Black-Scholes 1 ( )

Size: px
Start display at page:

Download "Black-Scholes 1 ( )"

Transcription

1 Black-Scholes

2 Takaoka[T] Black- Scholes B S α B t = e rt S α t = S e αrt exp σw t + Ct } 2 σ2 t λdσ λ Λ 2 :=,, B, σ 2 λdσ < } W t } Ω, F, P; F t T > t [, T ], α R, r C, S F - S α dst α = αr+cφtst α dt+φtst α σ expσw t + Ct dw t φt 2 := σ2 t}λdσ expσw t + Ct 2 σ2 t}λdσ φtst α dw t α = Takaoka[T] λ Black-Scholes Takaoka[T] λ λ m m = λ M M = Black-Scholes Black-Scholes Takaoka[T] θ α t := C r α S α ds α t = rst α dt + φtst α d W t + φt θ α sds Wt α := W t + θ αsds P α P α

3 P α θ α t α = λ θ α t t α θ α t t λ θ α t Girsanov Girsanov Z α t := exp θ αsdw s t θ 2 αs 2 ds} F t }- P α A := E[ A Z α T ], A F T Wt α := W t + θ αsds Ω, F T, P α X t } F t }- X t F t - E[X t F s ] = X s s t Girsanov Z α t} Fatou Z α t} E[Z α t F s ] Z α s s t Z α t} E[Z α t] α = λ α E[Z α t] Novikov Karatzas and Shreve [KS] Z α t}.. λ Λ 2 m im > Z α t} iim = y = y λ, D = DT y > y σ expσ y + Ct 2 σ2 t}λdσ expσ y + Ct 2 σ2 t}λdσ > D y 2 Z α t} m = λ Λ 2 2 λ ρ ρ 2 2

4 i ii.2. λ Λ 2 m m > t >, µ R, α R lim x x P log Sα t S 2πη exp < x y µ2 2η } dy = η > m 2 t < η < m 2 t m = 2 t >, η >, µ R, α R 3 m = 2 log Sα t S Black-Scholes α Karatzas and Shreve [KS2] X x,π t = xb t + B t πuφudwu α B u A x = π;, X x,π t, t [, T ] a.s} U : [, [, ; V x = sup E[UX x,π T ] 4 π A x 4 π = π π S α X x,π x, π.3. α = λ Λ :=,, B, σλdσ < } π > α < π < λ Λ α < Girsanov Takaoka[T] 3 3

5 4

6 Ω, F, P; F t F t } F t+ := s>t F s = F t F F E P... X = X t } t Ω, F, P; F t martingale i ii X F t }- 5.5 t E[ X t ] < iii E[X t F s ] = X s t s X i, ii iii E[X t F s ] X s t s submartingale iii E[X t F s ] X s t s supermartingale.2. [KS].3.5 Theorem X = X t } t Ω, F, P; F t C := sup t E[X t + ] < X := lim t X t E[ X ] <.2 5

7 .3. [KS].3.6 Problem X = X t } t Ω, F, P; F t X := lim t X t t =.4. Optional Sampling Theorem[KS].3.22 Theorem X = X t } t Ω, F, P; F t X := lim t X t F t } 5.6S T EX T F S X S F S [KS].3.29 Problem X = X t } t Ω, F, P; F t T := inft ; X t = } T < } X T +t =, t <.5.6. X = X t } t Ω, F, P; F t local martingale T n } n= P[lim n T n = ] = n X n t } t := X t Tn } t X = X t } t X. X T n } n= P[lim n T n = ] = n X n t } t := X t Tn } t t s Fatou [ ] E[X t F s ] = E lim inf X t T n n F s lim inf E[X t T n F s ] = lim inf X s T n = X s n n 6

8 Ω, F, P; F t M c 2 := X = X t } t ; X = a.s} X M c 2 Jensen 5.8 X2 - Doob-Meyer 5.6 Xt 2 = M t + A t, t < M = M t } t A = A t } t 5.3, 5.4 X X X M c 2 X quadratic variation X X = X 2 X X, Y M c 2 X + Y 2 X + Y, X Y 2 X Y 4XY [ X + Y X Y ] X, Y.. X, Y M c 2 X, Y X, Y X, Y t := 4 [ X + Y t X Y t ], t < X, Y M c,loc := X = X} t ; X = a.s} X, X, Y.. [KS].5.7 Problem X, Y M c,loc X, Y X Y i X, Y = ii X, Y iii XY X, Y M c,loc.2. [KS].5.7 Problem,.5.2 Exercise X, Y, Z M c,loc α, β R X, X = X, X, Y = Y, X, αx + βy, Z = α X, Z + β Y, Z X, Y X, Y = 7

9 .3. X = X t } t Ω, F, P; F t semimartingale X F t }- X t = X + M t + A t, t <. M = M t } t M M c,loc A = A t } t A = t [, t] X X X t := M t.4. X.2.5. W = W t} t Ω, F, P Brownian motion i ii t < t < < t n W t W t,, W t n W t n s, t, A BR PW s + t W s A = A 2πt exp x2 2t ds iii W = W t 2 W t = t 8

10 .6. [KS] Theorem X = X t } t Ω, F, P; F t F t }- M t := X t X M t = t X. F t } W F W t := σw s; s t} W t F W t- F W t} t [KS] 2.7. Problem augmentation.7. [KS] 2.7 Section W Ω, F, P T > F W t := σw s; s t} N F W T F t := σf W t N }, t [, T ] F t } t T M M c,loc X P M := X = X t } t ; T Xt 2 d M t <, t < } X sdm s Ω, F, P; F t.8. X X t = ξ } t + ξ i ti,t i+ ]t, t < i= X simple t n } n= t = t n ξ n } n= C > sup n ξ n C ξ n F tn - L X X M t := X sdm s X s dm s = ξ i M t ti+ M t ti i= 9

11 .9. M M c 2 L M := X = X} t ; T > [X] T := E T X 2 t d M t 2 < } T > [X Y ] T = X Y L M [ ] [X Y ] := 2 n [X Y ] n n= M M c 2 X L M X sdm s.2. [KS].5.23 Proposition M M c 2 t M t := EX 2 t M := n= 2 n M n M c 2.2. [KS] 3.2 Section B X, Y L, M M c 2 E[X M t F s ] = X M s.2 X M = [X].3 t αx u + βy u dm u = α X u dαm u + βn u = α X M, Y N t = X u dm u + β X u dm u + β Y u dm u.4 X u dn u.5 X u Y u d M, N u [KS] Proposition M M c 2 L L M

12 M M c 2 X L M X sdm s.22 X L M X n } n L.3,.4 [X n X] as n X n M X m M = X n X m M = [X n X m ] as n, m.2 X n M} n= M c 2.2 M c 2 I Mc 2 I X n M as n I M M c 2 X L M X M.23. [KS] 3.2. Proposition M, N M c 2, X, Y L M L N.2,.3,.4,.5, [KS] Proposition M, N M c 2, X L M, Y L N X s Y s dˇξ s X 2 s d M s 2 Ys 2 2 d N s, t < ˇξ s ξ = M, N [, s] M M c,loc X P M M t S n } n= P[lim n S n = ] = n M t Sn } t M c 2 X P M R n } n= } R n = n inf t ; Xs 2 d M s n R n } n= P[lim n R n = ] = T n := R n S n, M n t := M t Tn, X n t := X t Tn >t} M n M c 2, X n L M n X n M n X M X u dm u = X u n dm u n ; t T n

13 . X Y P M Y s dx s := Y s dm s + Y s da s ω Ω.25. [KS] 3.2 Section D M, N M c,loc, X, Y P M P N X M, Y N.4,.5, [KS] Theorem f : R R f C 2 X. fx t = fx + d dx fx sdx s + 2 d 2 dx 2 fx sd X s, t < X f fx.27. [KS] Theorem X t } t Ω, F, P; F t d. ft, X t = f, X d i= d j= t fs, X sds + d i= x i fs, X s dx s 2 x i x j fs, X s d X i, X j s, t <.28. [KS] Problem X, Y. X s dy s = X t Y t X Y Y s dx s X, Y t, t < 2

14 4.29. [KS] Theorem, Problem W Ω, F, P F t } M M = a.s M M c,loc M Y P M M t = Y s dw s.7 Ỹ P M.7 Ỹs Y s ds =.3 W Ω, F, P F t } W T P[ T X2 t dt < ] = X = X t } t [ Z t X := exp X s dw s ] Xs 2 ds 2 Z t X = + Z s XX s dw s.8 ZX = Z t X} t Z X = ZX F T T < P T P T A := E[ A Z T X], A F T,ZX P T ; T < } P T A = P t A, A F t, t T.9 3

15 Ω, F T, P T.3. Girsanov [KS] 3.5. Theorem ZX W = W t } t W t := W t X s ds, t T W Ω, F T, P T ; F } t T.3. Bays [KS] Lemma T < ZX s t T Y F t - Ẽ T Y < Ẽ T [Y F s ] = Z s X E[Y Z tx F s ] P P T Ẽ T P T..9 A F s - A F s [ ] Ẽ T A Z s X E[Y Z tx F s ] = E[ A E[Y Z t X F s ]] = E[ A Y Z t X] A F s - = ẼT [ A Y ].32. [KS] Proposition T ZX M M c,loc M t := M t T X s d M, W s, t T M c,loc M T N M c,loc T Ñ t := N t X s d N, W s, t T M, Ñ = M, N, t T. 4

16 P P T M c,loc T := M = M} t T Ω, F T, P; F t P[M = ] = } M c,loc T := M = M} t T Ω, F T, P T ; F t P T [M = ] = } P. M, N, M, N, ZX X2 s ds ω, t - 2 Xs 2 d M, W s M t Xs 2 ds M Z t X M = = Z s Xd M s + M s dz s X + ZX, M t Z s XdM s + MdZ s X P ZX, M = ZX, M t = t X s Z s Xd M, W s.23 ZX M P s t T Ẽ T [ M t F s ] = Z s X E[Z tx M t F s ] = M s c,loc P P T M M T M t Ñ t M, N t = = M s dñs + Ñ s d M s + M, Ñ M s dn s M s X s d N, W s + P M, Ñ = M, N t t t M, N t Ñ s dm s Ñ s X s d M, W s 5

17 Z t X M t Ñ t M, N t = Z s Xd M s Ñ s M, N s + + ZX, MÑ M, N = + t Z s X M s dn s + Z s XÑsdM s M s Ñ s M, N s dz s X M s Ñ s M, N s dz s X ZX MÑ M, N P Ẽ T [ M t Ñ t M, N t F s ] = M s Ñ s M, N s P P T 2 P T M, Ñ = M, N t, t T t. Ω, F T, P T W.6.32 M = W M = W c,loc W M t.32 W = W t = t, t T t P T.6.8 ZX.8 ZX ZX t E[Z t X] = ZX X ZX 3 3. X t E[Z t X] = ZX 6

18 .34. Novikov [KS] Corollary T > [ T ] E exp Xs 2 ds < 2 E[Z T X] = t T Z t X} [KS] Proposition M = M t } t M c,loc, Z t := E[M t 2 t ], t [ }] E exp 2 M t < E[Z t ] =. 5.9 s T s := inft ; M t > s}, B s := M T s, G s := F T s B s } s G s } b < G s } S b S b := infs ; B s s = b} 5.2, 5.2 [ E exp B Sb ] [ ] 2 S b =, E exp 2 S b = e b Ω, F, P; G s Y = Y s } s, N s = N s } s Y s := exp B s s, N s := Y s Sb N Ω, F, P; G s P[S b < ] = N := lim N s = exp B Sb s 2 S b E[N ] = = E[N ] 5.7 N s = Ω, F, P; G s G s } R [ E exp B Sb }] [ 2 S b = E exp B R Sb }] 2 R S b = 7

19 5.9 t M t G s } b < [ E Sb M t } exp b + ] [ 2 S b + E M t <S b } exp M t ] 2 M t = E[exp M 2 t }] < }] [ E Sb M t } exp b + ] 2 S b [ = e b E exp 2 M t as b [ E M t <S b } exp M t ] 2 M t E[Z t ] = as b [KS] Cororally = t < t < < t n t n } n= [ tn ] E exp Xs 2 ds <, n. 2 t n ZX. X t n := X t [tn,t n]t.34 ZXn E[Z tn X F tn ] = E[Z tn Xn F tn ] = E[Z tn Xn] = E[Z tn X] n E[Z tn X] = lim n t n = t E[Z t X] = 8

20 2 2. Ω, F, P W T terminal time F W t := σw s; s t}, Ft := σf W t N } N F W T S S t := e rt ds t = rs tdt, t [, T ] 2. S S t >, t [, T ] S t := S + bss sds + σss sdw s ds t = bts tdt + σts tdw t, t [, T ] 2.2 T bt} bt dt < a.s σt} T σt 2 dt < a.s bt}, σt} 2.. portfolio processπ, π T T π t + π t dt < a.s 2.3 π tbt r dt < a.s 2.4 T σtπ t 2 dt < a.s 2.5 9

21 π, π gains processg Gt := r[π s+π s]ds+ π s[bs r]ds+ π sσsdw s, t T π i t t [, T ] i t [, T ] i 2.2. π, π G Gt = π t + π t, t T π, π self-financed, self-financing 2.3. excess yield process, over the interest rate processr Rt := bs rdu + σudw u, t T R π, π G Gt = [π s + π s]rdt + π sdrs π, π dgt = Gt S t ds + π tdrt Gt = S t S u π udru, t T , 2.5 F t }- π M π t = S u π udru, t T π tame 2

22 2.6. x R, π, π x, π, π wealth processx Xt := x + Gt, t T 2.8 G π, π Xt = π t + π t, t T π, π x-financed 2.7. x 2.8 x-financed dxt = Xt S t ds t + π tdrt Xt t S t = x + S u π udru, t T π, π tame π, π G GT a.s PGT > > arbitrage viable 2.9. G G = 2.. [KS2].4.2 Theorem i t [, T ] bt r = σtθt a.s θt} 2

23 θt} market price of risk ii t [, T ] bt r = σtθt a.s θt} θt} T θt 2 dt < a.s Z t := exp θsdw s } θs 2 ds, t T E[Z T ] =. ii θt} π, π G 2.6, 2.7 Gt = S t S u π udru = S t W t := W t + S u π uσudw u θsds, t T 2. Rt = σudw u 2.9 Z t P A := E[ A Z T ], A FT 2. W P Gt } Gt.8 S t} P [ E GT ] [ S T G E S ] = E P [ ] GT E S T Z T PGT = PGT > > S t standard i viable 22

24 ii θs} θt 2 dt < a.s T iii 2.9 Z t} 2. P standard martingale measure P E 2.2. P ds t = bts tdt + σts tdw t = rs tdt + σts td W t + = rs tdt + σts tdw t θsds P W , 2.5 F t }- π M π t := S u π uσudw u, t T P π martingalegenerating B B FT - [ S T x := E B S T ] < x-financed i ii B T S T = x + S u π uσudw u 2.2 tame π, π B financeable FT - complete 2.5. i ii [KS2].6.6 Theorem 23

25 [ 2.6. E CT S T ] < FT - CT CT T S T = x + S u π uσudw u 2.3 tame π, π T M π T := S u π uσudw u, t T 2.3 E [M π T ] = 2.ii M π π 2.7. S CT T i ii CT = S T K + ; K S T K CT = K S T + ; K S T K t t x x x π, π X t T XT T S T = x + t S u π uσudw u t x x T CT t [, T ] 24

26 2.8. T CT t V E t, T Ft- Xt = ξ π, π XT S T = Xt S t + T t S u π uσudw u CT S T ξ t Xt t T π, π T CT Xt t Γ -financed t Γt [KS2].3.2 Definition 2.2. [KS2] Proposition T CT t V E t, T [ ] CT V E t, T = S te S T F t. CT π, π CT T S T = x + S u πuσudw u 2.5 x = E [ CT ] S T π, π Xt S t = x + S u πuσudw u X XT = CT [ ] Xt CT S t = E S T F t 2.5 π 2.4 [ ] Xt CT S t E S T F t 2.6 π X

27 3 Black-Scholes Takaoka[T] 3. Black-Scholes B S α Bt = e rt St α = S e 3. αrt expσw t + Ct 2 σ2 t}λdσ W Ω, F, P λ Λ :=,, B, σλdσ < } T > t [, T ], r >, α R, S F - F t } F t := σf W t N }, t [, T ] F W t := σw s ; s t}, N F W T α = Takaoka[T] λ Black-Sholes α R α = Takaoka[T] α = S α [T] Appendix η,, B, σηdσ < exp σw t + Ct } 2 σ2 t ηdσ [ = ηr ++ + σ exp σw u + Cu } ] 2 σ2 u ηdσ dw u + Cu 26

28 t 3.2. σ 2 ηdσ < 3. X t = S e αrt, Y t = expσw t + Ct 2 σ2 t}λdσ dst α = dx t Y t = X t dy t + Y t dx t X t 3. dy t = [ σ expσw t + Ct 2 σ2 t}λdσ]dw t + Ct ds α t [ = X t σ exp σw t + Ct } ] 2 σ2 t λdσ dw t + Ct + αry t X t dt [ = X t Y t σ exp σw t + Ct } ] Y t 2 σ2 t λdσ dw t + Ct + αrx t Y t dt = St α σ expσw t + Ct 2 αr + C σ2 t}λdσ expσw t + Ct dt 2 σ2 t}λdσ +St α σ expσw t + Ct 2 σ2 t}λdσ expσw t + Ct dw t 2 σ2 t}λdσ φt := σ expσw t + Ct 2 σ2 t}λdσ expσw t + Ct 2 σ2 t}λdσ θ α t θ α t = αr + Cσt r φt = r α C φt Z α t := exp θ α sdw s } θ α s 2 ds 2 t T λ Λ m iα = θ t = C λ Λ Z 27

29 iiα m > θ α.34 Z α iiiα m = θ α Z α.36 Z α 3.3. [KS] Corollary σλdσ t = ft, x = R σ expσx+ct 2 σ2 t}λdσ t > R expσx+ct 2 σ2 t}λdσ K T > r α C ft, x K T + x, t T 3.2 Z α t T. T > = t < t < < t nt = T n nt..36 n nt T = T < Y t = X t T.36 T 3.2 r α C σt K T + max W t, t T t T t n < t n K T n θ α s 2 ds t n t n KT 2 + max W t t t T n Dt := exp[ t 4 n t n KT 2 + W t 2 ] Dt} 5.4 [ 2 }] [ ] E exp 2 t n t n K 2 + max W t = E max t T t T Dt2 4E[DT 2 ] t n t n < t T KT 2 n } nt n= E[DT 2 ] <.36 t n } nt n= Zα t T 28 2

30 λ Λ 2 :=,, B, σ 2 λdσ < } ft, x x R λ Λ 2 T > 3.2 K T y = y λ, D = DT y > y ft, y > D y D > 3.3 λ Λ 2 iii λ Λ 2 ρ d > ρ, d] a ρx b b > a > 3.3. t > yσ expσ y + Ct 2 yft, y = σ2 t}λdσ expσ y + Ct 2 σ2 t}λdσ z exp z exp t 2 = z y C2 }ρ z dz y exp z exp t z 2 y C2 }ρ z dz yσ = z y = z exp z exp t z 2 y C2 }ρ z dz + z exp z exp t z y 2 y C2 }ρ z dz y exp z exp t z 2 y C2 }ρ z dz + exp z exp t z y 2 y C2 }ρ z dz y y > z exp z exp t 2 } z z 2 y C ρ dz a exp t2 y C2 z exp zdz = a exp t2 C2 2 e z exp z exp t 2 } z z 2 y C ρ dz y exp z exp t 2 } z 2 y C ρ z y exp z exp t 2 } z 2 y C ρ dz y > yft, y min, ab exp t2 C2 2 e 29 z ρ dz = b y z y dz

31 3.5. λ Λ 2 ρ d > ρ, d] ρax = ρaρxa 3.3. yft, y = = = yσ expσ y + Ct 2 σ2 t}λdσ expσ y + Ct 2 σ2 t}λdσ z exp z exp t z 2 y C2 }ρ z dz y exp z exp t z 2 y C2 }ρ z dz yσ = z y z exp z exp t z 2 y C2 }ρ z dz + z exp z exp t z y 2 y C2 }ρ z dz y exp z exp t z 2 y C2 }ρ z dz + exp z exp t z y 2 y C2 }ρ z dz y y > z exp z exp t 2 } z z 2 y C ρ dz = ρ z exp z exp t 2 } z y y 2 y C ρzdz ρ exp t y 2 C2 zρzdz z exp z exp t 2 } z z 2 y C ρ dz y exp z exp t 2 } z z 2 y C ρ dz = ρ y y ρ y y > yft, y min, exp t 2 C2 exp z exp t 2 } z 2 y C ρ z y dz exp z exp t 2 } z 2 y C ρzdz zρzdz 3.6. λ Λ 2 ρ d > ρ, d] γ x β ρx γ 2 x β β >, γ 2 > γ > 3.3 3

32 . yft, y = = = yσ expσ y + Ct 2 σ2 t}λdσ expσ y + Ct 2 σ2 t}λdσ z exp z exp t z 2 y C2 }ρ z dz y exp z exp t z 2 y C2 }ρ z dz yσ = z y z exp z exp t z 2 y C2 }ρ z dz + z exp z exp t z y 2 y C2 }ρ z dz y exp z exp t z 2 y C2 }ρ z dz + exp z exp t z y 2 y C2 }ρ z dz y y > z exp z exp t 2 } z 2 y C ρ z y dz z exp z exp t 2 } z z 2 y C ρ dz y exp z exp t 2 } z z 2 y C ρ dz y z exp z exp t z 2 γ y exp t β 2 C2 = γ y exp t β 2 C2 β + 2 y C z β+ dz exp z exp t 2 } z 2 y C ρ y > γ yft, y min, γ 2 β + 2 exp t 2 C2 2 } γ z y β dz z y dz exp z exp t 2 } β z z 2 y C γ 2 dz γ 2 y y β 3.7. β < λ γ x β ρx γ 2 x β γ 2 > γ > 3.8. λ Λ 2 ρ lim x ρx = lim x R x ρσdσ xρx lim x ρx = xρx lim x R x ρσdσ R x lim ρσdσ x xρx 3

33 . t > lim y yft, y > yσ expσ y + Ct 2 yft, y = σ2 t}λdσ expσ y + Ct 2 σ2 t}λdσ z exp z exp t 2 = z y C2 }ρ z dz y exp z exp t z 2 y C2 }ρ z dz yσ = z y = z exp z exp t 2 z exp z exp t 2 z exp z exp t z 2 y C2 }ρ z dz + z exp z exp t z y 2 y C2 }ρ z dz y exp z exp t z 2 y C2 }ρ z dz + exp z exp t z y 2 y C2 }ρ z dz y z y C z y C 2 } ρ 2 } ρ z y z y dz exp t } 2 C2 zρ dz exp z exp t 2 } z 2 y C ρ z y z y dz exp z exp t 2 } z 2 y C ρ dz z ρ dz y yft, y exp t 2 C2 } zρ z dz + exp z exp t z y 2 y C2 }ρ z dz y ρ z dz + exp z exp t z y 2 y C2 }ρ z dz y d ρ z y exp t 2 C2 } zρ z y dz ρ z y dz = exp t 2 C2 } x σρσdσ x x ρσdσ z = σ, = x y y lim zρ z dz x y y ρ z dz = lim σρσdσ x x x ρσdσ y = lim x = lim x R x x ρσdσ xρx ρσdσ + xρx xρx + z y dz 2 32

34 3.. λdσ = exp σdσ λdσ =, σdσ Ψx := y2 exp dy, x 2 x > x + x exp x2 Ψx 2 2 x x + 3 exp x x 5 2 t lim y yft, y = 3.5 x2 exp x 2 lim y yft, y = 3.. λ Λ λ Λ 2 λ Z α Z α Z α [K] M = M t } t M c,loc, Z t := E[M t M 2 t ], t [ }] E exp 2 M t < E[Z t ] = E[exp M 2 t }] < [ }] [ ] E exp = E exp exp 2 M t < [ E exp 2 M t 4 M t }] 2 2 M t 4 M t λ Λ 2 λ λ 3.3. m λ Λ 2 m > t >, µ R, α R P log Sα t S lim < x η > m 2 x 2πη exp t } = y µ2 dy < η < m 2 t x 2η 33

35 . t > F x := log e αrt expσx + Ct 2 σ2 t}λdσ F P log Sα x t < x = PW t < F x = exp S 2πt y2 2πt exp F x } R 2 expσ x+ct 2 σ2 t}λdσ R 2t σ expσ x+ct 2 σ2 t}λdσ 2πη exp } x µ2 2η 2t } dy x expσ x + Ct 2 lim σ2 t}λdσ x σ expσ x + Ct 2 σ2 t}λdσ = m 2πt exp F x 2 } 2t 2πη exp x µ2 2η } = exp 2η } η η x µ+ t F x x µ t F x x η x µ + t F x x fx := x µ η F x t η f expσ x + Ct 2 x = + σ2 t}λdσ t σ expσ x + Ct 2 σ2 t}λdσ + η > t m η > m2 t lim x x Plog Sα t S < x 2πη exp y µ2 }dy = 2η + η < t m η < m2 t lim x x Plog Sα t S < x 2πη exp y µ2 2η 34 }dy =

36 3.4. m λ Λ 2 m = 3.3 t >, η >, µ R, α R P log Sα t S < x lim x x 2πη exp } = y µ2 dy. t > F x = log e αrt expσx + Ct 2 σ2 t}λdσ F P log Sα x } t < x = PW t < F x = exp y2 dy S 2πt 2t 2η 2πt exp F x } R 2 expσ x+ct 2 σ2 t}λdσ R 2t σ expσ x+ct 2 σ2 t}λdσ 2πη exp } x µ2 x 3.3 D = DT expσ x + Ct 2 σ2 t}λdσ σ expσ x + Ct 2 σ2 t}λdσ x D 2η 2πt exp F x } R 2 expσ x+ct 2 σ2 t}λdσ R 2t σ expσ x+ct 2 σ2 t}λdσ exp x µ + 2η 2πη exp } x µ2 2η η t F x x µ } η x t F x D x η x µ + t F x x fx := x µ η F x t η f expσ x + Ct 2 x = + σ2 t}λdσ t σ expσ x + Ct 2 σ2 t}λdσ lim x f x = x fx lim x fx = 35

37 3.5. m λ Λ 2 m > t >, µ R P log S t S lim < x η > m 2 x 2πη exp t } = y µ2 dy < η < m 2 t x 2η m = x = x λ, D = DT x > x σ expσ x 2 σ2 t}λdσ expσ x 2 σ2 t}λdσ D x t >, η >, µ R lim x x P log S t S < x 2πη exp } = y µ2 dy P A := E[ A Z T ], A F T 3.6. M λ Λ 2 M < t >, µ R, α R P log Sα t S lim > x η > M 2 x 2πη exp t } = y µ2 dy < η < M 2 t x 2η 3.7. log B t B = rt log Sα t S St α 2η 3.2 B S α λ t dσ := expσw Q t σ2 tλdσ 2 expσw Q t σ2 tλdσ 2 := W t + Ct, P α A = E[ A Z α t], A F t E α P α T K V α,k t, T Φx = x 2π exp y2 dy W Q t 2 36

38 3.8. [T] Proposition 4.2 [ ] S V,K t, T = E T K + ert t F t 3.6 = St Φ ˆx t + σ T t λ t dσ Ke rt t Φ ˆx t T t T t ˆx t = ˆx t W Q t x } St e rt t exp σx σ2 T t λ t dσ = K [MM]Appendices Lemma A. ψ, η Ω, F, P G F σ- ψ G- η E[ hψ, η ] < h : R 2 R E[hψ, η G] = Hψ Hx = E[hx, η] 3.8. kσ := expσˆx σ2 T t 2 S T = S t e rt t exp σw Q T W Q t σ2 T t} λ 2 t dσ } ST K > St e rt t exp σw Q T W Q t σ2 T t λ t dσ > K 2 W Q T W Q t > ˆx t } exp σw Q T W Q t σ2 T t kσ > 2 St e rt t kσλ t dσ = K [ ST K + = St e rt t exp σw Q T W Q t σ2 2 St, W Q t, expσw Q t [ ] S E T K + ert t F t } = St E [exp σw Q T W Q t σ2 T t 2 } = St E [exp σw Q T W Q t σ2 T t 2 Ke rt t P W Q T W Q t > ˆx t F t 37 } + T t kσ] λ t dσ σ2 2 tλdσ F t- S t + ] kσ F t λ t dσ ] T W Q t >ˆx t} F t λ t dσ kσλ t dσ = Ke rt t W Q

39 3.9 } E [exp σw Q T W Q t σ2 T t 2 } = exp σx σ2 T t exp 2πT t ˆx t 2 = Φ ˆx t + σ T t T t W Q T W Q t >ˆxt} x2 ] F t 2T t } dx P W Q T W Q t > ˆx t F t = 2πT t = Φ ˆx t ˆx t T t } exp x2 dx 2T t [ ] S E T K + ert t F t = St Φ ˆx t +σ T t λ t dσ Ke rt t Φ ˆx t T t T t 3.2. [ S V,K t, T = E T K + ert t ] F t C C S St = S,C t [ P,C A := E A exp CW t ] 2 C2 t, A F t P,C W t + C t C C 2 P,C W t + C t A = P,C 2 W t + C 2 t A, A BR } P,C S e rt exp σw t + C t σ2 2 t λdσ A } = P,C 2 S e rt exp σw t + C 2 t σ2 2 t λdσ A λ Black-Scholes, λ 2 Ishimura and Sakaguchi[IS] 38

40 Ω, F, P W T F W t := σw s; s t}, Ft := σf W t N } N F W T S S t := e rt ds t = rs tdt, t [, T ] 4. S S t >, t [, T ] S t := S + bss sds + σss tdw s ds t = bts tdt + σts tdw t, t [, T ] 4.2 T bt} bt dt < a.s, σt} T σt 2 dt < a.s θt := bt r, W σt t := W t + θsds, Z t := exp θsdw s t 2 θs2 ds}, H t := Z t S t P A = E[ A Z T ], A F T x R, π, π x, π, π x-financed X x,π,π t X x,π,π t = xs t + S t S u π uσudw u 39

41 x-financed π, π π π π π x, π X x,π X x,π t = xs t + S t S u πuσudw u 4.. x, π t [, T ] X x,π t π x π is admissible at x 4.2. π x xs t + S t πuσudw S u u S u πuσudw u x, t [, T ] Nt := πuσudw S u u P.8 N P E [NT ] E [N] = [ ] X x,π T E [NT ] = E x Z T = E[X x,π T H T ] x S T E[X x,π T H T ] x budget constraint 4.3. [KS2] Remark τ = T inft [, T ] ; X x,π t = } ω τ < T }. X x.π t, ω =, t [τ ω, T ] H tx x,π t = Z t Xx,π t S t = exp θsdw s 2 } θs 2 ds S u πuσudw u + x + } S u πuσuθudu 4

42 N t := θsdw s, A t := t 2 θs2 ds, Nt 2 := πuσudw S u u, πuσuθudu A 2 t := x + S u dh tx x,π t = H tx x,π tdn t + A t + Z tdn 2 t + A 2 t + 2 H tx x,π d N + Z t td N, N 2 t = H tx x,π t θt}dw t + H tx x,π t 2 } θt2 dt } } +Z t S t πtσt dw t + Z t S t πtσtθt dt + 2 H tx x,π tθt 2 }dt + Z t } S t πtσtθt dt = H tπtσt X x,π tθt}dw t H tx x,π t H X x,π P.8 H X x,π P H X x,π.5 π x 4.4. [KS2] Theorem x ξ F t - E[H T ξ] = x x ξ = X x,π T π. t [, T ] Mt := E[H T ξ F t ] Mt M = x T ψu 2 du < a.s ψt} t T Mt = x + ψudw u Mt M := max t T Mt < a.s κ := max t T < a.s Xt := Mt H t Z t Xt S t = Mt Z t = x + ψudw u exp θsdw s t 2 θs2 ds} Nt := ψudw u, Nt 2 := θsdw s, A 2 t := 2 θs2 ds 4

43 Xt d = S t Z t dn t Mt Z t dn t 2 Mt Z t da2 t Z t d N, N 2 + Mt t 2 Z t d N 2 t = ψt Z t dw t + Mt Z t θtdw t = + M t 2 Z t θt2 dt + Z t ψtθtdt + Mt 2 Z t θt2 dt [ ] ψt + Mtθt} σtdw t S t H tσt πt := ψt + Mtθt} H tσt Xt = xs t + S t S s πsσsdw s 4.3 π 2.4, 2.5 T T πtbt r dt = θt ψt + Mtθt} H t dt bt r = θtσt T σtπt 2 dt = e rt κ ψ 2 θ 2 + θ 2 2 M } < T 2 ψt + Mtθt} H t dt T e 2rT κ 2 ψt + Mtθt 2 dt e 2rT κ 2 [ ψ M ψ 2 θ 2 + M 2 θ 2 2] < Xt = Mt H t 4.4 XT = MT H T = H T E[H T ξ F T ] = ξ a.s , 4.4, 4.5 Utility function p, \} x p x > p ξ U p x = lim p ξ x = p x < 42

44 U x = log x x > x U p p, \} U U p p, [KS2] 3.4 Section i infx R; U p x > } = ii U p + := lim x U p x U p + = iii U p :,, U p I p :,, iv v Ũ p y := supu p x xy}, y > Ũ p y = U p I p y yi p y X y := E[H T I p yh T ], y > X :,, X Y :,, [KS2] Problem Ax := π; X x,π t, t [, T ] a.s} A x := π Ax; E min[, U p X x,π T ] > } V x := sup EU p X x,π T 4.6 π A x 4.6 π A x 4.4 E[U p ξ] E[H T ξ] x F T - ξ y > E[U p ξ]] + yx E[H T ξ] 4.7 F T - ξ E[U p ξ] + yx E[H T ξ] = xy + E[U p ξ yh T ξ] xy + E[ŨpyH T ] U

45 4.8 ξ = I p yh T ξ E[H T ξ] x E[H T I p yh T ] x X y x y = Yx ξ = I p YxH T 4.7 ξ = I p YxH T E[H T ξ] = x F T X x,π T = ξ π Ax X x,π T = I p YxH T π 4.5. [KS2] Theorem X x,π T = I p YxH T π A x π. 4.4 X x,π T = I p YxH T π Ax π π A x U U p X x,π T = U p I p YxH T = ŨpYxH T + YxH T I P YxH T U p Ic cic + YxH T I P YxH T c > U p Ic cic c > E min[, U p X x,π T ] min[, U p Ic cic] c > > π A x U U p I p YxH T YxH T I p YxH T = ŨpYxH T U p X x, π T YxH T X x, π T π A x EU p X x,π T = EU p I p YxH T EU p X x. π T YxE[H T I p YxH T ] E[H T X x, π T ]} π A x = EU p X x, π T Yxx E[H T X x. π T ]} E[H T I p YxH T ] = x EU p X x, π T 44

46 π πt = ψt + Mtθt} H tσt Mt = E[H T I p YxH T F t ] ψt M Mt = x + ψudw u π X x,π X x,π t = H t Mt = H t E[H T I p YxH T F t ] Bt = e rt S α t = S e αrt expσw t + Ct 2 σ2 t}λdσ,w Ω, F, P λ Λ :=,, B, σλdσ < } T > t [, T ], r >, α R F t } F t := σf W t N }, t [, T ] F W t := σw s ; s t}, N F W T p, \}, α = I p y = y p X y = E[H T I p yh T ] = y p E[H T p p ] = y Yx = x X p, Mt = x X E[H T p p Ft ] p X θt = C H T p p = exp p p rt exp p p CW T } p 2 p C2 T = DT mt 45

47 p DT = exp p rt + } p 2 p 2 C2 T mt = exp p p CW T 2 } p C 2 T 2 p DT ω Ω M E[H T p p Ft ] = DT mt X = E[H T p p ] = E[DT mt ] = DT Mt = xmt, X x,π t = xmt H t mt = p C msdw p s Mt = x + xp p Cms dw s ψt = xp p Cmt πt = xp p = X x,π t = H tσt H tσt H t X x,π t πt = xmt H t xcmt p Cmt + xcmt 4. xmt 4. C 4.2 σt p λ Λ 4. S C 4.2 B λ p α = λ t X x,π t fa a >, fa = p exp } p2 log a 2 2πtCa 2tC 2 46

48 E[X x,π t] = x exp r + } p C2 t } V[X x,π t] = x 2 exp 2 r + C2 C 2 t exp p p t 2 } p =, α = I y = y X y = E[H T I yh T ] = y Yx = x, Mt = x ψt = θt = C πt = X x,π t = X x,π t πt = xc H tσt x H t = x exp CW t + x C H t σt r + 2 } C2 t S 4.5 B λ C 4.2. t X x,π t fa a > } log a2 fa = exp 2πtCa 2tC 2 E[X x,π t] = x expr + C 2 t}, V[X x,π t] = x 2 exp2r + C 2 t}expc 2 t 4.2. p Mt ψt 47

49 4.2.3 p, \}, α <, λ α < λ Λ λ σ θt = C := C r α σ 4.2. Mt = x exp := x mt = x + p p CW t 2 xp p C ms dw s 2 p t} C2 p ψt = xp C mt p πt = X x,π t = H t σ H t X x,π t πt = x mt H t x C mt p 4.6 x mt 4.7 C 4.8 σ p 4.6 C > C > r α S α σ σ σ > r α α C σ C < C < r α σ S α σ σ < r α α σ α < λ C 4.7. α λ Λ p, 4.6 Mt Mt = x + ψudw u ψt Ocone and Karatzas[OK] Clark Mt ψt 4.8. [KOL] pp. 27 f : R R exp x2 fx dx < 2T 48

50 t < T E[fW T F t ] = E[fW t ] + V T t, x := pt; x, y := V T x s, W sdw s pt t; x, yfydy } x y2 exp 2πt 2t E[fW T F t ] = E Wt [fw T t ] = pt t; W t, yfydy = V T t, W t V T t, x V T t + 2 V T 2 x = 2 V T t, W t = V T, + V T x t, x = V T x s, W sdw s x y exp 2πT t 3 x y2 2T t } fydy 4.9. Karatzas and Shreve [KS2] Section 3.8 φt ω Ω Hamilton-Jacobi-Bellman φt λ Λ 4.. λ Λ 2 t > φt λ. λ φt φt x R,, B, µ x A µ x A = expσx 2 σ2 t}λdσ expσx, A B, 2 σ2 t}λdσ 49

51 µ x fσ x := fσµ x dσ φt = σ Wt+Ct d σ x = σ σ x 2 x 4.9 dx σ x x a < b W t b Ct σ Wt +Ct σ b W t a Ct σ Wt +Ct σ a W t b Ct W t a Ct P φt = σ Wt +Ct ω Ω σ a = σ b, b > a 4.9 = σ b σ a = b a d dx σ xdx = b a σ σ x 2 x dx σ σ x 2 x x σ σ x 2 x = x R x µ x σ σ x 2 σ σ x = a.e - µ x σ x σ µ x λ 5

52 5 5.. X = X t } t, Y = Y t } t Ω, F, P i ii t P[X t = Y t ] = X Y modification P[ t X t = Y t ] = X Y indistinguishable 5.2. Ω, F, P F F t } i ii t s F s F t F t F t σ- F t } filtration Ω, F, P; F t 5.3. Ω, F, P; F t F t } F t+ := s>t F s = F t F F F t } usual conditions 5.4. Doob s maximal inequality[ks].3.8 Theorem Ω, F, P; F t X = X t } t Ω, F, P ; F t t X t β > α >, p > p p p E sup X t EX p β α t β p 5.5. X = X t } t Ω, F, P; F t 5

53 i ii t, ω X t ω : [, Ω, B[, F R, BR X measurable s, ω X s ω : [, t] Ω, B[, t] F t R, BR t X F t } progressively measurable iii t X t F t - X F t } adapted 5.6. Ω, F, P; F t σ : Ω [, ] stopping time t σ t} F t Ω, F, P; F t σ : Ω [, ] optional time t σ < t} F t 5.7. [KS].2.3 Proposition F t } Ω, F, P; F t σ : Ω [, ] 5.8. Jensen [KS].3.7 ProblemX = X t } t Ω, F, P; F t ϕ : R R t E ϕx t < t s E[ϕX t F s ] ϕe[x t F s ] X ϕx t } 5.9. τ Ω, F, P; F t F τ F τ := A F; t A τ t} F t } 5.. [KS].2.3 Problem τ Ω, F, P; F t F τ σ- τ F τ X = X t } t Ω, F, P X lim sup X t ω Pdω N t X t >N } X uniformly integrable 52

54 5.2. Ω, F, P; F t X = X t } t Pτ < = τ T a > Pτ a = τ T a i ii X τ } τ T X D X τ } τ Ta a > X DL 5.3. A = A t } t Ω, F, P; F t F t } A increasing i ii A = t A t iii t EA t < A := lim t A t EA < A integrable 5.4. Ω, F, P; F t A = A t } t natural M = M t } t t E M s da s = E M s da s,t],t] 5.5. [KS].4.6 Remarks Doob-Meyer Decomposition [KS].4.9 Probrem,.4. Theorem Ω, F, P; F t F t } Ω, F, P; F t X = X t } t DL X X t = M t + A t M = M t } t A = A t } t A 53

55 5.7. [KS].3.25 Problem X = X t } t Ω, F, P; F t X = X t } t t E[X t ] = E[X ] 5.8. [KS].3.24 Problem X = X t } t Ω, F, P; F t τ X τ t } t 5.9. [KS] Theorem Ω, F, P; F t M = M t } t M c,loc lim t M t = s T s := inft ; M t > s}, B s := M T s, G s := F T s B s } s G s } M t = B M t, t t M t G s } 5.2. [KS] Remark 3.5 Section C W = W t } t Ω, F, P; F t T b := inft ; W t = b} b >, α >, t > PT b t = 2 2π b t e x2 2 dx, Ee αt b = e b 2α Z t := exp µw t 2 µ2 t, P µ A := E[ A Z t ], A F t [ P µ [T b < ] = e µb E exp 2 ] µ2 T b 5.2. [KS] Problem µ R, W = W t } t Ω, F, P; F t Ω, F, P; F t τ [ E exp µw τ ] 2 µ2 τ = 54

56 P µ [τ < ] = P µ 5.2 b R, µb < S b := inft ; W t µt = b} P µ [S b < ] = [KS] Theorem W = W t } t Ω, F P x } x R i ii F F x P x F BR/B[, ]- x R P x [W = x] = iii P x W x t s, f : R R E x [fw t+s F s ] = E Ws [fw t ] P x -a.s E x P x 55

57 [D] Richard Durrett, Stochastic Calculus, CRC Press 996 [IS] Naoyuki Ishimura and Toshi-hiko Sakaguchi, Exact solutions of a model for asset prices by K.Takaoka, Asia-Pacific Financial Markets [J] John C Hull, Options, Futures, and Other Derivatives Fifth Edition, Prentice- Hall 22 5 [K] Norihiko Kazamaki, On a problem of Girsanov, Tôhoku Math. Journ [KOL] Ioannis Karatzas, Daniel L. Ocone and Jinlu Li, An extension of Clark s formula, Stochastics and Stochastics Reports, Vol [KS] Ioannis Karatzas and Steven E. Shreve, Brownian Motion and Stochastic Calculus Second Edition, Springer 99 [KS2] Ioannis Karatzas and Steven E. Shreve, Methods of Mathematical Finance, Springer 998 [KT],,, 23 [M],, 23 [MM] Marek Musiela and Marek Rutkowski, Martingale Methods in Financial Modelling, Springer 997 [N],, 999 [OK] Daniel L. Ocone and Ioannis Karatzas, A generalized Clark representation formula, with application to optimal portfolios, Stochastics and Stochastics Reports, Vol [P] Philip Protter, Stochastic Integration and Differential Equations, Springer

58 [T] Koichiro Takaoka, A complete-market generalization of the Black-Scholes model, Asia-Pacific Financial Markets [T2] Koichiro Takaoka, An equilibrium model of of the short-term stock price behavior [W],,

43433 8 3 . Stochastic exponentials...................................... 3. Girsanov s theorem......................................... 4 On the martingale property of stochastic exponentials 5. Gronwall

More information

,,,17,,, ( ),, E Q [S T F t ] < S t, t [, T ],,,,,,,,

,,,17,,, ( ),, E Q [S T F t ] < S t, t [, T ],,,,,,,, 14 5 1 ,,,17,,,194 1 4 ( ),, E Q [S T F t ] < S t, t [, T ],,,,,,,, 1 4 1.1........................................ 4 5.1........................................ 5.........................................

More information

mf.dvi

mf.dvi 21 9 29 1 2 3....................................... 3 :......................... 3....................................... 4................................ 4..................................... 5................................

More information

II Brown Brown

II Brown Brown II 16 12 5 1 Brown 3 1.1..................................... 3 1.2 Brown............................... 5 1.3................................... 8 1.4 Markov.................................... 1 1.5

More information

untitled

untitled 1 25/5/3-6/3 1 1 1.1.................................. 1 1.2.................................. 4 2 5 2.1.............................. 5 2.2.............................. 6 3 Black Scholes 7 3.1 BS............................

More information

201711grade1ouyou.pdf

201711grade1ouyou.pdf 2017 11 26 1 2 52 3 12 13 22 23 32 33 42 3 5 3 4 90 5 6 A 1 2 Web Web 3 4 1 2... 5 6 7 7 44 8 9 1 2 3 1 p p >2 2 A 1 2 0.6 0.4 0.52... (a) 0.6 0.4...... B 1 2 0.8-0.2 0.52..... (b) 0.6 0.52.... 1 A B 2

More information

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,. 9 α ν β Ξ ξ Γ γ o δ Π π ε ρ ζ Σ σ η τ Θ θ Υ υ ι Φ φ κ χ Λ λ Ψ ψ µ Ω ω Def, Prop, Th, Lem, Note, Remark, Ex,, Proof, R, N, Q, C [a, b {x R : a x b} : a, b {x R : a < x < b} : [a, b {x R : a x < b} : a,

More information

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0 1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0 0 < t < τ I II 0 No.2 2 C x y x y > 0 x 0 x > b a dx

More information

Part () () Γ Part ,

Part () () Γ Part , Contents a 6 6 6 6 6 6 6 7 7. 8.. 8.. 8.3. 8 Part. 9. 9.. 9.. 3. 3.. 3.. 3 4. 5 4.. 5 4.. 9 4.3. 3 Part. 6 5. () 6 5.. () 7 5.. 9 5.3. Γ 3 6. 3 6.. 3 6.. 3 6.3. 33 Part 3. 34 7. 34 7.. 34 7.. 34 8. 35

More information

untitled

untitled 3 3. (stochastic differential equations) { dx(t) =f(t, X)dt + G(t, X)dW (t), t [,T], (3.) X( )=X X(t) : [,T] R d (d ) f(t, X) : [,T] R d R d (drift term) G(t, X) : [,T] R d R d m (diffusion term) W (t)

More information

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt S I. x yx y y, y,. F x, y, y, y,, y n http://ayapin.film.s.dendai.ac.jp/~matuda n /TeX/lecture.html PDF PS yx.................................... 3.3.................... 9.4................5..............

More information

( ) Loewner SLE 13 February

( ) Loewner SLE 13 February ( ) Loewner SLE 3 February 00 G. F. Lawler, Conformally Invariant Processes in the Plane, (American Mathematical Society, 005)., Summer School 009 (009 8 7-9 ) . d- (BES d ) d B t = (Bt, B t,, Bd t ) (d

More information

Grushin 2MA16039T

Grushin 2MA16039T Grushin 2MA1639T 3 2 2 R d Borel α i k (x, bi (x, 1 i d, 1 k N d N α R d b α = α(x := (αk(x i 1 i d, 1 k N b = b(x := (b i (x 1 i d X = (X t t x R d dx t = α(x t db t + b(x t dt ( 3 u t = Au + V u, u(,

More information

n ξ n,i, i = 1,, n S n ξ n,i n 0 R 1,.. σ 1 σ i .10.14.15 0 1 0 1 1 3.14 3.18 3.19 3.14 3.14,. ii 1 1 1.1..................................... 1 1............................... 3 1.3.........................

More information

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d S I.. http://ayapin.film.s.dendai.ac.jp/~matuda /TeX/lecture.html PDF PS.................................... 3.3.................... 9.4................5.............. 3 5. Laplace................. 5....

More information

untitled

untitled II(c) 1 October. 21, 2009 1 CS53 yamamoto@cs.kobe-u.ac.jp 3 1 7 1.1 : : : : : : : : : : : : : : : : : : : : : : 7 1.2 : : : : : : : : : : : : : : : : 8 1.2.1 : : : : : : : : : : : : : : : : : : : 8 1.2.2

More information

TOP URL 1

TOP URL   1 TOP URL http://amonphys.web.fc.com/ 3.............................. 3.............................. 4.3 4................... 5.4........................ 6.5........................ 8.6...........................7

More information

16 7 5

16 7 5 16 7 5 1 2 1.1.......................................... 2 1.2....................................... 5 1.2.1.................................... 5 1.2.2............................... 6 1.2.3...............................

More information

renshumondai-kaito.dvi

renshumondai-kaito.dvi 3 1 13 14 1.1 1 44.5 39.5 49.5 2 0.10 2 0.10 54.5 49.5 59.5 5 0.25 7 0.35 64.5 59.5 69.5 8 0.40 15 0.75 74.5 69.5 79.5 3 0.15 18 0.90 84.5 79.5 89.5 2 0.10 20 1.00 20 1.00 2 1.2 1 16.5 20.5 12.5 2 0.10

More information

A B P (A B) = P (A)P (B) (3) A B A B P (B A) A B A B P (A B) = P (B A)P (A) (4) P (B A) = P (A B) P (A) (5) P (A B) P (B A) P (A B) A B P

A B P (A B) = P (A)P (B) (3) A B A B P (B A) A B A B P (A B) = P (B A)P (A) (4) P (B A) = P (A B) P (A) (5) P (A B) P (B A) P (A B) A B P 1 1.1 (population) (sample) (event) (trial) Ω () 1 1 Ω 1.2 P 1. A A P (A) 0 1 0 P (A) 1 (1) 2. P 1 P 0 1 6 1 1 6 0 3. A B P (A B) = P (A) + P (B) (2) A B A B A 1 B 2 A B 1 2 1 2 1 1 2 2 3 1.3 A B P (A

More information

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2 II No.1 [n/] [1]H n x) H n x) = 1) r n! r!n r)! x)n r r= []H n x) n,, H n x) = 1) n H n x) [3] H n x) = 1) n dn x e dx n e x [4] H n+1 x) = xh n x) nh n 1 x) ) d dx x H n x) = H n+1 x) d dx H nx) = nh

More information

x (x, ) x y (, y) iy x y z = x + iy (x, y) (r, θ) r = x + y, θ = tan ( y ), π < θ π x r = z, θ = arg z z = x + iy = r cos θ + ir sin θ = r(cos θ + i s

x (x, ) x y (, y) iy x y z = x + iy (x, y) (r, θ) r = x + y, θ = tan ( y ), π < θ π x r = z, θ = arg z z = x + iy = r cos θ + ir sin θ = r(cos θ + i s ... x, y z = x + iy x z y z x = Rez, y = Imz z = x + iy x iy z z () z + z = (z + z )() z z = (z z )(3) z z = ( z z )(4)z z = z z = x + y z = x + iy ()Rez = (z + z), Imz = (z z) i () z z z + z z + z.. z

More information

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x [ ] IC. f(x) = e x () f(x) f (x) () lim f(x) lim f(x) x + x (3) lim f(x) lim f(x) x + x (4) y = f(x) ( ) ( s46). < a < () a () lim a log xdx a log xdx ( ) n (3) lim log k log n n n k=.3 z = log(x + y ),

More information

i 18 2H 2 + O 2 2H 2 + ( ) 3K

i 18 2H 2 + O 2 2H 2 + ( ) 3K i 18 2H 2 + O 2 2H 2 + ( ) 3K ii 1 1 1.1.................................. 1 1.2........................................ 3 1.3......................................... 3 1.4....................................

More information

9 2 1 f(x, y) = xy sin x cos y x y cos y y x sin x d (x, y) = y cos y (x sin x) = y cos y(sin x + x cos x) x dx d (x, y) = x sin x (y cos y) = x sin x

9 2 1 f(x, y) = xy sin x cos y x y cos y y x sin x d (x, y) = y cos y (x sin x) = y cos y(sin x + x cos x) x dx d (x, y) = x sin x (y cos y) = x sin x 2009 9 6 16 7 1 7.1 1 1 1 9 2 1 f(x, y) = xy sin x cos y x y cos y y x sin x d (x, y) = y cos y (x sin x) = y cos y(sin x + x cos x) x dx d (x, y) = x sin x (y cos y) = x sin x(cos y y sin y) y dy 1 sin

More information

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) II 214-1 : October 2, 214 Version : 1.1 Kawahira, Tomoki TA (Kondo, Hirotaka ) http://www.math.nagoya-u.ac.jp/~kawahira/courses/14w-biseki.html pdf 1 2 1 9 1 16 1 23 1 3 11 6 11 13 11 2 11 27 12 4 12 11

More information

Z: Q: R: C: sin 6 5 ζ a, b

Z: Q: R: C: sin 6 5 ζ a, b Z: Q: R: C: 3 3 7 4 sin 6 5 ζ 9 6 6............................... 6............................... 6.3......................... 4 7 6 8 8 9 3 33 a, b a bc c b a a b 5 3 5 3 5 5 3 a a a a p > p p p, 3,

More information

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 初版 1 刷発行時のものです. 微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. ttp://www.morikita.co.jp/books/mid/00571 このサンプルページの内容は, 初版 1 刷発行時のものです. i ii 014 10 iii [note] 1 3 iv 4 5 3 6 4 x 0 sin x x 1 5 6 z = f(x, y) 1 y = f(x)

More information

Green

Green 28 6/-3 2 ax, bx R, L = d2 ax 2 dx 2 + bx d dx 2 L X = {Xt, t }. σ y = inf{t > ; Xt = y} t Xt L y = sup{t > ; Xt = y} 2. Gauss Gamma 3. tree 4. t Black-Scholes Madan-Roynette-Yor [6] σ y E x [exp λσ y

More information

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y [ ] 7 0.1 2 2 + y = t sin t IC ( 9) ( s090101) 0.2 y = d2 y 2, y = x 3 y + y 2 = 0 (2) y + 2y 3y = e 2x 0.3 1 ( y ) = f x C u = y x ( 15) ( s150102) [ ] y/x du x = Cexp f(u) u (2) x y = xey/x ( 16) ( s160101)

More information

ii 3.,. 4. F. (), ,,. 8.,. 1. (75%) (25%) =7 20, =7 21 (. ). 1.,, (). 3.,. 1. ().,.,.,.,.,. () (12 )., (), 0. 2., 1., 0,.

ii 3.,. 4. F. (), ,,. 8.,. 1. (75%) (25%) =7 20, =7 21 (. ). 1.,, (). 3.,. 1. ().,.,.,.,.,. () (12 )., (), 0. 2., 1., 0,. 24(2012) (1 C106) 4 11 (2 C206) 4 12 http://www.math.is.tohoku.ac.jp/~obata,.,,,.. 1. 2. 3. 4. 5. 6. 7.,,. 1., 2007 (). 2. P. G. Hoel, 1995. 3... 1... 2.,,. ii 3.,. 4. F. (),.. 5... 6.. 7.,,. 8.,. 1. (75%)

More information

V 0 = + r pv (H) + qv (T ) = + r ps (H) + qs (T ) = S 0 X n+ (T ) = n S n+ (T ) + ( + r)(x n n S n ) = ( + r)x n + n (d r)s n = ( + r)v n + V n+(h) V

V 0 = + r pv (H) + qv (T ) = + r ps (H) + qs (T ) = S 0 X n+ (T ) = n S n+ (T ) + ( + r)(x n n S n ) = ( + r)x n + n (d r)s n = ( + r)v n + V n+(h) V I (..2) (0 < d < + r < u) X 0, X X = 0 S + ( + r)(x 0 0 S 0 ) () X 0 = 0, P (X 0) =, P (X > 0) > 0 0 H, T () X 0 = 0, X (H) = 0 us 0 ( + r) 0 S 0 = 0 S 0 (u r) X (T ) = 0 ds 0 ( + r) 0 S 0 = 0 S 0 (d r)

More information

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10%

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10% 1 2006.4.17. A 3-312 tel: 092-726-4774, e-mail: hara@math.kyushu-u.ac.jp, http://www.math.kyushu-u.ac.jp/ hara/lectures/lectures-j.html Office hours: B A I ɛ-δ ɛ-δ 1. 2. A 1. 1. 2. 3. 4. 5. 2. ɛ-δ 1. ɛ-n

More information

r 1 m A r/m i) t ii) m i) t B(t; m) ( B(t; m) = A 1 + r ) mt m ii) B(t; m) ( B(t; m) = A 1 + r ) mt m { ( = A 1 + r ) m } rt r m n = m r m n B

r 1 m A r/m i) t ii) m i) t B(t; m) ( B(t; m) = A 1 + r ) mt m ii) B(t; m) ( B(t; m) = A 1 + r ) mt m { ( = A 1 + r ) m } rt r m n = m r m n B 1 1.1 1 r 1 m A r/m i) t ii) m i) t Bt; m) Bt; m) = A 1 + r ) mt m ii) Bt; m) Bt; m) = A 1 + r ) mt m { = A 1 + r ) m } rt r m n = m r m n Bt; m) Aert e lim 1 + 1 n 1.1) n!1 n) e a 1, a 2, a 3,... {a n

More information

III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F

III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F F 1 F 2 F, (3) F λ F λ F λ F. 3., A λ λ A λ. B λ λ

More information

2011de.dvi

2011de.dvi 211 ( 4 2 1. 3 1.1............................... 3 1.2 1- -......................... 13 1.3 2-1 -................... 19 1.4 3- -......................... 29 2. 37 2.1................................ 37

More information

pdf

pdf http://www.ns.kogakuin.ac.jp/~ft13389/lecture/physics1a2b/ pdf I 1 1 1.1 ( ) 1. 30 m µm 2. 20 cm km 3. 10 m 2 cm 2 4. 5 cm 3 km 3 5. 1 6. 1 7. 1 1.2 ( ) 1. 1 m + 10 cm 2. 1 hr + 6400 sec 3. 3.0 10 5 kg

More information

simx simxdx, cosxdx, sixdx 6.3 px m m + pxfxdx = pxf x p xf xdx = pxf x p xf x + p xf xdx 7.4 a m.5 fx simxdx 8 fx fx simxdx = πb m 9 a fxdx = πa a =

simx simxdx, cosxdx, sixdx 6.3 px m m + pxfxdx = pxf x p xf xdx = pxf x p xf x + p xf xdx 7.4 a m.5 fx simxdx 8 fx fx simxdx = πb m 9 a fxdx = πa a = II 6 ishimori@phys.titech.ac.jp 6.. 5.4.. f Rx = f Lx = fx fx + lim = lim x x + x x f c = f x + x < c < x x x + lim x x fx fx x x = lim x x f c = f x x < c < x cosmx cosxdx = {cosm x + cosm + x} dx = [

More information

IA hara@math.kyushu-u.ac.jp Last updated: January,......................................................................................................................................................................................

More information

6.1 (P (P (P (P (P (P (, P (, P.

6.1 (P (P (P (P (P (P (, P (, P. (011 30 7 0 ( ( 3 ( 010 1 (P.3 1 1.1 (P.4.................. 1 1. (P.4............... 1 (P.15.1 (P.16................. (P.0............3 (P.18 3.4 (P.3............... 4 3 (P.9 4 3.1 (P.30........... 4 3.

More information

( ) ( )

( ) ( ) 20 21 2 8 1 2 2 3 21 3 22 3 23 4 24 5 25 5 26 6 27 8 28 ( ) 9 3 10 31 10 32 ( ) 12 4 13 41 0 13 42 14 43 0 15 44 17 5 18 6 18 1 1 2 2 1 2 1 0 2 0 3 0 4 0 2 2 21 t (x(t) y(t)) 2 x(t) y(t) γ(t) (x(t) y(t))

More information

X G P G (X) G BG [X, BG] S 2 2 2 S 2 2 S 2 = { (x 1, x 2, x 3 ) R 3 x 2 1 + x 2 2 + x 2 3 = 1 } R 3 S 2 S 2 v x S 2 x x v(x) T x S 2 T x S 2 S 2 x T x S 2 = { ξ R 3 x ξ } R 3 T x S 2 S 2 x x T x S 2

More information

II 2 II

II 2 II II 2 II 2005 yugami@cc.utsunomiya-u.ac.jp 2005 4 1 1 2 5 2.1.................................... 5 2.2................................. 6 2.3............................. 6 2.4.................................

More information

8.1 Fubini 8.2 Fubini 9 (0%) 10 (50%) Carathéodory 10.3 Fubini 1 Introduction 1 (1) (2) {f n (x)} n=1 [a, b] K > 0 n, x f n (x) K < ( ) x [a

8.1 Fubini 8.2 Fubini 9 (0%) 10 (50%) Carathéodory 10.3 Fubini 1 Introduction 1 (1) (2) {f n (x)} n=1 [a, b] K > 0 n, x f n (x) K < ( ) x [a % 100% 1 Introduction 2 (100%) 2.1 2.2 2.3 3 (100%) 3.1 3.2 σ- 4 (100%) 4.1 4.2 5 (100%) 5.1 5.2 5.3 6 (100%) 7 (40%) 8 Fubini (90%) 2007.11.5 1 8.1 Fubini 8.2 Fubini 9 (0%) 10 (50%) 10.1 10.2 Carathéodory

More information

211 kotaro@math.titech.ac.jp 1 R *1 n n R n *2 R n = {(x 1,..., x n ) x 1,..., x n R}. R R 2 R 3 R n R n R n D D R n *3 ) (x 1,..., x n ) f(x 1,..., x n ) f D *4 n 2 n = 1 ( ) 1 f D R n f : D R 1.1. (x,

More information

1 Introduction 1 (1) (2) (3) () {f n (x)} n=1 [a, b] K > 0 n, x f n (x) K < ( ) x [a, b] lim f n (x) f(x) (1) f(x)? (2) () f(x)? b lim a f n (x)dx = b

1 Introduction 1 (1) (2) (3) () {f n (x)} n=1 [a, b] K > 0 n, x f n (x) K < ( ) x [a, b] lim f n (x) f(x) (1) f(x)? (2) () f(x)? b lim a f n (x)dx = b 1 Introduction 2 2.1 2.2 2.3 3 3.1 3.2 σ- 4 4.1 4.2 5 5.1 5.2 5.3 6 7 8. Fubini,,. 1 1 Introduction 1 (1) (2) (3) () {f n (x)} n=1 [a, b] K > 0 n, x f n (x) K < ( ) x [a, b] lim f n (x) f(x) (1) f(x)?

More information

6.1 (P (P (P (P (P (P (, P (, P.101

6.1 (P (P (P (P (P (P (, P (, P.101 (008 0 3 7 ( ( ( 00 1 (P.3 1 1.1 (P.3.................. 1 1. (P.4............... 1 (P.15.1 (P.15................. (P.18............3 (P.17......... 3.4 (P................ 4 3 (P.7 4 3.1 ( P.7...........

More information

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google I4 - : April, 4 Version :. Kwhir, Tomoki TA (Kondo, Hirotk) Google http://www.mth.ngoy-u.c.jp/~kwhir/courses/4s-biseki.html pdf 4 4 4 4 8 e 5 5 9 etc. 5 6 6 6 9 n etc. 6 6 6 3 6 3 7 7 etc 7 4 7 7 8 5 59

More information

Black-Scholes [1] Nelson [2] Schrödinger 1 Black Scholes [1] Black-Scholes Nelson [2][3][4] Schrödinger Nelson Parisi Wu [5] Nelson Parisi-W

Black-Scholes [1] Nelson [2] Schrödinger 1 Black Scholes [1] Black-Scholes Nelson [2][3][4] Schrödinger Nelson Parisi Wu [5] Nelson Parisi-W 003 7 14 Black-Scholes [1] Nelson [] Schrödinger 1 Black Scholes [1] Black-Scholes Nelson [][3][4] Schrödinger Nelson Parisi Wu [5] Nelson Parisi-Wu Nelson e-mail: takatoshi-tasaki@nifty.com kabutaro@mocha.freemail.ne.jp

More information

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT I (008 4 0 de Broglie (de Broglie p λ k h Planck ( 6.63 0 34 Js p = h λ = k ( h π : Dirac k B Boltzmann (.38 0 3 J/K T U = 3 k BT ( = λ m k B T h m = 0.067m 0 m 0 = 9. 0 3 kg GaAs( a T = 300 K 3 fg 07345

More information

[1][2] [3] *1 Defnton 1.1. W () = σ 2 dt [2] Defnton 1.2. W (t ) Defnton 1.3. W () = E[W (t)] = Cov[W (t), W (s)] = E[W (t)w (s)] = σ 2 mn{s, t} Propo

[1][2] [3] *1 Defnton 1.1. W () = σ 2 dt [2] Defnton 1.2. W (t ) Defnton 1.3. W () = E[W (t)] = Cov[W (t), W (s)] = E[W (t)w (s)] = σ 2 mn{s, t} Propo @phykm 218 7 12 [2] [2] [1] ([4] ) 1 Ω = 2 N {Π n =1 A { 1, 1} N n N, A {{ 1, 1}, { 1}, {1}, }} B : Ω { 1, 1} P (Π n =1 A 2 N ) = 2 #{ A={ 1},{1}} X = j=1 B j B X +k X V[X ] = 1 ( ) 1 1 dt dx W (t) = t/dt

More information

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α 18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α 2 ), ϕ(t) = B 1 cos(ω 1 t + α 1 ) + B 2 cos(ω 2 t

More information

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4 1. k λ ν ω T v p v g k = π λ ω = πν = π T v p = λν = ω k v g = dω dk 1) ) 3) 4). p = hk = h λ 5) E = hν = hω 6) h = h π 7) h =6.6618 1 34 J sec) hc=197.3 MeV fm = 197.3 kev pm= 197.3 ev nm = 1.97 1 3 ev

More information

Trapezoidal Rule θ = 1/ x n x n 1 t = 1 [f(t n 1, x n 1 ) + f(t n, x n )] (6) 1. dx dt = f(t, x), x(t 0) = x 0 (7) t [t 0, t 1 ] f t [t 0, t 1 ], x x

Trapezoidal Rule θ = 1/ x n x n 1 t = 1 [f(t n 1, x n 1 ) + f(t n, x n )] (6) 1. dx dt = f(t, x), x(t 0) = x 0 (7) t [t 0, t 1 ] f t [t 0, t 1 ], x x University of Hyogo 8 8 1 d x(t) =f(t, x(t)), dt (1) x(t 0 ) =x 0 () t n = t 0 + n t x x n n x n x 0 x i i = 0,..., n 1 x n x(t) 1 1.1 1 1 1 0 θ 1 θ x n x n 1 t = θf(t n 1, x n 1 ) + (1 θ)f(t n, x n )

More information

II (10 4 ) 1. p (x, y) (a, b) ε(x, y; a, b) 0 f (x, y) f (a, b) A, B (6.5) y = b f (x, b) f (a, b) x a = A + ε(x, b; a, b) x a 2 x a 0 A = f x (

II (10 4 ) 1. p (x, y) (a, b) ε(x, y; a, b) 0 f (x, y) f (a, b) A, B (6.5) y = b f (x, b) f (a, b) x a = A + ε(x, b; a, b) x a 2 x a 0 A = f x ( II (1 4 ) 1. p.13 1 (x, y) (a, b) ε(x, y; a, b) f (x, y) f (a, b) A, B (6.5) y = b f (x, b) f (a, b) x a = A + ε(x, b; a, b) x a x a A = f x (a, b) y x 3 3y 3 (x, y) (, ) f (x, y) = x + y (x, y) = (, )

More information

Akito Tsuboi June 22, T ϕ T M M ϕ M M ϕ T ϕ 2 Definition 1 X, Y, Z,... 1

Akito Tsuboi June 22, T ϕ T M M ϕ M M ϕ T ϕ 2 Definition 1 X, Y, Z,... 1 Akito Tsuboi June 22, 2006 1 T ϕ T M M ϕ M M ϕ T ϕ 2 Definition 1 X, Y, Z,... 1 1. X, Y, Z,... 2. A, B (A), (A) (B), (A) (B), (A) (B) Exercise 2 1. (X) (Y ) 2. ((X) (Y )) (Z) 3. (((X) (Y )) (Z)) Exercise

More information

5. [1 ] 1 [], u(x, t) t c u(x, t) x (5.3) ξ x + ct, η x ct (5.4),u(x, t) ξ, η u(ξ, η), ξ t,, ( u(ξ,η) ξ η u(x, t) t ) u(x, t) { ( u(ξ, η) c t ξ ξ { (

5. [1 ] 1 [], u(x, t) t c u(x, t) x (5.3) ξ x + ct, η x ct (5.4),u(x, t) ξ, η u(ξ, η), ξ t,, ( u(ξ,η) ξ η u(x, t) t ) u(x, t) { ( u(ξ, η) c t ξ ξ { ( 5 5.1 [ ] ) d f(t) + a d f(t) + bf(t) : f(t) 1 dt dt ) u(x, t) c u(x, t) : u(x, t) t x : ( ) ) 1 : y + ay, : y + ay + by : ( ) 1 ) : y + ay, : yy + ay 3 ( ): ( ) ) : y + ay, : y + ay b [],,, [ ] au xx

More information

K E N Z OU

K E N Z OU K E N Z OU 11 1 1 1.1..................................... 1.1.1............................ 1.1..................................................................................... 4 1.........................................

More information

III III 2010 PART I 1 Definition 1.1 (, σ-),,,, Borel( ),, (σ-) (M, F, µ), (R, B(R)), (C, B(C)) Borel Definition 1.2 (µ-a.e.), (in µ), (in L 1 (µ)). T

III III 2010 PART I 1 Definition 1.1 (, σ-),,,, Borel( ),, (σ-) (M, F, µ), (R, B(R)), (C, B(C)) Borel Definition 1.2 (µ-a.e.), (in µ), (in L 1 (µ)). T III III 2010 PART I 1 Definition 1.1 (, σ-),,,, Borel( ),, (σ-) (M, F, µ), (R, B(R)), (C, B(C)) Borel Definition 1.2 (µ-a.e.), (in µ), (in L 1 (µ)). Theorem 1.3 (Lebesgue ) lim n f n = f µ-a.e. g L 1 (µ)

More information

untitled

untitled 2 : n =1, 2,, 10000 0.5125 0.51 0.5075 0.505 0.5025 0.5 0.4975 0.495 0 2000 4000 6000 8000 10000 2 weak law of large numbers 1. X 1,X 2,,X n 2. µ = E(X i ),i=1, 2,,n 3. σi 2 = V (X i ) σ 2,i=1, 2,,n ɛ>0

More information

2 1 κ c(t) = (x(t), y(t)) ( ) det(c (t), c x (t)) = det (t) x (t) y (t) y = x (t)y (t) x (t)y (t), (t) c (t) = (x (t)) 2 + (y (t)) 2. c (t) =

2 1 κ c(t) = (x(t), y(t)) ( ) det(c (t), c x (t)) = det (t) x (t) y (t) y = x (t)y (t) x (t)y (t), (t) c (t) = (x (t)) 2 + (y (t)) 2. c (t) = 1 1 1.1 I R 1.1.1 c : I R 2 (i) c C (ii) t I c (t) (0, 0) c (t) c(i) c c(t) 1.1.2 (1) (2) (3) (1) r > 0 c : R R 2 : t (r cos t, r sin t) (2) C f : I R c : I R 2 : t (t, f(t)) (3) y = x c : R R 2 : t (t,

More information

24 I ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x

24 I ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x 24 I 1.1.. ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x 1 (t), x 2 (t),, x n (t)) ( ) ( ), γ : (i) x 1 (t),

More information

30

30 3 ............................................2 2...........................................2....................................2.2...................................2.3..............................

More information

DVIOUT

DVIOUT A. A. A-- [ ] f(x) x = f 00 (x) f 0 () =0 f 00 () > 0= f(x) x = f 00 () < 0= f(x) x = A--2 [ ] f(x) D f 00 (x) > 0= y = f(x) f 00 (x) < 0= y = f(x) P (, f()) f 00 () =0 A--3 [ ] y = f(x) [, b] x = f (y)

More information

( ) ) ) ) 5) 1 J = σe 2 6) ) 9) 1955 Statistical-Mechanical Theory of Irreversible Processes )

( ) ) ) ) 5) 1 J = σe 2 6) ) 9) 1955 Statistical-Mechanical Theory of Irreversible Processes ) ( 3 7 4 ) 2 2 ) 8 2 954 2) 955 3) 5) J = σe 2 6) 955 7) 9) 955 Statistical-Mechanical Theory of Irreversible Processes 957 ) 3 4 2 A B H (t) = Ae iωt B(t) = B(ω)e iωt B(ω) = [ Φ R (ω) Φ R () ] iω Φ R (t)

More information

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2 No.2 1 2 2 δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i δx j (5) δs 2 = δx i δx i + 2 u i δx i δx j = δs 2 + 2s ij δx i δx j

More information

Microsoft Word - 11問題表紙(選択).docx

Microsoft Word - 11問題表紙(選択).docx A B A.70g/cm 3 B.74g/cm 3 B C 70at% %A C B at% 80at% %B 350 C γ δ y=00 x-y ρ l S ρ C p k C p ρ C p T ρ l t l S S ξ S t = ( k T ) ξ ( ) S = ( k T) ( ) t y ξ S ξ / t S v T T / t = v T / y 00 x v S dy dx

More information

, Brown,, dn(t = a(tn(t, N( = N (1 dt N(t t, a(t t, Malthus {N(t} t, (1 a(t,, a(t = r(t + ( r(t,,,, Brown,,,,, Brown, Itô Calculus,,,,,, Kalman-Bucy,, (1, s t N(s Z(s, N(s, Z(s = N(s + (2 i {Z(s} s t {Z(s}

More information

1 nakayama/print/ Def (Definition ) Thm (Theorem ) Prop (Proposition ) Lem (Lemma ) Cor (Corollary ) 1. (1) A, B (2) ABC

1   nakayama/print/ Def (Definition ) Thm (Theorem ) Prop (Proposition ) Lem (Lemma ) Cor (Corollary ) 1. (1) A, B (2) ABC 1 http://www.gem.aoyama.ac.jp/ nakayama/print/ Def (Definition ) Thm (Theorem ) Prop (Proposition ) Lem (Lemma ) Cor (Corollary ) 1. (1) A, B (2) ABC r 1 A B B C C A (1),(2),, (8) A, B, C A,B,C 2 1 ABC

More information

Chap11.dvi

Chap11.dvi . () x 3 + dx () (x )(x ) dx + sin x sin x( + cos x) dx () x 3 3 x + + 3 x + 3 x x + x 3 + dx 3 x + dx 6 x x x + dx + 3 log x + 6 log x x + + 3 rctn ( ) dx x + 3 4 ( x 3 ) + C x () t x t tn x dx x. t x

More information

http://www.ike-dyn.ritsumei.ac.jp/ hyoo/wave.html 1 1, 5 3 1.1 1..................................... 3 1.2 5.1................................... 4 1.3.......................... 5 1.4 5.2, 5.3....................

More information

006 11 8 0 3 1 5 1.1..................... 5 1......................... 6 1.3.................... 6 1.4.................. 8 1.5................... 8 1.6................... 10 1.6.1......................

More information

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi) 0. A A = 4 IC () det A () A () x + y + z = x y z X Y Z = A x y z ( 5) ( s5590) 0. a + b + c b c () a a + b + c c a b a + b + c 0 a b c () a 0 c b b c 0 a c b a 0 0. A A = 7 5 4 5 0 ( 5) ( s5590) () A ()

More information

ii 3.,. 4. F. ( ), ,,. 8.,. 1. (75% ) (25% ) =7 24, =7 25, =7 26 (. ). 1.,, ( ). 3.,...,.,.,.,.,. ( ) (1 2 )., ( ), 0., 1., 0,.

ii 3.,. 4. F. ( ), ,,. 8.,. 1. (75% ) (25% ) =7 24, =7 25, =7 26 (. ). 1.,, ( ). 3.,...,.,.,.,.,. ( ) (1 2 )., ( ), 0., 1., 0,. (1 C205) 4 10 (2 C206) 4 11 (2 B202) 4 12 25(2013) http://www.math.is.tohoku.ac.jp/~obata,.,,,..,,. 1. 2. 3. 4. 5. 6. 7. 8. 1., 2007 ( ).,. 2. P. G., 1995. 3. J. C., 1988. 1... 2.,,. ii 3.,. 4. F. ( ),..

More information

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5.

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5. A 1. Boltzmann Planck u(ν, T )dν = 8πh ν 3 c 3 kt 1 dν h 6.63 10 34 J s Planck k 1.38 10 23 J K 1 Boltzmann u(ν, T ) T ν e hν c = 3 10 8 m s 1 2. Planck λ = c/ν Rayleigh-Jeans u(ν, T )dν = 8πν2 kt dν c

More information

1 filename=mathformula tex 1 ax 2 + bx + c = 0, x = b ± b 2 4ac, (1.1) 2a x 1 + x 2 = b a, x 1x 2 = c a, (1.2) ax 2 + 2b x + c = 0, x = b ± b 2

1 filename=mathformula tex 1 ax 2 + bx + c = 0, x = b ± b 2 4ac, (1.1) 2a x 1 + x 2 = b a, x 1x 2 = c a, (1.2) ax 2 + 2b x + c = 0, x = b ± b 2 filename=mathformula58.tex ax + bx + c =, x = b ± b 4ac, (.) a x + x = b a, x x = c a, (.) ax + b x + c =, x = b ± b ac. a (.3). sin(a ± B) = sin A cos B ± cos A sin B, (.) cos(a ± B) = cos A cos B sin

More information

.1 z = e x +xy y z y 1 1 x 0 1 z x y α β γ z = αx + βy + γ (.1) ax + by + cz = d (.1') a, b, c, d x-y-z (a, b, c). x-y-z 3 (0,

.1 z = e x +xy y z y 1 1 x 0 1 z x y α β γ z = αx + βy + γ (.1) ax + by + cz = d (.1') a, b, c, d x-y-z (a, b, c). x-y-z 3 (0, .1.1 Y K L Y = K 1 3 L 3 L K K (K + ) 1 1 3 L 3 K 3 L 3 K 0 (K + K) 1 3 L 3 K 1 3 L 3 lim K 0 K = L (K + K) 1 3 K 1 3 3 lim K 0 K = 1 3 K 3 L 3 z = f(x, y) x y z x-y-z.1 z = e x +xy y 3 x-y ( ) z 0 f(x,

More information

F S S S S S S S 32 S S S 32: S S rot F ds = F d l (63) S S S 0 F rot F ds = 0 S (63) S rot F S S S S S rot F F (63)

F S S S S S S S 32 S S S 32: S S rot F ds = F d l (63) S S S 0 F rot F ds = 0 S (63) S rot F S S S S S rot F F (63) 211 12 1 19 2.9 F 32 32: rot F d = F d l (63) F rot F d = 2.9.1 (63) rot F rot F F (63) 12 2 F F F (63) 33 33: (63) rot 2.9.2 (63) I = [, 1] [, 1] 12 3 34: = 1 2 1 2 1 1 = C 1 + C C 2 2 2 = C 2 + ( C )

More information

曲面のパラメタ表示と接線ベクトル

曲面のパラメタ表示と接線ベクトル L11(2011-07-06 Wed) :Time-stamp: 2011-07-06 Wed 13:08 JST hig 1,,. 2. http://hig3.net () (L11) 2011-07-06 Wed 1 / 18 ( ) 1 V = (xy2 ) x + (2y) y = y 2 + 2. 2 V = 4y., D V ds = 2 2 ( ) 4 x 2 4y dy dx =

More information

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2 2005 9/8-11 2 2.2 ( 2-5) γ ( ) γ cos θ 2πr πρhr 2 g h = 2γ cos θ ρgr (2.1) γ = ρgrh (2.2) 2 cos θ θ cos θ = 1 (2.2) γ = 1 ρgrh (2.) 2 2. p p ρgh p ( ) p p = p ρgh (2.) h p p = 2γ r 1 1 (Berry,1975) 2-6

More information

The Physics of Atmospheres CAPTER :

The Physics of Atmospheres CAPTER : The Physics of Atmospheres CAPTER 4 1 4 2 41 : 2 42 14 43 17 44 25 45 27 46 3 47 31 48 32 49 34 41 35 411 36 maintex 23/11/28 The Physics of Atmospheres CAPTER 4 2 4 41 : 2 1 σ 2 (21) (22) k I = I exp(

More information

1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ =

1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ = 1 1.1 ( ). z = + bi,, b R 0, b 0 2 + b 2 0 z = + bi = ( ) 2 + b 2 2 + b + b 2 2 + b i 2 r = 2 + b 2 θ cos θ = 2 + b 2, sin θ = b 2 + b 2 2π z = r(cos θ + i sin θ) 1.2 (, ). 1. < 2. > 3. ±,, 1.3 ( ). A

More information

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0 1 1 1.1 1.) T D = T = D = kn 1. 1.4) F W = F = W/ = kn/ = 15 kn 1. 1.9) R = W 1 + W = 6 + 5 = 11 N. 1.9) W b W 1 a = a = W /W 1 )b = 5/6) = 5 cm 1.4 AB AC P 1, P x, y x, y y x 1.4.) P sin 6 + P 1 sin 45

More information

1. (8) (1) (x + y) + (x + y) = 0 () (x + y ) 5xy = 0 (3) (x y + 3y 3 ) (x 3 + xy ) = 0 (4) x tan y x y + x = 0 (5) x = y + x + y (6) = x + y 1 x y 3 (

1. (8) (1) (x + y) + (x + y) = 0 () (x + y ) 5xy = 0 (3) (x y + 3y 3 ) (x 3 + xy ) = 0 (4) x tan y x y + x = 0 (5) x = y + x + y (6) = x + y 1 x y 3 ( 1 1.1 (1) (1 + x) + (1 + y) = 0 () x + y = 0 (3) xy = x (4) x(y + 3) + y(y + 3) = 0 (5) (a + y ) = x ax a (6) x y 1 + y x 1 = 0 (7) cos x + sin x cos y = 0 (8) = tan y tan x (9) = (y 1) tan x (10) (1 +

More information

xia2.dvi

xia2.dvi Journal of Differential Equations 96 (992), 70-84 Melnikov method and transversal homoclinic points in the restricted three-body problem Zhihong Xia Department of Mathematics, Harvard University Cambridge,

More information

grad φ(p ) φ P grad φ(p ) p P p φ P p l t φ l t = 0 g (0) g (0) (31) grad φ(p ) p grad φ φ (P, φ(p )) xy (x, y) = (ξ(t), η(t)) ( )

grad φ(p ) φ P grad φ(p ) p P p φ P p l t φ l t = 0 g (0) g (0) (31) grad φ(p ) p grad φ φ (P, φ(p )) xy (x, y) = (ξ(t), η(t)) ( ) 2 9 2 5 2.2.3 grad φ(p ) φ P grad φ(p ) p P p φ P p l t φ l t = g () g () (3) grad φ(p ) p grad φ φ (P, φ(p )) y (, y) = (ξ(t), η(t)) ( ) ξ (t) (t) := η (t) grad f(ξ(t), η(t)) (t) g(t) := f(ξ(t), η(t))

More information

I 1

I 1 I 1 1 1.1 1. 3 m = 3 1 7 µm. cm = 1 4 km 3. 1 m = 1 1 5 cm 4. 5 cm 3 = 5 1 15 km 3 5. 1 = 36 6. 1 = 8.64 1 4 7. 1 = 3.15 1 7 1 =3 1 7 1 3 π 1. 1. 1 m + 1 cm = 1.1 m. 1 hr + 64 sec = 1 4 sec 3. 3. 1 5 kg

More information

21 2 26 i 1 1 1.1............................ 1 1.2............................ 3 2 9 2.1................... 9 2.2.......... 9 2.3................... 11 2.4....................... 12 3 15 3.1..........

More information

128 3 II S 1, S 2 Φ 1, Φ 2 Φ 1 = { B( r) n( r)}ds S 1 Φ 2 = { B( r) n( r)}ds (3.3) S 2 S S 1 +S 2 { B( r) n( r)}ds = 0 (3.4) S 1, S 2 { B( r) n( r)}ds

128 3 II S 1, S 2 Φ 1, Φ 2 Φ 1 = { B( r) n( r)}ds S 1 Φ 2 = { B( r) n( r)}ds (3.3) S 2 S S 1 +S 2 { B( r) n( r)}ds = 0 (3.4) S 1, S 2 { B( r) n( r)}ds 127 3 II 3.1 3.1.1 Φ(t) ϕ em = dφ dt (3.1) B( r) Φ = { B( r) n( r)}ds (3.2) S S n( r) Φ 128 3 II S 1, S 2 Φ 1, Φ 2 Φ 1 = { B( r) n( r)}ds S 1 Φ 2 = { B( r) n( r)}ds (3.3) S 2 S S 1 +S 2 { B( r) n( r)}ds

More information

( ) sin 1 x, cos 1 x, tan 1 x sin x, cos x, tan x, arcsin x, arccos x, arctan x. π 2 sin 1 x π 2, 0 cos 1 x π, π 2 < tan 1 x < π 2 1 (1) (

( ) sin 1 x, cos 1 x, tan 1 x sin x, cos x, tan x, arcsin x, arccos x, arctan x. π 2 sin 1 x π 2, 0 cos 1 x π, π 2 < tan 1 x < π 2 1 (1) ( 6 20 ( ) sin, cos, tan sin, cos, tan, arcsin, arccos, arctan. π 2 sin π 2, 0 cos π, π 2 < tan < π 2 () ( 2 2 lim 2 ( 2 ) ) 2 = 3 sin (2) lim 5 0 = 2 2 0 0 2 2 3 3 4 5 5 2 5 6 3 5 7 4 5 8 4 9 3 4 a 3 b

More information

x,, z v = (, b, c) v v 2 + b 2 + c 2 x,, z 1 i = (1, 0, 0), j = (0, 1, 0), k = (0, 0, 1) v 1 = ( 1, b 1, c 1 ), v 2 = ( 2, b 2, c 2 ) v

x,, z v = (, b, c) v v 2 + b 2 + c 2 x,, z 1 i = (1, 0, 0), j = (0, 1, 0), k = (0, 0, 1) v 1 = ( 1, b 1, c 1 ), v 2 = ( 2, b 2, c 2 ) v 12 -- 1 4 2009 9 4-1 4-2 4-3 4-4 4-5 4-6 4-7 4-8 4-9 4-10 c 2011 1/(13) 4--1 2009 9 3 x,, z v = (, b, c) v v 2 + b 2 + c 2 x,, z 1 i = (1, 0, 0), j = (0, 1, 0), k = (0, 0, 1) v 1 = ( 1, b 1, c 1 ), v 2

More information

(2 X Poisso P (λ ϕ X (t = E[e itx ] = k= itk λk e k! e λ = (e it λ k e λ = e eitλ e λ = e λ(eit 1. k! k= 6.7 X N(, 1 ϕ X (t = e 1 2 t2 : Cauchy ϕ X (t

(2 X Poisso P (λ ϕ X (t = E[e itx ] = k= itk λk e k! e λ = (e it λ k e λ = e eitλ e λ = e λ(eit 1. k! k= 6.7 X N(, 1 ϕ X (t = e 1 2 t2 : Cauchy ϕ X (t 6 6.1 6.1 (1 Z ( X = e Z, Y = Im Z ( Z = X + iy, i = 1 (2 Z E[ e Z ] < E[ Im Z ] < Z E[Z] = E[e Z] + ie[im Z] 6.2 Z E[Z] E[ Z ] : E[ Z ] < e Z Z, Im Z Z E[Z] α = E[Z], Z = Z Z 1 {Z } E[Z] = α = α [ α ]

More information

2016 B S option) call option) put option) Chicago Board Option Exchange;CBOE) F.Black M.Scholes Option Pricing Model;OPM) B S 1

2016 B S option) call option) put option) Chicago Board Option Exchange;CBOE) F.Black M.Scholes Option Pricing Model;OPM) B S 1 206 B S option) call option) put option) 7 973 Chicago Board Option Exchange;CBOE) F.Black M.Scholes Option Pricing Model;OPM) B S 997 Robert Merton A 20 00 30 00 50 00 50 30 20 S, max(0, S-) C max(0,s

More information

x i [, b], (i 0, 1, 2,, n),, [, b], [, b] [x 0, x 1 ] [x 1, x 2 ] [x n 1, x n ] ( 2 ). x 0 x 1 x 2 x 3 x n 1 x n b 2: [, b].,, (1) x 0, x 1, x 2,, x n

x i [, b], (i 0, 1, 2,, n),, [, b], [, b] [x 0, x 1 ] [x 1, x 2 ] [x n 1, x n ] ( 2 ). x 0 x 1 x 2 x 3 x n 1 x n b 2: [, b].,, (1) x 0, x 1, x 2,, x n 1, R f : R R,.,, b R < b, f(x) [, b] f(x)dx,, [, b] f(x) x ( ) ( 1 ). y y f(x) f(x)dx b x 1: f(x)dx, [, b] f(x) x ( ).,,,,,., f(x)dx,,,, f(x)dx. 1.1 Riemnn,, [, b] f(x) x., x 0 < x 1 < x 2 < < x n 1

More information

−g”U›ß™ö‡Æ…X…y…N…g…‰

−g”U›ß™ö‡Æ…X…y…N…g…‰ 1 / 74 ( ) 2019 3 8 URL: http://www.math.kyoto-u.ac.jp/ ichiro/ 2 / 74 Contents 1 Pearson 2 3 Doob h- 4 (I) 5 (II) 6 (III-1) - 7 (III-2-a) 8 (III-2-b) - 9 (III-3) Pearson 3 / 74 Pearson Definition 1 ρ

More information

1: 3.3 1/8000 1/ m m/s v = 2kT/m = 2RT/M k R 8.31 J/(K mole) M 18 g 1 5 a v t πa 2 vt kg (

1: 3.3 1/8000 1/ m m/s v = 2kT/m = 2RT/M k R 8.31 J/(K mole) M 18 g 1 5 a v t πa 2 vt kg ( 1905 1 1.1 0.05 mm 1 µm 2 1 1 2004 21 2004 7 21 2005 web 2 [1, 2] 1 1: 3.3 1/8000 1/30 3 10 10 m 3 500 m/s 4 1 10 19 5 6 7 1.2 3 4 v = 2kT/m = 2RT/M k R 8.31 J/(K mole) M 18 g 1 5 a v t πa 2 vt 6 6 10

More information

Feynman Encounter with Mathematics 52, [1] N. Kumano-go, Feynman path integrals as analysis on path space by time slicing approximation. Bull

Feynman Encounter with Mathematics 52, [1] N. Kumano-go, Feynman path integrals as analysis on path space by time slicing approximation. Bull Feynman Encounter with Mathematics 52, 200 9 [] N. Kumano-go, Feynman path integrals as analysis on path space by time slicing approximation. Bull. Sci. Math. vol. 28 (2004) 97 25. [2] D. Fujiwara and

More information

2 0.1 Introduction NMR 70% 1/2

2 0.1 Introduction NMR 70% 1/2 Y. Kondo 2010 1 22 2 0.1 Introduction NMR 70% 1/2 3 0.1 Introduction......................... 2 1 7 1.1.................... 7 1.2............................ 11 1.3................... 12 1.4..........................

More information

4 5.............................................. 5............................................ 6.............................................. 7......................................... 8.3.................................................4.........................................4..............................................4................................................4.3...............................................

More information

Dirac 38 5 Dirac 4 4 γ µ p µ p µ + m 2 = ( p µ γ µ + m)(p ν γ ν + m) (5.1) γ = p µ p ν γ µ γ ν p µ γ µ m + mp ν γ ν + m 2 = 1 2 p µp ν {γ µ, γ ν } + m

Dirac 38 5 Dirac 4 4 γ µ p µ p µ + m 2 = ( p µ γ µ + m)(p ν γ ν + m) (5.1) γ = p µ p ν γ µ γ ν p µ γ µ m + mp ν γ ν + m 2 = 1 2 p µp ν {γ µ, γ ν } + m Dirac 38 5 Dirac 4 4 γ µ p µ p µ + m 2 p µ γ µ + mp ν γ ν + m 5.1 γ p µ p ν γ µ γ ν p µ γ µ m + mp ν γ ν + m 2 1 2 p µp ν {γ µ, γ ν } + m 2 5.2 p m p p µ γ µ {, } 10 γ {γ µ, γ ν } 2η µν 5.3 p µ γ µ + mp

More information