 qq 4πε 0 r r 2 r r r r (2.2 ε 0 = 1 c 2 µ 0 c = m/s q 2.1 r q' F r = 0 µ 0 = 4π 10 7 N/A 2 k = 1/(4πε 0 qq

50 2 I SI MKSA r q r q F F = 1 qq 4πε 0 r r 2 r r r r (2.2 ε 0 = 1 c 2 µ 0 c = m/s q 2.1 r q' F r = 0 µ 0 = 4π 10 7 N/A 2 k = 1/(4πε 0 qq 49 2 I II 2.1 3 e e = 1.602 10 19 A s (2.1 50 2 I SI MKSA 2.1.1 r q r q F F = 1 qq 4πε 0 r r 2 r r r r (2.2 ε 0 = 1 c 2 µ 0 c = 3 10 8 m/s q 2.1 r q' F r = 0 µ 0 = 4π 10 7 N/A 2 k = 1/(4πε 0 qq F = k r

More information

30

30 3 ............................................2 2...........................................2....................................2.2...................................2.3..............................

More information

1. 4cm 16 cm 4cm 20cm 18 cm L λ(x)=ax [kg/m] A x 4cm A 4cm 12 cm h h Y 0 a G 0.38h a b x r(x) x y = 1 h 0.38h G b h X x r(x) 1 S(x) = πr(x) 2 a,b, h,π

1. 4cm 16 cm 4cm 20cm 18 cm L λ(x)=ax [kg/m] A x 4cm A 4cm 12 cm h h Y 0 a G 0.38h a b x r(x) x y = 1 h 0.38h G b h X x r(x) 1 S(x) = πr(x) 2 a,b, h,π . 4cm 6 cm 4cm cm 8 cm λ()=a [kg/m] A 4cm A 4cm cm h h Y a G.38h a b () y = h.38h G b h X () S() = π() a,b, h,π V = ρ M = ρv G = M h S() 3 d a,b, h 4 G = 5 h a b a b = 6 ω() s v m θ() m v () θ() ω() dθ()

More information

2009 2 26 1 3 1.1.................................................. 3 1.2..................................................... 3 1.3...................................................... 3 1.4.....................................................

More information

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0 1 1 1.1 1.) T D = T = D = kn 1. 1.4) F W = F = W/ = kn/ = 15 kn 1. 1.9) R = W 1 + W = 6 + 5 = 11 N. 1.9) W b W 1 a = a = W /W 1 )b = 5/6) = 5 cm 1.4 AB AC P 1, P x, y x, y y x 1.4.) P sin 6 + P 1 sin 45

More information

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T NHK 204 2 0 203 2 24 ( ) 7 00 7 50 203 2 25 ( ) 7 00 7 50 203 2 26 ( ) 7 00 7 50 203 2 27 ( ) 7 00 7 50 I. ( ν R n 2 ) m 2 n m, R = e 2 8πε 0 hca B =.09737 0 7 m ( ν = ) λ a B = 4πε 0ħ 2 m e e 2 = 5.2977

More information

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2 II No.1 [n/] [1]H n x) H n x) = 1) r n! r!n r)! x)n r r= []H n x) n,, H n x) = 1) n H n x) [3] H n x) = 1) n dn x e dx n e x [4] H n+1 x) = xh n x) nh n 1 x) ) d dx x H n x) = H n+1 x) d dx H nx) = nh

More information

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2 No.2 1 2 2 δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i δx j (5) δs 2 = δx i δx i + 2 u i δx i δx j = δs 2 + 2s ij δx i δx j

More information

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) II 214-1 : October 2, 214 Version : 1.1 Kawahira, Tomoki TA (Kondo, Hirotaka ) http://www.math.nagoya-u.ac.jp/~kawahira/courses/14w-biseki.html pdf 1 2 1 9 1 16 1 23 1 3 11 6 11 13 11 2 11 27 12 4 12 11

More information

215 11 13 1 2 1.1....................... 2 1.2.................... 2 1.3..................... 2 1.4...................... 3 1.5............... 3 1.6........................... 4 1.7.................. 4

More information

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 初版 1 刷発行時のものです. 微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. ttp://www.morikita.co.jp/books/mid/00571 このサンプルページの内容は, 初版 1 刷発行時のものです. i ii 014 10 iii [note] 1 3 iv 4 5 3 6 4 x 0 sin x x 1 5 6 z = f(x, y) 1 y = f(x)

More information

Einstein 1905 Lorentz Maxwell c E p E 2 (pc) 2 = m 2 c 4 (7.1) m E ( ) E p µ =(p 0,p 1,p 2,p 3 )=(p 0, p )= c, p (7.2) x µ =(x 0,x 1,x 2,x

Einstein 1905 Lorentz Maxwell c E p E 2 (pc) 2 = m 2 c 4 (7.1) m E ( ) E p µ =(p 0,p 1,p 2,p 3 )=(p 0, p )= c, p (7.2) x µ =(x 0,x 1,x 2,x 7 7.1 7.1.1 Einstein 1905 Lorentz Maxwell c E p E 2 (pc) 2 = m 2 c 4 (7.1) m E ( ) E p µ =(p 0,p 1,p 2,p 3 )=(p 0, p )= c, p (7.2) x µ =(x 0,x 1,x 2,x 3 )=(x 0, x )=(ct, x ) (7.3) E/c ct K = E mc 2 (7.4)

More information

Note.tex 2008/09/19( )

Note.tex 2008/09/19( ) 1 20 9 19 2 1 5 1.1........................ 5 1.2............................. 8 2 9 2.1............................. 9 2.2.............................. 10 3 13 3.1.............................. 13 3.2..................................

More information

( )

( ) 7..-8..8.......................................................................... 4.................................... 3...................................... 3..3.................................. 4.3....................................

More information

21 2 26 i 1 1 1.1............................ 1 1.2............................ 3 2 9 2.1................... 9 2.2.......... 9 2.3................... 11 2.4....................... 12 3 15 3.1..........

More information

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4 1. k λ ν ω T v p v g k = π λ ω = πν = π T v p = λν = ω k v g = dω dk 1) ) 3) 4). p = hk = h λ 5) E = hν = hω 6) h = h π 7) h =6.6618 1 34 J sec) hc=197.3 MeV fm = 197.3 kev pm= 197.3 ev nm = 1.97 1 3 ev

More information

Untitled

Untitled II 14 14-7-8 8/4 II (http://www.damp.tottori-u.ac.jp/~ooshida/edu/fluid/) [ (3.4)] Navier Stokes [ 6/ ] Navier Stokes 3 [ ] Reynolds [ (4.6), (45.8)] [ p.186] Navier Stokes I 1 balance law t (ρv i )+ j

More information

Gmech08.dvi

Gmech08.dvi 145 13 13.1 13.1.1 0 m mg S 13.1 F 13.1 F /m S F F 13.1 F mg S F F mg 13.1: m d2 r 2 = F + F = 0 (13.1) 146 13 F = F (13.2) S S S S S P r S P r r = r 0 + r (13.3) r 0 S S m d2 r 2 = F (13.4) (13.3) d 2

More information

TOP URL 1

TOP URL   1 TOP URL http://amonphys.web.fc.com/ 3.............................. 3.............................. 4.3 4................... 5.4........................ 6.5........................ 8.6...........................7

More information

中央大学セミナー.ppt

中央大学セミナー.ppt String Gas Cosmology References Brandenberger & Vafa, Superstrings in the early universe, Nucl.Phys.B316(1988) 391. Tseytlin & Vafa, Elements of string cosmology, Nucl.Phys.B372 (1992) 443. Brandenberger,

More information

ADM-Hamiltonian Cheeger-Gromov 3. Penrose

ADM-Hamiltonian Cheeger-Gromov 3. Penrose ADM-Hamiltonian 1. 2. Cheeger-Gromov 3. Penrose 0. ADM-Hamiltonian (M 4, h) Einstein-Hilbert M 4 R h hdx L h = R h h δl h = 0 (Ric h ) αβ 1 2 R hg αβ = 0 (Σ 3, g ij ) (M 4, h ij ) g ij, k ij Σ π ij = g(k

More information

/ Christopher Essex Radiation and the Violation of Bilinearity in the Thermodynamics of Irreversible Processes, Planet.Space Sci.32 (1984) 1035 Radiat

/ Christopher Essex Radiation and the Violation of Bilinearity in the Thermodynamics of Irreversible Processes, Planet.Space Sci.32 (1984) 1035 Radiat / Christopher Essex Radiation and the Violation of Bilinearity in the Thermodynamics of Irreversible Processes, Planet.Space Sci.32 (1984) 1035 Radiation and the Continuing Failure of the Bilinear Formalism,

More information

A (1) = 4 A( 1, 4) 1 A 4 () = tan A(0, 0) π A π

A (1) = 4 A( 1, 4) 1 A 4 () = tan A(0, 0) π A π 4 4.1 4.1.1 A = f() = f() = a f (a) = f() (a, f(a)) = f() (a, f(a)) f(a) = f 0 (a)( a) 4.1 (4, ) = f() = f () = 1 = f (4) = 1 4 4 (4, ) = 1 ( 4) 4 = 1 4 + 1 17 18 4 4.1 A (1) = 4 A( 1, 4) 1 A 4 () = tan

More information

0406_total.pdf

0406_total.pdf 59 7 7.1 σ-ω σ-ω σ ω σ = σ(r), ω µ = δ µ,0 ω(r) (6-4) (iγ µ µ m U(r) γ 0 V (r))ψ(x) = 0 (7-1) U(r) = g σ σ(r), V (r) = g ω ω(r) σ(r) ω(r) (6-3) ( 2 + m 2 σ)σ(r) = g σ ψψ (7-2) ( 2 + m 2 ω)ω(r) = g ω ψγ

More information

2000年度『数学展望 I』講義録

2000年度『数学展望 I』講義録 2000 I I IV I II 2000 I I IV I-IV. i ii 3.10 (http://www.math.nagoya-u.ac.jp/ kanai/) 2000 A....1 B....4 C....10 D....13 E....17 Brouwer A....21 B....26 C....33 D....39 E. Sperner...45 F....48 A....53

More information

R R 16 ( 3 )

R R 16   ( 3 ) (017 ) 9 4 7 ( ) ( 3 ) ( 010 ) 1 (P3) 1 11 (P4) 1 1 (P4) 1 (P15) 1 (P16) (P0) 3 (P18) 3 4 (P3) 4 3 4 31 1 5 3 5 4 6 5 9 51 9 5 9 6 9 61 9 6 α β 9 63 û 11 64 R 1 65 13 66 14 7 14 71 15 7 R R 16 http://wwwecoosaka-uacjp/~tazak/class/017

More information

25 7 31 i 1 1 1.1......................... 1 1.1.1 Newton..................... 1 1.1.2 Galilei................. 1 1.1.3...................... 3 1.2.......................... 3 1.3..........................

More information

2 Chapter 4 (f4a). 2. (f4cone) ( θ) () g M. 2. (f4b) T M L P a θ (f4eki) ρ H A a g. v ( ) 2. H(t) ( )

2 Chapter 4 (f4a). 2. (f4cone) ( θ) () g M. 2. (f4b) T M L P a θ (f4eki) ρ H A a g. v ( ) 2. H(t) ( ) http://astr-www.kj.yamagata-u.ac.jp/~shibata f4a f4b 2 f4cone f4eki f4end 4 f5meanfp f6coin () f6a f7a f7b f7d f8a f8b f9a f9b f9c f9kep f0a f0bt version feqmo fvec4 fvec fvec6 fvec2 fvec3 f3a (-D) f3b

More information

C10-075 26 2 12 1 1 4 1.1............................. 4 1.2............................ 5 1.3................................... 5 2 6 2.1............................ 6 2.2......................... 6

More information

( ) ) ) ) 5) 1 J = σe 2 6) ) 9) 1955 Statistical-Mechanical Theory of Irreversible Processes )

( ) ) ) ) 5) 1 J = σe 2 6) ) 9) 1955 Statistical-Mechanical Theory of Irreversible Processes ) ( 3 7 4 ) 2 2 ) 8 2 954 2) 955 3) 5) J = σe 2 6) 955 7) 9) 955 Statistical-Mechanical Theory of Irreversible Processes 957 ) 3 4 2 A B H (t) = Ae iωt B(t) = B(ω)e iωt B(ω) = [ Φ R (ω) Φ R () ] iω Φ R (t)

More information

July 28, H H 0 H int = H H 0 H int = H int (x)d 3 x Schrödinger Picture Ψ(t) S =e iht Ψ H O S Heisenberg Picture Ψ H O H (t) =e iht O S e i

July 28, H H 0 H int = H H 0 H int = H int (x)d 3 x Schrödinger Picture Ψ(t) S =e iht Ψ H O S Heisenberg Picture Ψ H O H (t) =e iht O S e i July 8, 4. H H H int H H H int H int (x)d 3 x Schrödinger Picture Ψ(t) S e iht Ψ H O S Heisenberg Picture Ψ H O H (t) e iht O S e iht Interaction Picture Ψ(t) D e iht Ψ(t) S O D (t) e iht O S e ih t (Dirac

More information

i

i 009 I 1 8 5 i 0 1 0.1..................................... 1 0.................................................. 1 0.3................................. 0.4........................................... 3

More information

I-2 (100 ) (1) y(x) y dy dx y d2 y dx 2 (a) y + 2y 3y = 9e 2x (b) x 2 y 6y = 5x 4 (2) Bernoulli B n (n = 0, 1, 2,...) x e x 1 = n=0 B 0 B 1 B 2 (3) co

I-2 (100 ) (1) y(x) y dy dx y d2 y dx 2 (a) y + 2y 3y = 9e 2x (b) x 2 y 6y = 5x 4 (2) Bernoulli B n (n = 0, 1, 2,...) x e x 1 = n=0 B 0 B 1 B 2 (3) co 16 I ( ) (1) I-1 I-2 I-3 (2) I-1 ( ) (100 ) 2l x x = 0 y t y(x, t) y(±l, t) = 0 m T g y(x, t) l y(x, t) c = 2 y(x, t) c 2 2 y(x, t) = g (A) t 2 x 2 T/m (1) y 0 (x) y 0 (x) = g c 2 (l2 x 2 ) (B) (2) (1)

More information

SUSY DWs

SUSY DWs @ 2013 1 25 Supersymmetric Domain Walls Eric A. Bergshoeff, Axel Kleinschmidt, and Fabio Riccioni Phys. Rev. D86 (2012) 085043 (arxiv:1206.5697) ( ) Contents 1 2 SUSY Domain Walls Wess-Zumino Embedding

More information

K E N Z U 01 7 16 HP M. 1 1 4 1.1 3.......................... 4 1.................................... 4 1..1..................................... 4 1...................................... 5................................

More information

N/m f x x L dl U 1 du = T ds pdv + fdl (2.1)

N/m f x x L dl U 1 du = T ds pdv + fdl (2.1) 23 2 2.1 10 5 6 N/m 2 2.1.1 f x x L dl U 1 du = T ds pdv + fdl (2.1) 24 2 dv = 0 dl ( ) U f = T L p,t ( ) S L p,t (2.2) 2 ( ) ( ) S f = L T p,t p,l (2.3) ( ) U f = L p,t + T ( ) f T p,l (2.4) 1 f e ( U/

More information

9 1. (Ti:Al 2 O 3 ) (DCM) (Cr:Al 2 O 3 ) (Cr:BeAl 2 O 4 ) Ĥ0 ψ n (r) ω n Schrödinger Ĥ 0 ψ n (r) = ω n ψ n (r), (1) ω i ψ (r, t) = [Ĥ0 + Ĥint (

9 1. (Ti:Al 2 O 3 ) (DCM) (Cr:Al 2 O 3 ) (Cr:BeAl 2 O 4 ) Ĥ0 ψ n (r) ω n Schrödinger Ĥ 0 ψ n (r) = ω n ψ n (r), (1) ω i ψ (r, t) = [Ĥ0 + Ĥint ( 9 1. (Ti:Al 2 O 3 ) (DCM) (Cr:Al 2 O 3 ) (Cr:BeAl 2 O 4 ) 2. 2.1 Ĥ ψ n (r) ω n Schrödinger Ĥ ψ n (r) = ω n ψ n (r), (1) ω i ψ (r, t) = [Ĥ + Ĥint (t)] ψ (r, t), (2) Ĥ int (t) = eˆxe cos ωt ˆdE cos ωt, (3)

More information

v v = v 1 v 2 v 3 (1) R = (R ij ) (2) R (R 1 ) ij = R ji (3) 3 R ij R ik = δ jk (4) i=1 δ ij Kronecker δ ij = { 1 (i = j) 0 (i

v v = v 1 v 2 v 3 (1) R = (R ij ) (2) R (R 1 ) ij = R ji (3) 3 R ij R ik = δ jk (4) i=1 δ ij Kronecker δ ij = { 1 (i = j) 0 (i 1. 1 1.1 1.1.1 1.1.1.1 v v = v 1 v 2 v 3 (1) R = (R ij ) (2) R (R 1 ) ij = R ji (3) R ij R ik = δ jk (4) δ ij Kronecker δ ij = { 1 (i = j) 0 (i j) (5) 1 1.1. v1.1 2011/04/10 1. 1 2 v i = R ij v j (6) [

More information

all.dvi

all.dvi 38 5 Cauchy.,,,,., σ.,, 3,,. 5.1 Cauchy (a) (b) (a) (b) 5.1: 5.1. Cauchy 39 F Q Newton F F F Q F Q 5.2: n n ds df n ( 5.1). df n n df(n) df n, t n. t n = df n (5.1) ds 40 5 Cauchy t l n mds df n 5.3: t

More information

1990 IMO 1990/1/15 1:00-4:00 1 N N N 1, N 1 N 2, N 2 N 3 N 3 2 x x + 52 = 3 x x , A, B, C 3,, A B, C 2,,,, 7, A, B, C

1990 IMO 1990/1/15 1:00-4:00 1 N N N 1, N 1 N 2, N 2 N 3 N 3 2 x x + 52 = 3 x x , A, B, C 3,, A B, C 2,,,, 7, A, B, C 0 9 (1990 1999 ) 10 (2000 ) 1900 1994 1995 1999 2 SAT ACT 1 1990 IMO 1990/1/15 1:00-4:00 1 N 1990 9 N N 1, N 1 N 2, N 2 N 3 N 3 2 x 2 + 25x + 52 = 3 x 2 + 25x + 80 3 2, 3 0 4 A, B, C 3,, A B, C 2,,,, 7,

More information

,,..,. 1

,,..,. 1 016 9 3 6 0 016 1 0 1 10 1 1 17 1..,,..,. 1 1 c = h = G = ε 0 = 1. 1.1 L L T V 1.1. T, V. d dt L q i L q i = 0 1.. q i t L q i, q i, t L ϕ, ϕ, x µ x µ 1.3. ϕ x µ, L. S, L, L S = Ld 4 x 1.4 = Ld 3 xdt 1.5

More information

25 7 18 1 1 1.1 v.s............................. 1 1.1.1.................................. 1 1.1.2................................. 1 1.1.3.................................. 3 1.2................... 3

More information

pdf

pdf http://www.ns.kogakuin.ac.jp/~ft13389/lecture/physics1a2b/ pdf I 1 1 1.1 ( ) 1. 30 m µm 2. 20 cm km 3. 10 m 2 cm 2 4. 5 cm 3 km 3 5. 1 6. 1 7. 1 1.2 ( ) 1. 1 m + 10 cm 2. 1 hr + 6400 sec 3. 3.0 10 5 kg

More information

120 9 I I 1 I 2 I 1 I 2 ( a) ( b) ( c ) I I 2 I 1 I ( d) ( e) ( f ) 9.1: Ampère (c) (d) (e) S I 1 I 2 B ds = µ 0 ( I 1 I 2 ) I 1 I 2 B ds =0. I 1 I 2

120 9 I I 1 I 2 I 1 I 2 ( a) ( b) ( c ) I I 2 I 1 I ( d) ( e) ( f ) 9.1: Ampère (c) (d) (e) S I 1 I 2 B ds = µ 0 ( I 1 I 2 ) I 1 I 2 B ds =0. I 1 I 2 9 E B 9.1 9.1.1 Ampère Ampère Ampère s law B S µ 0 B ds = µ 0 j ds (9.1) S rot B = µ 0 j (9.2) S Ampère Biot-Savart oulomb Gauss Ampère rot B 0 Ampère µ 0 9.1 (a) (b) I B ds = µ 0 I. I 1 I 2 B ds = µ 0

More information

66 σ σ (8.1) σ = 0 0 σd = 0 (8.2) (8.2) (8.1) E ρ d = 0... d = 0 (8.3) d 1 NN K K 8.1 d σd σd M = σd = E 2 d (8.4) ρ 2 d = I M = EI ρ 1 ρ = M EI ρ EI

66 σ σ (8.1) σ = 0 0 σd = 0 (8.2) (8.2) (8.1) E ρ d = 0... d = 0 (8.3) d 1 NN K K 8.1 d σd σd M = σd = E 2 d (8.4) ρ 2 d = I M = EI ρ 1 ρ = M EI ρ EI 65 8. K 8 8 7 8 K 6 7 8 K 6 M Q σ (6.4) M O ρ dθ D N d N 1 P Q B C (1 + ε)d M N N h 2 h 1 ( ) B (+) M 8.1: σ = E ρ (E, 1/ρ ) (8.1) 66 σ σ (8.1) σ = 0 0 σd = 0 (8.2) (8.2) (8.1) E ρ d = 0... d = 0 (8.3)

More information

IA

IA IA 31 4 11 1 1 4 1.1 Planck.............................. 4 1. Bohr.................................... 5 1.3..................................... 6 8.1................................... 8....................................

More information

1 (Contents) (1) Beginning of the Universe, Dark Energy and Dark Matter Noboru NAKANISHI 2 2. Problem of Heat Exchanger (1) Kenji

1 (Contents) (1) Beginning of the Universe, Dark Energy and Dark Matter Noboru NAKANISHI 2 2. Problem of Heat Exchanger (1) Kenji 8 4 2018 6 2018 6 7 1 (Contents) 1. 2 2. (1) 22 3. 31 1. Beginning of the Universe, Dark Energy and Dark Matter Noboru NAKANISHI 2 2. Problem of Heat Exchanger (1) Kenji SETO 22 3. Editorial Comments Tadashi

More information

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H 199 1 1 199 1 1. Vx) m e V cos x π x π Vx) = x < π, x > π V i) x = Vx) V 1 x /)) n n d f dξ ξ d f dξ + n f = H n ξ) ii) H n ξ) = 1) n expξ ) dn dξ n exp ξ )) H n ξ)h m ξ) exp ξ )dξ = π n n!δ n,m x = Vx)

More information

(Maldacena) ads/cft

(Maldacena) ads/cft SGC - 90 100 1998 (Maldacena) ads/cft 100 2011 4 1 2012 3 1) μ, ν 2) i i, j, k 3) a h a,,h 1.6 4) μ μ = / x μ 5) μ 6) g μν (, +, +, +, ) g μν 7) Γ α μν Γμν α = 1 2 gαβ ( μ g βν + ν g βμ β g μν ) 8) R μναβ

More information

2019 1 5 0 3 1 4 1.1.................... 4 1.1.1......................... 4 1.1.2........................ 5 1.1.3................... 5 1.1.4........................ 6 1.1.5......................... 6 1.2..........................

More information

l µ l µ l 0 (1, x r, y r, z r ) 1 r (1, x r, y r, z r ) l µ g µν η µν 2ml µ l ν 1 2m r 2mx r 2 2my r 2 2mz r 2 2mx r 2 1 2mx2 2mxy 2mxz 2my r 2mz 2 r

l µ l µ l 0 (1, x r, y r, z r ) 1 r (1, x r, y r, z r ) l µ g µν η µν 2ml µ l ν 1 2m r 2mx r 2 2my r 2 2mz r 2 2mx r 2 1 2mx2 2mxy 2mxz 2my r 2mz 2 r 2 1 (7a)(7b) λ i( w w ) + [ w + w ] 1 + w w l 2 0 Re(γ) α (7a)(7b) 2 γ 0, ( w) 2 1, w 1 γ (1) l µ, λ j γ l 2 0 Re(γ) α, λ w + w i( w w ) 1 + w w γ γ 1 w 1 r [x2 + y 2 + z 2 ] 1/2 ( w) 2 x2 + y 2 + z 2

More information

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d S I.. http://ayapin.film.s.dendai.ac.jp/~matuda /TeX/lecture.html PDF PS.................................... 3.3.................... 9.4................5.............. 3 5. Laplace................. 5....

More information

Hanbury-Brown Twiss (ver. 2.0) van Cittert - Zernike mutual coherence

Hanbury-Brown Twiss (ver. 2.0) van Cittert - Zernike mutual coherence Hanbury-Brown Twiss (ver. 2.) 25 4 4 1 2 2 2 2.1 van Cittert - Zernike..................................... 2 2.2 mutual coherence................................. 4 3 Hanbury-Brown Twiss ( ) 5 3.1............................................

More information

Microsoft Word - 11問題表紙(選択).docx

Microsoft Word - 11問題表紙(選択).docx A B A.70g/cm 3 B.74g/cm 3 B C 70at% %A C B at% 80at% %B 350 C γ δ y=00 x-y ρ l S ρ C p k C p ρ C p T ρ l t l S S ξ S t = ( k T ) ξ ( ) S = ( k T) ( ) t y ξ S ξ / t S v T T / t = v T / y 00 x v S dy dx

More information

128 3 II S 1, S 2 Φ 1, Φ 2 Φ 1 = { B( r) n( r)}ds S 1 Φ 2 = { B( r) n( r)}ds (3.3) S 2 S S 1 +S 2 { B( r) n( r)}ds = 0 (3.4) S 1, S 2 { B( r) n( r)}ds

128 3 II S 1, S 2 Φ 1, Φ 2 Φ 1 = { B( r) n( r)}ds S 1 Φ 2 = { B( r) n( r)}ds (3.3) S 2 S S 1 +S 2 { B( r) n( r)}ds = 0 (3.4) S 1, S 2 { B( r) n( r)}ds 127 3 II 3.1 3.1.1 Φ(t) ϕ em = dφ dt (3.1) B( r) Φ = { B( r) n( r)}ds (3.2) S S n( r) Φ 128 3 II S 1, S 2 Φ 1, Φ 2 Φ 1 = { B( r) n( r)}ds S 1 Φ 2 = { B( r) n( r)}ds (3.3) S 2 S S 1 +S 2 { B( r) n( r)}ds

More information

K E N Z OU

K E N Z OU K E N Z OU 11 1 1 1.1..................................... 1.1.1............................ 1.1..................................................................................... 4 1.........................................

More information

I A A441 : April 15, 2013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida )

I A A441 : April 15, 2013 Version : 1.1 I   Kawahira, Tomoki TA (Shigehiro, Yoshida ) I013 00-1 : April 15, 013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida) http://www.math.nagoya-u.ac.jp/~kawahira/courses/13s-tenbou.html pdf * 4 15 4 5 13 e πi = 1 5 0 5 7 3 4 6 3 6 10 6 17

More information

Radiation from moving charges#1 Liénard-Wiechert potential Yuji Chinone 1 Maxwell Maxwell MKS E (x, t) + B (x, t) t = 0 (1) B (x, t) = 0 (2) B (x, t)

Radiation from moving charges#1 Liénard-Wiechert potential Yuji Chinone 1 Maxwell Maxwell MKS E (x, t) + B (x, t) t = 0 (1) B (x, t) = 0 (2) B (x, t) Radiation from moving harges# Liénard-Wiehert potential Yuji Chinone Maxwell Maxwell MKS E x, t + B x, t = B x, t = B x, t E x, t = µ j x, t 3 E x, t = ε ρ x, t 4 ε µ ε µ = E B ρ j A x, t φ x, t A x, t

More information

1 A A.1 G = A,B,C, A,B, (1) A,B AB (2) (AB)C = A(BC) (3) 1 A 1A = A1 = A (4) A A 1 A 1 A = AA 1 = 1 AB = BA ( ) AB BA ( ) 3 SU(N),N 2 (Lie) A(θ 1,θ 2,

1 A A.1 G = A,B,C, A,B, (1) A,B AB (2) (AB)C = A(BC) (3) 1 A 1A = A1 = A (4) A A 1 A 1 A = AA 1 = 1 AB = BA ( ) AB BA ( ) 3 SU(N),N 2 (Lie) A(θ 1,θ 2, 1 A A.1 G = A,B,C, A,B, (1) A,B AB (2) (AB)C = A(BC) (3) 1 A 1A = A1 = A (4) A A 1 A 1 A = AA 1 = 1 AB = BA ( ) AB BA ( ) 3 SU(N),N 2 (Lie) A(θ 1,θ 2,θ n ) = exp(i n i=1 θ i F i ) (A.1) F i 2 0 θ 2π 1

More information

O x y z O ( O ) O (O ) 3 x y z O O x v t = t = 0 ( 1 ) O t = 0 c t r = ct P (x, y, z) r 2 = x 2 + y 2 + z 2 (t, x, y, z) (ct) 2 x 2 y 2 z 2 = 0

O x y z O ( O ) O (O ) 3 x y z O O x v t = t = 0 ( 1 ) O t = 0 c t r = ct P (x, y, z) r 2 = x 2 + y 2 + z 2 (t, x, y, z) (ct) 2 x 2 y 2 z 2 = 0 9 O y O ( O ) O (O ) 3 y O O v t = t = 0 ( ) O t = 0 t r = t P (, y, ) r = + y + (t,, y, ) (t) y = 0 () ( )O O t (t ) y = 0 () (t) y = (t ) y = 0 (3) O O v O O v O O O y y O O v P(, y,, t) t (, y,, t )

More information

sec13.dvi

sec13.dvi 13 13.1 O r F R = m d 2 r dt 2 m r m = F = m r M M d2 R dt 2 = m d 2 r dt 2 = F = F (13.1) F O L = r p = m r ṙ dl dt = m ṙ ṙ + m r r = r (m r ) = r F N. (13.2) N N = R F 13.2 O ˆn ω L O r u u = ω r 1 1:

More information

構造と連続体の力学基礎

構造と連続体の力学基礎 II 37 Wabash Avenue Bridge, Illinois 州 Winnipeg にある歩道橋 Esplanade Riel 橋6 6 斜張橋である必要は多分無いと思われる すぐ横に道路用桁橋有り しかも塔基部のレストランは 8 年には営業していなかった 9 9. 9.. () 97 [3] [5] k 9. m w(t) f (t) = f (t) + mg k w(t) Newton

More information

arxiv: v1(astro-ph.co)

arxiv: v1(astro-ph.co) arxiv:1311.0281v1(astro-ph.co) R µν 1 2 Rg µν + Λg µν = 8πG c 4 T µν Λ f(r) R f(r) Galileon φ(t) Massive Gravity etc... Action S = d 4 x g (L GG + L m ) L GG = K(φ,X) G 3 (φ,x)φ + G 4 (φ,x)r + G 4X (φ)

More information

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt S I. x yx y y, y,. F x, y, y, y,, y n http://ayapin.film.s.dendai.ac.jp/~matuda n /TeX/lecture.html PDF PS yx.................................... 3.3.................... 9.4................5..............

More information

untitled

untitled 0. =. =. (999). 3(983). (980). (985). (966). 3. := :=. A A. A A. := := 4 5 A B A B A B. A = B A B A B B A. A B A B, A B, B. AP { A, P } = { : A, P } = { A P }. A = {0, }, A, {0, }, {0}, {}, A {0}, {}.

More information

1. 2 P 2 (x, y) 2 x y (0, 0) R 2 = {(x, y) x, y R} x, y R P = (x, y) O = (0, 0) OP ( ) OP x x, y y ( ) x v = y ( ) x 2 1 v = P = (x, y) y ( x y ) 2 (x

1. 2 P 2 (x, y) 2 x y (0, 0) R 2 = {(x, y) x, y R} x, y R P = (x, y) O = (0, 0) OP ( ) OP x x, y y ( ) x v = y ( ) x 2 1 v = P = (x, y) y ( x y ) 2 (x . P (, (0, 0 R {(,, R}, R P (, O (0, 0 OP OP, v v P (, ( (, (, { R, R} v (, (, (,, z 3 w z R 3,, z R z n R n.,..., n R n n w, t w ( z z Ke Words:. A P 3 0 B P 0 a. A P b B P 3. A π/90 B a + b c π/ 3. +

More information

(e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ,µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) [ ] [ ] [ ] ν e ν µ ν τ e µ τ, e R,µ R,τ R (2.1a

(e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ,µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) [ ] [ ] [ ] ν e ν µ ν τ e µ τ, e R,µ R,τ R (2.1a 1 2 2.1 (e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ,µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) [ ] [ ] [ ] ν e ν µ ν τ e µ τ, e R,µ R,τ R (2.1a) L ( ) ) * 2) W Z 1/2 ( - ) d u + e + ν e 1 1 0 0

More information

1 1.1 H = µc i c i + c i t ijc j + 1 c i c j V ijklc k c l (1) V ijkl = V jikl = V ijlk = V jilk () t ij = t ji, V ijkl = V lkji (3) (1) V 0 H mf = µc

1 1.1 H = µc i c i + c i t ijc j + 1 c i c j V ijklc k c l (1) V ijkl = V jikl = V ijlk = V jilk () t ij = t ji, V ijkl = V lkji (3) (1) V 0 H mf = µc 013 6 30 BCS 1 1.1........................ 1................................ 3 1.3............................ 3 1.4............................... 5 1.5.................................... 5 6 3 7 4 8

More information

p = mv p x > h/4π λ = h p m v Ψ 2 Ψ

p = mv p x > h/4π λ = h p m v Ψ 2 Ψ II p = mv p x > h/4π λ = h p m v Ψ 2 Ψ Ψ Ψ 2 0 x P'(x) m d 2 x = mω 2 x = kx = F(x) dt 2 x = cos(ωt + φ) mω 2 = k ω = m k v = dx = -ωsin(ωt + φ) dt = d 2 x dt 2 0 y v θ P(x,y) θ = ωt + φ ν = ω [Hz] 2π

More information

Z: Q: R: C: sin 6 5 ζ a, b

Z: Q: R: C: sin 6 5 ζ a, b Z: Q: R: C: 3 3 7 4 sin 6 5 ζ 9 6 6............................... 6............................... 6.3......................... 4 7 6 8 8 9 3 33 a, b a bc c b a a b 5 3 5 3 5 5 3 a a a a p > p p p, 3,

More information