1 1.1 hν A(k,ε)[ k ρ(ω)] [1] A(k,ε) ε k μ f(ε) 1/[1 + exp( ε μ k B T )] A(k,ε)f(ε) ρ(ε)f(ε) A(k,ε)(1 f(ε)) ρ(ε)(1 f(ε)) A(k,ε) σ(ω) χ(q,ω) k B T ev k

Size: px
Start display at page:

Download "1 1.1 hν A(k,ε)[ k ρ(ω)] [1] A(k,ε) ε k μ f(ε) 1/[1 + exp( ε μ k B T )] A(k,ε)f(ε) ρ(ε)f(ε) A(k,ε)(1 f(ε)) ρ(ε)(1 f(ε)) A(k,ε) σ(ω) χ(q,ω) k B T ev k"

Transcription

1 ARPES ARPES ARPES - ARPES BCS 2.4

2 1 1.1 hν A(k,ε)[ k ρ(ω)] [1] A(k,ε) ε k μ f(ε) 1/[1 + exp( ε μ k B T )] A(k,ε)f(ε) ρ(ε)f(ε) A(k,ε)(1 f(ε)) ρ(ε)(1 f(ε)) A(k,ε) σ(ω) χ(q,ω) k B T ev k B T ev ev ε d ε p... t U T K J k B T 1.2 N Ψ N = ψ 1 ψ 2...ψ N N ψ i (i =1,..., N) ε i (i =1,..., N) 1(a) ε i hν ε kin ε kin = ε i + hν V 0 (1) V 0 : μ E B ( hν ε kin + V 0 + μ = ε i + μ) 1(b) ε kin ε f

3 hν ε kin = ε f + hν V 0 (2) 1: [2] ψ k ARPES ε k hk hk (1) k- hk hk hk = hk ε = ε k ε kin = h2 K 2 2m e m e : h k = h K = 2m e ε kin cosθ θ: K k [2] A(k,ε) A(k,ε)=δ(ε ε k ) (3) ε = ε kin + V 0 hν A(k,ε) ε<μ ε >μ [2] ε k = μ k k ρ(ε)( k A(k,ε))

4 ρ(ε) = k δ(ε ε k) 1.3 2: [3] k =(0, 0) (π, 0) (π, π) k (a1) Cu t [4] q (0,π/2) (a2) t t q (π, π) (b) [5] (a1) q (0,π/2) ARPES 2 A(k,ε) k =(π, 0) k ε = ε k 2 k =(π, 0) k Cu 3d x 2 y 2 2p x, 2p y 4 ev Cu 3d x 2 y 2 ε k = ε 0 2t(cos k x a + cos k y a) 4t cos k x a cos k y a (4)

5 t, t 2 Cu p k =(π, π) (1 + p) 1 2(a1) k =(0, 0) Γ 1 p 2(a2) T c [6] Cu 3d x 2 y 2 2p 2p x,y 2p z Cu 3d 3z 2 r2 Cu 4s Cu t Cu t t 2(a1) k =(π, 0) q (0,π/2) t 2(a2) (π, π) q 1/8 [7] 1.4 ψ k k k Block k + q k q 3 Ψ N = ψ k ψ k ψ k... ψ k+q ψ k qψ k... q electron correlation 3 - Feynman N q=1 hk (q) N hk hk - hk hk hk - - ε k ε = ε k - τ k h/τ k - ε = ε k ΔE k 4 1

6 3: - t (k) (k ) (k + q) (k q) (k) (k ) (k + q) (k q) - (k) (k + q) (k ) +(k q) - (k) (k + q) +(k ) (k q) k k 4: ε = ε k ReΣ(k,ε) ImΣ(k,ε) self-energy ε hk Σ(k,ε) ε = ε k +ReΣ(k,ε) (5) ε = ε k ImΣ(k,ε k ) (5) 5 N N 1 N +1 Ψ N g N-

7 5: ε = ε k + ReΣ(k,ε) (5) A(k,ε)= i + i Ψi N 1 c k Ψ N g 2 δ(ε + Ei N 1 Eg N ) Ψ N+1 i c k ΨN g 2 δ(ε E N+1 i + E N g ), (6) [8] Ψ N 1 i N 1- Ψ N+1 i N +1- Eg N N- EN 1 i Ei N+1 N 1- N +1- c k c k k ε ε kin + V 0 hν < μ ε >μ E B μ E B = ε + μ = Ei N 1 Eg N + μ (6) : G(k,ε) = i 0 dt Ψ N g {c k (t),c k } Ψ N g e iεt 0+ t = Ψ N g c 1 k ε + i0 + + H Eg N = i + i Ψ N 1 i c k Ψ N g 2 [ ε + Ei N 1 Eg N i c k ΨN g 2 P [ ε Ei N +1 + Eg N Ψ N+1 c k Ψ N g + Ψ N 1 g c k ε + i0 + H + Eg N P iπδ(ε + E N 1 i E N g )] iπδ(ε E N+1 i + E N g )]. c k ΨN g (7) A(k,ε)= 1 ImG(k,ε). (8) π H P 2 G 0 (k,ε)=1/[ε ε k + i0 + ] (7) 2 G(k,ε) G(k,t) iθ(t) Ψ N g {c k (t),c k } ΨN g {A, B} AB + BA A(t) e iht Ae iht

8 (8) A(k,ε)=δ(ε ε k ) (3) ε = ε k ε = ε k Σ(k,ε) 1 G(k,ε)= (9) ε ε k Σ(k,ε) A(k,ε) = 1 π ImG(k,ε) = 1 π ImΣ(k,ε) [ε ε k ReΣ(k,ε)] 2 + [ImΣ(k,ε)] 2. (10) (5) ε = ε k A(k,ε) ε = ε k ReΣ(k,ε) ε = ε k (10) A(k,ε) z k(ε k ) π z k (ε k )ImΣ(k,ε k ) [ε ε k ]2 +[z k (ε, (11) k )ImΣ(k,ε)]2 z k (ε) [1 ReΣ(k,ε)/ ε] 1 (< 1) (11) z k (ε k )(< 1) 2z k (ε k )ImΣ(k,ε k ) - ε - ReΣ(k,ε) ReΣ(k,μ)= 1 π P ImΣ(k,ε ) ε ε dε ImΣ(k,ε)= 1 π P ReΣ(k,ε ) ReΣ(k,μ) ε ε dε ε μ e h 6: μ e - h - 6

9 - - ε - (ε μ) 2 μ (ε μ) 2 ImΣ(k,ε) h/τ (ε μ) 2 - ReΣ(k,ε) μ ε μ 3 α k β k Σ(k,ε) α k (ε μ) iβ k (ε μ) 2. (12) k k=k F A k 7: (12) A(k,ε) (11) A(k,ε) 1 β k (ε μ) 2 π [ε ε k + α k (ε μ)] 2 + βk 2 (ε μ)4 = z zβ k (ε μ) 2 π [ε μ z k (ε k μ)] 2 +[z k β k (ε μ) 2 ] 2 (13) z k 1/(1+α k )(< 1) 7 ε = ε k h/τ k 2z k ImΣ(k,ε k ) 7 3 ReΣ(k,μ)=0

10 μ ε μ 2z k ImΣ(k,ε)=2z k β k (ε μ) 2 < ε μ ε μ < 1/2z k β k ε QP 1/2z k β k (13) z k 1 z k 7 k k k F μ A(k,ε) β k π (ε μ) 2 (ε k μ) 2 ImΣ(k,ε) k = k F z k δ(ε μ) 1 z k (13) ε = μ A(k F,ε)= z k F π z kf β kf 1+zk 2 F βk 2 F (ε μ) 2 z2 k F β kf π (ε μ), ε = μ A(k,ε) k-ε 8 ε = ε k μ ε k = μ k k F k k F A(k,ε) n(k) 8 k F n(k) k (2π) 3 n N/V 8 ε = ε k = z k(ε k μ)+μ ε = ε k μ z k < 1 m m b z 1 > 1 k v F (1/ h)dε k /dk z k z k

11 8: ε = ε k n(k) μ = ε k k F v F E F [9] (a) (b) z A(k,ε) [ z k 1 ReΣ(k,ε) ] 1 ε k=kf,ε=μ z k â k,â k z k Ψ N 1,g â k Ψ N,g 2 = Ψ N+1,g â k Ψ N,g 2 z k n(k) 8 k z k (< 1) (12) Σ(k,ε) ε = μ - (12) ε μ - ε μ Σ(k,ε)=g k (ε μ + iγ k ) 2 (14)

12 9 (14) ε = μ Σ(k,ε) g k Γ 2 (ε μ) 2i g k k Γ 3 (ε μ) 2 (15) k (12) (12) α k β k α k = g k /Γ 2 k, β k =2g k /Γ 3 k =2α k /Γ k z k 1 α k =1+1/z k 1/z k, β k =2α k /Γ k 2/z k Γ k z k 1 A(k, ) k Re (k, ) Im (k, ) k ev 9: Σ(k,ε) A(k,ε) Σ(k,ε)= 10i(ε μ)/(ε μ + i) 2 ε k μ = 2 ev ε = ε k + ReΣ(k,ε) (5) ε = ε k A(k,ε) [1] (14) Γ k Γ k z k Σ(k,ε) Σ max g k /Γ k = α k Γ k Γ k /z k Γ k z k α k 1/z k, β k 2/z 2 kσ max β k α k ε QP ε QP 1/2z k β k =(1/2z k )(z 2 kσ max /2) = z k Σ max /4

13 ε QP Σ max - (14) 4 ε = ε k +ReΣ(k,ε) (5) ε = ε k ε = ReΣ(k,ε) 9 μ ε = ε k ImΣ(k,ε) ε ε k + ReΣ(k,ε) A(k,ε) U = 1 U = 2 N( ) U = 2.7 U = 3 U = : n(ε)[10] U U =0 k Σ(ε) Σ(k,ε) z k k z k z z k z 1 z n(μ) n 0 (μ) k 10 [10] U/t z [11]

14 - μ v F - λ ε = ε k ε = ε k /(1 + λ) 11 ω D μ ε = ε k μ 11 Mo 110 [12] k =(π, π) [13] - SrVO 3 - [14] 11: - ω D Mo [12] 1.5 μ μ n μ μ/ n χ c μ/ n = χ 1 c χ c - μ/ n =(1+Fs 0 )/n (μ) [15] 12

15 講義ノート n (μ) m Fs 0 > 0 ε n ε n+δn s δμ= (1+F )δn/n 0 (μ) μ μ+δμ δn/n (μ) δn 12: δ n δμ n (ε) F s 0 n (ε) - 1 ev/ δ 0 m [16] La 1 x Sr x TiO 3 0 x 1 δ = x 0 γ m [17] La 1 x Sr x TiO 3 x =0 n =1 LaTiO 3 La 3+ Sr 2+ x Ti 3d n =1 x La 2 x Sr x CuO 4 δ = x 0 m [18] μ/ n 1/m t J d p

16 ε d ε p... U t t U ε d ε p 13: [20] Δ >U Δ <U p d (b) Δ U Zaanen-Sawatzky-Allen [21] CI [2] d p d p d d p p d p d U d -p t pd d p Δ ε d ε p ε d d ε p p Δ U 13(a) p Δ >U d U W W Δ <U p

17 14: [20] p [10] 10 Δ W Δ U 13(b) [21] Zaanen-Sawatzky-Allen [22] Δ >U Δ <U U W Δ W U Δ W t n U W Δ W 13(a) - n - - Hubbard 14 U/t [23] Brinkman Rice U/t m m [24] (1970) [25, 26] Brinkman-Rice Hubbard Kotliar

18 [10] 9 CuO 2 Zhang-Rice [27] La 2 x Sr x CuO 4 0 x< 0.35 La 2 CuO 4 n =9 La 3+ Sr 2+ CuO 2 X δ = x Zhang-Rice [28] x >0.25 Zhang-Rice Mn Fe Zhang-Rice ARPES [29] SrVO 3 SrRuO 3 La 1 x Sr x MnO 3 [30] d 2.2 σ = σ = α β a 1 =( 2a, 2a) a 2 =( 2a, 2a) α β s Cu 3d x 2 y 2 ψ k = c α k ψ kα + c β k ψ kβ h MF ψ = εψ h MF

19 ( ψkα h MF 0 ψ kα Δ ψ kα h MF 0 ψ kβ ψ kβ h MF 0 ψ kα ψ kβ h MF 0 ψ kβ +Δ )( c α c β ) ( c α = ε c β ) (16) h MF 0 h MF α Δ Δ > 0 β +Δ t t t 0,t = 0,... ψ kα h MF 0 ψ kβ = ε k ψ kα h MF ψ kα 0 ( )( ) ( ) Δ εk c α c α Δ c β = ε c β (17) ε k ε k± = ± ε 2 k +Δ2, (18) n =1 2Δ Fermi ε = μ 2Δ Fermi 4 t 2Δ Fermi Q Q =(π, π) σ = ±Δ hk hk + hq = c kψ k + c k+q ψ k+q ψ AF k ( εk Δ Δ ε k+q )( ck c k+q ) = ε ( ck c k+q ) (19) ε k± = ε k + ε k+q 2 (εk ) ε 2 k+q ± +Δ 2 2, (20) ψ k ψ k+q Σ(k,ε)= Δ 2 ε ε k+q + i0 + (21) 4 k

20 Q =(π, π) 15(b) [31] 2.3 BCS BCS μ k ε = ε k ε =2μ ε k Δ 2 k Σ(k,ε)= ε + ε k 2μ + i0 + (22) Δ k s d d x 2 y2 Δ(k) =Δ 0 (cos k x cos k y ) δ 0 ε = ε k +ReΣ(k,ε) (5) ε k = μ ± (ε k μ) 2 +Δ 2 k (23) μ 2 Δ k μ μ - k k F - (18) - n =1 n μ - ARPES μ μ ARPES μ μ ARPES

21 15: [3] k (a1) Cu t [4] (a2) t (b) k =(π, 0) d Δ(k) = Δ 0 (cos k x cos k y ) k x = ±k y T c 15(a1)(a2) T δ 16 ARPES k [32] Δ Δ sc T <x< 1 La 1 x Sr x TiO 3 La 1 x Sr x TiO 3 e/(1 x) d 1 x La 2 x Sr x CuO 4 x <0.2 +e/x x - Imada (1) m (2) 0

22 16: [9] Oda [34] (π, 0) Δ T <T c T c <T <T k T <T Δ sc L a Δ 0 d v 2 Δ 0 v 2 Δ 0 =( 2/a)v 2 17: La 2 x Sr x CuO 4 LSCO [35] Bi 2 Sr 2 CaCu 2 O 8+δ Bi2212 [36, 37] Δ T Δ sc T c Δ 0 [9]

23 [33] La 2 x Sr x CuO 4 n(ε) [28] La 2 x Sr x CuO 4 [3] - ARPES [38] [39] [40] [1] p.321. [2] II 1996 p.149. [3] 51, No.11 ( ), (2016). [4] T. Yoshida et al. : Phys. Rev. B 74, (2006). [5] N. P. Armitage et al. : Phys. Rev. Lett. 88, (2002). [6] E. Pavarini, I. Dasgupta, T. Saha-Dasgupta, O. Jepsen, and O. K. Andersen, Phys. Rev. Lett. 87, (2001). [7] T. Yoshida et al : Condens. Matter 19, (2007). [8] 2005 [9] 62, 815 (2007). [10] X. Y. Zhang, M. J. Rozenberg, and G. Kotliar: Phys. Rev. Lett. 70, 1666 (1993). [11] p [12] T. Valla, A. V. Fedorov, P. D. Johnson, and S. L. Hulbert: Phys. Rev. Lett. 83, 2085 (1999). [13] A. Lanzara et al. : Nature 412, 510 (2001). [14] S. Aizaki et al. : Phys. Rev. Lett. 109, (2012).

24 [15] N. Furukawa and M. Imada: J. Phys. Soc. Jpn. 61, 3331 (1992). [16] T. Yoshida, A. Ino, T. Mizokawa, A. Fujimori. Y. Taguchi, T. Katsufuji and Y. Tokura: Europhys. Lett. 59, 258 (2002). [17] Y. Tokura, Y. Taguchi, Y. Okada, Y. Fujishima, T. Arima,K. Kumagai and Y. Iye: Phys. Rev. Lett. 70, 2126 (1993). [18] N. Momono, M. Ido, T. Nakano, M. Oda, Y. Okajima, and K. Yamaya: Physica C 233, 395 (1994). [19] A. Ino, T. Mizokawa, A. Fujimori, K. Tamasaku, S. Uchida, T. Kimura, T. Sasagawa and K. Kishio: Phys. Rev. Lett. 79, 2101 (1997). [20] 54, (1999). [21] A. E. Bocquet, T. Mizokawa, K. Morikawa, A. Fujimori, K. B. Maiti, S. R. Barman, D. D. Sarma, Y. Tokura and M. Onoda: Phys. Rev. B 53, 1161 (1996). [22] J. Zaanen, G. A. Sawatzky and J. W. Allen: Phys. Rev. Lett. 55, 418 (1985). [23] N. F. Mott: Metal Insulator Transitions (Taylor & Francis, 1974) p [24] W. F. Brinkman and T. M. Rice: Phys. Rev. B 2, 4302 (1970). [25] I. H. Inoue, I. Hase, Y. Aiura, A. Fujimori, Y. Haryuama, T. Maruyama and Y. Nishihara: Phys. Rev. Lett. 74, 2539 (1995). [26] T. Yoshida, M. Hashimoto, T. Takizawa, A. Fujimori, M. Kubota, K. Ono, and H. Eisaki: Phys. Rev. B 82, (2010). [27] F. C. Zhang and T. M. Rice: Rhys. Rev. B 37 (1988) [28] A. Ino, T. Mizokawa, K. Kobayashi, A. Fujimori, T. Sasagawa, T. Kimura, K. Kishio, K. Tamasaku, H. Eisaki, and S. Uchida: Phys. Rev. Lett. 81 (1998) [29] M. Kobayashi, I. Muneta, Y. Takeda, Y. Harada, A. Fujimori, J. Krempasky, T. Schmitt, S. Ohya, M. Tanaka, M. Oshima, and V. N. Strocov: Phys. Rev. B 89, (2014). [30] K. Yoshimatsu, T. Okabe, H. Kumigashira, S. Okamoto, S. Aizaki, A. Fujimori, and M. Oshima: Phys. Rev. Lett. 104, (2010). [31] M. Horio et al. : Nat. Commun. 7, (2016). [32] T. Yoshida, M. Hashimoto, I. M. Vishik, Z.-X. Shen, and A. Fujimori: J. Phys. Soc. Jpn. 81, (2012). [33] M. Imada: J. Phys. Soc. Jpn. 62, 1105 (1993).

25 [34] M. Oda, R.M. Dipasupil, N. Momono and M. Ido: J. Phys. Soc. Jpn. 69, 983 (2000). [35] M. Hashimoto, T. Yoshida, K. Tanaka, A. Fujimori, M. Okusawa, S. Wakimoto, K. Yamada, T. Kakeshita, H. Eisaki and S. Uchida: Phys. Rev. B 75, (2007) [36] A. Kanigel et al. : Nature Phys. 2, 447 (2006). [37] K. Tanaka, W.S. Lee, D.H. Lu, A. Fujimori, T. Fujii, Risdiana, I. Terasaki, D. J. Scalapino, T.P. Devereaux, Z. Hussain and Z.-X. Shen: Science 314, 1910 (2006). [38] M. Hashimoto et al.: Nat. Phys. 6, 414 (2010). [39] J. Chang et al. : Nat. Phys. 8, 871 (2012). [40] O. Cyr-Choiniere, G. Grissonnanche, S. Badoux, J. Day, D. A. Bonn, W. N. Hardy, R. Liang, N. Doiron-Leyraud, and L. Taillefer: Phys. Rev. B 92, (2015).

lect.dvi

lect.dvi 2001 7 3{5 1 2 1.1 : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 2 1.2 : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 4 1.3 : : : : : : : :

More information

1 d 6 L S p p p p-d d 10Dq 1 ev p-d d 70 % 1: NiO [3] a b CI c [5] NiO Ni [ 1(a)] Ni 2+ d 8 d 7 d 8 + hν d 7 + e d 7 1(b) d 7 p Ni 2+ t 3 2g t3 2g e2

1 d 6 L S p p p p-d d 10Dq 1 ev p-d d 70 % 1: NiO [3] a b CI c [5] NiO Ni [ 1(a)] Ni 2+ d 8 d 7 d 8 + hν d 7 + e d 7 1(b) d 7 p Ni 2+ t 3 2g t3 2g e2 3 3.1 3.1.1 - d s p d 3d d d d d d d 10 23 d d 1954 [1] d d 1970 I-II-VI 2 II-VI II 1:1 I III CuAlS 2 Al 3+ d 5 Fe 3+ d 5 S 3p d 6 L L [2] configuration interaction: CI d 5 1 1 d 6 L S p p p p-d d 10Dq

More information

<95AA8E718CA4838C835E815B835937308D862E696E6464>

<95AA8E718CA4838C835E815B835937308D862E696E6464> New Lab 1996 19982001 ( ) 2001 20032007 2014 4 2014 26 4 1 UVSOR 10 2~4 2 KIT 70 September 2014 23 24 70 September 2014 New Lab 1995 1997 2000 2003 2000-2005 JST-ERATO 2005-2011 2011-2014 2014 6 2014 6

More information

( ) ) ) ) 5) 1 J = σe 2 6) ) 9) 1955 Statistical-Mechanical Theory of Irreversible Processes )

( ) ) ) ) 5) 1 J = σe 2 6) ) 9) 1955 Statistical-Mechanical Theory of Irreversible Processes ) ( 3 7 4 ) 2 2 ) 8 2 954 2) 955 3) 5) J = σe 2 6) 955 7) 9) 955 Statistical-Mechanical Theory of Irreversible Processes 957 ) 3 4 2 A B H (t) = Ae iωt B(t) = B(ω)e iωt B(ω) = [ Φ R (ω) Φ R () ] iω Φ R (t)

More information

006 11 8 0 3 1 5 1.1..................... 5 1......................... 6 1.3.................... 6 1.4.................. 8 1.5................... 8 1.6................... 10 1.6.1......................

More information

d (i) (ii) 1 Georges[2] Maier [3] [1] ω = 0 1

d (i) (ii) 1 Georges[2] Maier [3] [1] ω = 0 1 16 5 19 10 d (i) (ii) 1 Georges[2] Maier [3] 2 10 1 [1] ω = 0 1 [4, 5] Dynamical Mean-Field Theory (DMFT) [2] DMFT I CPA [10] CPA CPA Σ(z) z CPA Σ(z) Σ(z) Σ(z) z - CPA Σ(z) DMFT Σ(z) CPA [6] 3 1960 [7]

More information

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5.

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5. A 1. Boltzmann Planck u(ν, T )dν = 8πh ν 3 c 3 kt 1 dν h 6.63 10 34 J s Planck k 1.38 10 23 J K 1 Boltzmann u(ν, T ) T ν e hν c = 3 10 8 m s 1 2. Planck λ = c/ν Rayleigh-Jeans u(ν, T )dν = 8πν2 kt dν c

More information

X G P G (X) G BG [X, BG] S 2 2 2 S 2 2 S 2 = { (x 1, x 2, x 3 ) R 3 x 2 1 + x 2 2 + x 2 3 = 1 } R 3 S 2 S 2 v x S 2 x x v(x) T x S 2 T x S 2 S 2 x T x S 2 = { ξ R 3 x ξ } R 3 T x S 2 S 2 x x T x S 2

More information

( ) Note (e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ, µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) 3 * 2) [ ] [ ] [ ] ν e ν µ ν τ e

( ) Note (e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ, µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) 3 * 2) [ ] [ ] [ ] ν e ν µ ν τ e ( ) Note 3 19 12 13 8 8.1 (e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ, µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) 3 * 2) [ ] [ ] [ ] ν e ν µ ν τ e µ τ, e R, µ R, τ R (1a) L ( ) ) * 3) W Z 1/2 ( - )

More information

meiji_resume_1.PDF

meiji_resume_1.PDF β β β (q 1,q,..., q n ; p 1, p,..., p n ) H(q 1,q,..., q n ; p 1, p,..., p n ) Hψ = εψ ε k = k +1/ ε k = k(k 1) (x, y, z; p x, p y, p z ) (r; p r ), (θ; p θ ), (ϕ; p ϕ ) ε k = 1/ k p i dq i E total = E

More information

1 1.1 H = µc i c i + c i t ijc j + 1 c i c j V ijklc k c l (1) V ijkl = V jikl = V ijlk = V jilk () t ij = t ji, V ijkl = V lkji (3) (1) V 0 H mf = µc

1 1.1 H = µc i c i + c i t ijc j + 1 c i c j V ijklc k c l (1) V ijkl = V jikl = V ijlk = V jilk () t ij = t ji, V ijkl = V lkji (3) (1) V 0 H mf = µc 013 6 30 BCS 1 1.1........................ 1................................ 3 1.3............................ 3 1.4............................... 5 1.5.................................... 5 6 3 7 4 8

More information

: 2005 ( ρ t +dv j =0 r m m r = e E( r +e r B( r T 208 T = d E j 207 ρ t = = = e t δ( r r (t e r r δ( r r (t e r ( r δ( r r (t dv j =

: 2005 ( ρ t +dv j =0 r m m r = e E( r +e r B( r T 208 T = d E j 207 ρ t = = = e t δ( r r (t e r r δ( r r (t e r ( r δ( r r (t dv j = 72 Maxwell. Maxwell e r ( =,,N Maxwell rot E + B t = 0 rot H D t = j dv D = ρ dv B = 0 D = ɛ 0 E H = μ 0 B ρ( r = j( r = N e δ( r r = N e r δ( r r = : 2005 ( 2006.8.22 73 207 ρ t +dv j =0 r m m r = e E(

More information

1 9 v.0.1 c (2016/10/07) Minoru Suzuki T µ 1 (7.108) f(e ) = 1 e β(e µ) 1 E 1 f(e ) (Bose-Einstein distribution function) *1 (8.1) (9.1)

1 9 v.0.1 c (2016/10/07) Minoru Suzuki T µ 1 (7.108) f(e ) = 1 e β(e µ) 1 E 1 f(e ) (Bose-Einstein distribution function) *1 (8.1) (9.1) 1 9 v..1 c (216/1/7) Minoru Suzuki 1 1 9.1 9.1.1 T µ 1 (7.18) f(e ) = 1 e β(e µ) 1 E 1 f(e ) (Bose-Einstein distribution function) *1 (8.1) (9.1) E E µ = E f(e ) E µ (9.1) µ (9.2) µ 1 e β(e µ) 1 f(e )

More information

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H 199 1 1 199 1 1. Vx) m e V cos x π x π Vx) = x < π, x > π V i) x = Vx) V 1 x /)) n n d f dξ ξ d f dξ + n f = H n ξ) ii) H n ξ) = 1) n expξ ) dn dξ n exp ξ )) H n ξ)h m ξ) exp ξ )dξ = π n n!δ n,m x = Vx)

More information

Part () () Γ Part ,

Part () () Γ Part , Contents a 6 6 6 6 6 6 6 7 7. 8.. 8.. 8.3. 8 Part. 9. 9.. 9.. 3. 3.. 3.. 3 4. 5 4.. 5 4.. 9 4.3. 3 Part. 6 5. () 6 5.. () 7 5.. 9 5.3. Γ 3 6. 3 6.. 3 6.. 3 6.3. 33 Part 3. 34 7. 34 7.. 34 7.. 34 8. 35

More information

講義ノート 物性研究 電子版 Vol.3 No.1, (2013 年 T c µ T c Kammerlingh Onnes 77K ρ 5.8µΩcm 4.2K ρ 10 4 µωcm σ 77K ρ 4.2K σ σ = ne 2 τ/m τ 77K

講義ノート 物性研究 電子版 Vol.3 No.1, (2013 年 T c µ T c Kammerlingh Onnes 77K ρ 5.8µΩcm 4.2K ρ 10 4 µωcm σ 77K ρ 4.2K σ σ = ne 2 τ/m τ 77K 2 2 T c µ T c 1 1.1 1911 Kammerlingh Onnes 77K ρ 5.8µΩcm 4.2K ρ 1 4 µωcm σ 77K ρ 4.2K σ σ = ne 2 τ/m τ 77K τ 4.2K σ 58 213 email:takada@issp.u-tokyo.ac.jp 1933 Meissner Ochsenfeld λ = 1 5 cm B = χ B =

More information

. ev=,604k m 3 Debye ɛ 0 kt e λ D = n e n e Ze 4 ln Λ ν ei = 5.6π / ɛ 0 m/ e kt e /3 ν ei v e H + +e H ev Saha x x = 3/ πme kt g i g e n

. ev=,604k m 3 Debye ɛ 0 kt e λ D = n e n e Ze 4 ln Λ ν ei = 5.6π / ɛ 0 m/ e kt e /3 ν ei v e H + +e H ev Saha x x = 3/ πme kt g i g e n 003...............................3 Debye................. 3.4................ 3 3 3 3. Larmor Cyclotron... 3 3................ 4 3.3.......... 4 3.3............ 4 3.3...... 4 3.3.3............ 5 3.4.........

More information

chap7_v7.dvi

chap7_v7.dvi 1 7 7. 1 7. 1. 1,,,.,, 19,,,,, 2 7,.,,., DFT), LDA) GGA GW, La 2 CuO 4 La 2 CuO 4 LDA 3d. 2eV 7. 2 3. 7. 2,.,, E F,. E F = 2 kf 2 /2m k F 10 9 10 10 m, m 9 10 31 kg, 6.6 10 34 Jsec 10 18 J 10 ev., r s,

More information

20 9 19 1 3 11 1 3 111 3 112 1 4 12 6 121 6 122 7 13 7 131 8 132 10 133 10 134 12 14 13 141 13 142 13 143 15 144 16 145 17 15 19 151 1 19 152 20 2 21 21 21 211 21 212 1 23 213 1 23 214 25 215 31 22 33

More information

(extended state) L (2 L 1, O(1), d O(V), V = L d V V e 2 /h 1980 Klitzing

(extended state) L (2 L 1, O(1), d O(V), V = L d V V e 2 /h 1980 Klitzing 1 2 2.1 [1] [2] 2.1 STM [3, 4, 5, 6] 2.1: 2 ( 3 [1] ) [7, 8] [9]( 2.2) 2 2 2.1.1 (extended state) L (2 L 1, O(1), d O(V), V = L d V V 2.1.2 1985 2 e 2 /h 1980 Klitzing 2.1. 3 [7, 8] 2.2 [10] [8] 2.2: (a)

More information

TOP URL 1

TOP URL   1 TOP URL http://amonphys.web.fc.com/ 3.............................. 3.............................. 4.3 4................... 5.4........................ 6.5........................ 8.6...........................7

More information

DVIOUT-fujin

DVIOUT-fujin 2005 Limit Distribution of Quantum Walks and Weyl Equation 2006 3 2 1 2 2 4 2.1...................... 4 2.2......................... 5 2.3..................... 6 3 8 3.1........... 8 3.2..........................

More information

N cos s s cos ψ e e e e 3 3 e e 3 e 3 e

N cos s s cos ψ e e e e 3 3 e e 3 e 3 e 3 3 5 5 5 3 3 7 5 33 5 33 9 5 8 > e > f U f U u u > u ue u e u ue u ue u e u e u u e u u e u N cos s s cos ψ e e e e 3 3 e e 3 e 3 e 3 > A A > A E A f A A f A [ ] f A A e > > A e[ ] > f A E A < < f ; >

More information

positron 1930 Dirac 1933 Anderson m 22Na(hl=2.6years), 58Co(hl=71days), 64Cu(hl=12hour) 68Ge(hl=288days) MeV : thermalization m psec 100

positron 1930 Dirac 1933 Anderson m 22Na(hl=2.6years), 58Co(hl=71days), 64Cu(hl=12hour) 68Ge(hl=288days) MeV : thermalization m psec 100 positron 1930 Dirac 1933 Anderson m 22Na(hl=2.6years), 58Co(hl=71days), 64Cu(hl=12hour) 68Ge(hl=288days) 0.5 1.5MeV : thermalization 10 100 m psec 100psec nsec E total = 2mc 2 + E e + + E e Ee+ Ee-c mc

More information

80 4 r ˆρ i (r, t) δ(r x i (t)) (4.1) x i (t) ρ i ˆρ i t = 0 i r 0 t(> 0) j r 0 + r < δ(r 0 x i (0))δ(r 0 + r x j (t)) > (4.2) r r 0 G i j (r, t) dr 0

80 4 r ˆρ i (r, t) δ(r x i (t)) (4.1) x i (t) ρ i ˆρ i t = 0 i r 0 t(> 0) j r 0 + r < δ(r 0 x i (0))δ(r 0 + r x j (t)) > (4.2) r r 0 G i j (r, t) dr 0 79 4 4.1 4.1.1 x i (t) x j (t) O O r 0 + r r r 0 x i (0) r 0 x i (0) 4.1 L. van. Hove 1954 space-time correlation function V N 4.1 ρ 0 = N/V i t 80 4 r ˆρ i (r, t) δ(r x i (t)) (4.1) x i (t) ρ i ˆρ i t

More information

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α 18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α 2 ), ϕ(t) = B 1 cos(ω 1 t + α 1 ) + B 2 cos(ω 2 t

More information

H 0 H = H 0 + V (t), V (t) = gµ B S α qb e e iωt i t Ψ(t) = [H 0 + V (t)]ψ(t) Φ(t) Ψ(t) = e ih0t Φ(t) H 0 e ih0t Φ(t) + ie ih0t t Φ(t) = [

H 0 H = H 0 + V (t), V (t) = gµ B S α qb e e iωt i t Ψ(t) = [H 0 + V (t)]ψ(t) Φ(t) Ψ(t) = e ih0t Φ(t) H 0 e ih0t Φ(t) + ie ih0t t Φ(t) = [ 3 3. 3.. H H = H + V (t), V (t) = gµ B α B e e iωt i t Ψ(t) = [H + V (t)]ψ(t) Φ(t) Ψ(t) = e iht Φ(t) H e iht Φ(t) + ie iht t Φ(t) = [H + V (t)]e iht Φ(t) Φ(t) i t Φ(t) = V H(t)Φ(t), V H (t) = e iht V (t)e

More information

6 2 T γ T B (6.4) (6.1) [( d nm + 3 ] 2 nt B )a 3 + nt B da 3 = 0 (6.9) na 3 = T B V 3/2 = T B V γ 1 = const. or T B a 2 = const. (6.10) H 2 = 8π kc2

6 2 T γ T B (6.4) (6.1) [( d nm + 3 ] 2 nt B )a 3 + nt B da 3 = 0 (6.9) na 3 = T B V 3/2 = T B V γ 1 = const. or T B a 2 = const. (6.10) H 2 = 8π kc2 1 6 6.1 (??) (P = ρ rad /3) ρ rad T 4 d(ρv ) + PdV = 0 (6.1) dρ rad ρ rad + 4 da a = 0 (6.2) dt T + da a = 0 T 1 a (6.3) ( ) n ρ m = n (m + 12 ) m v2 = n (m + 32 ) T, P = nt (6.4) (6.1) d [(nm + 32 ] )a

More information

( )

( ) 7..-8..8.......................................................................... 4.................................... 3...................................... 3..3.................................. 4.3....................................

More information

I A A441 : April 15, 2013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida )

I A A441 : April 15, 2013 Version : 1.1 I   Kawahira, Tomoki TA (Shigehiro, Yoshida ) I013 00-1 : April 15, 013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida) http://www.math.nagoya-u.ac.jp/~kawahira/courses/13s-tenbou.html pdf * 4 15 4 5 13 e πi = 1 5 0 5 7 3 4 6 3 6 10 6 17

More information

untitled

untitled C n π/n σ S n π/n v h N tc C S S S S S S S S S S S S S σ v S C σ v C σ v S. O. C / 8 Grou ABCABC EAAEA E AA - A- AE A - N C v EC C σ v σ v σ v 6 C C σ v σ v σ v X X A X - AXB B A B A B B A A C B C A B...

More information

1).1-5) - 9 -

1).1-5) - 9 - - 8 - 1).1-5) - 9 - ε = ε xx 0 0 0 ε xx 0 0 0 ε xx (.1 ) z z 1 z ε = ε xx ε x y 0 - ε x y ε xx 0 0 0 ε zz (. ) 3 xy ) ε xx, ε zz» ε x y (.3 ) ε ij = ε ij ^ (.4 ) 6) xx, xy ε xx = ε xx + i ε xx ε xy = ε

More information

.5 z = a + b + c n.6 = a sin t y = b cos t dy d a e e b e + e c e e e + e 3 s36 3 a + y = a, b > b 3 s363.7 y = + 3 y = + 3 s364.8 cos a 3 s365.9 y =,

.5 z = a + b + c n.6 = a sin t y = b cos t dy d a e e b e + e c e e e + e 3 s36 3 a + y = a, b > b 3 s363.7 y = + 3 y = + 3 s364.8 cos a 3 s365.9 y =, [ ] IC. r, θ r, θ π, y y = 3 3 = r cos θ r sin θ D D = {, y ; y }, y D r, θ ep y yddy D D 9 s96. d y dt + 3dy + y = cos t dt t = y = e π + e π +. t = π y =.9 s6.3 d y d + dy d + y = y =, dy d = 3 a, b

More information

量子力学 問題

量子力学 問題 3 : 203 : 0. H = 0 0 2 6 0 () = 6, 2 = 2, 3 = 3 3 H 6 2 3 ϵ,2,3 (2) ψ = (, 2, 3 ) ψ Hψ H (3) P i = i i P P 2 = P 2 P 3 = P 3 P = O, P 2 i = P i (4) P + P 2 + P 3 = E 3 (5) i ϵ ip i H 0 0 (6) R = 0 0 [H,

More information

(Onsager )

(Onsager ) 05819311 (Onsager ) 1 2 2 Onsager 4 3 11 3.1................ 11 3.2............ 14 3.3................... 16 4 18 4.1........... 18 4.2............. 20 5 25 A 27 A.1................. 27 A.2..............

More information

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 初版 1 刷発行時のものです. 微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. ttp://www.morikita.co.jp/books/mid/00571 このサンプルページの内容は, 初版 1 刷発行時のものです. i ii 014 10 iii [note] 1 3 iv 4 5 3 6 4 x 0 sin x x 1 5 6 z = f(x, y) 1 y = f(x)

More information

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4 1. k λ ν ω T v p v g k = π λ ω = πν = π T v p = λν = ω k v g = dω dk 1) ) 3) 4). p = hk = h λ 5) E = hν = hω 6) h = h π 7) h =6.6618 1 34 J sec) hc=197.3 MeV fm = 197.3 kev pm= 197.3 ev nm = 1.97 1 3 ev

More information

d > 2 α B(y) y (5.1) s 2 = c z = x d 1+α dx ln u 1 ] 2u ψ(u) c z y 1 d 2 + α c z y t y y t- s 2 2 s 2 > d > 2 T c y T c y = T t c = T c /T 1 (3.

d > 2 α B(y) y (5.1) s 2 = c z = x d 1+α dx ln u 1 ] 2u ψ(u) c z y 1 d 2 + α c z y t y y t- s 2 2 s 2 > d > 2 T c y T c y = T t c = T c /T 1 (3. 5 S 2 tot = S 2 T (y, t) + S 2 (y) = const. Z 2 (4.22) σ 2 /4 y = y z y t = T/T 1 2 (3.9) (3.15) s 2 = A(y, t) B(y) (5.1) A(y, t) = x d 1+α dx ln u 1 ] 2u ψ(u), u = x(y + x 2 )/t s 2 T A 3T d S 2 tot S

More information

K E N Z U 2012 7 16 HP M. 1 1 4 1.1 3.......................... 4 1.2................................... 4 1.2.1..................................... 4 1.2.2.................................... 5................................

More information

QMII_10.dvi

QMII_10.dvi 65 1 1.1 1.1.1 1.1 H H () = E (), (1.1) H ν () = E ν () ν (). (1.) () () = δ, (1.3) μ () ν () = δ(μ ν). (1.4) E E ν () E () H 1.1: H α(t) = c (t) () + dνc ν (t) ν (), (1.5) H () () + dν ν () ν () = 1 (1.6)

More information

1 URu2Si2 2 (n,l,m) + σ l: 4f (n=4,l=3) 5f (n=5,l=3) d 5 1. S 2. 1. L L=0(S), 1(P), 2(D), 3(F), 4(G), 5(H),... (2S+1) LJ 3 () d ~ > f >> > 1~10 ev 0.1~0.3 ev 1~100 K LS (Russell-Saunders) f 2 less than

More information

Hanbury-Brown Twiss (ver. 2.0) van Cittert - Zernike mutual coherence

Hanbury-Brown Twiss (ver. 2.0) van Cittert - Zernike mutual coherence Hanbury-Brown Twiss (ver. 2.) 25 4 4 1 2 2 2 2.1 van Cittert - Zernike..................................... 2 2.2 mutual coherence................................. 4 3 Hanbury-Brown Twiss ( ) 5 3.1............................................

More information

1 (Contents) (1) Beginning of the Universe, Dark Energy and Dark Matter Noboru NAKANISHI 2 2. Problem of Heat Exchanger (1) Kenji

1 (Contents) (1) Beginning of the Universe, Dark Energy and Dark Matter Noboru NAKANISHI 2 2. Problem of Heat Exchanger (1) Kenji 8 4 2018 6 2018 6 7 1 (Contents) 1. 2 2. (1) 22 3. 31 1. Beginning of the Universe, Dark Energy and Dark Matter Noboru NAKANISHI 2 2. Problem of Heat Exchanger (1) Kenji SETO 22 3. Editorial Comments Tadashi

More information

ω 0 m(ẍ + γẋ + ω0x) 2 = ee (2.118) e iωt x = e 1 m ω0 2 E(ω). (2.119) ω2 iωγ Z N P(ω) = χ(ω)e = exzn (2.120) ϵ = ϵ 0 (1 + χ) ϵ(ω) ϵ 0 = 1 +

ω 0 m(ẍ + γẋ + ω0x) 2 = ee (2.118) e iωt x = e 1 m ω0 2 E(ω). (2.119) ω2 iωγ Z N P(ω) = χ(ω)e = exzn (2.120) ϵ = ϵ 0 (1 + χ) ϵ(ω) ϵ 0 = 1 + 2.6 2.6.1 ω 0 m(ẍ + γẋ + ω0x) 2 = ee (2.118) e iωt x = e 1 m ω0 2 E(ω). (2.119) ω2 iωγ Z N P(ω) = χ(ω)e = exzn (2.120) ϵ = ϵ 0 (1 + χ) ϵ(ω) ϵ 0 = 1 + Ne2 m j f j ω 2 j ω2 iωγ j (2.121) Z ω ω j γ j f j

More information

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 第 2 版 1 刷発行時のものです. 医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/009192 このサンプルページの内容は, 第 2 版 1 刷発行時のものです. i 2 t 1. 2. 3 2 3. 6 4. 7 5. n 2 ν 6. 2 7. 2003 ii 2 2013 10 iii 1987

More information

E 1/2 3/ () +3/2 +3/ () +1/2 +1/ / E [1] B (3.2) F E 4.1 y x E = (E x,, ) j y 4.1 E int = (, E y, ) j y = (Hall ef

E 1/2 3/ () +3/2 +3/ () +1/2 +1/ / E [1] B (3.2) F E 4.1 y x E = (E x,, ) j y 4.1 E int = (, E y, ) j y = (Hall ef 4 213 5 8 4.1.1 () f A exp( E/k B ) f E = A [ k B exp E ] = f k B k B = f (2 E /3n). 1 k B /2 σ = e 2 τ(e)d(e) 2E 3nf 3m 2 E de = ne2 τ E m (4.1) E E τ E = τe E = / τ(e)e 3/2 f de E 3/2 f de (4.2) f (3.2)

More information

Microsoft Word - 11問題表紙(選択).docx

Microsoft Word - 11問題表紙(選択).docx A B A.70g/cm 3 B.74g/cm 3 B C 70at% %A C B at% 80at% %B 350 C γ δ y=00 x-y ρ l S ρ C p k C p ρ C p T ρ l t l S S ξ S t = ( k T ) ξ ( ) S = ( k T) ( ) t y ξ S ξ / t S v T T / t = v T / y 00 x v S dy dx

More information

[Ver. 0.2] 1 2 3 4 5 6 7 1 1.1 1.2 1.3 1.4 1.5 1 1.1 1 1.2 1. (elasticity) 2. (plasticity) 3. (strength) 4. 5. (toughness) 6. 1 1.2 1. (elasticity) } 1 1.2 2. (plasticity), 1 1.2 3. (strength) a < b F

More information

20 6 4 1 4 1.1 1.................................... 4 1.1.1.................................... 4 1.1.2 1................................ 5 1.2................................... 7 1.2.1....................................

More information

C el = 3 2 Nk B (2.14) c el = 3k B C el = 3 2 Nk B

C el = 3 2 Nk B (2.14) c el = 3k B C el = 3 2 Nk B I ino@hiroshima-u.ac.jp 217 11 14 4 4.1 2 2.4 C el = 3 2 Nk B (2.14) c el = 3k B 2 3 3.15 C el = 3 2 Nk B 3.15 39 2 1925 (Wolfgang Pauli) (Pauli exclusion principle) T E = p2 2m p T N 4 Pauli Sommerfeld

More information

TOP URL 1

TOP URL   1 TOP URL http://amonphys.web.fc.com/ 1 19 3 19.1................... 3 19.............................. 4 19.3............................... 6 19.4.............................. 8 19.5.............................

More information

LLG-R8.Nisus.pdf

LLG-R8.Nisus.pdf d M d t = γ M H + α M d M d t M γ [ 1/ ( Oe sec) ] α γ γ = gµ B h g g µ B h / π γ g = γ = 1.76 10 [ 7 1/ ( Oe sec) ] α α = λ γ λ λ λ α γ α α H α = γ H ω ω H α α H K K H K / M 1 1 > 0 α 1 M > 0 γ α γ =

More information

chap1.dvi

chap1.dvi 1 1 007 1 e iθ = cos θ + isin θ 1) θ = π e iπ + 1 = 0 1 ) 3 11 f 0 r 1 1 ) k f k = 1 + r) k f 0 f k k = 01) f k+1 = 1 + r)f k ) f k+1 f k = rf k 3) 1 ) ) ) 1+r/)f 0 1 1 + r/) f 0 = 1 + r + r /4)f 0 1 f

More information

遍歴電子磁性とスピン揺らぎ理論 - 京都大学大学院理学研究科 集中講義

遍歴電子磁性とスピン揺らぎ理論 - 京都大学大学院理学研究科 集中講義 email: takahash@sci.u-hyogo.ac.jp August 3, 2009 Title of Lecture: SCR Spin Fluctuation Theory 2 / 179 Part I Introduction Introduction Stoner-Wohlfarth Theory Stoner-Wohlfarth Theory Hatree Fock Approximation

More information

n ξ n,i, i = 1,, n S n ξ n,i n 0 R 1,.. σ 1 σ i .10.14.15 0 1 0 1 1 3.14 3.18 3.19 3.14 3.14,. ii 1 1 1.1..................................... 1 1............................... 3 1.3.........................

More information

kawa (Spin-Orbit Tomography: Kawahara and Fujii 21,Kawahara and Fujii 211,Fujii & Kawahara submitted) 2 van Cittert-Zernike Appendix A V 2

kawa (Spin-Orbit Tomography: Kawahara and Fujii 21,Kawahara and Fujii 211,Fujii & Kawahara submitted) 2 van Cittert-Zernike Appendix A V 2 Hanbury-Brown Twiss (ver. 1.) 24 2 1 1 1 2 2 2.1 van Cittert - Zernike..................................... 2 2.2 mutual coherence................................. 3 3 Hanbury-Brown Twiss ( ) 4 3.1............................................

More information

9, 10) 11, 12) 13, 14) 15) QED 16) , 19, 20) 21, 22) tight-binding Chern Hofstadter 23) Haldane 24) tight-binding Chern 25, 26) Chern 3 18, 1

9, 10) 11, 12) 13, 14) 15) QED 16) , 19, 20) 21, 22) tight-binding Chern Hofstadter 23) Haldane 24) tight-binding Chern 25, 26) Chern 3 18, 1 March 2015 A B A B 1 1) 1990 Hubbard Mielke 2, 3, 4) 1 8) 1 Hubbard 5) 6) 7) 1 9, 10) 11, 12) 13, 14) 15) QED 16) 2 2011 18, 19, 20) 21, 22) tight-binding Chern Hofstadter 23) Haldane 24) tight-binding

More information

n (1.6) i j=1 1 n a ij x j = b i (1.7) (1.7) (1.4) (1.5) (1.4) (1.7) u, v, w ε x, ε y, ε x, γ yz, γ zx, γ xy (1.8) ε x = u x ε y = v y ε z = w z γ yz

n (1.6) i j=1 1 n a ij x j = b i (1.7) (1.7) (1.4) (1.5) (1.4) (1.7) u, v, w ε x, ε y, ε x, γ yz, γ zx, γ xy (1.8) ε x = u x ε y = v y ε z = w z γ yz 1 2 (a 1, a 2, a n ) (b 1, b 2, b n ) A (1.1) A = a 1 b 1 + a 2 b 2 + + a n b n (1.1) n A = a i b i (1.2) i=1 n i 1 n i=1 a i b i n i=1 A = a i b i (1.3) (1.3) (1.3) (1.1) (ummation convention) a 11 x

More information

K E N Z U 01 7 16 HP M. 1 1 4 1.1 3.......................... 4 1.................................... 4 1..1..................................... 4 1...................................... 5................................

More information

201711grade1ouyou.pdf

201711grade1ouyou.pdf 2017 11 26 1 2 52 3 12 13 22 23 32 33 42 3 5 3 4 90 5 6 A 1 2 Web Web 3 4 1 2... 5 6 7 7 44 8 9 1 2 3 1 p p >2 2 A 1 2 0.6 0.4 0.52... (a) 0.6 0.4...... B 1 2 0.8-0.2 0.52..... (b) 0.6 0.52.... 1 A B 2

More information

July 28, H H 0 H int = H H 0 H int = H int (x)d 3 x Schrödinger Picture Ψ(t) S =e iht Ψ H O S Heisenberg Picture Ψ H O H (t) =e iht O S e i

July 28, H H 0 H int = H H 0 H int = H int (x)d 3 x Schrödinger Picture Ψ(t) S =e iht Ψ H O S Heisenberg Picture Ψ H O H (t) =e iht O S e i July 8, 4. H H H int H H H int H int (x)d 3 x Schrödinger Picture Ψ(t) S e iht Ψ H O S Heisenberg Picture Ψ H O H (t) e iht O S e iht Interaction Picture Ψ(t) D e iht Ψ(t) S O D (t) e iht O S e ih t (Dirac

More information

all.dvi

all.dvi 72 9 Hooke,,,. Hooke. 9.1 Hooke 1 Hooke. 1, 1 Hooke. σ, ε, Young. σ ε (9.1), Young. τ γ G τ Gγ (9.2) X 1, X 2. Poisson, Poisson ν. ν ε 22 (9.) ε 11 F F X 2 X 1 9.1: Poisson 9.1. Hooke 7 Young Poisson G

More information

II 2 3.,, A(B + C) = AB + AC, (A + B)C = AC + BC. 4. m m A, m m B,, m m B, AB = BA, A,, I. 5. m m A, m n B, AB = B, A I E, 4 4 I, J, K

II 2 3.,, A(B + C) = AB + AC, (A + B)C = AC + BC. 4. m m A, m m B,, m m B, AB = BA, A,, I. 5. m m A, m n B, AB = B, A I E, 4 4 I, J, K II. () 7 F 7 = { 0,, 2, 3, 4, 5, 6 }., F 7 a, b F 7, a b, F 7,. (a) a, b,,. (b) 7., 4 5 = 20 = 2 7 + 6, 4 5 = 6 F 7., F 7,., 0 a F 7, ab = F 7 b F 7. (2) 7, 6 F 6 = { 0,, 2, 3, 4, 5 },,., F 6., 0 0 a F

More information

eto-vol1.dvi

eto-vol1.dvi ( 1) 1 ( [1] ) [] ( ) (AC) [3] [4, 5, 6] 3 (i) AC (ii) (iii) 3 AC [3, 7] [4, 5, 6] 1.1 ( e; e>0) Ze r v [ 1(a)] v [ 1(a )] B = μ 0 4π Zer v r 3 = μ 0 4π 1 Ze l m r 3, μ 0 l = mr v ( l s ) s μ s = μ B s

More information

m(ẍ + γẋ + ω 0 x) = ee (2.118) e iωt P(ω) = χ(ω)e = ex = e2 E(ω) m ω0 2 ω2 iωγ (2.119) Z N ϵ(ω) ϵ 0 = 1 + Ne2 m j f j ω 2 j ω2 iωγ j (2.120)

m(ẍ + γẋ + ω 0 x) = ee (2.118) e iωt P(ω) = χ(ω)e = ex = e2 E(ω) m ω0 2 ω2 iωγ (2.119) Z N ϵ(ω) ϵ 0 = 1 + Ne2 m j f j ω 2 j ω2 iωγ j (2.120) 2.6 2.6.1 mẍ + γẋ + ω 0 x) = ee 2.118) e iωt Pω) = χω)e = ex = e2 Eω) m ω0 2 ω2 iωγ 2.119) Z N ϵω) ϵ 0 = 1 + Ne2 m j f j ω 2 j ω2 iωγ j 2.120) Z ω ω j γ j f j f j f j sum j f j = Z 2.120 ω ω j, γ ϵω) ϵ

More information

(Compton Scattering) Beaming 1 exp [i (k x ωt)] k λ k = 2π/λ ω = 2πν k = ω/c k x ωt ( ω ) k α c, k k x ωt η αβ k α x β diag( + ++) x β = (ct, x) O O x

(Compton Scattering) Beaming 1 exp [i (k x ωt)] k λ k = 2π/λ ω = 2πν k = ω/c k x ωt ( ω ) k α c, k k x ωt η αβ k α x β diag( + ++) x β = (ct, x) O O x Compton Scattering Beaming exp [i k x ωt] k λ k π/λ ω πν k ω/c k x ωt ω k α c, k k x ωt η αβ k α x β diag + ++ x β ct, x O O x O O v k α k α β, γ k γ k βk, k γ k + βk k γ k k, k γ k + βk 3 k k 4 k 3 k

More information

9 1. (Ti:Al 2 O 3 ) (DCM) (Cr:Al 2 O 3 ) (Cr:BeAl 2 O 4 ) Ĥ0 ψ n (r) ω n Schrödinger Ĥ 0 ψ n (r) = ω n ψ n (r), (1) ω i ψ (r, t) = [Ĥ0 + Ĥint (

9 1. (Ti:Al 2 O 3 ) (DCM) (Cr:Al 2 O 3 ) (Cr:BeAl 2 O 4 ) Ĥ0 ψ n (r) ω n Schrödinger Ĥ 0 ψ n (r) = ω n ψ n (r), (1) ω i ψ (r, t) = [Ĥ0 + Ĥint ( 9 1. (Ti:Al 2 O 3 ) (DCM) (Cr:Al 2 O 3 ) (Cr:BeAl 2 O 4 ) 2. 2.1 Ĥ ψ n (r) ω n Schrödinger Ĥ ψ n (r) = ω n ψ n (r), (1) ω i ψ (r, t) = [Ĥ + Ĥint (t)] ψ (r, t), (2) Ĥ int (t) = eˆxe cos ωt ˆdE cos ωt, (3)

More information

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0 1 1 1.1 1.) T D = T = D = kn 1. 1.4) F W = F = W/ = kn/ = 15 kn 1. 1.9) R = W 1 + W = 6 + 5 = 11 N. 1.9) W b W 1 a = a = W /W 1 )b = 5/6) = 5 cm 1.4 AB AC P 1, P x, y x, y y x 1.4.) P sin 6 + P 1 sin 45

More information

多体問題

多体問題 Many Body Problem 997 4, 00 4, 004 4............................................................................. 7...................................... 7.............................................

More information

30

30 3 ............................................2 2...........................................2....................................2.2...................................2.3..............................

More information

( ) ) AGD 2) 7) 1

( ) ) AGD 2) 7) 1 ( 9 5 6 ) ) AGD ) 7) S. ψ (r, t) ψ(r, t) (r, t) Ĥ ψ(r, t) = e iĥt/ħ ψ(r, )e iĥt/ħ ˆn(r, t) = ψ (r, t)ψ(r, t) () : ψ(r, t)ψ (r, t) ψ (r, t)ψ(r, t) = δ(r r ) () ψ(r, t)ψ(r, t) ψ(r, t)ψ(r, t) = (3) ψ (r,

More information

a L = Ψ éiγ c pa qaa mc ù êë ( - )- úû Ψ 1 Ψ 4 γ a a 0, 1,, 3 {γ a, γ b } η ab æi O ö æo ö β, σ = ço I α = è - ø çèσ O ø γ 0 x iβ γ i x iβα i

a L = Ψ éiγ c pa qaa mc ù êë ( - )- úû Ψ 1 Ψ 4 γ a a 0, 1,, 3 {γ a, γ b } η ab æi O ö æo ö β, σ = ço I α = è - ø çèσ O ø γ 0 x iβ γ i x iβα i 解説 4 matsuo.mamoru jaea.go.jp 4 eizi imr.tohoku.ac.jp 4 maekawa.sadamichi jaea.go.jp i ii iii i Gd Tb Dy g khz Pt ii iii Keywords vierbein 3 dreibein 4 vielbein torsion JST-ERATO 1 017 1. 1..1 a L = Ψ

More information

TOP URL 1

TOP URL   1 TOP URL http://amonphys.web.fc2.com/ 1 30 3 30.1.............. 3 30.2........................... 4 30.3...................... 5 30.4........................ 6 30.5.................................. 8 30.6...............................

More information

http://www.ike-dyn.ritsumei.ac.jp/ hyoo/wave.html 1 1, 5 3 1.1 1..................................... 3 1.2 5.1................................... 4 1.3.......................... 5 1.4 5.2, 5.3....................

More information

(e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ,µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) [ ] [ ] [ ] ν e ν µ ν τ e µ τ, e R,µ R,τ R (2.1a

(e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ,µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) [ ] [ ] [ ] ν e ν µ ν τ e µ τ, e R,µ R,τ R (2.1a 1 2 2.1 (e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ,µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) [ ] [ ] [ ] ν e ν µ ν τ e µ τ, e R,µ R,τ R (2.1a) L ( ) ) * 2) W Z 1/2 ( - ) d u + e + ν e 1 1 0 0

More information

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2 2005 9/8-11 2 2.2 ( 2-5) γ ( ) γ cos θ 2πr πρhr 2 g h = 2γ cos θ ρgr (2.1) γ = ρgrh (2.2) 2 cos θ θ cos θ = 1 (2.2) γ = 1 ρgrh (2.) 2 2. p p ρgh p ( ) p p = p ρgh (2.) h p p = 2γ r 1 1 (Berry,1975) 2-6

More information

1. 1 A : l l : (1) l m (m 3) (2) m (3) n (n 3) (4) A α, β γ α β + γ = 2 m l lm n nα nα = lm. α = lm n. m lm 2β 2β = lm β = lm 2. γ l 2. 3

1. 1 A : l l : (1) l m (m 3) (2) m (3) n (n 3) (4) A α, β γ α β + γ = 2 m l lm n nα nα = lm. α = lm n. m lm 2β 2β = lm β = lm 2. γ l 2. 3 1. 1 A : l l : (1) l m (m 3) (2) m (3) n (n 3) (4) A 2 1 2 1 2 3 α, β γ α β + γ = 2 m l lm n nα nα = lm. α = lm n. m lm 2β 2β = lm β = lm 2. γ l 2. 3 4 P, Q R n = {(x 1, x 2,, x n ) ; x 1, x 2,, x n R}

More information

211 kotaro@math.titech.ac.jp 1 R *1 n n R n *2 R n = {(x 1,..., x n ) x 1,..., x n R}. R R 2 R 3 R n R n R n D D R n *3 ) (x 1,..., x n ) f(x 1,..., x n ) f D *4 n 2 n = 1 ( ) 1 f D R n f : D R 1.1. (x,

More information

BaHfO 3 PLD GdBa 2 Cu 3 O 7 δ 24 2 17 1 1 1.1.................................. 1 1.2............................... 2 1.3............................. 2 1.4................................. 3 1.5.........................

More information

[1] convention Minkovski i Polchinski [2] 1 Clifford Spin 1 2 Euclid Clifford 2 3 Euclid Spin 6 4 Euclid Pin Clifford Spin 10 A 12 B 17 1 Cliffo

[1] convention Minkovski i Polchinski [2] 1 Clifford Spin 1 2 Euclid Clifford 2 3 Euclid Spin 6 4 Euclid Pin Clifford Spin 10 A 12 B 17 1 Cliffo [1] convention Minkovski i Polchinski [2] 1 Clifford Spin 1 2 Euclid Clifford 2 3 Euclid Spin 6 4 Euclid Pin + 8 5 Clifford Spin 10 A 12 B 17 1 Clifford Spin D Euclid Clifford Γ µ, µ = 1,, D {Γ µ, Γ ν

More information

(1) 3 A B E e AE = e AB OE = OA + e AB = (1 35 e ) e OE z 1 1 e E xy e = 0 e = 5 OE = ( 2 0 0) E ( 2 0 0) (2) 3 E P Q k EQ = k EP E y 0

(1) 3 A B E e AE = e AB OE = OA + e AB = (1 35 e ) e OE z 1 1 e E xy e = 0 e = 5 OE = ( 2 0 0) E ( 2 0 0) (2) 3 E P Q k EQ = k EP E y 0 (1) 3 A B E e AE = e AB OE = OA + e AB = (1 35 e 0 1 15 ) e OE z 1 1 e E xy 5 1 1 5 e = 0 e = 5 OE = ( 2 0 0) E ( 2 0 0) (2) 3 E P Q k EQ = k EP E y 0 Q y P y k 2 M N M( 1 0 0) N(1 0 0) 4 P Q M N C EP

More information

Chebyshev Schrödinger Heisenberg H = 1 2m p2 + V (x), m = 1, h = 1 1/36 1 V (x) = { 0 (0 < x < L) (otherwise) ψ n (x) = 2 L sin (n + 1)π x L, n = 0, 1, 2,... Feynman K (a, b; T ) = e i EnT/ h ψ n (a)ψ

More information

磁性物理学 - 遷移金属化合物磁性のスピンゆらぎ理論

磁性物理学 - 遷移金属化合物磁性のスピンゆらぎ理論 email: takahash@sci.u-hyogo.ac.jp April 30, 2009 Outline 1. 2. 3. 4. 5. 6. 2 / 260 Today s Lecture: Itinerant Magnetism 60 / 260 Multiplets of Single Atom System HC HSO : L = i l i, S = i s i, J = L +

More information

eto-vol2.prepri.dvi

eto-vol2.prepri.dvi ( 2) 3.4 5 (b),(c) [ 5 (a)] [ 5 (b)] [ 5 (c)] (extrinsic) skew scattering side jump [] [2, 3] (intrinsic) 2 Sinova 2 heavy-hole light-hole ( [4, 5, 6] ) Sinova Sinova 3. () 3 3 Ṽ = V (r)+ σ [p V (r)] λ

More information

: , 2.0, 3.0, 2.0, (%) ( 2.

: , 2.0, 3.0, 2.0, (%) ( 2. 2017 1 2 1.1...................................... 2 1.2......................................... 4 1.3........................................... 10 1.4................................. 14 1.5..........................................

More information

The Physics of Atmospheres CAPTER :

The Physics of Atmospheres CAPTER : The Physics of Atmospheres CAPTER 4 1 4 2 41 : 2 42 14 43 17 44 25 45 27 46 3 47 31 48 32 49 34 41 35 411 36 maintex 23/11/28 The Physics of Atmospheres CAPTER 4 2 4 41 : 2 1 σ 2 (21) (22) k I = I exp(

More information

成長機構

成長機構 j im πmkt jin jim π mkt j q out j q im π mkt jin j j q out out π mkt π mkt dn dt πmkt dn v( ) Rmax bf dt πmkt R v ( J J ), J J, J J + + T T, J J m + Q+ / kt Q / kt + ( Q Q+ )/ ktm l / ktm J / J, l Q Q

More information

0406_total.pdf

0406_total.pdf 59 7 7.1 σ-ω σ-ω σ ω σ = σ(r), ω µ = δ µ,0 ω(r) (6-4) (iγ µ µ m U(r) γ 0 V (r))ψ(x) = 0 (7-1) U(r) = g σ σ(r), V (r) = g ω ω(r) σ(r) ω(r) (6-3) ( 2 + m 2 σ)σ(r) = g σ ψψ (7-2) ( 2 + m 2 ω)ω(r) = g ω ψγ

More information

液晶の物理1:連続体理論(弾性,粘性)

液晶の物理1:連続体理論(弾性,粘性) The Physics of Liquid Crystals P. G. de Gennes and J. Prost (Oxford University Press, 1993) Liquid crystals are beautiful and mysterious; I am fond of them for both reasons. My hope is that some readers

More information

( ) 2002 1 1 1 1.1....................................... 1 1.1.1................................. 1 1.1.2................................. 1 1.1.3................... 3 1.1.4......................................

More information

( ) s n (n = 0, 1,...) n n = δ nn n n = I n=0 ψ = n C n n (1) C n = n ψ α = e 1 2 α 2 n=0 α, β α n n! n (2) β α = e 1 2 α 2 1

( ) s n (n = 0, 1,...) n n = δ nn n n = I n=0 ψ = n C n n (1) C n = n ψ α = e 1 2 α 2 n=0 α, β α n n! n (2) β α = e 1 2 α 2 1 (3.5 3.8) 03032s 2006.7.0 n (n = 0,,...) n n = δ nn n n = I n=0 ψ = n C n n () C n = n ψ α = e 2 α 2 n=0 α, β α n n (2) β α = e 2 α 2 2 β 2 n=0 =0 = e 2 α 2 β n α 2 β 2 n=0 = e 2 α 2 2 β 2 +β α β n α!

More information

1 2 2 (Dielecrics) Maxwell ( ) D H

1 2 2 (Dielecrics) Maxwell ( ) D H 2003.02.13 1 2 2 (Dielecrics) 4 2.1... 4 2.2... 5 2.3... 6 2.4... 6 3 Maxwell ( ) 9 3.1... 9 3.2 D H... 11 3.3... 13 4 14 4.1... 14 4.2... 14 4.3... 17 4.4... 19 5 22 6 THz 24 6.1... 24 6.2... 25 7 26

More information

SFGÇÃÉXÉyÉNÉgÉãå`.pdf

SFGÇÃÉXÉyÉNÉgÉãå`.pdf SFG 1 SFG SFG I SFG (ω) χ SFG (ω). SFG χ χ SFG (ω) = χ NR e iϕ +. ω ω + iγ SFG φ = ±π/, χ φ = ±π 3 χ SFG χ SFG = χ NR + χ (ω ω ) + Γ + χ NR χ (ω ω ) (ω ω ) + Γ cosϕ χ NR χ Γ (ω ω ) + Γ sinϕ. 3 (θ) 180

More information

Z: Q: R: C:

Z: Q: R: C: 0 Z: Q: R: C: 3 4 4 4................................ 4 4.................................. 7 5 3 5...................... 3 5......................... 40 5.3 snz) z)........................... 4 6 46 x

More information

arxiv: v1(astro-ph.co)

arxiv: v1(astro-ph.co) arxiv:1311.0281v1(astro-ph.co) R µν 1 2 Rg µν + Λg µν = 8πG c 4 T µν Λ f(r) R f(r) Galileon φ(t) Massive Gravity etc... Action S = d 4 x g (L GG + L m ) L GG = K(φ,X) G 3 (φ,x)φ + G 4 (φ,x)r + G 4X (φ)

More information

10:30 12:00 P.G. vs vs vs 2

10:30 12:00 P.G. vs vs vs 2 1 10:30 12:00 P.G. vs vs vs 2 LOGIT PROBIT TOBIT mean median mode CV 3 4 5 0.5 1000 6 45 7 P(A B) = P(A) + P(B) - P(A B) P(B A)=P(A B)/P(A) P(A B)=P(B A) P(A) P(A B) P(A) P(B A) P(B) P(A B) P(A) P(B) P(B

More information

keisoku01.dvi

keisoku01.dvi 2.,, Mon, 2006, 401, SAGA, JAPAN Dept. of Mechanical Engineering, Saga Univ., JAPAN 4 Mon, 2006, 401, SAGA, JAPAN Dept. of Mechanical Engineering, Saga Univ., JAPAN 5 Mon, 2006, 401, SAGA, JAPAN Dept.

More information

2000年度『数学展望 I』講義録

2000年度『数学展望 I』講義録 2000 I I IV I II 2000 I I IV I-IV. i ii 3.10 (http://www.math.nagoya-u.ac.jp/ kanai/) 2000 A....1 B....4 C....10 D....13 E....17 Brouwer A....21 B....26 C....33 D....39 E. Sperner...45 F....48 A....53

More information

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) II 214-1 : October 2, 214 Version : 1.1 Kawahira, Tomoki TA (Kondo, Hirotaka ) http://www.math.nagoya-u.ac.jp/~kawahira/courses/14w-biseki.html pdf 1 2 1 9 1 16 1 23 1 3 11 6 11 13 11 2 11 27 12 4 12 11

More information