2014 F/ E 1 The arithmetic of elliptic curves from a viewpoint of computation 1 Shun ichi Yokoyama / JST CREST,.

Size: px
Start display at page:

Download "2014 F/ E 1 The arithmetic of elliptic curves from a viewpoint of computation 1 Shun ichi Yokoyama / JST CREST,."

Transcription

1 2014 F/ E 1 The arithmetic of elliptic curves from a viewpoint of computation 1 Shun ichi Yokoyama / JST CREST,. K Q, C, F p.,, f = 0.,,., K 3 E : y 2 + a 1 xy + a 3 y = x 3 + a 2 x 2 + a 4 x + a 6 (a i K) elliptic curve. 3.,.,.,,.,.,., Sage 2. Sage 10,, Python., Sage SageMath Cloud Pari/GP s-yokoyama@math.kyushu-u.ac.jp 2, Windows Sage. Sage SageMath Cloud., Sage Pari/GP. 5.

2 2, 2014 F 4 E. 1, pdf...,...,,.,,,. 2.,.,. 3.39, x, y = min {x + y, 100} 0 x 40.,..,..,.,,.,. 5.,.,..,.,...,.,,. TEX Word,, A4 or A4..,,.,., s-yokoyama@math.kyushu-u.ac.jp.,..,.

3 2014 F/ E 3 1, rational point.,. f(x, y) x, y 2, f(x, y) = 0 (x, y) f = 0., x, y R (x, y) f(x, y) = 0. x, y Q, (x, y). x, y Z, (x, y) f = 3x y. f = 0 (x, y), y = 3x. x y,. (t, 3t) t Q. (n, 3n) n Z f = x 2 + y 2 1. f = 0 (x, y), x 2 + y 2 = 1., 4 (±1, 0), (0, ±1)..., ( 1, 0) a, ( ) 1 a a 2, 2a 1 + a 2. a Q 1 a2 1+a Q 2a 2 1+a Q,. a Q 2,. ( ) 1 a 1.4., 2 2a 1+a, 2 1+a f = x 2 + y 2 3. f = 0 (x, y), x 2 + y 2 = 3.,... x 2 + y 2 = 3. m, n, r Z gcd(m, n, r) = 1 1, (x, y) = ( m r, n r ). m 2 + n 2 = 3r r 2 0 mod 3. m 2 0 or 1, n 2 0 or 1 m 2 + n 2 0 m 2 0 n 2 0. m, n 3, r 3. gcd(m, n, r) = ,. x 2 + y 2 = c c N 2, c. 1.6 (5 ). x 2 + y 2 = c, x 2 + y 2 = r 2 c r N.. r Q >0., c square-free. c = p 1 p 2 p k p i..

4 x 2 + y 2 = c c = p 1 p 2 p k, 1 i k p i = 2 or p i 1 mod (6 ). x 2 + y 2 = c c 3, 1. c = 1, f = 0 (f = ax 3 + bx 2 y + cxy 2 + dy 3 + ex 2 + gxy + hy 2 + ix + jy + k) a, b, c, d 1 0, f = x 3 y 2 2. f = 0 (x, y), y 2 = x ( 129 (3, 5), 100, 383 ) ( ) , , , ( , ), f = x 3 y f = 0 (x, y), y 2 = x ,. ( 1, 0), (0, ±1), (2, ±3),.,.,.,, (C, 6 ). 1.9 y 2 = x 3 2, ( ) , , Sage Pari/GP 3., (C),. Word TEX,,. 3, OK

5 2014 F/ E 5 2, 3.,. K., K = Q. K, Q number field., 3 E : y 2 + a 1 xy + a 3 y = x 3 + a 2 x 2 + a 4 x + a 6 (a i K) 4. K 3. K 2, (x, y) ( ) x, y a1x a3 2 Ẽ : y 2 = 4x 3 + b 2 x 2 + 2b 4 x + b 6. K 2 3 (x, y) ( x 3b 2 36, E : y 2 = x 3 27c 4 x 54c 6 y 108). K = Q 0., E : y 2 = x 3 + ax + b. b i, c j a k. b 8,. b 2 = a a 2, b 4 = 2a 4 + a 1 a 3, b 6 = a a 6, b 8 = a 2 1a 6 + 4a 2 a 6 a 1 a 3 a 4 + a 2 a 2 3 a 2 4, c 4 = b b 4,. c 6 = b b 2 b 4 216b (E) = b 2 2b 8 8b b b 2 b 4 b 6 E discriminant (E) 0, E K elliptic curve. K = Q, (E) 0. (E) = , 5.,,. 2.5.,.. 4, a 5 a 6,.,. 5, x2 a 2 + y2 b 2 = 1 a, b R.

6 6 2.6 (C ). K = C, C/Λ Λ 2,. 2.7 (5 ). E : y 2 = x 3 + ax + b (E ). 2. y 2 = x 3, cusp. y 2 = x 3 + x 2, node. (E) = 0, (E) = 0., c 4 = 0., c (12 ). E E, 2, 1.., Sage. Q Sage. sage: E=EllipticCurve([1,2,3,4,5]); E E y 2 + xy + 3y = x 3 + 2x 2 + 4x + 5. Sage 5 a 1, a 2, a 3, a 4, a 6, Q. ;,. E, Elliptic Curve defined by y^2 + xy + 3y = x^3 + 2x^2 + 4x + 5 over Rational Field. E : y 2 = x 3 + ax + b sage: E=EllipticCurve([a,b]); E a,b. Cremona s index,., b i,. Sage discriminant. sage: E.discriminant(), E. Sage..,., c 4. Sage sage: E.c4(). b i.. sage: E.plot(), png. pdf 6. 6, eps, pdf., eps.

7 2014 F/ E (C,, 9 ). 3,. 1. y 2 = x 3 3x y 2 = x 3 + x 3. y 2 = x 3 x, 1., 1,., E : y 2 + a 1 xy + a 3 y = x 3 + a 2 x 2 + a 4 x + a 6 P = (x 1, y 1 ), Q = (x 2, y 2 ), P = (x 1, y 1 a 1 x 1 a 3 ), P + Q = (x 3, (λ + a 1 )x 3 ν a 3 ), x 3 = λ 2 + a 1 λ a 2 x 1 x 2. λ, ν x 1 x 2, λ = y 2 y 1 x 2 x 1, ν = y 1x 2 y 2 x 1 x 2 x 1, x 1 = x 2, λ = 3x a 2 x 1 + a 4 a 1 y 1 2y 1 + a 1 x 1 + a 3, ν = x3 1 + a 4 x 1 + 2a 6 a 3 y 1 2y 1 + a 1 x 1 + a 3., np = P + P + + P n. O (6 )., E : y 2 = x 3 + ax + b, 2.,. 3, P, Q, R P + Q + R = O. P + ( P ) = O , E {O} O.,, E. O E K, E E(K) Mordell-Weil group (Mordell-Weil). E(K). E(K) Z r G. G. G E(K) torsion part, E(K) tors , r E, rank. E(K),. Z r 3, E(K) tors. K = Q.

8 (Mazur 7, 1977). E(Q) tors. m Z Z/mZ, 1 m 12, m 11, Z/2Z Z/2mZ, 1 m 4. K,. K = Q( 5) E : y 2 + xy + y = x 3 + x 2 3x + 1 E(K) tors Z/15Z, Mazur., E(K) tors, (C, 8 ). E : y 2 = x 3 + 2x + 3, E(Q) Z Z/2Z. E E P = ( 1, 0) 2 i.e. 2P = O. 2. E Q = (3, 6), n N nq O. Mazur P, Q E(Q). n 2., 2 E 1, E 2,., E 1 E 2 ϕ : E 1 E 2 1. P = (x, y) E 1, ϕ(p ) E 2 x, y. 2. P, Q E 1, ϕ(p + Q) = ϕ(p ) + ϕ(q). ϕ. ϕ E 1 isogeny., E 1 E 2.,. up to isogeny ϕ, ϕ. E 1 E 2, E 1 E 2, E 1 E 2. K, j(e) = c3 4 (E) E j(e ) = 1728 (4a)3 (E ) E E j j-invariant K K. E 1 E 2 K j(e 1 ) = j(e 2 ). 7 15, Ogg 1975.

9 2014 F/ E (6 ). j 0 0, E : y 2 + xy = x 3 36 j x 1 j ( ) 3 j 0 (E) =, j(e) = j 0 j Tate.. E(Q). E y 2 + y = x 3 + x 2 2x 8. sage: E=EllipticCurve([0,1,1,-2,0]) sage: E.gens() [(-1:1:1), (0:0:1)] 2, 9. ( 1, 1) (0, 0),. E 2. 2,. Q,. K,., E 2. Q 3 yes, sage: E=EllipticCurve([0,0,0,-82,0]) sage: E.gens(). 4 sage: E=EllipticCurve([0,-1,0,-24649, ]) sage: E.gens()., n N, n Q 1., Q.. Elkies n = 28. E E : y 2 + a 1 xy + a 3 y = x 3 + a 2 x 2 + a 4 x + a 6 a 1 = 1 a 2 = 1 a 3 = 1 a 4 = a 6 = Cremona s index 389a. 389 conductor,, a index. 2 b, c,. 9, 3 1, 1 x, 2 y.

10 10 28 P 1 = ( , ) P 2 = ( , ) P 3 = ( , ) P 4 = ( , ) P 5 = ( , ) P 6 = ( , ) P 7 = ( , ) P 8 = ( , ) P 9 = ( , ) P 10 = ( , ) P 11 = ( , ) P 12 = ( , ) P 13 = ( , ) P 14 = ( , ) P 15 = ( , ) P 16 = ( , ) P 17 = ( , ) P 18 = ( , ) P 19 = ( , ) P 20 = ( , ) P 21 = ( , ) P 22 = ( , ) P 23 = ( , ) P 24 = ( , ) P 25 = ( , ) P 26 = ( , ) P 27 = ( , ) P 28 = ( , ) 28, (C, ). Elkies E 28. n = 28, n 29, ( ) , K, (Kida). E : y 2 = x 3 x K m = Q( p 1, p 2,, p m ). p i p i 5 or 7 mod 8, m E. j. Sage sage: E=EllipticCurve([0,0,1,-1,0]) sage: E.j_invariant() / (C, 6 ). E : y 2 + a 1 xy + a 3 y = x 3 + a 2 x 2 + a 4 x + a 6 j.,. Sage. sage: var( a,b ); E=EllipticCurve([a,b])

11 2014 F/ E 11, E(Q) tors. Schmitt,., E : y 2 = x 3 + a 2 x 2 + a 4 x + a 6 a 1 = a 3 = (Lutz-Nagell). E a 2, a 4, a 6., P = (x 1, y 1 ) E(Q) tors x 1, y , P = (x 1, y 1 ) E(Q) tors y 1 = 0 or y = 27a a 3 2a 6 + 4a 3 4 a 2 2a a 2 a 4 a 6, = 16 0., E : y 2 = x 3 43x E(Q) tors Z/7Z (C, 12 )., E(Q) tors O {(3, ±8), ( 5, ±16), (11, ±32)} 6. 3., (3, 8) E(Q) tors., 2. (3, 8), E(Q) tors Z/7Z.,. j., K = Q. E, mod p F p. 4. E (x, y) F p F p, discrete.., 2.3 (E) F p {0} E F p E Q, E : y 2 + a 1 xy + a 3 y = x 3 + a 2 x 2 + a 4 x + a 6 (a i Z). mod p E p : y 2 + a 1 xy + a 3 y = x 3 + a 2 x 2 + a 4 x + a 6 (a i F p ), E p reduction at p. E p i.e. (E p ) 0., p (E) (E p ) = 0.,,.

12 E p F p i.e. (E p ) 0, E p has good reduction at p. E p, F p i.e. (E p ) = 0, E p has bad reduction at p , p / good prime/bad prime. (E),., E p, c 4 0., E p. E p, E p has multiplicative (semistable) reduction at p. E p, E p has additive (unstable) reduction at p..,, E Q. N(E) = p : prime p fp(e) E conductor. E E N(E) = N(E ). f p (E) E p f p (E) = 0, E p f p (E) = 1, E p f p (E) = 2 + δ p. δ p depth of wild ramification 0, p 2, 3 δ p = p = 2, 3, f p (E) f 2 (E) 5, f 3 (E) 3., 1) (E), B E, 2) p B E, c 4 f p (E), 3) p fp(e), 3. Sage. sage: E.conductor() 2.38 (C,, 5 ). Q E : y 2 + xy + 3y = x 3 + 2x 2 + 4x + 5, 3 N(E). Sage conductor, 3., N(E) 1. N(E) = 1, p E Q E N(E) = 1, E everywhere good reduction.,.

13 2014 F/ E Q E, B E. E B E everywhere good reduction outside B E. p p., Q, 1., Tate (Tate). Q (C, 16 ). 2.41,. E : y 2 + a 1 xy + a 3 y = x 3 + a 2 x 2 + a 4 x + a 6 (a i Z) 1. (E) = c3 4 c E Q. (E) = ±1. 3. c 2 6 = c 3 4 ± (c 4, c 6 ), (c 4, c 6 ) a i Z (c 4, c 6 ). E y 2 = x 3 27c 4 x 54c 6. K Q, mod p 5 mod p., K, O K p, mod p., (1) K. Q, K (20 ). K Q. O K, p. E K. 1. E p reduction at p. 2. E N(E). depth of wild ramification (C, 20 ). K = Q( 6), ε = E 1 : y 2 = x 3 4(2 + 6)x 2 + 4εx, E 2 : y 2 + 6xy y = x 3 (2 + 6)x E 1 c 4, c 6, (E 1 ), j(e 1 ). 2. E 2 c 4, c 6, (E 2 ), j(e 2 ). 3. E 1, E E 1 E 2, E 2 global minimal model.

14 (8 ). Q( 3 28) E : y 2 + a 1 xy + a 3 y = x 3 (a 2 = a 4 = a 6 = 0). (E) = a 3 3(a a 3 ), E Q( 3 28) (a 1, a 3 ) (C, )., 2 11.,., K Q( ±m) m > 0: Q( 3 m) m > 0:. K, K.,.., K = Q( m), 1 < m < 100 m = 26, 51, 79, 86, 87, 91..,. PEX/UNDET 1,. PNEX/UNDET, K = Q( m), 1 < m < 100 m = 38, 53, 61, K = Q( 3 m), 1 < m < 100 m = 23..,., K = Q( 3 46)., Non-existence of elliptic curves with everywhere good reduction over some real quadratic fields, Journal of Math-for-Industry 3 (2011), pp On elliptic curves with everywhere good reduction over certain number fields, American Journal of Computational Mathematics 2, No.4 (2012), pp y xy y = x ( )x 2 + C C C 3 x + C C C C 1 = , C 2 = , C 3 = , C 4 = , C 5 = , C 6 =

15 2014 F/ E 15 3,., E(K)., 2 E(K) Z r.,., E, E K, ϕ : E E.. 0 E (K)/ϕ(E(K)) Sel ϕ (E/K) III(E/K)[ϕ] 0 Sel ϕ (E/K) Sel(E/K) E Selmer group. III(E/K) - Tate-Shafarevich group 13. 2, K Galois Gal(K/K) 1 Galois, - Weil-Châtelet group.,. m, 0 E(K)/mE(K) Sel m (E/K) III(E/K)[m] 0. III(E/K)[m] = {t III(E/K) mt = 0} m-torsion. E(K)/mE(K),.,. m = 2, E(K)/2E(K) Sel 2 (E/K), E Sel 2 (E/K). 2-descent. descent m 2 m-descent, 2-descent. III(E/K)[2], E(K)/2E(K)., III(E/K)[2] E(K)/2E(K) Sel 2 (E/K)., III(E/K)[2]., III(E/K).. III(E/K)[2],, Sel 2 (E/K) E(K)/2E(K),., III(E/K)[2] E(K)/2E(K). E(K)/2E(K). E(K). -descent. height., E(K)/2E(K),,. 13 : sha.,. TEX, I 3.

16 E(K). Sage Simon s 2-descent. Sage 14, Simon Pari/GP 15 Sage., K = Q( 7) E : y 2 = x 3 + x + 7 E(K). Sage sage: K.<a>=NumberField(x^2+7) sage: E=EllipticCurve(K,[0,0,0,1,a]) sage: E.simon_two_descent(verbose=1),. a K/Q, a= 7. verbose, courbe elliptique : Y^2 = x^3 + Mod(1, y^2 + 7)*x + Mod(y, y^2 + 7) points triviaux sur la courbe = [[1, 1, 0], [Mod(1/2*y + 3/2, y^2 + 7), Mod(-y - 2, y^2 + 7), 1]] #S(E/K)[2] = 2 #E(K)/2E(K) = 2 #III(E/K)[2] = 1 rang(e/k) = 1 listpointsmwr = [[Mod(1/2*y + 3/2, y^2 + 7), Mod(-y - 2, y^2 + 7), 1]] (1, 1, [(1/2*a + 3/2 : -a - 2 : 1)]). #S(E/K)[2] Sel 2 (E/K), 2. 2 #III(E/K)[2] III(E/K)[2], E(K)/2E(K) 2, torsion part 16, E 1. -descent, E(K) ( a+3 2, a 2). E(K).,. E(K) tors = {0}, torsion part K = Q( 59) E : y 2 = x E(K),. courbe elliptique : Y^2 = x^3 + Mod(y, y^2-59)...omitted... #S(E/K)[2] = 4 #E(K)/2E(K) = 4 #III(E/K)[2] = 1 rang(e/k) = 1 [1, 2, [...points...]] 14. Sage Simon s 2-descent, Pari/GP Sage. Pari/GP. Denis Simon ell.gp. Sage, developer-trac,. 15,. 16,.

17 2014 F/ E 17 points ( 12, 0) ( , ). [1, 2]. E 1 2,, 1., Sel 2 (E/K) F 2 -. III(E/K)[2] E(K)/2E(K) Sel 2 (E/K). 1, E(K) Z 2 or E(K) Z E(K) tors with #(E(K) tors /2E(K) tors ) = 2., ( 12, 0) 2, E(K) torsion part. E(K) Z Z/2Z, ( , ) E(K). K = Q( 3 53) E : y 2 = x E(K),. courbe elliptique : Y^2 = x^3 + Mod(y, y^3-53)...omitted... #S(E/K)[2] = 8 #E(K)/2E(K) >= 2 #III(E/K)[2] <= 4 0 <= rang(e/k) <= 2 [0, 3, [...points...]] points, 2 ( 12, 0). III(E/K)[2] 4. III(E/K)[2] = {0}, E(K)/2E(K) 8 E(K)/2E(K). 2 ( 12, 0) E(K) Z 3. E 2. 2, E(K)/2E(K) 2.,. III(E/K)[2],. 3.7 (C, 8 ). Q K, 1, ell.gp E(K). Sage. Pari/GP, gp calculator gp.exe ell.gp. ell.txt. ell.gp. Pari/GP, ell.gp. 2. gp calculator gp: \r ell.gp. gp: bnf=bnfinit(f) gp: ell=ellinit([a1,a2,a3,a4,a6]) f y. K = Q( 43) y^2-43.

18 gp: bnfellrank(bnf,ell). Affichage des calculs DEBUGLEVEL ell= (6 ). K E E(K),. Sel 2 (E/K) 4, III(E/K)[2] 2, 2 2., E(K). 3.9 (20 ). Sage, 2-descent..,. sage: K = CyclotomicField(43).subfields(3)[0][0] sage: E = EllipticCurve(K, 37 ) sage: E.simon_two_descent() # long time (4s on sage.math, 2013) Traceback (most recent call last):... RuntimeError: *** at top-level: ans=bnfellrank(k,[0,0,1, *** ^ *** in function bnfellrank:...eqtheta,rnfeq,bbnf];rang= *** bnfell2descent_gen(b *** ^ *** in function bnfell2descent_gen:...riv,r=nfsqrt(nf,norm(zc)) *** [1];if(DEBUGLEVEL_el *** ^ *** array index (1) out of allowed range [none]. An error occurred while running Simon s 2-descent program, E(K).., , n. 3 n, n congruent number :4:5.

19 2014 F/ E 19,, , 1. a, b, c Q >0 a 2 + b 2 = c ab = a b. α = c2 4, β = (a2 b 2 )c 8 β 2 = α 3 α. a, b, c Q >0 α, β Q, a b β 0., Q y 2 = x 3 x (α, β) α > 0, β 0., (0, 0), (1, 0), ( 1, 0), O 4., n, Q y 2 = x 3 n 2 x n, 3 (α, β) β 0. a = α2 n 2, b = 2nα β β, c = α2 + n 2 β n = 1 y 2 = x 3 x 0, (C, 8 ). n, 3 a, b, c. a, b, c (C, 5 ) a, b , c. 3., n, n..,., n. 17, a, b, c,. 18,.

20 n.. A n = # { (x, y, z) : x, y, z Z n = 2x 2 + y z 2} B n = # { (x, y, z) : x, y, z Z n = 2x 2 + y 2 + 8z 2} C n = # { (x, y, z) : x, y, z Z n = 8x 2 + 2y z 2} D n = # { (x, y, z) : x, y, z Z n = 8x 2 + 2y z 2}. A. n. B. n 2A n = B n. n 2C n = D n., Tunnell (Tunnell, 1983) A B. BSD B A (C,, 8 ). 2014, 3.16., 3.17 BSD.,.,. - Birch and Swinnerton-Dyer conjecture. 2 Birch Swinnerton-Dyer, BSD., (BSD ). E Q, L(s, E) E Hasse-Weil L. L(s, E) C, L(s, E) s = 1 E r Hasse-Weil L, (Kolyvagin, Gross-Zagier). r 1 BSD. Hasse-Weil L. E(F p ) := { (x, y) : x, y F p y 2 + a 1 xy + a 3 y = x 3 + a 2 x 2 + a 4 x + a 6 } {O}. E(F p ) (y 2 + a 1 xy + a 3 y) (x 3 + a 2 x 2 + a 4 x + a 6 ) p (x, y) O, E p E p. E(F p ) L(s, E) := p (E) E Hasse-Weil L. a p (E) := p + 1 #E(F p ) 1 1 a p (E)p s + p 1 2s p (E) 1 1 a p (E)p s

21 2014 F/ E 21 L(s, E) s = 1 E. BSD E., L(s, E) s = 1, E analytic rank. Sage, sage: E.analytic_rank(), BSD., (BSD ). E Q, L(s, E) E Hasse-Weil L. L(s, E) s = 1 Taylor L(s, E) = c ran (s 1) r an +. E r an, c ran = Ω E Reg(E) #III(E/Q) p c p #E(Q) 2 tors. Ω E E Archimedean period, Reg(E) E regulator, c p Tamagawa number. BSD, - III(E/Q) 3.3 K = Q., BSD a p (E). a p (E) Hasse (Hasse, 1933). p (E) p a p (E) 2 p,., h = {z C Im(z) > 0} f : h C, ( ( ) ) γ : z az + b a b z h, γ = SL 2 (Z), c 0 (mod N) cz + d c d f(γ(z)) = ε(d)(cz + d) k f(z) (k Z 2 ) Q k modular form. N f level, ε : (Z/NZ) C character, nebentypus. 19 Mordell-Weil p p #E(F p) p p. #E(F p). n, #E(F p ) = n E Deuring. 20.

22 ,., modular form, automorphic form. f(z), q = e 2πiz. q Fourier f(q) = a n (f)q n (q = e 2πiz ) n 0. a p (E) a p (f),, ( - ). Q E modular., N E, 2 N f, p a p (E) = a p (f). N , BSD 3.19 L(s, E) C,. -, E 1995 Wiles, Fermat n 3 x n + y n = z n 0 x, y, z,., (Breuil-Conrad-Diamond-Taylor, 2001) E : y 2 = x 3 x, 2, 32 f(q) = q 2q 5 3q 9 + 6q q 17 q 25 10q p = 17 #E(F 17 ) = 16 a 17 (E) = = 2, a 17 (f). sage: E=EllipticCurve([0,0,0,-1,0]) sage: E17=EllipticCurve(GF(17),[-1,0]) sage: E.ap(17) sage: E17.cardinality() sage: E17.points() (C, 8 ). Q E : y 2 + y = x 3 x 2, f(q) = q (1 q n ) 2 (1 q 11n ) 2 n 1, -, 100 p.

23 2014 F/ E 23,. Q,. Q, BSD.,, (20 )., abelian variery (20 ). a p (f) eigenform Fourier. 1. Hecke Hecke operator. 2. f (20 )., -.,.. Hilbert modular forms Siegel modular forms Bianchi modular forms 3.35 (20 ). - Langlands correspondence (30 ). BSD,.. Ω(E) E Archimedean period Reg(E) E regulator c p Tamagawa number (30 ) , - L(s, E) C (40 ). BSD p p-adic version.,. 1. p Q p. 2. p L. 3., p BSD. 4. p BSD. 21 manifold..

24 24 2, , (5., 20 ).,.., E Q E 1, E 2 N(E 1 ) N(E 2 ), E 1 E E E(R) := {(x, y) E : x, y R} {O}. E(R). 3. #III(E/Q)[2] = 1, #Sel 2 (E/Q) = 16 E Q. 5. E : y 2 = x 3 + x + 2 p 1 < p 2 #E(F p1 ) < #E(F p2 ). N(E) = 56 = p 1, p 2 2, (C, 20 ). 1 15, A C. 13. Q E 1 : y 2 + y = x 3 + x 2 8x b 2 = 1, b 4 = 2, b 6 = 3, b 8 = 4, c 4 = 5, c 6 = 6, (E 1 ) = 7, N(E 1 ) = 8. E 1 B E1 = { 9, 10 }. Q E 2 : y 2 = x 3 49x. E 2 11 E 2 (Q) tors E 2 (Q)/2E 2 (Q) 14, E A E 1 E 2. B E 1 E 2 p = 23. #E 1 (F 23 ), #E 2 (F 23 ). C E 1 E 2,. Sage., a. Sage, OS Sage Reference Manual a, Sage..

25 2014 F/ E 25 4,., 6.. E = E : y 2 = x 3 + ax + b. F p, F q q = p m p. p.., F p F q P E mp = O m E m m-division point, E[m] m p. E F q, E m E[m] Z/mZ Z/mZ. p m m = p r m p m E[m] Z/m Z Z/m Z or Z/mZ Z/m Z. E/F q m m 2.. Q, F q E(F q ), E(F q ) Z/m 1 Z Z/m 2 Z (m 1 m 2, m 1 q 1). E(F q ) 2. E(F q ) r E(F q ) Z/m i Z (m j m j+1 ) i=1. E m 1 m r r 2.., E F q. q + 1 #E(F q ) 0 mod p E supersingular F 5 E : y 2 = x E(F 5 ) = {(0, 1), (0, 4), (2, 2), (2, 3), (4, 0), O} #E(F 5 ) = (C,, 5 ). F 7 E : y 2 = x 3 + x.

26 26., E F p. P E. Q = dp 0 d < ord(p ). ord(p ) P. P, Q 2 d Elliptic Curve Discrete Logarithm Problem, ECDLP F 7 E : y 2 = x 3 + 2x + 3 P = (3, 6) Q = dp = (3, 7), d d = 14. 2P, 3P, P F E : y 2 = x 3 +2x+3 P = (3, 6) Q = dp = ( , ), d d = P , (C, 6 ). F 103 E : y 2 = x 3 + 2x + 3 P = (2, 85) Q = dp = (11, 29), d. 2, d., d,.,.., 22 RSA RSA cryptosystem. 3 Rivest-Shamir-Adleman M, p, q n = pq. 2. gcd(e, φ(n)) = 1 e N. φ(n) Euler, n n. φ(n) = (p 1)(q 1). 3. de 1 mod φ(n) d Z., (n, e) (p, q, d).. 0 M c M e mod n,. c M c d mod n., n M < n. p, q. ASCII. 22,,.,.

27 2014 F/ E A B C D E F G H I J K L M N O P Q R S T U V W X Y Z Sage, HELLOWORLD RSA. M M = sage: p = (2^31) - 1; p sage: is_prime(p) True sage: q = (2^61) - 1; q sage: is_prime(q) True sage: n = p*q ; n e. sage: e = ZZ.random_element(euler_phi(n)) sage: while gcd(e, euler_phi(n))!= 1:... e = ZZ.random_element(euler_phi(n))... sage: e # random sage: e < n True Python, for indent. 2 Enter. d. sage: bezout = xgcd(e, euler_phi(n)); bezout (1, , ) sage: d = Integer(mod(bezout[1], euler_phi(n))) ; d sage: mod(d*e, euler_phi(n)) 1 (n, e) (p, q, d), n = e = p =

28 28 q = d = sage: mod(m^e, n) RuntimeError Traceback (most recent call last) /home/mvngu/<ipython console> in <module>() /home/mvngu/usr/bin/sage-3.1.4/local/lib/python2.5/ site-packages/sage/rings/integer.so in sage.rings.integer.integer. pow (sage/rings/integer.c:9650)() RuntimeError: exponent must be at most ,., mod. sage: c = power_mod(m, e, n); c power mod 23 def power_mod(a, b, n): d = 1 for i in list(integer.binary(b)): d = mod(d * d, n) if Integer(i) == 1: d = mod(d * a, n) return Integer(d) c,. sage: power_mod(c, d, n) sage: m HELLOWORLD H E L L O W O R L D (C, 15 ). SHUNICHIYOKOYAMA RSA ,. 23 SageMath Cloud,. Sage ver.5.

29 2014 F/ E P, Q = dp d. RSA.. P d = Q, P, Q d. d = log P Q. P, Q R d,, P, Q log P Q,.,., ECDLP Elliptic Curve Cryptography ECC. RSA,. 2 bit. 9 = = RSA k=0 a k2 k, a k = 0, 1, 160., (C, 15 / cf ). n RSA number field sieving method., T 1 (n) = C 1 e n1/3 (log n) 2/3 C 1., m ρ rho method, T 2 (m) = C 2 2 m/2 C 2. T T = T 1 (n) = CT 2 (m) C, T n, m RSA 160 ECC T 1 (1024) = CT 2 (160)., 4096 RSA ECC (6 ). 4.16, > 0, 1,,.., p, (Z/pZ) g. p, g. A,B, 0 p 2,. r A, r B.

30 30 1. A X A g r A mod p, B. 2. B X B g r B mod p, A. 3. A B K A X r A B mod p. 4. B A K B X r B A mod p. K A = K B g r Ar B,. Diffie-Hellman key exchange. X A, X B K A = K B., F p p, F p E, E P. E, P. A,B, 0 ord(p ) 1,. r A, r B. 1. A X A = r A P, B. 2. B X B = r B P, A. 3. A B K A = r A X B. 4. B A K B = r B X A. K A = K B = r A r B P,. Elliptic Curve Diffie-Hellman key exchange, ECDH. X A, X B K A = K B (C, 10 ). F E : y 2 = x 3 + x + 6 E P = (2, 4). ord(p ) = r A, r B 10000, ECDH. X A, X B, K A, K B K A = K B X A, X B, P K A = K B Elliptic Curve Diffie-Hellman Problem ECDHP. ECDHP ECDLP. X A, P r A ECDLP K A = r A X B (6 ). ECDHP ECDLP.. ECDH, p, F p E, E P. E, P. A B M E., 0 ord(p ) 1,. r A, r B.

31 2014 F/ E B P B = r B P. r B, P B. 2. A R = r A P, B X A = r A P B. C = M + X A, (C, R) B. 3. B (C, R) r B X B = r B R. M = C X B. M = M 24,. Elliptic Curve ElGamal Encryption., (C, R),. X A, X B, M E (C, R), M E (C, R )., M + M E (C + C, R + R ) (6 ) ,.,,, RSA.,., Fully-holomorphic Encryption. IBM Craig Gentry, 2009., (20 )., (20 ).,,. digital signature. ECDSA (20 ). ECDLP,. 2P, 3P, 4P, Q = dp. brute force method

32 32 Baby-step Giant-step ρ 2. ρ, (20 ). ρ (20 ). ECDLP. Menezes- -Vanstone., (20 ). ECDLP pairing., F q bilinear map. 1. F q 2 G e : E(F q ) E(F q ) G. 2., ID., (20 ) Bos-Kaihara-Kleinjung-Lenstra-Montgomery, 112 ECDLP., PlayStation 3., ECDLP, Certicom,. Certicom Challenge.

33 2014 F/ E 33 5,,. 1 15, A G Pari/GP A D. Q E : y 2 + xy = x x b 2 = 1, b 4 = 2, b 6 = 3, b 8 = 4, c 4 = 5, c 6 = 6 (E) = 7. factor(n) (E), E B E = { 8, 9, 10, 11 }. E p B E, N(E) = 12. E(Q) 13, P = 14. a p (E) p p 20 { 15 }. A N(E). B #E(F 11 ). C Q = (4344, ). D np + Q E n N. SageMath Cloud. E E BSD, F E. G E p = 11. SageMath Cloud,., A G. SageMath Cloud. Sage, Sage Quick Reference Card 26,. Elementary Number Theory. 26.

34 SageMath Cloud Sage, 2,3 Reference Card, SageMath Cloud. β,,. GitHub ,. SageMath Cloud..,. 27. create an account,., I agree to the SageMathCloud Terms,., sign in.,.. 27.,.,.

35 2014 F/ E 35. ID. Projects,. SageMath Cloud, New Project.,. Description. Create Project,.

36 36 Create or Import a File, Worksheet, Terminal or Directory.. Sage. Sage L A TEX. L A TEX Sage, Sage L A TEX pdf.,,.,.

37 2014 F/ E 37, Sage. Sage. Shift+Enter., Help. Project Control,.

38 38, SageMath Cloud,, GitHub. Sage GitHub. 5.2 Pari/GP Sage Windows OS, Pari/GP. Pari/GP Q.. gp: E=ellinit([1,2,3,4,5]) E y 2 + xy + 3y = x 3 + 2x 2 + 4x + 5., [1, 2, 3, 4, 5, 9, 11, 29, 35, -183, -3429, , /10351, [.... a i i = 1, 2, 3, 4, 6, b i i = 2, 4, 6, 8, c i i = 4, 6, (E), j(e)., gp: E.disc. E.a2, E.j. E torsion part E(Q) tors 28. gp: elltors(e),.. Pari/GP, y 2 = x 3 43x E(Q) free part, elldata.

39 2014 F/ E 39 gp: E=ellinit([0,0,0,-43,166]) gp: elltors(e) [7, [7], [[3, 8]]]., 7 C 7 Z/7Z. y 2 + xy = x x gp: E=ellinit([1,0,0,-1070,7812]) gp: elltors(e) [16, [8, 2], [[34, 88], [-36, 18]]]. 2 16, , E(Q) tors Z/2Z Z/8Z. [[34, 88], [-36, 18]]. E. y 2 + xy = x 3 + 2x 2 + 4x + 5 P, Q E P = ( 1, 1), Q = (1, 4). 2 P + Q = ( 5 4, ) 15 8 E. gp: E=ellinit([1,2,0,4,5]) gp: P=[-1,-1] gp: Q=[1,-4] gp: elladd(e,p,q) [-5/4, 15/8] np ellpow(e,p,n). gp: ellorder(e,p) 0. P,,. a p (E) = p + 1 #E(F p ). a k (E) k N. gp: ellap(e,p) gp: ellak(e,k) gp: ellan(e,n) a p (E), a k (E), a k (E) 1 k n,. SageMath Cloud. Pari/GP,., A D.,. E G,.

40 40,,.., 1. J.H. Silverman, The Arithmetic of Elliptic Curves, Springer-Verlag, GTM 106 (1986). Expanded 2nd Edition (2009). 2. J.H. Silverman and J. Tate, Rational Points on Elliptic Curves, Springer-Verlag, UTM (1992). 3. W. Stein, Elementary Number Theory: Primes, Congruences, and Secrets, Springer-Verlag, UTM (2009) , ,,,, (1995), (2012) Sage, Sage., pdf., J.H. Silverman, Advanced Topics in the Arithmetic of Elliptic Curves, Springer-Verlag, GTM 151 (1994).. 4., / (2003, 2012)..,.. J.W.S. N.,.,.,,, 5.,, (2008) ,. 29,.,.

41 2014 F/ E 41,.,.,. liao files/taguchi.pdf calc.pdf Sage Tate BSD Jerome Dimabayao, Cid Reyes.,,,.

1 2 1.1............................................ 3 1.2.................................... 7 1.3........................................... 9 1.4..

1 2 1.1............................................ 3 1.2.................................... 7 1.3........................................... 9 1.4.. 2010 8 3 ( ) 1 2 1.1............................................ 3 1.2.................................... 7 1.3........................................... 9 1.4........................................

More information

SAMA- SUKU-RU Contents p-adic families of Eisenstein series (modular form) Hecke Eisenstein Eisenstein p T

SAMA- SUKU-RU Contents p-adic families of Eisenstein series (modular form) Hecke Eisenstein Eisenstein p T SAMA- SUKU-RU Contents 1. 1 2. 7.1. p-adic families of Eisenstein series 3 2.1. modular form Hecke 3 2.2. Eisenstein 5 2.3. Eisenstein p 7 3. 7.2. The projection to the ordinary part 9 3.1. The ordinary

More information

I. (CREMONA ) : Cremona [C],., modular form f E f. 1., modular X H 1 (X, Q). modular symbol M-symbol, ( ) modular symbol., notation. H = { z = x

I. (CREMONA ) : Cremona [C],., modular form f E f. 1., modular X H 1 (X, Q). modular symbol M-symbol, ( ) modular symbol., notation. H = { z = x I. (CREMONA ) : Cremona [C],., modular form f E f. 1., modular X H 1 (X, Q). modular symbol M-symbol, ( ). 1.1. modular symbol., notation. H = z = x iy C y > 0, cusp H = H Q., Γ = PSL 2 (Z), G Γ [Γ : G]

More information

wiles05.dvi

wiles05.dvi Andrew Wiles 1953, 20 Fermat.. Fermat 10,. 1 Wiles. 19 20., Fermat 1. (Fermat). p 3 x p + y p =1 xy 0 x, y 2., n- t n =1 ζ n Q Q(ζ n ). Q F,., F = Q( 5) 6=2 3 = (1 + 5)(1 5) 2. Kummer Q(ζ p ), p Fermat

More information

( 9 1 ) 1 2 1.1................................... 2 1.2................................................. 3 1.3............................................... 4 1.4...........................................

More information

¥µ¥¤¥Ü¥¦¥º¡¦¥é¥Ü¥æ¡¼¥¹ À®²ÌÊó¹ð

¥µ¥¤¥Ü¥¦¥º¡¦¥é¥Ü¥æ¡¼¥¹ À®²ÌÊó¹ð Python March 30, 2016 1 / 30 who? @elliptic shiho 0x10, CTF March 30, 2016 2 / 30 why? Python sage 1,, 1 NumPy, Cython Python March 30, 2016 3 / 30 why?,. -, -,, March 30, 2016 4 / 30 , E : y 2 = x 3 +

More information

A Brief Introduction to Modular Forms Computation

A Brief Introduction to Modular Forms Computation A Brief Introduction to Modular Forms Computation Magma Supported by GCOE Program Math-For-Industry Education & Research Hub What s this? Definitions and Properties Demonstration H := H P 1 (Q) some conditions

More information

mahoro/2011autumn/crypto/

mahoro/2011autumn/crypto/ http://www.ss.u-tokai.ac.jp/ mahoro/2011autumn/crypto/ 1 1 2011.9.29, ( ) http://www.ss.u-tokai.ac.jp/ mahoro/2011autumn/crypto/ 1.1 1.1.1 DES MISTY AES 1.1.2 RSA ElGamal 2 1 1.2 1.2.1 1.2.2 1.3 Mathematica

More information

Sage for Mathematics : a Primer ‚æ2Łfl - Sage ‡ð”g‡¤

Sage for Mathematics : a Primer   ‚æ2Łfl - Sage ‡ð”g‡¤ Sage for Mathematics : a Primer.. / JST CREST. s-yokoyama@imi.kyushu-u.ac.jp 2013 1 15 / IIJ Sage for Mathematics : a Primer 1 Sage Sage Sage Notebook Sage Salvus 2 Sage Sage Cryptosystem Sage Sage - Sage

More information

2 Riemann Im(s) > 0 ζ(s) s R(s) = 2 Riemann [Riemann]) ζ(s) ζ(2) = π2 6 *3 Kummer s = 2n, n N ζ( 2) = 2 2, ζ( 4) =.3 2 3, ζ( 6) = ζ( 8)

2 Riemann Im(s) > 0 ζ(s) s R(s) = 2 Riemann [Riemann]) ζ(s) ζ(2) = π2 6 *3 Kummer s = 2n, n N ζ( 2) = 2 2, ζ( 4) =.3 2 3, ζ( 6) = ζ( 8) (Florian Sprung) p 2 p * 9 3 p ζ Mazur Wiles 4 5 6 2 3 5 2006 http://www.icm2006.org/video/ eighth session [ ] Coates [Coates] 2 735 Euler n n 2 = p p 2 p 2 = π2 6 859 Riemann ζ(s) = n n s = p p s s ζ(s)

More information

#2 (IISEC)

#2 (IISEC) #2 (IISEC) 2007 10 6 E Y 2 = F (X) E(F p ) E : Y 2 = F (X) = X 3 + AX + B, A, B F p E(F p ) = {(x, y) F 2 p y2 = F (x)} {P } P : E(F p ) E F p - Given: E/F p : EC, P E(F p ), Q P Find: x Z/NZ s.t. Q =

More information

k + (1/2) S k+(1/2) (Γ 0 (N)) N p Hecke T k+(1/2) (p 2 ) S k+1/2 (Γ 0 (N)) M > 0 2k, M S 2k (Γ 0 (M)) Hecke T 2k (p) (p M) 1.1 ( ). k 2 M N M N f S k+

k + (1/2) S k+(1/2) (Γ 0 (N)) N p Hecke T k+(1/2) (p 2 ) S k+1/2 (Γ 0 (N)) M > 0 2k, M S 2k (Γ 0 (M)) Hecke T 2k (p) (p M) 1.1 ( ). k 2 M N M N f S k+ 1 SL 2 (R) γ(z) = az + b cz + d ( ) a b z h, γ = SL c d 2 (R) h 4 N Γ 0 (N) {( ) } a b Γ 0 (N) = SL c d 2 (Z) c 0 mod N θ(z) θ(z) = q n2 q = e 2π 1z, z h n Z Γ 0 (4) j(γ, z) ( ) a b θ(γ(z)) = j(γ, z)θ(z)

More information

Block cipher

Block cipher 18 12 9 1 2 1.1............................... 2 1.2.................. 2 1.3................................. 4 1.4 Block cipher............................. 4 1.5 Stream cipher............................

More information

2.1 H f 3, SL(2, Z) Γ k (1) f H (2) γ Γ f k γ = f (3) f Γ \H cusp γ SL(2, Z) f k γ Fourier f k γ = a γ (n)e 2πinz/N n=0 (3) γ SL(2, Z) a γ (0) = 0 f c

2.1 H f 3, SL(2, Z) Γ k (1) f H (2) γ Γ f k γ = f (3) f Γ \H cusp γ SL(2, Z) f k γ Fourier f k γ = a γ (n)e 2πinz/N n=0 (3) γ SL(2, Z) a γ (0) = 0 f c GL 2 1 Lie SL(2, R) GL(2, A) Gelbart [Ge] 1 3 [Ge] Jacquet-Langlands [JL] Bump [Bu] Borel([Bo]) ([Ko]) ([Mo]) [Mo] 2 2.1 H = {z C Im(z) > 0} Γ SL(2, Z) Γ N N Γ (N) = {γ SL(2, Z) γ = 1 2 mod N} g SL(2,

More information

Siegel modular forms of middle parahoric subgroups and Ihara lift ( Tomoyoshi Ibukiyama Osaka University 1. Introduction [8] Ihara Sp(2, R) p

Siegel modular forms of middle parahoric subgroups and Ihara lift ( Tomoyoshi Ibukiyama Osaka University 1. Introduction [8] Ihara Sp(2, R) p Siegel modular forms of middle parahoric subgroups and Ihara lift ( Tomoyoshi Ibukiyama Osaka University 1. Introduction [8] Ihara 80 1963 Sp(2, R) p L holomorphic discrete series Eichler Brandt Eichler

More information

30 2018.4.25 30 1 nuida@mist.i.u-tokyo.ac.jp 2018 4 11 2018 4 25 30 2018.4.25 1 1 2 8 3 21 4 28 5 37 6 43 7 47 8 52 30 2018.4.25 1 1 Z Z 0 Z >0 Q, R, C a, b a b a = bc c 0 a b b a b a a, b, c a b b c a

More information

Mazur [Ma1] Schlessinger [Sch] [SL] [Ma1] [Ma1] [Ma2] Galois [] 17 R m R R R M End R M) M R ut R M) M R R G R[G] R G Sets 1 Λ Noether Λ k Λ m Λ k C Λ

Mazur [Ma1] Schlessinger [Sch] [SL] [Ma1] [Ma1] [Ma2] Galois [] 17 R m R R R M End R M) M R ut R M) M R R G R[G] R G Sets 1 Λ Noether Λ k Λ m Λ k C Λ Galois ) 0 1 1 2 2 4 3 10 4 12 5 14 16 0 Galois Galois Galois TaylorWiles Fermat [W][TW] Galois Galois Galois 1 Noether 2 1 Mazur [Ma1] Schlessinger [Sch] [SL] [Ma1] [Ma1] [Ma2] Galois [] 17 R m R R R

More information

2.2 Sage I 11 factor Sage Sage exit quit 1 sage : exit 2 Exiting Sage ( CPU time 0m0.06s, Wall time 2m8.71 s). 2.2 Sage Python Sage 1. Sage.sage 2. sa

2.2 Sage I 11 factor Sage Sage exit quit 1 sage : exit 2 Exiting Sage ( CPU time 0m0.06s, Wall time 2m8.71 s). 2.2 Sage Python Sage 1. Sage.sage 2. sa I 2017 11 1 SageMath SageMath( Sage ) Sage Python Sage Python Sage Maxima Maxima Sage Sage Sage Linux, Mac, Windows *1 2 Sage Sage 4 1. ( sage CUI) 2. Sage ( sage.sage ) 3. Sage ( notebook() ) 4. Sage

More information

Siegel Hecke 1 Siege Hecke L L Fourier Dirichlet Hecke Euler L Euler Fourier Hecke [Fr] Andrianov [An2] Hecke Satake L van der Geer ([vg]) L [Na1] [Yo

Siegel Hecke 1 Siege Hecke L L Fourier Dirichlet Hecke Euler L Euler Fourier Hecke [Fr] Andrianov [An2] Hecke Satake L van der Geer ([vg]) L [Na1] [Yo Siegel Hecke 1 Siege Hecke L L Fourier Dirichlet Hecke Euler L Euler Fourier Hecke [Fr] Andrianov [An2] Hecke Satake L van der Geer ([vg]) L [Na1] [Yo] 2 Hecke ( ) 0 1n J n =, Γ = Γ n = Sp(n, Z) = {γ GL(2n,

More information

(Requirements in communication) (efficiently) (Information Theory) (certainly) (Coding Theory) (safely) (Cryptography) I 1

(Requirements in communication) (efficiently) (Information Theory) (certainly) (Coding Theory) (safely) (Cryptography) I 1 (Requirements in communication) (efficiently) (Information Theory) (certainly) (oding Theory) (safely) (ryptography) I 1 (Requirements in communication) (efficiently) (Information Theory) (certainly) (oding

More information

楕円曲線暗号と RSA 暗号の安全性比較

楕円曲線暗号と RSA 暗号の安全性比較 RSA, RSA RSA 7 NIST SP-7 Neal Koblitz Victor Miller ECDLP (Elliptic Curve Discrete Logarithm Problem) RSA Blu-ray AACS (Advanced Access Control System) DTCP (Digital Transmission Content Protection) RSA

More information

1 UTF Youtube ( ) / 30

1 UTF Youtube ( ) / 30 2011 11 16 ( ) 2011 11 16 1 / 30 1 UTF 10 2 2 16 2 2 0 3 Youtube ( ) 2011 11 16 2 / 30 4 5 ad bc = 0 6 7 (a, b, a x + b y) (c, d, c x + d y) (1, x), (2, y) ( ) 2011 11 16 3 / 30 8 2 01001110 10100011 (

More information

平成 30 年度 ( 第 40 回 ) 数学入門公開講座テキスト ( 京都大学数理解析研究所, 平成 30 ~8 年月 72 月日開催 30 日 [6] 1 4 A 1 A 2 A 3 l P 3 P 2 P 1 B 1 B 2 B 3 m 1 l 3 A 1, A 2, A 3 m 3 B 1,

平成 30 年度 ( 第 40 回 ) 数学入門公開講座テキスト ( 京都大学数理解析研究所, 平成 30 ~8 年月 72 月日開催 30 日 [6] 1 4 A 1 A 2 A 3 l P 3 P 2 P 1 B 1 B 2 B 3 m 1 l 3 A 1, A 2, A 3 m 3 B 1, [6] 1 4 A 1 A 2 A 3 l P 3 P 2 P 1 B 1 B 2 B 3 m 1 l 3 A 1, A 2, A 3 m 3 B 1, B 2, B 3 A i 1 B i+1 A i+1 B i 1 P i i = 1, 2, 3 3 3 P 1, P 2, P 3 1 *1 19 3 27 B 2 P m l (*) l P P l m m 1 P l m + m *1 A N

More information

0. I II I II (1) linear type: GL( ), Sp( ), O( ), (2) loop type: loop current Kac-Moody affine, hyperbolic (3) diffeo t

0. I II I II (1) linear type: GL( ), Sp( ), O( ), (2) loop type: loop current Kac-Moody affine, hyperbolic (3) diffeo t e-mail: koyama@math.keio.ac.jp 0. I II I II (1) linear type: GL( ), Sp( ), O( ), (2) loop type: loop current Kac-Moody affine, hyperbolic (3) diffeo type: diffeo universal Teichmuller modular I. I-. Weyl

More information

Z[i] Z[i] π 4,1 (x) π 4,3 (x) 1 x (x ) 2 log x π m,a (x) 1 x ϕ(m) log x 1.1 ( ). π(x) x (a, m) = 1 π m,a (x) x modm a 1 π m,a (x) 1 ϕ(m) π(x)

Z[i] Z[i] π 4,1 (x) π 4,3 (x) 1 x (x ) 2 log x π m,a (x) 1 x ϕ(m) log x 1.1 ( ). π(x) x (a, m) = 1 π m,a (x) x modm a 1 π m,a (x) 1 ϕ(m) π(x) 3 3 22 Z[i] Z[i] π 4, (x) π 4,3 (x) x (x ) 2 log x π m,a (x) x ϕ(m) log x. ( ). π(x) x (a, m) = π m,a (x) x modm a π m,a (x) ϕ(m) π(x) ϕ(m) x log x ϕ(m) m f(x) g(x) (x α) lim f(x)/g(x) = x α mod m (a,

More information

2011 Future University Hakodate 2011 System Information Science Practice Group Report Project Name Visualization of Code-Breaking RSA Group Name RSA C

2011 Future University Hakodate 2011 System Information Science Practice Group Report Project Name Visualization of Code-Breaking RSA Group Name RSA C 2011 Future University Hakodate 2011 System Information Science Practice Group Report Project Name RSA Group Name RSA Code Elliptic Curve Cryptograrhy Group /Project No. 13-B /Project Leader 1009087 Takahiro

More information

newmain.dvi

newmain.dvi 数論 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/008142 このサンプルページの内容は, 第 2 版 1 刷発行当時のものです. Daniel DUVERNEY: THÉORIE DES NOMBRES c Dunod, Paris, 1998, This book is published

More information

K 2 X = 4 MWG(f), X P 2 F, υ 0 : X P 2 2,, {f λ : X λ P 1 } λ Λ NS(X λ ), (υ 0 ) λ : X λ P 2 ( 1) X 6, f λ K X + F, f ( 1), n, n 1 (cf [10]) X, f : X

K 2 X = 4 MWG(f), X P 2 F, υ 0 : X P 2 2,, {f λ : X λ P 1 } λ Λ NS(X λ ), (υ 0 ) λ : X λ P 2 ( 1) X 6, f λ K X + F, f ( 1), n, n 1 (cf [10]) X, f : X 2 E 8 1, E 8, [6], II II, E 8, 2, E 8,,, 2 [14],, X/C, f : X P 1 2 3, f, (O), f X NS(X), (O) T ( 1), NS(X), T [15] : MWG(f) NS(X)/T, MWL(f) 0 (T ) NS(X), MWL(f) MWL(f) 0, : {f λ : X λ P 1 } λ Λ NS(X λ

More information

1 2 2 2 1 3 1.1............................................ 3 1.2......................................... 7 1.3.................................. 8 2 12 3 16 3.1.......................... 16 3.2.........................

More information

, = = 7 6 = 42, =

, = = 7 6 = 42, = http://www.ss.u-tokai.ac.jp/~mahoro/2016autumn/alg_intro/ 1 1 2016.9.26, http://www.ss.u-tokai.ac.jp/~mahoro/2016autumn/alg_intro/ 1.1 1 214 132 = 28258 2 + 1 + 4 1 + 3 + 2 = 7 6 = 42, 4 + 2 = 6 2 + 8

More information

:00-16:10

:00-16:10 3 3 2007 8 10 13:00-16:10 2 Diffie-Hellman (1976) K K p:, b [1, p 1] Given: p: prime, b [1, p 1], s.t. {b i i [0, p 2]} = {1,..., p 1} a {b i i [0, p 2]} Find: x [0, p 2] s.t. a b x mod p Ind b a := x

More information

I

I I 6 4 10 1 1 1.1............... 1 1................ 1 1.3.................... 1.4............... 1.4.1.............. 1.4................. 1.4.3........... 3 1.4.4.. 3 1.5.......... 3 1.5.1..............

More information

2

2 p1 i 2 = 1 i 2 x, y x + iy 2 (x + iy) + (γ + iδ) = (x + γ) + i(y + δ) (x + iy)(γ + iδ) = (xγ yδ) + i(xδ + yγ) i 2 = 1 γ + iδ 0 x + iy γ + iδ xγ + yδ xδ = γ 2 + iyγ + δ2 γ 2 + δ 2 p7 = x 2 +y 2 z z p13

More information

25 7 18 1 1 1.1 v.s............................. 1 1.1.1.................................. 1 1.1.2................................. 1 1.1.3.................................. 3 1.2................... 3

More information

z f(z) f(z) x, y, u, v, r, θ r > 0 z = x + iy, f = u + iv C γ D f(z) f(z) D f(z) f(z) z, Rm z, z 1.1 z = x + iy = re iθ = r (cos θ + i sin θ) z = x iy

z f(z) f(z) x, y, u, v, r, θ r > 0 z = x + iy, f = u + iv C γ D f(z) f(z) D f(z) f(z) z, Rm z, z 1.1 z = x + iy = re iθ = r (cos θ + i sin θ) z = x iy z fz fz x, y, u, v, r, θ r > z = x + iy, f = u + iv γ D fz fz D fz fz z, Rm z, z. z = x + iy = re iθ = r cos θ + i sin θ z = x iy = re iθ = r cos θ i sin θ x = z + z = Re z, y = z z = Im z i r = z = z

More information

i 1 1 1.1.......................................... 1 1.1.1......................................... 1 1.1.2...................................... 1 1.1.3....................................... 2 1.1.4......................................

More information

D-brane K 1, 2 ( ) 1 K D-brane K K D-brane Witten [1] D-brane K K K K D-brane D-brane K RR BPS D-brane

D-brane K 1, 2   ( ) 1 K D-brane K K D-brane Witten [1] D-brane K K K K D-brane D-brane K RR BPS D-brane D-brane K 1, 2 E-mail: sugimoto@yukawa.kyoto-u.ac.jp (2004 12 16 ) 1 K D-brane K K D-brane Witten [1] D-brane K K K K D-brane D-brane K RR BPS D-brane D-brane RR D-brane K D-brane K D-brane K K [2, 3]

More information

1

1 1 Borel1956 Groupes linéaire algébriques, Ann. of Math. 64 (1956), 20 82. Chevalley1956/58 Sur la classification des groupes de Lie algébriques, Sém. Chevalley 1956/58, E.N.S., Paris. Tits1959 Sur la classification

More information

2 R U, U Hausdorff, R. R. S R = (S, A) (closed), (open). (complete projective smooth algebraic curve) (cf. 2). 1., ( ).,. countable ( 2 ) ,,.,,

2 R U, U Hausdorff, R. R. S R = (S, A) (closed), (open). (complete projective smooth algebraic curve) (cf. 2). 1., ( ).,. countable ( 2 ) ,,.,, 15, pp.1-13 1 1.1,. 1.1. C ( ) f = u + iv, (, u, v f ). 1 1. f f x = i f x u x = v y, u y = v x.., u, v u = v = 0 (, f = 2 f x + 2 f )., 2 y2 u = 0. u, u. 1,. 1.2. S, A S. (i) A φ S U φ C. (ii) φ A U φ

More information

x 3 a (mod p) ( ). a, b, m Z a b m a b (mod m) a b m 2.2 (Z/mZ). a = {x x a (mod m)} a Z m 0, 1... m 1 Z/mZ = {0, 1... m 1} a + b = a +

x 3 a (mod p) ( ). a, b, m Z a b m a b (mod m) a b m 2.2 (Z/mZ). a = {x x a (mod m)} a Z m 0, 1... m 1 Z/mZ = {0, 1... m 1} a + b = a + 1 1 22 1 x 3 (mod ) 2 2.1 ( )., b, m Z b m b (mod m) b m 2.2 (Z/mZ). = {x x (mod m)} Z m 0, 1... m 1 Z/mZ = {0, 1... m 1} + b = + b, b = b Z/mZ 1 1 Z Q R Z/Z 2.3 ( ). m {x 0, x 1,..., x m 1 } modm 2.4

More information

kokyuroku.dvi

kokyuroku.dvi On Applications of Rigorous Computing to Dynamical Systems (Zin ARAI) Department of Mathematics, Kyoto University email: arai@math.kyoto-u.ac.jp 1 [12, 13] Lorenz 2 Lorenz 3 4 2 Lorenz 2.1 Lorenz E. Lorenz

More information

28 SAS-X Proposal of Multi Device Authenticable Password Management System using SAS-X 1195074 2017 2 3 SAS-X Web ID/ ID/ Web SAS-2 SAS-X i Abstract Proposal of Multi Device Authenticable Password Management

More information

/ ( ) 1 1.1 323 206 23 ( 23 529 529 323 206 ) 23 1.2 33 1.3 323 61 61 3721 3721 323 168 168 323 23 61 61 23 1403 323 111 111 168 206 323 47 111 323 47 2 23 2 2.1 34 2 2.2 2 a, b N a b N a b (mod N) mod

More information

2011 Future University Hakodate 2011 System Information Science Practice Group Report Project Name Visualization of Code-Breaking Group Name Implemati

2011 Future University Hakodate 2011 System Information Science Practice Group Report Project Name Visualization of Code-Breaking Group Name Implemati 2011 Future University Hakodate 2011 System Information Science Practice Group Report Project Name Group Name Implemation Group /Project No. 13-C /Project Leader 1009087 Takahiro Okubo /Group Leader 1009087

More information

II (Percolation) ( 3-4 ) 1. [ ],,,,,,,. 2. [ ],.. 3. [ ],. 4. [ ] [ ] G. Grimmett Percolation Springer-Verlag New-York [ ] 3

II (Percolation) ( 3-4 ) 1. [ ],,,,,,,. 2. [ ],.. 3. [ ],. 4. [ ] [ ] G. Grimmett Percolation Springer-Verlag New-York [ ] 3 II (Percolation) 12 9 27 ( 3-4 ) 1 [ ] 2 [ ] 3 [ ] 4 [ ] 1992 5 [ ] G Grimmett Percolation Springer-Verlag New-York 1989 6 [ ] 3 1 3 p H 2 3 2 FKG BK Russo 2 p H = p T (=: p c ) 3 2 Kesten p c =1/2 ( )

More information

I A A441 : April 15, 2013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida )

I A A441 : April 15, 2013 Version : 1.1 I   Kawahira, Tomoki TA (Shigehiro, Yoshida ) I013 00-1 : April 15, 013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida) http://www.math.nagoya-u.ac.jp/~kawahira/courses/13s-tenbou.html pdf * 4 15 4 5 13 e πi = 1 5 0 5 7 3 4 6 3 6 10 6 17

More information

数学の基礎訓練I

数学の基礎訓練I I 9 6 13 1 1 1.1............... 1 1................ 1 1.3.................... 1.4............... 1.4.1.............. 1.4................. 3 1.4.3........... 3 1.4.4.. 3 1.5.......... 3 1.5.1..............

More information

D 24 D D D

D 24 D D D 5 Paper I.R. 2001 5 Paper HP Paper 5 3 5.1................................................... 3 5.2.................................................... 4 5.3.......................................... 6

More information

24 I ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x

24 I ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x 24 I 1.1.. ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x 1 (t), x 2 (t),, x n (t)) ( ) ( ), γ : (i) x 1 (t),

More information

(, Goo Ishikawa, Go-o Ishikawa) ( ) 1

(, Goo Ishikawa, Go-o Ishikawa) ( ) 1 (, Goo Ishikawa, Go-o Ishikawa) ( ) 1 ( ) ( ) ( ) G7( ) ( ) ( ) () ( ) BD = 1 DC CE EA AF FB 0 0 BD DC CE EA AF FB =1 ( ) 2 (geometry) ( ) ( ) 3 (?) (Topology) ( ) DNA ( ) 4 ( ) ( ) 5 ( ) H. 1 : 1+ 5 2

More information

2001 Miller-Rabin Rabin-Solovay-Strassen self-contained RSA RSA RSA ( ) Shor RSA RSA 1 Solovay-Strassen Miller-Rabin [3, pp

2001 Miller-Rabin Rabin-Solovay-Strassen self-contained RSA RSA RSA ( ) Shor RSA RSA 1 Solovay-Strassen Miller-Rabin [3, pp 200 Miller-Rabin 2002 3 Rabin-Solovay-Strassen self-contained RSA RSA RSA ( ) Shor 996 2 RSA RSA Solovay-Strassen Miller-Rabin [3, pp. 8 84] Rabin-Solovay-Strassen 2 Miller-Rabin 3 4 Miller-Rabin 5 Miller-Rabin

More information

2008 (2008/09/30) 1 ISBN 7 1.1 ISBN................................ 7 1.2.......................... 8 1.3................................ 9 1.4 ISBN.............................. 12 2 13 2.1.....................

More information

RIMS98R2.dvi

RIMS98R2.dvi RIMS Kokyuroku, vol.084, (999), 45 59. Euler Fourier Euler Fourier S = ( ) n f(n) = e in f(n) (.) I = 0 e ix f(x) dx (.2) Euler Fourier Fourier Euler Euler Fourier Euler Euler Fourier Fourier [5], [6]

More information

( )

( ) NAIST-IS-MT0851100 2010 2 4 ( ) CR CR CR 1980 90 CR Kerberos SSH CR CR CR CR CR CR,,, ID, NAIST-IS- MT0851100, 2010 2 4. i On the Key Management Policy of Challenge Response Authentication Schemes Toshiya

More information

30 2014.08 2 1985 Koblitz Miller 2.1 0 field Fp p prime field Fp E Fp Fp Hasse Weil 2.2 Fp 2 P Q R R P Q O P O R Q Q O R P P xp, yp Q xq, yq yp yq R=O

30 2014.08 2 1985 Koblitz Miller 2.1 0 field Fp p prime field Fp E Fp Fp Hasse Weil 2.2 Fp 2 P Q R R P Q O P O R Q Q O R P P xp, yp Q xq, yq yp yq R=O An Internet Vote Using the Elliptic Curve Cryptosystem TAKABAYASHI Shigeki Nowadays various changes are taking place in the society by the spread of the Internet, and we will vote by the Internet using

More information

.5 z = a + b + c n.6 = a sin t y = b cos t dy d a e e b e + e c e e e + e 3 s36 3 a + y = a, b > b 3 s363.7 y = + 3 y = + 3 s364.8 cos a 3 s365.9 y =,

.5 z = a + b + c n.6 = a sin t y = b cos t dy d a e e b e + e c e e e + e 3 s36 3 a + y = a, b > b 3 s363.7 y = + 3 y = + 3 s364.8 cos a 3 s365.9 y =, [ ] IC. r, θ r, θ π, y y = 3 3 = r cos θ r sin θ D D = {, y ; y }, y D r, θ ep y yddy D D 9 s96. d y dt + 3dy + y = cos t dt t = y = e π + e π +. t = π y =.9 s6.3 d y d + dy d + y = y =, dy d = 3 a, b

More information

2 2 MATHEMATICS.PDF 200-2-0 3 2 (p n ), ( ) 7 3 4 6 5 20 6 GL 2 (Z) SL 2 (Z) 27 7 29 8 SL 2 (Z) 35 9 2 40 0 2 46 48 2 2 5 3 2 2 58 4 2 6 5 2 65 6 2 67 7 2 69 2 , a 0 + a + a 2 +... b b 2 b 3 () + b n a

More information

[Oc, Proposition 2.1, Theorem 2.4] K X (a) l (b) l (a) (b) X [M3] Huber adic 1 Huber ([Hu1], [Hu2], [Hu3]) adic 1.1 adic A I I A {I n } 0 adic 2

[Oc, Proposition 2.1, Theorem 2.4] K X (a) l (b) l (a) (b) X [M3] Huber adic 1 Huber ([Hu1], [Hu2], [Hu3]) adic 1.1 adic A I I A {I n } 0 adic 2 On the action of the Weil group on the l-adic cohomology of rigid spaces over local fields (Yoichi Mieda) Graduate School of Mathematical Sciences, The University of Tokyo 0 l Galois K F F q l q K, F K,

More information

index calculus

index calculus index calculus 2008 3 8 1 generalized Weil descent p :, E/F p 3 : Y 2 = f(x), where f(x) = X 3 + AX + B, A F p, B F p 3 E(F p 3) 3 : Generalized Weil descent E(F p 4) 2 Index calculus Plain version Double-large-prime

More information

Basic Math. 1 0 [ N Z Q Q c R C] 1, 2, 3,... natural numbers, N Def.(Definition) N (1) 1 N, (2) n N = n +1 N, (3) N (1), (2), n N n N (element). n/ N.

Basic Math. 1 0 [ N Z Q Q c R C] 1, 2, 3,... natural numbers, N Def.(Definition) N (1) 1 N, (2) n N = n +1 N, (3) N (1), (2), n N n N (element). n/ N. Basic Mathematics 16 4 16 3-4 (10:40-12:10) 0 1 1 2 2 2 3 (mapping) 5 4 ε-δ (ε-δ Logic) 6 5 (Potency) 9 6 (Equivalence Relation and Order) 13 7 Zorn (Axiom of Choice, Zorn s Lemma) 14 8 (Set and Topology)

More information

(2 X Poisso P (λ ϕ X (t = E[e itx ] = k= itk λk e k! e λ = (e it λ k e λ = e eitλ e λ = e λ(eit 1. k! k= 6.7 X N(, 1 ϕ X (t = e 1 2 t2 : Cauchy ϕ X (t

(2 X Poisso P (λ ϕ X (t = E[e itx ] = k= itk λk e k! e λ = (e it λ k e λ = e eitλ e λ = e λ(eit 1. k! k= 6.7 X N(, 1 ϕ X (t = e 1 2 t2 : Cauchy ϕ X (t 6 6.1 6.1 (1 Z ( X = e Z, Y = Im Z ( Z = X + iy, i = 1 (2 Z E[ e Z ] < E[ Im Z ] < Z E[Z] = E[e Z] + ie[im Z] 6.2 Z E[Z] E[ Z ] : E[ Z ] < e Z Z, Im Z Z E[Z] α = E[Z], Z = Z Z 1 {Z } E[Z] = α = α [ α ]

More information

Sage for Mathematics : a Primer ‚æ1Łfl - Sage ‡ð™m‡é

Sage for Mathematics : a Primer   ‚æ1Łfl - Sage ‡ð™m‡é .. / JST CREST. s-yokoyama@imi.kyushu-u.ac.jp 2013 1 15 / IIJ Shun ichi Yokoyama (IMI/JST CREST) at IIJ January 15th, 2013 1 / 23 1 Sage Sage Sage Notebook Sage Salvus 2 Sage Sage Cryptosystem Sage Shun

More information

2016 Course Description of Undergraduate Seminars (2015 12 16 ) 2016 12 16 ( ) 13:00 15:00 12 16 ( ) 1 21 ( ) 1 13 ( ) 17:00 1 14 ( ) 12:00 1 21 ( ) 15:00 1 27 ( ) 13:00 14:00 2 1 ( ) 17:00 2 3 ( ) 12

More information

1 M = (M, g) m Riemann N = (N, h) n Riemann M N C f : M N f df : T M T N M T M f N T N M f 1 T N T M f 1 T N C X, Y Γ(T M) M C T M f 1 T N M Levi-Civi

1 M = (M, g) m Riemann N = (N, h) n Riemann M N C f : M N f df : T M T N M T M f N T N M f 1 T N T M f 1 T N C X, Y Γ(T M) M C T M f 1 T N M Levi-Civi 1 Surveys in Geometry 1980 2 6, 7 Harmonic Map Plateau Eells-Sampson [5] Siu [19, 20] Kähler 6 Reports on Global Analysis [15] Sacks- Uhlenbeck [18] Siu-Yau [21] Frankel Siu Yau Frankel [13] 1 Surveys

More information

IA 2013 : :10722 : 2 : :2 :761 :1 (23-27) : : ( / ) (1 /, ) / e.g. (Taylar ) e x = 1 + x + x xn n! +... sin x = x x3 6 + x5 x2n+1 + (

IA 2013 : :10722 : 2 : :2 :761 :1 (23-27) : : ( / ) (1 /, ) / e.g. (Taylar ) e x = 1 + x + x xn n! +... sin x = x x3 6 + x5 x2n+1 + ( IA 2013 : :10722 : 2 : :2 :761 :1 23-27) : : 1 1.1 / ) 1 /, ) / e.g. Taylar ) e x = 1 + x + x2 2 +... + xn n! +... sin x = x x3 6 + x5 x2n+1 + 1)n 5! 2n + 1)! 2 2.1 = 1 e.g. 0 = 0.00..., π = 3.14..., 1

More information

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10%

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10% 1 2006.4.17. A 3-312 tel: 092-726-4774, e-mail: hara@math.kyushu-u.ac.jp, http://www.math.kyushu-u.ac.jp/ hara/lectures/lectures-j.html Office hours: B A I ɛ-δ ɛ-δ 1. 2. A 1. 1. 2. 3. 4. 5. 2. ɛ-δ 1. ɛ-n

More information

ばらつき抑制のための確率最適制御

ばらつき抑制のための確率最適制御 ( ) http://wwwhayanuemnagoya-uacjp/ fujimoto/ 2011 3 9 11 ( ) 2011/03/09-11 1 / 46 Outline 1 2 3 4 5 ( ) 2011/03/09-11 2 / 46 Outline 1 2 3 4 5 ( ) 2011/03/09-11 3 / 46 (1/2) r + Controller - u Plant y

More information

非可換Lubin-Tate理論の一般化に向けて

非可換Lubin-Tate理論の一般化に向けて Lubin-Tate 2012 9 18 ( ) Lubin-Tate 2012 9 18 1 / 27 ( ) Lubin-Tate 2012 9 18 2 / 27 Lubin-Tate p 1 1 ( ) Lubin-Tate 2012 9 18 2 / 27 Lubin-Tate p 1 1 Lubin-Tate GL n n 1 Lubin-Tate ( ) Lubin-Tate 2012

More information

( )/2 hara/lectures/lectures-j.html 2, {H} {T } S = {H, T } {(H, H), (H, T )} {(H, T ), (T, T )} {(H, H), (T, T )} {1

( )/2   hara/lectures/lectures-j.html 2, {H} {T } S = {H, T } {(H, H), (H, T )} {(H, T ), (T, T )} {(H, H), (T, T )} {1 ( )/2 http://www2.math.kyushu-u.ac.jp/ hara/lectures/lectures-j.html 1 2011 ( )/2 2 2011 4 1 2 1.1 1 2 1 2 3 4 5 1.1.1 sample space S S = {H, T } H T T H S = {(H, H), (H, T ), (T, H), (T, T )} (T, H) S

More information

( ) 1., ([SU] ): F K k., Z p -, (cf. [Iw2], [Iw3], [Iw6]). K F F/K Z p - k /k., Weil., K., K F F p- ( 4.1).,, Z p -,., Weil..,,. Weil., F, F projectiv

( ) 1., ([SU] ): F K k., Z p -, (cf. [Iw2], [Iw3], [Iw6]). K F F/K Z p - k /k., Weil., K., K F F p- ( 4.1).,, Z p -,., Weil..,,. Weil., F, F projectiv ( ) 1 ([SU] ): F K k Z p - (cf [Iw2] [Iw3] [Iw6]) K F F/K Z p - k /k Weil K K F F p- ( 41) Z p - Weil Weil F F projective smooth C C Jac(C)/F ( ) : 2 3 4 5 Tate Weil 6 7 Z p - 2 [Iw1] 2 21 K k k 1 k K

More information

TOP URL 1

TOP URL   1 TOP URL http://amonphys.web.fc.com/ 1 19 3 19.1................... 3 19.............................. 4 19.3............................... 6 19.4.............................. 8 19.5.............................

More information

( ),, ( [Ka93b],[FK06]).,. p Galois L, Langlands p p Galois (, ) p., Breuil, Colmez([Co10]), Q p Galois G Qp 2 p ( ) GL 2 (Q p ) p Banach ( ) (GL 2 (Q

( ),, ( [Ka93b],[FK06]).,. p Galois L, Langlands p p Galois (, ) p., Breuil, Colmez([Co10]), Q p Galois G Qp 2 p ( ) GL 2 (Q p ) p Banach ( ) (GL 2 (Q 2017 : msjmeeting-2017sep-00f006 p Langlands ( ) 1. Q, Q p Q Galois G Q p (p Galois ). p Galois ( p Galois ), L Selmer Tate-Shafarevich, Galois. Dirichlet ( Dedekind s = 0 ) Birch-Swinnerton-Dyer ( L s

More information

Z: Q: R: C:

Z: Q: R: C: 0 Z: Q: R: C: 3 4 4 4................................ 4 4.................................. 7 5 3 5...................... 3 5......................... 40 5.3 snz) z)........................... 4 6 46 x

More information

(τ τ ) τ, σ ( ) w = τ iσ, w = τ + iσ (w ) w, w ( ) τ, σ τ = (w + w), σ = i (w w) w, w w = τ w τ + σ w σ = τ + i σ w = τ w τ + σ w σ = τ i σ g ab w, w

(τ τ ) τ, σ ( ) w = τ iσ, w = τ + iσ (w ) w, w ( ) τ, σ τ = (w + w), σ = i (w w) w, w w = τ w τ + σ w σ = τ + i σ w = τ w τ + σ w σ = τ i σ g ab w, w S = 4π dτ dσ gg ij i X µ j X ν η µν η µν g ij g ij = g ij = ( 0 0 ) τ, σ (+, +) τ τ = iτ ds ds = dτ + dσ ds = dτ + dσ δ ij ( ) a =, a = τ b = σ g ij δ ab g g ( +, +,... ) S = 4π S = 4π ( i) = i 4π dτ dσ

More information

Q p G Qp Q G Q p Ramanujan 12 q- (q) : (q) = q n=1 (1 qn ) 24 S 12 (SL 2 (Z))., p (ordinary) (, q- p a p ( ) p ). p = 11 a p ( ) p. p 11 p a p

Q p G Qp Q G Q p Ramanujan 12 q- (q) : (q) = q n=1 (1 qn ) 24 S 12 (SL 2 (Z))., p (ordinary) (, q- p a p ( ) p ). p = 11 a p ( ) p. p 11 p a p .,.,.,..,, 1.. Contents 1. 1 1.1. 2 1.2. 3 1.3. 4 1.4. Eisenstein 5 1.5. 7 2. 9 2.1. e p 9 2.2. p 11 2.3. 15 2.4. 16 2.5. 18 3. 19 3.1. ( ) 19 3.2. 22 4. 23 1. p., Q Q p Q Q p Q C.,. 1. 1 Q p G Qp Q G

More information

1 Tokyo Daily Rainfall (mm) Days (mm)

1 Tokyo Daily Rainfall (mm) Days (mm) ( ) r-taka@maritime.kobe-u.ac.jp 1 Tokyo Daily Rainfall (mm) 0 100 200 300 0 10000 20000 30000 40000 50000 Days (mm) 1876 1 1 2013 12 31 Tokyo, 1876 Daily Rainfall (mm) 0 50 100 150 0 100 200 300 Tokyo,

More information

pla85900.tsp.eps

pla85900.tsp.eps ( ) 338 8570 255 Tel: 048 858 3577, Fax: 048 858 3716 Email: tohru@nls.ics.saitama-u.ac.jp URL: http://www.nls.ics.saitama-u.ac.jp/ tohru/ 2006.11.29 @ p.1/38 1. 1 2006.11.29 @ p.2/38 1. 1 2. (a) H16 (b)

More information

20 6 4 1 4 1.1 1.................................... 4 1.1.1.................................... 4 1.1.2 1................................ 5 1.2................................... 7 1.2.1....................................

More information

17 Θ Hodge Θ Hodge Kummer Hodge Hodge

17 Θ Hodge Θ Hodge Kummer Hodge Hodge Teichmüller ( ) 2015 11 0 3 1 4 2 6 3 Teichmüller 8 4 Diophantus 11 5 13 6 15 7 19 8 21 9 25 10 28 11 31 12 34 13 36 14 41 15 43 16 47 1 17 Θ 50 18 55 19 57 20 Hodge 59 21 63 22 67 23 Θ Hodge 69 24 Kummer

More information

1 Part I (warming up lecture). (,,...) 1.1 ( ) M = G/K :. M,. : : R-space. R-space..

1 Part I (warming up lecture). (,,...) 1.1 ( ) M = G/K :. M,. : : R-space. R-space.. ( ) ( ) 2012/07/14 1 Part I (warming up lecture). (,,...) 1.1 ( ) M = G/K :. M,. : : R-space. R-space.. 1.2 ( ) ( ): M,. : (Part II). 1 (Part III). : :,, austere,. :, Einstein, Ricci soliton,. 1.3 : (S,

More information

λ(t) (t) t ( ) (Mean Time to Failure) MTTF = 0 R(t)dt = /λ 00 (MTTF) MTTF λ = 00 MTTF= /λ MTTF= 0 2 (0 9 ) =0 7 () MTTF=

λ(t) (t) t ( ) (Mean Time to Failure) MTTF = 0 R(t)dt = /λ 00 (MTTF) MTTF λ = 00 MTTF= /λ MTTF= 0 2 (0 9 ) =0 7 () MTTF= 2003 7..2 R(t) t R(0) =, R( ) =0 λ(t) t R(t) λ(t) = R(t) dr(t) t, R(t) = exp ( λ(t)dt) dt 0 λ(t) (t) t ( ) 0 9 0 0 300 (Mean Time to Failure) MTTF = 0 R(t)dt = /λ 00 (MTTF) 00 000 MTTF λ = 00 MTTF= /λ

More information

B ver B

B ver B B ver. 2017.02.24 B Contents 1 11 1.1....................... 11 1.1.1............. 11 1.1.2.......................... 12 1.2............................. 14 1.2.1................ 14 1.2.2.......................

More information

21 Key Exchange method for portable terminal with direct input by user

21 Key Exchange method for portable terminal with direct input by user 21 Key Exchange method for portable terminal with direct input by user 1110251 2011 3 17 Diffie-Hellman,..,,,,.,, 2.,.,..,,.,, Diffie-Hellman, i Abstract Key Exchange method for portable terminal with

More information

15 mod 12 = 3, 3 mod 12 = 3, 9 mod 12 = N N 0 x, y x y N x y (mod N) x y N mod N mod N N, x, y N > 0 (1) x x (mod N) (2) x y (mod N) y x

15 mod 12 = 3, 3 mod 12 = 3, 9 mod 12 = N N 0 x, y x y N x y (mod N) x y N mod N mod N N, x, y N > 0 (1) x x (mod N) (2) x y (mod N) y x A( ) 1 1.1 12 3 15 3 9 3 12 x (x ) x 12 0 12 1.1.1 x x = 12q + r, 0 r < 12 q r 1 N > 0 x = Nq + r, 0 r < N q r 1 q x/n r r x mod N 1 15 mod 12 = 3, 3 mod 12 = 3, 9 mod 12 = 3 1.1.2 N N 0 x, y x y N x y

More information

20 9 19 1 3 11 1 3 111 3 112 1 4 12 6 121 6 122 7 13 7 131 8 132 10 133 10 134 12 14 13 141 13 142 13 143 15 144 16 145 17 15 19 151 1 19 152 20 2 21 21 21 211 21 212 1 23 213 1 23 214 25 215 31 22 33

More information

Pari-gp /7/5 1 Pari-gp 3 pq

Pari-gp /7/5 1 Pari-gp 3 pq Pari-gp 3 2007/7/5 1 Pari-gp 3 pq 3 2007 7 5 Pari-gp 3 2007/7/5 2 1. pq 3 2. Pari-gp 3. p p 4. p Abel 5. 6. 7. Pari-gp 3 2007/7/5 3 pq 3 Pari-gp 3 2007/7/5 4 p q 1 (mod 9) p q 3 (3, 3) Abel 3 Pari-gp 3

More information

(1) (2) (3) (4) 1

(1) (2) (3) (4) 1 8 3 4 3.................................... 3........................ 6.3 B [, ].......................... 8.4........................... 9........................................... 9.................................

More information

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 第 2 版 1 刷発行時のものです. 医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/009192 このサンプルページの内容は, 第 2 版 1 刷発行時のものです. i 2 t 1. 2. 3 2 3. 6 4. 7 5. n 2 ν 6. 2 7. 2003 ii 2 2013 10 iii 1987

More information

1 Abstract 2 3 n a ax 2 + bx + c = 0 (a 0) (1) ( x + b ) 2 = b2 4ac 2a 4a 2 D = b 2 4ac > 0 (1) 2 D = 0 D < 0 x + b 2a = ± b2 4ac 2a b ± b 2

1 Abstract 2 3 n a ax 2 + bx + c = 0 (a 0) (1) ( x + b ) 2 = b2 4ac 2a 4a 2 D = b 2 4ac > 0 (1) 2 D = 0 D < 0 x + b 2a = ± b2 4ac 2a b ± b 2 1 Abstract n 1 1.1 a ax + bx + c = 0 (a 0) (1) ( x + b ) = b 4ac a 4a D = b 4ac > 0 (1) D = 0 D < 0 x + b a = ± b 4ac a b ± b 4ac a b a b ± 4ac b i a D (1) ax + bx + c D 0 () () (015 8 1 ) 1. D = b 4ac

More information

Part () () Γ Part ,

Part () () Γ Part , Contents a 6 6 6 6 6 6 6 7 7. 8.. 8.. 8.3. 8 Part. 9. 9.. 9.. 3. 3.. 3.. 3 4. 5 4.. 5 4.. 9 4.3. 3 Part. 6 5. () 6 5.. () 7 5.. 9 5.3. Γ 3 6. 3 6.. 3 6.. 3 6.3. 33 Part 3. 34 7. 34 7.. 34 7.. 34 8. 35

More information

2.2 ( y = y(x ( (x 0, y 0 y (x 0 (y 0 = y(x 0 y = y(x ( y (x 0 = F (x 0, y(x 0 = F (x 0, y 0 (x 0, y 0 ( (x 0, y 0 F (x 0, y 0 xy (x, y (, F (x, y ( (

2.2 ( y = y(x ( (x 0, y 0 y (x 0 (y 0 = y(x 0 y = y(x ( y (x 0 = F (x 0, y(x 0 = F (x 0, y 0 (x 0, y 0 ( (x 0, y 0 F (x 0, y 0 xy (x, y (, F (x, y ( ( (. x y y x f y = f(x y x y = y(x y x y dx = d dx y(x = y (x = f (x y = y(x x ( (differential equation ( + y 2 dx + xy = 0 dx = xy + y 2 2 2 x y 2 F (x, y = xy + y 2 y = y(x x x xy(x = F (x, y(x + y(x 2

More information

42 3 u = (37) MeV/c 2 (3.4) [1] u amu m p m n [1] m H [2] m p = (4) MeV/c 2 = (13) u m n = (4) MeV/c 2 =

42 3 u = (37) MeV/c 2 (3.4) [1] u amu m p m n [1] m H [2] m p = (4) MeV/c 2 = (13) u m n = (4) MeV/c 2 = 3 3.1 3.1.1 kg m s J = kg m 2 s 2 MeV MeV [1] 1MeV=1 6 ev = 1.62 176 462 (63) 1 13 J (3.1) [1] 1MeV/c 2 =1.782 661 731 (7) 1 3 kg (3.2) c =1 MeV (atomic mass unit) 12 C u = 1 12 M(12 C) (3.3) 41 42 3 u

More information

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,. 9 α ν β Ξ ξ Γ γ o δ Π π ε ρ ζ Σ σ η τ Θ θ Υ υ ι Φ φ κ χ Λ λ Ψ ψ µ Ω ω Def, Prop, Th, Lem, Note, Remark, Ex,, Proof, R, N, Q, C [a, b {x R : a x b} : a, b {x R : a < x < b} : [a, b {x R : a x < b} : a,

More information

untitled

untitled 18 18 8 17 18 8 19 3. II 3-8 18 9:00~10:30? 3 30 3 a b a x n nx n-1 x n n+1 x / n+1 log log = logos + arithmos n+1 x / n+1 incompleteness theorem log b = = rosário Euclid Maya-glyph quipe 9 number digits

More information

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0 1 1 1.1 1.) T D = T = D = kn 1. 1.4) F W = F = W/ = kn/ = 15 kn 1. 1.9) R = W 1 + W = 6 + 5 = 11 N. 1.9) W b W 1 a = a = W /W 1 )b = 5/6) = 5 cm 1.4 AB AC P 1, P x, y x, y y x 1.4.) P sin 6 + P 1 sin 45

More information

x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y)

x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y) x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 1 1977 x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y) ( x 2 y + xy 2 x 2 2xy y 2) = 15 (x y) (x + y) (xy

More information

°Å¹æµ»½Ñ¤Î¿ôÍý¤È¤·¤¯¤ß --- ¥á¡¼¥ë¤Ç¤¸¤ã¤ó¤±¤ó¡©¤¹¤ëÊýË¡ ---

°Å¹æµ»½Ñ¤Î¿ôÍý¤È¤·¤¯¤ß  --- ¥á¡¼¥ë¤Ç¤¸¤ã¤ó¤±¤ó¡©¤¹¤ëÊýË¡ --- .... 1 22 9 17 1 / 44 1 (9/17) 2 (10/22) P2P 3 (11/12) 2 / 44 ogawa is.uec.ac.jp http://www.quest.is.uec.ac.jp/ogawa/ http://www.is.uec.ac.jp/ 3 / 44 ARPANet (1969) 4 / 44 M. Blum ( ), Coin Flipping by

More information

i Version 1.1, (2012/02/22 24),.,..,.,,. R-space,, ( R- space),, Kahler (Kähler C-space)., R-space,., R-space, Hermite,.

i Version 1.1, (2012/02/22 24),.,..,.,,. R-space,, ( R- space),, Kahler (Kähler C-space)., R-space,., R-space, Hermite,. R-space ( ) Version 1.1 (2012/02/29) i Version 1.1, (2012/02/22 24),.,..,.,,. R-space,, ( R- space),, Kahler (Kähler C-space)., R-space,., R-space, Hermite,. ii 1 Lie 1 1.1 Killing................................

More information