Size: px
Start display at page:

Download ""

Transcription

1

2 Contents Bernoulli Riccati λ λx, y Clairaut Lagrange d Alembert n Bessel Legendre Type Type Type Type Euler i

3 ii CONTENTS Vector Introduction Fourier 66 1 Fourier Fourier data Fourier data Fourier line of swiftest descent 79 1 I Method of Straightforward Expansion Method of Strained Coordinates Parameters Method of Multiple Scales II ii -

4 CONTENTS iii Duffing Satellite Rayleigh Van del Pol III Laplace Equation Introduction Laplace Laplace Laplace Laplace Laplace Laplace Legendre Legendre Bessel Runge-Kutta Runge-Kutta Runge-Kutta Runge-Kutta-Gill Euclid / Cardano Ferrari D iii -

5 iv CONTENTS 1.1 Square Matrix matrix Square Matrix Square Matrix N m, n Eigen vector Eigenvalue for 3 3 matrix Eigenvalue for 4 4 matrix iv -

6 Chapter / in TEX/ x, y y yx f x, y, dy = 0 dx dy = F x, y dx normal form Fourier Fourier Laplace 1.1 dy dy = P xqy dx Qy = P x dx + C C = constant 1. dy y dx = f x du fu u = dx x 1.3 dy y = ux dx = u + xdu dx [ ] du fu u x = C exp 1 1 dy dy + P xy = Qx dx dx + P xy = 0 [ y = C exp ] P x dx [ y = exp ] { P x dx [ Qx exp ] } P x dx dx 1

7 CHAPTER 1. = + Lagrange 1.4 Bernoulli dy dx + P xy + Qxya = 0 a 1 u = y 1 a 1 du + P xu = Qx 1 a dx 1.5 Riccati dy dx + P xy + Qxy = Rx 1 1 Qx = 0 1 Qx 0 y = 1 dv Qxv dx v d [ v dx + P x 1 ] dq dv Q dx dx QxRxv = x, y P x, y dx + Qx, y dy = 0 Q x = P y P x, y dx + Qx, y dy = dφ = 0 : φ = constant Laplace 1.7 λ λx, y x, y P x, y dx + Qx, y dy = 0 λp x, y dx + λqx, y dy = 0

8 x λq = y λp λp x, y dx + λqx, y dy = dφ = 0 : φ = constant λ 1 Laplace Clairaut x, y yx y = x dy dy dx + f dx TYPE a: P = dy dx dy dx = P + xdp dx + dp df dx dp y = xp + fp x + df dp dp dx = 0 zero TYPE a, b dp = 0, dx y = xp + fp P = constant C, y = Cx + fc TYPE b: x + df = 0, dp y = xp + fp TYPE b x P x = df/dp y P TYPE a C TYPE b TYPE b singular solution TYPE b TYPE a y = Cx + fc envelope 1.9 Lagrange d Alembert dy dy y = xφ + ψ P = dy dx dx dx y = xφp + ψp P = φp + x dp dφ dx dp + dp dψ dx dp [φp P ] dx dp + dφ dp x = dψ dp φp P P, x 1 x = CfP + gp fp gp y = xφp + ψp Lagrange φp = P Clairaut 3

9 4 CHAPTER n n n 1 dy dy + Q 1 x, y + + Q n 1x, y dy dx dx dx + Q nx, yy = 0 P = dy/dx P n n R 1 x, y, R x, y,, R n 1 x, y, R n x, y [P R 1 x, y] [P R x, y] [P R n 1 x, y] [P R n x, y] = 0 1 n n 1 1 P = R 1 x, y, P = R x, y,, P = R n 1 x, y, P = R n x, y n n Φ 1 x, y, C = 0, Φ x, y, C = 0,, Φ n 1 x, y, C = 0, Φ n x, y, C = 0 C: 1 n Φ 1 x, y, C Φ x, y, C Φ n 1 x, y, C Φ n x, y, C = 0 [ ] 1 P xp y = 0 P dy dx y x C [y C expx] = fx, y, P = 0 P dy/dx 3 x, y, P y-p P = gx, y 4

10 . 5 x, y yx f x, y, dy dx, d y d y = 0 dx dx = g x, y, dy dx 1 d y dx + P xdy + Qxy = Rx dx.1 d y dx + ady dx + by = 0 y expλx λ λ + aλ + b = 0 λ 1, λ y = C 1 expλ 1 x + C expλ x C 1, C : λ = a/ b = a /4 y = C 1 + C x expλx y = C 1 y 1 + C y y 1 = expλ 1 x, y = expλ x y 1 = expλx, y = x expλx A 1, A y 1, y A 1 y 1 + A y = 0 dy 1 A 1 dx + A dy dx = 0 A 1, A A 1, A Wronskian D Dx = Dy 1, y ; dy 1 /dx, dy /dx D = y 1 y dy 1 dx zero D 0 A 1, A A 1 = A = 0 dy dx y 1, y D D 0 y 1, y 5

11 6 CHAPTER 1. y 1, y y 1, y D = 0 D 0 [ ] Wronskian D Dx = Dy 1, y ; dy 1 /dx, dy /dx dd dx = D dy1 dx, dy dx ; dy 1 dx, dy + D y 1, y ; dx d y 1 = D y 1, y ; dx, d y dx d y 1 dx, d y dx d y 1 D y 1, y ; dx, d y = D y dx 1, y ; a dy 1 dx by 1, a dy dx by dy 1 = ad y 1, y ; dx, dy dx D 1 dd dx = ad x = 0 Wronskian D0 Dx = D0 exp ax ax D0 0 x 0 Dx 0 D0 = 0 x 0 Dx = 0 Dx zero : y = C 1 y 1 + C y x = 0 y = y 0, dy/dx = v 0 y 0, v 0 nonzero y 0 = C 1 y C y 0, v 0 = C 1 dy1 dx x=0 + C dy dx C 1, C D0 0 Dx 0 x=0. d y dx + ady + by = Rx dx 6

12 .3 Bessel d y dx + 1 dy x dx + 1 n y = 0 n 0 x n Bessel n Bessel III VI Bessel.4 Legendre [ d 1 ] x dy + nn + 1y = 0 n 0 dx dx n Legendre 1 III V.5 III.6 d y dx + qxdy + Qxy = Rx dx P = dy dx, dp dx + qxp + Qxy = Rx y, P 1 3 N 1 dy 1 dx = f 1x, y 1, y,, y N 1, y N, dy dx = f x, y 1, y,, y N 1, y N,,,,,,, 7

13 8 CHAPTER 1. dy N 1 dy N = f N 1 x, y 1, y,, y N 1, y N, dx dx = f Nx, y 1, y,, y N 1, y N N 1 equilibrium solution y n = Y n = constant for n = 1,,, N z n z n x N 1 dz n dx = N m=1 P nm z m for n = 1,,, N, where P nm P nm x = f n y m P nm Y n N m m z 1 x, z m x,, z N 1x, m z m N x D Dx: z 1 1 x z 1 x z N 1x 1 z 1 N x z 1 x z x z N 1x z N x Dx = z N 1 1 x z N 1 x z N 1 N 1 x z N 1 N x z N 1 x z N x z N 1x N z N N x nonzero N Dx 0 N 1 D x D dd dx = P xd, where P x N P nn n=1 [ x ] Dx = D0 exp P x dx 0 P x x = 0 x 0 D0 0 Dx 0 N 3.1 P nm A nm = P nm N 1 A nm z n expλx for n = 1,,, N λ A 1 1 λ A 1 A 1 N 1 A 1 N A 1 A λ A N 1 A N Dλ = = 0 A N 1 1 A N 1 A N 1 N 1 λ A N 1 N A N 1 A N A N N 1 A N N λ 8

14 4. 9 λ N λ 1, λ,, λ N N z n = C nm expλ m x m=1 for n = 1,,, N C nm λ m expλ m x C nm N 4 n f x, y, dy dx, d y dx,, dn y = 0 dx n d n y dx = F x, y, dy n dx, d y dx,, dn 1 y = 0 n dx n Type 1 d n y dx n = fx n n 4. Type d n y dx n = fy n = 1 n = 1 1 dy = dx fy dy + C fy 1 :fy = a 0 + a 1 y a 0, a 1 : fy 3 fy y I III n > 9

15 10 CHAPTER Type 3 f x, dy dx, d y dx,, dn y dx n = 0 F x, P, dp dx, d P dx,, dn 1 P dx n 1 P = dy/dx P n 1 = Type 4 f y, dy dx, d y dx,, dn y dx n = 0 F y, P, dp dy, d P dy,, dn 1 P dy n 1 P = dy/dx y P n 1 = Euler N n=0 a n x n dn y dx n = Qx : x = expt t, yt N n=0 b n d n y dt n = Qexpt d y dx + y = 0 y = C 1 sinx + C cosx x = x 0 y dy/dx x = a x = b y a x b 10

16 i ya = 0, yb = 0 dy dy ii ya = yb, = dx dx x=a x=b dy dy iii αya = 0, βyb = 0 Strum dx dx x=a x=b a x b d y dx + pxdy dx + qxy = 0 [ ] [ P x = exp pxdx, Qx = qx exp [ d P x dy ] dx dx + Qxy = 0 self-adjoint differential equation ] pxdx 5. x, y y yx Ly Ly px d y dx + qxdy + rxy 5.1 dx z zx [ ] zly dx = z px d y dx + qxdy dx + rxy dx = z px dy dx dy d dx dx [z px] dx + z qx y y d dx [z qx] dx + z rx y dx = y Mz dx + Ny, z 5. Mz Ny, z Mz d d [z px] [z qx] + z rx, dx dx 5.3a Ny, z z px dy dx y d [z px] + z qx y dx 5.3b 11

17 Chapter D ,7.10 / addition / in TEX / review Linearity Linear Operator Operator L x, y t x xt, y yt Lax = alx a :, Lx + y = Lx + Ly L L x : x = X + ft X Xt ft: L X L non-linear [ ] L Lx x Lx = 0 Lx x x : vector Lx = 0 1 Lx dx Lx = 0 dt Lx x dt Lx = 0 d/dt L Lx = d x/dt + x Lx = 0 Linear Homogeneous Ordinary Differential Equation Lx = qt qt : inhomogeneous 1

18 quadrature Fourier Laplace Fourier 13 13

19 14 CHAPTER. 1 Linear Homogeneous First Order Ordinary Differential Equation x xt t pt: dx dt + ptx = 0 dx x = pt dt Lnx = pt dt + constant x = C exp[ pt dt] 1.1 C exp[ pt dt] fundamental solution 1.1 general solution 1 1 pt = constant = a a: 1.1 x = C exp at 1. x expλt λ: dx dt + ax = λ + ax = 0 λ + a = 0 x = 0 x 0 λ characteristic equation eigenvalue equation λ = a, assuming x 0 x x = C expλt = C exp at C : Linear Inhomogeneous First Order Ordinary Differential Equation x xt t pt, qt: dx dt + ptx = qt

20 1.4 x 0 : x 0 exp[ pt dt] 1.4 x = Xx 0 X Xt: 15 dx dt + ptx = dx dt x 0 + dx 0 dt X + ptxx 0 = dx dt x 0 = qt X x [ qt ] qt X = dt + constant x = x 0 dt + constant x 0 x [ 1 : x 0 x 1 0 qt dt ] particular solution : constant x variation of constants t = 0 x 1.5 x = x 0 [ t 0 qt x 0 dt + constant ] 1.6 Linear Homogeneous Second Order Ordinary Differential Equation with Constant Coefficients x xt t a: a 0 dx/dt t [ dx d ] x dt dt + axdx dt = dt d x + ax = dt dx dx dt d + dt ax dx = constant E 1 dx + ax = E dt dx = ± dt E ax E ax 0 x = E a sin a t + constant 1.8 a < 0 x = E/a sinh a t + constant sin a t cos a t 15

21 16 CHAPTER. 1.7 E constant 1.7 x expλt λ : λ x d x dt + ax = λ + a x = 0 λ = ± a, assuming x 0 x = C expi a t + C exp i a t 1.9a x = A sin a t + B cos a t 1.9b C, C : C C i 1 A, B: a < 0 expi a t, exp i a t, sin a t, cos a t 1.9a 1.9b expi a t exp i a t sin a t cos a t 1 x 0 1 x 1 x 0 = sin a t, x 1 = cos a t x 0 x 1 d x 0 dt + ax 0 = 0, d x 1 dt + ax 1 = a, b 1.10a x b x 0 d x 0 d x 1 dt + ax x 1 0 x 0 dt + ax 1 = d dx 0 x 1 dt dt x dx 1 0 = 0 dt dx 0 x 1 dt x dx 1 0 = constant A A dt x 0 x x 1 = Ax 0 x 0 dt 1.1 A 1.1 x 1 1 [ ] x 0 = sin a t x 1 = cos a t C 0, C 1 C 0 x 0 + C 1 x 1 = 0 16

22 C 0 = C 1 = 0 x 0 x 1 x 0 x 1 dx 0 C 0 dt + C dx 1 1 dt = 0 C 0, C 1 C 0, C 1 W : dx 1 W = x 0 dt x dx 0 1 dt zero W 0 C 0 = C 1 = 0 W W = a sin a t a cos a t = a 0 C 0 = C 1 = 0 W 1.11 A 0 x 0 x 1 W Wronsky Wronskian Wronskian non-zero Linear Inhomogeneous Second Order Ordinary Differential Equation with Constant Coefficients x xt t a: a 0 qt: 17 d x + ax = qt 1.13 dt 1.13 expi a t exp i a t sin a t cos a t 1 x 0 x p x p = Xx 0 X Xt 1.13 x p d x p dt + ax d X p = x 0 dt + dx 0 dx dt dt + X d x 0 dt + ax 0X = qt x d X 0 dt + x dx 0 dx 0 dt dt = x 0qt [ ] dx dt = x 0 x 0 qt dt [ ] X = x 0 x 0 qt dt dt { [ ] x p = x 0 x 0 qt dt x 0 } dt 1.14 x 0 x 1 ;

23 18 CHAPTER. superimpose 1.13 x = Cx 0 + C x 1 + x p = Cx 0 + C x 1 + x 0 { [ x 0 ] } x 0 qt dt dt 1.15 C, C : 1.13 x xt d x + ax + bdx dt dt = qt a, b : qt : 1.16 x = X exp bt X Xt = [ d X dt d x dt + ax + bdx dt bdx dt + b X + ax + b dx dt bx ] exp bt = qt d X dt + a b X = expbt qt a = b 1.17 a b α a b X 1.16 x X = CX 0 + C X 1 + X 0 { [ X0 x = exp bt [CX 0 + C X 1 ] + exp btx 0 { ] } X 0 expbt qt dt dt [ X0 ] } X 0 expbt qt dt dt 1.18a 1.18b C, C X 0, X X 0 = expiαt, X 1 = exp iαt 1.19a, b x expλt λ : 1.16 d x + ax + bdx dt dt = λ + a + bλ x = x 0 λ λ + bλ + a = 0 λ = b ± b a λ 1 = b + b a, λ = b b a 1.1a, b 18

24 a b expλ 1 t, expλ t x = C expλ 1 t + C expλ t 1. C, C : λ C = C C C 1.0 expλ 1 t expλ t 1 x 0 1 x x p = Xx 0 X Xt d x p dt + ax p + b dx p dt = x 0 d X dt = x 0 d X dt + + dx dt dx 0 dt + X d x 0 dt dx dx 0 dt + bx 0 + ax 0X + b dt = qt [ ] d expbt x dx 0 = expbt x 0 qt dt dt [ ] dx = exp bt x 0 expbt x 0 qt dt dt { [ ]} X = exp bt x 0 expbt x 0 qt dt dt dx x 0 dt + X dx 0 dt x p = Xx { x = Cx 0 + C x 1 + x 0 exp bt x 0 [ ]} expbt x 0 qt dt dt 1.3 C, C : 1.1a,b λ 1 λ λ 1 + λ = b x = C expλ 1 t + C expλ t { [ ]} + expλ 1 t exp [λ λ 1 t] exp λ t qt dt dt 1.4 t { s } x = C expλ 1 t + C expλ t + exp [λ1 t s + λ s r] qr dr ds 1.5 b a < 0 λ 1 = b + i a b β, λ = b i a b = β t { s } x = C expβt + C expβ t + exp [βt s + β s r] qr dr ds

25 0 CHAPTER. 1.6 a = b 1.0,1.1a,b λ λ = b 1 expλt = exp bt 1 x 1 = X exp bt X Xt d x 1 dt + ax 1 + b dx 1 dt d X dt = 0 X = C 1 + C t = d x 1 dt + b x 1 + b dx 1 dt = d X dt exp bt = 0 x 1 = C 1 + C t exp bt exp bt x 1 C 1 = 0, C = 1 1 t exp bt Wronskian W W = exp bt 0 [ ] a, b, c, A d x + ax + bdx dt dt = A expct x expλt λ : λ λ + bλ + a = 0 λ = b ± b a λ 1 = b + b a, λ = b b a 1.9a, b b a λ λ 1, λ x h x h = C expλ 1 t + C expλ t C, C : 1.30 b = a λ λ = b x h x h = C + C t exp bt C, C : x p x p expct c, a, b c + bc + a 0 x p x p = A expct c + bc + a 1.3 0

26 c + bc + a = 0 i a b ii a = b c + b = 0 i 1 x p = At expct c + b 1.33 ii x p = 1 At expct x h 1.3,1.33,1.34 x p 1.8 x x = x h + x p [ ] 1.8 x p x p = Bt n expct 1.35 B:, n: 1.8 n, B d x p dt + ax p + b dx p dt = c + bc + a Bt n e ct + nc + bbt n 1 e ct + nn 1Bt n e ct = A expct 1.36 c +bc+a 0 1 A expct n, B :n = 0, B = A/ c + bc + a c + bc + a = 0 a b n, B : n = 1, B = A/c + b c + bc + a = 0 a = b 3 n, B :n =, B = A/ a, b, c, A m d x + ax + bdx dt dt = Atm expct 1.37 Linear Inhomogeneous Second Order Ordinary Differential Equation x xt t, pt, qt, Rt: d x + ptx + Rtdx dt dt = qt.1 x = Xf X Xt, f exp[ Rt dt] [ f d X dt + dx df dt dt + X d f + ptxf + Rt f dx dt dt + X df ] = qt dt 1

27 CHAPTER. where P t pt + d { [ X d ] } dt + f pt + dt + Rtdf f 1 X = f 1 qt dt d X + P tx = Qt. dt [ d ] f dt + Rtdf f 1, Qt f 1 qt.3a, b dt. 1 X 0 X 0 X 0 t X 0 1 X 1 X 1 X 1 t X 0 X 1 d X 0 dt + P tx 0 = 0, d X 1 dt + P tx 1 = 0.4a, b X 1 X 0 [ d ] [ X 0 d ] X 1 X 1 + P tx dt 0 X 0 + P tx dt 1 X 1 dx 0 dt X 0 dx 1 dt d X 0 d X 1 = X 1 X dt 0 dt = d dx 0 dx 1 X 1 X 0 = 0 dt dt dt = constant A A 0.5 X 0 X X 1 = AX 0 [ ] X0 dt. X = Y X 0 Y Y t. d X dt + P tx = d Y dt X 0 + dy dt [ dy = X0 dt { X = X 0 X = X 0 { dx 0 dt + d X 0 dt Y + P ty X 0 = Qt ].6 X 0 Qt dt + constant [ ] } X 0 Qt dt + constant dt + constant [ ] } X 0 Qt dt dt + CX 0 + C X 1.7 X 0 X 0 C, C : 1, x = fx 0 { [ X0 ] } X 0 Qt dt dt + f [CX 0 + C X 1 ].8

28 3 1 d x + ax = 0.9 dt x xt a : t : t A t t B t B = t A + π/ a y dx/dt 1 dx dt y = 0, dy dt + ax = 0.10a, b.10a,b x, y vector x x x, y T T transposition vector matrix matrix A unit diagonal matrix I A [ 0 1 a 0 ], I [ a,b ].11a, b dx dt Ax = 0 0 : zero vector, 0 = 0, 0 T.1 x, y expλt λ :.1 λ I Ax = 0.13 x 0 λ I A zero λ λ I A = λ + a = 0 λ = ±i a i 1.14 λ 1 = i a, λ = i a.15a, b λ 1 vector x 1 = x 1, y 1 T x = x, y T.13 x 1 λ x 1 = C expλ 1 t, y 1 = C expλ 1 t, C, C :.16a, b λ 1 x 1 = y 1 C = λ 1 C.16c 3

29 4 CHAPTER. x ax 1 = λ 1 y 1 ac = λ 1 C.16d x = c expλ t, y = c expλ t, c, c :.17a, b λ x = y c = λ c.17c ax = λ y ac = λ c.17d x 1 = x 1, y 1 T = C 1, λ 1 T expλ 1 t x = x, y T = c 1, λ T expλ t.18a.18b.18a,b C, c 1 eigenfunction normalization t A t t B t B = t A + π/ a [ ] tb < x T 1 1, x 1 > x T 1 x 1 dt t B t A t A 1 tb = x t B t 1x 1 + y1y 1 dt A t A = CC 1 + a = 1,.19a CC = a C = C = a x 1e, x e x 1e = 1, λ 1 T expλ 1 t 1 + a,.19b.0a x e = 1, λ T expλ t 1 + a.0b.13 x = C 1 x 1e + C x e C 1, C :.1.1,.13 dx dt = Ax, Ax = λ I x = λx.a, b xt t = 0 Taylor dx xt = x0 + t + 1 d x t d n x t n +.3 dt dt 0 n! dt 0 n 0 4

30 .a t xt = x0 + Ax 0 t + 1 A dx t A dn 1 x dt n! dt 0 n 1 t n + 0 = x0 + Ax0 t + 1 AAx0 t n! An x0 t n +.4.b xt = x0 + λ I x0 t n! λ I n x0 t n + = x0 + λx0 t n! λn x0 t n + = x0 n=0 1 n! λn t n = x0 expλt a xt = x0 expλt = x0 expat.6 matrix A expa n=0 5 1 n! An.7 [ ] 3 constant vector a = a 1, a, a 3, b = b 1, b, b 3 T inner product a b a b a 1 b 1 + a b + a 3 b 3 =< a, b > a a a a vector a a b zero vector a b a b = 0 C 1, C C 1 a T + C b = 0 a, b T C 1 a a T + C a b = 0, C 1 b T a T + C b T b = 0 a b = 0 a a T 0 C 1 = 0 b T a T = a b = 0 b T b 0 C = 0 vector 5

31 6 CHAPTER. t A t t B ft, gt < f, g > < f, g > 1 t B t A tb t A ft gt dt * < f, f > f norm f = < f, f > zero f, g zero C 1, C C 1 f + C g = 0 f, g C 1 < f, f > +C < f, g >= 0, C 1 < g, f > +C < g, g >= 0 < f, g >= 0 < f, f > 0 C 1 = 0 < g, f >= 0 < g, f >=< f, g > < g, g > 0 C = 0 orthogonal function f, g 6

32 Chapter A second order ordinary differential equation for u uz in the region < z <, with two real constants α and γ: z d u + γ zdu αu = dz dz z = 0 z = 1 Assuming that the solution of Eq1.1 is expressed by a power series of z with coefficients a 0, a 1, a, : we have the following equations: thus u = a n z n = a 0 + a 1 z + a z + a 3 z 3 +, 1. n=0 du dz = n=1 a n nz n 1, d u dz = n= a n nn 1z n, z d u + γ zdu dz dz αu = a n nn 1z n 1 + γ z a n nz n 1 α a n z n n= n=1 n=0 = αa 0 + γa 1 a 1 α + 1z + a γ + 1z + a n nγ + n 1z n 1 a n α + nz n = n=3 The coefficients should be chosen so that 1. satisfies Eq1.3: n= a 1 = α γ a 0, a = α + 1 γ + 1 a 1,, a n = α + n 1 nγ + n 1 a n 1 a n = where α n and γ n stand for the following expression: α n n!γ n a 0, for n = 1,,, 1.4 α n αα + 1α + α + n 1 = Γα + n/γα, 1.5 7

33 8 CHAPTER 3. in terms of the gamma function Γx: Γx 0 exp t t x 1 dt with Re{x} > 0 for a genaral case u = a 0 u 1 a 0 u u 1 = 1 + n=1 α n z n n!γ n = n=0 α n z n n!γ n 1.7 u 1 Kummer F α, γ; z 1.1 The other solution u = Au 1 where A = Az, is a function to be determined as follows: z d u + γ zdu dz dz αu d A = z dz u 1 + da du 1 dz dz + d u 1 da dz A + γ z dz u 1 + du 1 dz A αau 1 d A = z dz u 1 + da du 1 + γ z da dz dz dz u 1 = 0 d A dz + du 1 u 1 dz + γ z da z dz = da [ dz = c du 1 1 exp u 1 dz + γ z ] 1 dz = c 1 exp[ γlnz + z] z u 1 c 1 : an integration constant u = Au 1 { } 1 Au 1 = u 1 c 1 exp[ γlnz + z] dz + c u c :an integration constant Eq1.1 u the general solution of Eq1.1: C 1, C :integration constants 1 u = u 1 exp[ γlnz + z] dz 1.10 u 1 u = C 1 u 1 + C u 1.11 ΓαΓγ α z F α, γ; z = z 1 γ expt t α 1 z t γ α 1 dt Γγ 0 8

34 Chapter 4 Vector vector tensor / /9.10./10.18./in Tex vector magnitude direction scalar vector vector vector vector a a a, etc vector vector a a a a zero vector zero-vector 0 zero-vector zero vector a vector unit vector e = a/ a nonzero-vector vector a b a b a b a b parallel a b unti-parallel vector a scalar c a = cb a b c > 0 c < 0 vector scalar c a c b a = c a c b a = c a c b a, 0a = 0 zero vector, c a + c b a = c a a + c b a vector a b a b a b normal, perpendicular vector 9

35 30 CHAPTER 4. VECTOR 3 vector a, b, c scalar 3 vector vector 3 vector e 1, e, e 3 vector a vector a = a 1 e 1 + a e + a 3 e 3 = a 1, a, a 3 a 1, a, a 3 vector a component vector e 1 = 1, 0, 0, e = 0, 1, 0, e 3 = 0, 0, 1 vector a a a a 1 + a + a 3 vector a ca = ca 1 e 1 + ca e + ca 3 e 3 c:, scalar vector matrix a = a 1 a a 3 vector, a = a 1 a a 3 vector vector a a = a 1, a, a 3 T T transposition matrix matrix determinant vector tensor a = a 1 e 1 + a e + a 3 e 3 = a 1, a, a 3 a i i = 1,, 3 vector a 1, a, a 3 1 set index index 1/4 tensor tensor vector {a} i = a i vector a, b a = a 1 e 1 + a e + a 3 e 3 = a 1, a, a 3, b = b 1 e 1 + b e + b 3 e 3 = b 1, b, b 3 vector a + b a + b = a 1 e 1 + a e + a 3 e 3 + b 1 e 1 + b e + b 3 e 3 = a 1 + b 1 e 1 + a + b e + a 3 + b 3 e 3 = a 1 + b 1, a + b, a 3 + b 3 30

36 31 vector c = a + b commutative law a + b = b + a a + b = a 1 + b 1, a + b, a 3 + b 3 = b 1 + a 1, b + a, b 3 + a 3 = b + a associative law a + b + c = a + b + c = a + b + c a, b c a a + c b b = 0 c a = c b = 0 a b 1 c a + c b > 0 1 vector c = a + b a = c b zero-vector 0 = 0, 0, 0, a vector a 0 = a a a = a 1 e 1 + a e + a 3 e 3 = a 1 e 1 a e a 3 e 3 = a 1, a, a 3 P 1 vector x 1 vector P vector x vector P 1 P vector x x 1 vector vector vector vector vector [ ] d Alembert Newton N F 1, F,, F N F k k = 1,,, N N F k = 0 k=1 N K = F k k=1 K dynamic balance vector dyad inner product, scalar product, dot product a b a b = a b cos θ θ a b [rad] a b = b a a b projection P roja b b = a b = P rojb a a 31

37 3 CHAPTER 4. VECTOR a a = a = a a = a a b = a b cos θ a b Cauchy vector a b = 0 a b normal, perpendicular a b zero-vector vector c a a + c b b = 0 a c a a + c b b = a 0 = 0 a a 0, a b = 0 c a = 0, b c a a + c b b = b 0 = 0 b b 0, b a = 0 c b = 0 a b c = b a ba/a a vector vector a/ a c/ c a b vector A a A = c a a + c c b c vector c a, c b : e 1 e 1 = 1, e e = 1, e 3 e 3 = 1, e 1 e = 0, e e 3 = 0, e 3 e 1 = 0 a a = a e 1 e 1 + a e e + a e 3 e 3 = a 1 e 1 + a e + a 3 e 3 a b a b = a 1 e 1 + a e + a 3 e 3 b 1 e 1 + b e + b 3 e 3 = a 1 e 1 b 1 e 1 + b e + b 3 e 3 + a e b 1 e 1 + b e + b 3 e 3 +a 3 e 3 b 1 e 1 + b e + b 3 e 3 = a 1 b 1 + a b + a 3 b 3 = b 1 a 1 + b a + b 3 a 3 = b a a b + c = a b + a c matrix a b = b 1 a 1 a a 3 b = a 1 b 1 + a b + a 3 b 3 = b 1 b b 3 b 3 a 1 a a 3 = b a matrix dyad tensor 3 a b = a 1 b 1 + a b + a 3 b 3 = a i b i = a i b i i=1 3

38 i=1 3 Einstein summation notation, summation convention index taking the summation for the repeated index 1 index 3 index 3 vector a b + b a = a i b i + b i a i = a i b i + b j a j = a k b k = a 1 b 1 + a b + a 3 b 3 tensor index 33 a i 1 tensor, a i b k, A ij tensor, C ijk 3 tensor i, j, k = 1,, 3 tensor a i b k dyad a i b k a k b k index a k b k 0 tensor scalar tensor δ ij ε ijk δ ij tensor, tensor, Kronecker delta ; δ ii = 3 index i j 1 δ 11 = δ = δ 33 = 1 zero index 3 Kronecker delta δ ij a j = a i ; δ ij δ jk = δ ik ; δ ij δ jm δ mn = δ in Eddington epsilon 3 tensor ε ijk i, j, k 1,, i, j, k zero Eddington epsilon 3 tensor isotropic tensor Kronecker delta tensor 4 tensor C ikmn C ikmn = aδ ik δ mn + bδ im δ kn + cδ in δ km a, b, c tensor Kronecker delta 33

39 34 CHAPTER 4. VECTOR outer product, vector product, cross product a b, a b a b = a b e sin θ θ a b [rad] e a b vector determinant a b = e 1 e e 3 a 1 a a 3 b 1 b b 3 = e 1 a b 3 a 3 b e a 1 b 3 a 3 b 1 + e 3 a 1 b a b 1 a b = b a vector zero-vector a a = 0, a b = 0 a b [ ] e 1 e e 3 e 1 e = e 3 e 1 e E 3 e 1 e = E 3 = e 3 vector vector vector vector vector x F vector moment M = x F vector vector a b a b a b = a b e sin θ a b a b sin θ = 1 a b sin θ = 0 vector e 1 e = e 3, e e 3 = e 1, e 3 e 1 = e, e e 1 = e 3, e 3 e = e 1, e 1 e 3 = e, e 1 e 1 = 0, e e = 0, e 3 e 3 = 0, a b = a 1 e 1 + a e + a 3 e 3 b 1 e 1 + b e + b 3 e 3 = a 1 e 1 b 1 e 1 + b e + b 3 e 3 +a e b 1 e 1 + b e + b 3 e 3 +a 3 e 3 b 1 e 1 + b e + b 3 e 3 = a 1 b 1 e 1 e 1 + a 1 b e 1 e + a 1 b 3 e 1 e 3 34

40 35 +a b 1 e e 1 + a b e e + a b 3 e e 3 +a 3 b 1 e 3 e 1 + a 3 b e 3 e + a 3 b 3 e 3 e 3 = a 1 b e 3 a 1 b 3 e a b 1 e 3 + a b 3 e 1 + a 3 b 1 e a 3 b e 1 = e 1 a b 3 a 3 b e a 1 b 3 a 3 b 1 + e 3 a 1 b a b 1 a b + c = a b + a c tensor {a b} i = ε ijk a j b k = ε imn a m b n ; ε ijk a j b k = ε ikj a j b k index Eddington epsilon index dyad dyad a b a b = a 1 a a 3 b1 b b 3 = a 1 b 1 a 1 b a 1 b 3 a b 1 a b a b 3 a 3 b 1 a 3 b a 3 b 3 a b trace Tra b = a 1 b 1 + a b + a 3 b 3 = a b dyad a b + c = a b + a c, a cb = ca b, a + b c = a c + b c, ca b = ca b a b b a dyad dyadic scalar 3 triple scalar-product vector a, b, c 6 a b c a b c = a 1 a a 3 b 1 b b 3 c 1 c c 3 a b c = a b c = a 1 b c 3 b 3 c a b 1 c 3 b 3 c 1 + a 3 b 1 c b c 1 a b c = b c a = c a b, a b c = a c b = b a c 35

41 36 CHAPTER 4. VECTOR scalar 3 tensor a b c = a i ε ijk b j c k = ε ijk a i b j c k = ε kmn a k b m c n vector 3 triple vector-product a b c = a b c a b c a b c a b c a b c = e 1 e e 3 a 1 a a 3 b c 3 b 3 c b 1 c 3 + b 3 c 1 b 1 c b c 1 = e 1 [a b 1 c b c 1 a 3 b 1 c 3 + b 3 c 1 ] e [a 1 b 1 c b c 1 a 3 b c 3 b 3 c ] +e 3 [a 1 b 1 c 3 + b 3 c 1 a b c 3 b 3 c ] = e 1 [b 1 a c + a 3 c 3 c 1 a b + a 3 b 3 ] e [ b a 1 c 1 + a 3 c 3 + c a 1 b 1 + a 3 b 3 ] +e 3 [b 3 a 1 c 1 + a c c 3 a 1 b 1 + a b ] = ba c ca b ba c ca b = bc a cb a = a cb a bc = c ab b ac vector 3 tensor {a b c} i = ε ijk a j ε kmn b m c n = ε ijk ε kmn a j b m c n Eddington epsilon ε ijk ε pqr = δ pqr ijk = δ ipδ jq δ kr δ ip δ jr δ kq + δ iq δ jr δ kp δ iq δ jp δ kr + δ ir δ jp δ kq δ ir δ jq δ kp Kronecker delta i, j, k p, q, r Kronecker delta p, q, r p, r, q p, q, r q, r, p q, p, r p, q, r r, p, q r, q, p k = p ε ijk ε kqr = δ kqr ijk = δqrk ijk = δqr ij = δ iq δ jr δ ir δ jq Kronecker delta index superscript index subscript {a b c} i = ε ijk a j ε kmn b m c n = δ im δ jn δ in δ jm a j b m c n 36

42 37 = a j b i c j a j b j c i = a cb i a bc i vector 3 a b c = ba c ca b tensor x = x 1, x, x 3, scalar φ φx = φx 1, x, x 3 φ x 1, x, x 3 dφ = φ x 1 dx 1 + φ x dx + φ x 3 dx 3 ; dφ = φ x k dx k φ x 1 x, x 3 dφ = φ x 1 dx 1 scalar φ φψ, ψ ψx = ψx 1, x, x 3 dφ = dφ dφ dψ = dψ dψ scalar φ φx, t = φx 1, x, x 3, t ψ x 1 dx 1 + ψ x dx + ψ x 3 dx 3 x 1 x 1 t, x x t, x 3 x 3 t φ dφ = φ φ dt + dx 1 + φ dx + φ dx 3 t x 1 x x 3 dφ dt = φ t + φ dx 1 x 1 dt + φ dx x dt + φ dx 3 x 3 dt tensor vector v vx = v 1, v, v 3 v v 1 v 1 x 1, x, x 3, v v x 1, x, x 3, v 3 v 3 x 1, x, x 3 v dv = dv 1, dv, dv 3 v tensor dv k = v k x 1 dx 1 + v k x dx + v k x 3 dx 3 for k = 1,, 3 dv k = v k x m dx m for k = 1,, 3 [ ] N Hamilton H Hq, p, t :q qt = q 1, q,, q N, :p pt = p 1, p,, p N dh = H H dt + dq 1 + H dq + + H dq N t q 1 q q N 37

43 38 CHAPTER 4. VECTOR + H p 1 dp 1 + H p dp + + H p N dp N dh dt = H t + N n=1 [ H dq n q n dt + H ] dp n p n dt gradient operator nabla x 1, x, x 3 x 1, x, = e 1 + e + e 3 x 3 x 1 x x 3 scalar φ φx 1, x, x 3 gradient φ = φ x 1, φ x, φ x 3 = e 1 φ x 1 + e φ x + e 3 φ x 3 φ grad φ tensor { φ} k = φ x k v divergence v = v 1 x 1 + v x + v 3 x 3 ; v = v k x k tensor v div v vector v v = 0 v divergence-free vector v rotation v = e 1 e e 3 / x 1 / x / x 3 v 1 v v 3 = e 1 v3 x v x 3 e v3 x 1 v 1 x 3 v + e 3 v 1 x 1 x v rot v curl v curl v rot v v = 0 v rotation-free vector irrotational vector v v vorticity v = 0 38

44 39 v dyad v = grad v grad v = e 1 v 1 e 1 + v e + v 3 e 3 + e v 1 e 1 + v e + v 3 e 3 x 1 x +e 3 v 1 e 1 + v e + v 3 e 3 x 3 v 1 v v 3 x 1 x 1 x 1 v 1 v v 3 = x x x v 1 v v 3 x 3 x 3 x 3 = v; { v} mn = v n x m grad v trace Tr v = v grad v { v} mn = v n x m = ɛ mn + Ω mn ɛ mn Ω mn ɛ mn 1 vn + v m, Ω mn 1 vn v m x m x n x m x n ɛ mn index ɛ mn = ɛ nm tensor symmetric tensor Ω mn = Ω nm tensor tensor ɛ mn trace ɛ mm = v trace 6 3 ɛ 1 = ɛ 1, ɛ 13 = ɛ 31, ɛ 3 = ɛ 3 Ω mn zero Ω 11 = Ω = Ω 33 = 0 3 Ω 1 = Ω 1, Ω 3 = Ω 3, Ω 13 = Ω 31 Ω mn { v} k = ε kmn v n x m = 1 ε kmn ε knm v n x m = ε kmn Ω mn vector vector ɛ mn + Ω mn 39

45 40 CHAPTER 4. VECTOR [ ] vector v vx = v 1, v, v 3 tensor dv n = A nm dx m with A nm v n x m tensor A nm matrix determinant Jacobian J Dv 1, v, v 3 /Dx 1, x, x 3 J Dv 1, v, v 3 Dx 1, x, x 3 = v 1 x 1 v 1 x v 1 x 3 v x 1 v x v x 3 v 3 x 1 v 3 x v 3 x 3 J 0 tensor B kn B kn dv n = B kn A nm dx m = δ km dx m = dx k dx k = B kn dv n 1 A nm dx m dv n dv n = A nm dx m affine v n = A nm x m λ A nm x m = λδ nm x m = λx n λ eigenvalue x n vector [ ] x = x 1, x, x 3 x 3 θ v = v 1, v, v 3 Jacobian J = 1 v 1 = x 1 cos θ + x sin θ, v = x 1 sin θ + x cos θ, v 3 = x 3 cos θ sin θ 0 J = sin θ cos θ 0 = vector x = x 1, x, x 3 x = r 1, r, r 3 = r r r r = r = x 1 + x + x 3 scalar φ φx = φx 1, x, x 3, etc. vector v vx = vx 1, x, x 3 = v 1, v, v 3, etc. 40

46 41 1 grad φψ = φψ = ψ φ + φ ψ = ψ φ + φ ψ grad r = r = e x unit vector r x 1, r x, r = x x 3 r = e 1 grad = grad r d 1 = x r dr r r = e 3 r φ = c/r c: Coulomb div φv = φv = v φ + φ v div x = x = 3 x div = 1 r r div x x x = r 3 r x div = 1 x 1 div x 3x = 0 div grad r 3 r3 r 5 r = 0 3 rot φv = φv = φ v + φ v = φ v v φ rot x = x = 0; x n { x} k = ε kmn = ε kmn δ mn = ε kmm = 0 x m x x rot = = 1 1 r r r x x = 1 r r x x = div grad φ = φ div grad φ = φ = φ + φ + φ x 1 x x 3 φ = φ = φ Laplace Laplacian φ = c/r c: 3 φ = 0 grad φ grad φ = φ = φ = 0 5 rot grad φ = φ = 0 subscript = 1 = 1 φ = 1 φ 41

47 4 CHAPTER 4. VECTOR subscript 1 φ + 1 φ = φ = 0 6 div rot v = v = 0 subscript v = 1 v scalar 3 v = 0 v = 0 1 v = 1 v = v 7 u v = v u u v 8 u v = u v + v u v u u v 9 u v = u v v = v u v u v v = v u v u v v u = v u u = u u v v u u = u u v v u u v = u u v + v u v = u v + u v + v u + v u u u operator, v v operator 10 v v = [v v + v v] 11 v = v v ; rot rot v = grad div v div grad v 1 v = v = [ v v] = v v = 0 div rot rot v = div grad div v div grad div v = 0 13 v = v v = v rot rot rot v = grad div rot v div grad rot v = div grad rot v 4

48 43 scalar potential φ vector potential A v = 0 v scalar potential φ v = φ v = φ = 0 v = 0 v vector potential A v = A v = A = 0 vector v v = φ + A v divergence rotation φ A v φ = φ = 0 φ = φ = fx A = A = 0 A = A = fx u t = u κ x u t = κ u u t c u x = 0 u t c u = 0 Laplace Poisson fx Laplace Poisson, fx 1 1 to be continued 43

49 Chapter x, y, z vector e 1, e, e 3 vector r r xe 1 + ye + ze 3 1 r parameter u, v x xu, v, y yu, v, z zu, v v u 1 u-curve u v 1 v-curve u, v 1 surface r dr = dr = dxe 1 + dye + dze 3 x x y du + u v dv y e 1 + du + u v dv e + z z du + u v dv e 3 = r r du + dv 3 u v ds ds = dr dr = r du + r u u r v dudv + r dv 4a v ds = Edu + F dudv + Gdv 4b E, F, G E r, F r u u r v, G r 5a, b, c v 4b r ru, v 1 1 r/ u ucurve vector r/ v v-curve vector u, v r/ u r/ v = 0 u-curves u = constant v-curves v = constant 44

50 vector vector N vector n N r u r v, 45 n r u r 1 6a, b v N N 3 vector t t dr ds = r du u ds + r dv v ds 7 t s vector n κ n = r d u u ds + r u κ n n n = κ n = n dt ds = d r ds = κ nn du + r ds u v κ n = e r u du ds du ds du ds dv ds + r d v v ds + r v + r u v + f du dv ds ds + g κ n = edu + fdudv + gdv ds κ n = edu + fdudv + gdv Edu + F dudv + Gdv du dv ds ds + r v dv 8 ds dv ds dv 9a ds e n r u, f n r u v, g n r 10a, b, c v 9b edu + fdudv + gdv r = ru, v 9b 9c κ n E edu + κ n F fdudv + κ n G gdv = 0 11 Ef F edu + Eg Gedudv + F g Gfdv =

51 Chapter /revised and enlarged April Introduction d x dt = f x, dx x xt, t : 1.1 dt fx, dx/dt x dx/dt t explicit autonomous system 1.1 dy dt = fx, y, y dx dt 1.a, b x, y 1 N N 1 1.a,b 1 dy dt = fx, y, dx dt = gx, y 1.3a, b gx, y x y x, y gx, y 0 1.3a,b dy dx = fx, y gx, y x y = yx x, y fx, y 0 dx/dy = gx, y/fx, y x = xy t parameter a,b 1.3a,b xt, yt 1.4 yx x y, phase space a,b

52 a,b x, y fx, y = 0 gx, y = 0 x = X, y = Y X, Y = constant fx, Y = 0, gx, Y = 0 1.5a, b X, Y 1.3a,b equilibrium point x xt, ỹ ỹt x = X + x, y = Y + ỹ fx, y, gx, y x, ỹ Taylor 1 where f a x X,Y fx + x, Y + ỹ = fx, Y + a x + bỹ = a x + bỹ, gx + x, Y + ỹ = gx, Y + c x + dỹ = c x + dỹ,, b f, c y X,Y g, d x X,Y g y X,Y 1.6a 1.6b 1.7a, b, c, d 1.3a,b dỹ dt = a x + bỹ, d x dt = c x + dỹ 1.8a, b x, ỹ expλt λ λ b + cλ + bc ad = λ unstable stable zero neutral 1.8a,b dỹ d x = a x + bỹ c x + dỹ dy px, y = dx qx, y.1 47

53 48 CHAPTER 6. p0, 0 = 0, q0, 0 = 0 px, y, qx, y x = 0, y = 0 regular 0,0 singular point Poincaré dy dx = ax + by cx + dy. a, b, c, d ad bc 0. Poincaré a nodal point b saddle point c center point d asymptotically spiral point [1] b c + 4ad > 0 ad bc < 0 [] b c + 4ad > 0 ad bc > 0 [3] b c + 4ad < 0 b + c = 0 [4] b c + 4ad < 0 b + c 0 [5] b c + 4ad = 0 a [5] dy dx = y x y = Cx C.3a b dy dx = x y x y = C C = 0 c dy dx = x y x + y = C.3b.3c 48

54 d x/dt + x = 0 x = sint y = cost d dy dx = x + y x y x Lnx + y = tan 1 y + C.3d x = r cos θ, y = r sin θ r = C expθ 49

55 50 CHAPTER 6. [ ] x xt t: [1] d x dt + x = 0, [] d x dt x = 0, [3] d x dt + dx dt + x = 0, [4] d x + sinx = 0, dt [5] d x dt + x x = 0 Satellite equation, [6] d x dt + x + x3 = 0 Duffing equation, d x [7] dt + x = 1 x dx Van del Pol equation, dt d x [8] dt + x = dx dt 1 3 dx Rayleigh equation 3 dt 3 x f fx x x 0 A A: Taylor fx = a 0 + a 1 x x 0 + a x x a n x x 0 n + = fx 0 + [Df]x x 0 + [D f] x x [Dn f] x x 0 n +, 3.1 n! d where [D n n f f] = for n = 0, 1,, dx n x 0 fx x x 0 A regular analytic x y fx, y x x 0 A, y y 0 B A, B: Taylor fx, y = a 00 + a 10 x x 0 + a 01 y y 0 + a 0 x x 0 +a 11 x x 0 y y 0 + a 0 y y 0 + = fx 0, y 0 + [D X f] x x 0 + [D Y f] y y 0 50

56 {[ D X f ] x x 0 + [D X D Y f] x x 0 y y 0 + [ D Y f ] y y 0 } n! { n m=0 [ nc m D n m X D m Y f ] } x x 0 n m y y 0 m +, 3. n! where nc m = m n, m!n m! [D n n f Xf] = and [D n n f x n Y f] = for n = 0, 1,, x 0,y 0 y n x 0,y 0 fx, y x x 0 A, y y 0 B x y y yx fx, y x yx Taylor yx = a 0 + a 1 x x 0 + a x x a n x x 0 n where a n 1 n! d n y dx n a 0 = yx 0 = y 0 y y 0 x 0 for n = 0, 1,, y y 0 = a 1 x x 0 + a x x a n x x 0 n x, y fx, y Taylor fx, y = n=0 { 1 n [ nc m D n m X D m Y f ] } x x 0 n m y y 0 m n! m=0 y y x, yx fx, y Taylor 3.5 [ ] x y y yx fx, y x x 0 A, y y 0 B 1 dy dx = fx, y 3.6 x = x 0 y = y 0 y 0 = yx 0 x 0 y = yx // [ ] 3.6 y = yx 3.6 x = x 0 y 0 = yx 0 0! a 0, dy = fx 0, y 0 = a 00 1! a 1, 3.7a, b dx x 0 51

57 5 CHAPTER 6. d y dx d 3 y dx 3 = x 0 = = x 0 [ df f = dx x 0 x + dy ] [ f f = dx y x 0,y 0 x + f f ] y x 0,y 0 d f dx x 0 = = a 10 + a 00 a 01! a, 3.7c [ d f + d y f dx x dx y + dy ] d f dx dx y f x + f f x y + f f y + f x f y + f f y x 0,y 0 x 0,y 0 = a 0 + a 00 a 11 + a 00a 0 + a 10 a 01 + a 00 a 01 3! a 3, 3.7d a n 1 d n y = 1 d n 1 f = 1 n! dx n x 0 n! dx n 1 x 0 n! x + f n 1 f y for n = 1,, 3, x 0,y 0 3.7e yx yx = a 0 + a 1 x x 0 + a x x a n x x 0 n a n for n = 0, 1,, x 0, y 0 = yx 0 fx, y x // 1 1 [ ] L t = 0 m x x xt d Alembert m d x = kx L + mg 3.9 dt k g dx x = L, = 0, at t = dt 5

58 equilibrium solution x = x 0 = constant x 0 = L + mg k X = x x 0 X Xt 3.9 m d X dt = kx Xt = a sinωt + b cosωt, where ω k m, a, b : xt xt = a sinωt + b cosωt + x a, b x0 = b + x 0 = L b = L x 0 = mg k, dx = aω = 0 a = 0 dt xt xt = x 0 mg k mg cosωt = L + [1 cosωt] 3.11 k x 0 harmonic oscillation mg/k ω = k/m 3.11 xt t = 0 Taylor xt = x0 + dx t + 1 dt n! d x dt t d 3 x dt 3 t d 4 x dt 4 t 4 0 d n x t n +, 3.1 dt n 0 0 t = ,

59 54 CHAPTER a t 3.13b 3.13c,d,e,f d x dt = k d x L + g, m 3 x dt 3 = k m dx, 3.13a, b dt d 4 x dt 4 = k m d x dt, d 5 x dt 5 = k m d 3 x dt 3 = k dx, 3.13c, d m dt d n x dt n = k m d n x dt n dn x dt n = kn m n [ x L mg k ] for n = 1,,, 3.13e d n+1 x dt n+1 = k m d n 1 x dt n 1 = kn m n dx dt for n = 1,, 3.13f 3.13a-f t = xt Taylor 3.1 xt = L + 1 d x t + 1 d 3 x t d 4 x t 4 + dt 6 dt dt = L + mg k = L mg k n=1 k n t n n!m n [ kt m k t 4 4m + k3 t 6 ] 70m + 3 Ot Taylor asymptotic series D [ ] y yx [1] dy dx = y, [] d y dx y = 0 54

60 [ ] x xt t: d x dt = F x, dx dt, t 4.1 F x, dx/dt, t t T F x, dx/dt, t = F x, dx/dt, t + T 4.1 T x xt = xt + T x0 = xt, dx = dt 0 dx dt T 4.a, b // [ ] xt = xt + T 4.a,b t = 0 x = x 0, dx/dt = v x = X X Xt X d X dt = F X, dx dt, t t = T + s F x, dx/dt, t d XT + s dxt + s = F XT + s,, T + s ds ds dxt + s = F XT + s,, s ds xs = XT + s s = 0 x0 = XT, XT = X0 = x 0, dx = ds 0 dxt + s ds 55 0 dxt + s = ds dxt dt a, b = v 0 4.6a, b

61 56 CHAPTER 6. XT + s = Xs 4.7 x = Xt T // 4.1 x = Xt F x, dx/dt, t x = Xt + T 4.1 Xt = Xt + T x = Xt T 4.6a,b x 0, v 0, T [ ] d x dt + x = α cosωt α, ω : parameters x = A, dx/dt = 0 at t = 0 ω 1 x = A α cost + 1 ω α 1 ω cosωt ω A = α/1 ω T = π/ω // [ ] ω = 1 x x = αt sint + A cost : xt = xt + π // ω [ ] x xt t: d x dt + x = αf x, dx dt, ωt α, ω : parameters 4.8 F x, dx/dt, ωt t <, x <, dx/dt < t, x, dx/dt t T = π/ω F x, dx, ωt + π dt = F x, dx dt, ωt 4.9 t = δ x = A, dx/dt = 0 T = π/ω x = Xt 1 δ, A, ω, α 56

62 4. 57 A = φ 1 δ, α, ω = ψ 1 δ, α 4.10a, b A = φ ω, α, δ = ψ ω, α 4.11a, b ω = φ 3 A, α, δ = ψ 3 A, α // 4.1a, b [ ] t = δ x = A, dx/dt = x = Xt x = Xt + δ t = 0 Xδ = A, dx/dt = 0 d X dt + X = αf X, dx, ωt + ωδ dt t = 0 X = A, dx/dt = 0 Xt = Xt; A, δ, ω, α 4.13 T XT ; A, δ, ω, α = A, [ ] d Xt; A, δ, ω, α dt T = a, b 4.14a,b T 4.10a-4.1b // δ parameter [ ] x y fx, y f X x, y f/ x, f Y x, y f/ y x 0, y 0 fx 0, y 0 = 0 f X x 0, y 0 f Y x 0, y 0 zere y f Y x 0, y 0 0 fx, y = y x y = F x 1 y = F x x 0 x 1 x x x fx, F x = 0, 4.16a y 0 = F x 0, b

63 58 CHAPTER 6. 3 dy dx = f Xx, y. // 4.16c f Y x, y 3 7 pp [ parameter ] x xt t: d x dt + ω x = αf x, dx dt α, ω : parameters 4.17 F x, dx/dt x <, dx/dt < x, dx/dt t = δ x = A, dx/dt = 0 T x = Xt δ, A, ω, α ω ω = φa, δ, α 4.18 α ω α 4.17 perturbation method Lindstedt 188 Poincaré 189 Lindstedt-Poincaré [ ] t = δ x = A, dx/dt = x = Xt; α, δ, A, ω 4.19 T XT ; α, δ, A, ω = A, d XT ; α, δ, A, ω = 0 4.0a, b dt T 4.18 // [ ] Duffing equation: d x dt + ω x + αx 3 = 0 x xt, t :, 0 < α 1, ω : parameter x = A, dx/dt = 0 at t = 0 58

64 4. 59 x parameter ω α x ω α x = x 0 + αx 1 + α x +, ω = ω 0 + αω 1 + α ω + x n x n t for n = 0, 1,, Duffing α d [ x dt + ω x + αx 3 = d x 0 d ] dt + x 1 ω 0x 0 + α dt + ω 0x 1 + ω 0 ω 1 x 0 + x 3 0 [ d +α x dt + ω 0x + ω 0 ω 1 x 1 + ] ω1 + ω 0 ω x0 + 3x 0x 1 + = 0 α zero x 0, x 1, x, d x 0 dt + ω 0x 0 = 0, d x 1 dt + ω 0x 1 = ω 0 ω 1 x 0 x 3 0, d x dt + ω 0x = ω 0 ω 1 x 1 ω 1 + ω 0 ω x0 3x 0x 1, x 0 x 0 x 0 = A cosω 0 t 4.1 x 1 = A d x 1 dt + ω 0x 1 = ω 0 ω 1 x 0 x 3 0 ω 0 ω 1 + 3A 4 cosω 0 t A3 4 cos3ω 0t cosω 0 t operator t sinω 0 t cosω 0 t zero solvability condition ω 1 ω 1 = 3A 8ω 0 x 1 d x 1 dt + ω 0x 1 = A3 4 cos3ω 0t 59

65 60 CHAPTER 6. : x 1 = 0, dx 1 /dt = 0 at t = 0 x 1 x 1 = A3 3ω 0 [cos3ω 0 t cosω 0 t] 4. x 1 x 0 x d x dt + ω 0x = ω 0 ω 1 x 1 ω 1 + ω 0 ω x0 3x 0x 1 = A3 ω 1 16ω 0 [cos3ω 0 t cosω 0 t] ω 1 + ω 0 ω A cosω0 t 3A5 cos ω 3ω0 0 t [cos3ω 0 t cosω 0 t] = A3 ω 1 16ω 0 [cos3ω 0 t cosω 0 t] ω 1 + ω 0 ω A cosω0 t 3A5 [cos5ω 18ω0 0 t + cos3ω 0 t cosω 0 t] cosω 0 t ω ω 0 ω = ω 1 + A ω 1 16ω 0 + 3A4 64ω 0 ω = 15A4 56ω 3 0 x = 15A4 18ω 0 d x dt + ω 0x = 3A5 cos5ω 18ω0 0 t : x = 0, dx /dt = 0 at t = 0 x x = A5 104ω 4 0 [cos5ω 0 t cosω 0 t] 4.3 x x = x 0 + αx 1 + α x + x x 1 4. x 4.3 ω ω = ω 0 + αω 1 + α ω + = ω 0 α 3A 8ω 0 α 15A4 56ω 3 0 T = π/ω A π/ω

66 4. 61 parameter α xt [ ] 1 d x dt + αdx + x = 0 0 < α 1, dt d x dt + x + αx = 0 0 < α 1 Satellite equation 61

67 Chapter 7 Lotka-Voltera [ ] x xt, y yt t: dx dt = x xy = x1 y, dy dt = y + xy = x 1y 1a, b x0 = a, y0 = b 1 x, y t > 0 1 1a x = 0 y = 1 x = 0 1b y = 0 y = 1 x = 1 0,0 1,1 u ut, v vt x = 0 + u, y = 0 + v a, b x = 1 + u, y = 1 + v 3a, b 0,0 a,b 1a,b du dt = u uv u u = C 1 expt 4a dv dt = v + uv v v = C exp t 4b C 1, C x u y v 0,0 saddle point x, y 1a,b x = 0 1a,b dx/dt = 0, dy/dt = y x = 0 1a,b y = 0 1a,b dx/dt = x, dy/dt = 0 y = 0 1a,b x, y 6

68 1 x, y t > 0 1 1,1 3a,b 1a,b du dt = 1 + u[1 1 + v] v, dv dt = u1 + v u 63 u = A 1 expit + A exp it, v = i[a 1 expit A exp it] 5a 5b A 1, A = A 1 i 1 5a,b u + v = constant 1,1 center point xt, yt dt xt + dt, yt + dt Taylor dx xt + dt = xt + dt + 1 d x dt + dt dt yt + dt = yt + dy dt + 1 dt d y dt + dt 6a,b 1a,b 3 1a,b t 1a,b xt + dt dx xt + dt = xt + dt + 1 d x dt + dt dt = xt + x1 ydt + 1 [ ] dx 1 y xdy dt + dt dt = xt + x1 ydt + 1 [ x1 y x 1xy ] dt + xt, yt 6a,b theory of dynamical system dx/dt, dy/dt flow 1a,b 1a,b 6a 6b dx = x1 y dt, dy = x 1y dt 7a, b 63

69 64 CHAPTER 7. x, y dx, dy D 4 0,0,1,1 7a,b x = 0, x = 1, y = 0, y = 1 7a,b 1 y = x 7a,b vector 1a,b 1 y y dy dt = dx dy dt dx = x 1y dy dx = x 1y x1 y dy = x 1 dx Lny y = x Lnx + constant x xy = C expx + y 8 C x0 = a, y0 = b C = ab/ expa + b > 0 1 x > 0, y > 0 xy > 0 x + y > 0 4, ,4,5 3. dx = ax bx dt 4. 1 a, b, c dx dt = ax bxy, dy dt = cy + bxy x c y a exp[ bx + y] = 3 [ ] Lotka-Voltera xt yt a by bx = 1/c 5. 1 dx dt = a bxy, 64 dy dt = cy + bxy

70 a, b, c x, y 65 [ ] xt yt xt a x y bxy cy 65

71 Chapter 8 Fourier 1 Fourier inner product a x b zero x f fx g gx f g < f, g > b a f g dx < f, g > 0 f g vector g = f < f, f > 0 fx < f, f >= 0 f 0 zero fx < f, f >> 0 f 0 f 0 / < f, f > < f 0, f 0 >= 1 normalization a x b {f n } f n f n x, n = 0, 1,,, N < f m, f n >= 0 for m n, < f m, f n >= 1 for m = n {f n } gx N gx = a n f n n=0 N J = a n < g, g > n=0 a n =< g, g > n=0 Parseval complete Parseval [ ] 0 x π sinnx n = 1,, π sinmx sinnx dx = 1 0 π 0 {cos[m nx] cos[m + nx]} dx 66

72 . FOURIER 67 = π for m = n = 0 for m n [ ] cosnx Fourier a x b x gx {cosnkx, sinnkx} n = 1,, k = π/b a gx A 0 A 0 1 b gx dx =< 1, g > b a a {cosnkx, sinnkx} gx b a gx = A 0 + [A n cosnkx + B n sinnkx] n=1 cosmkx cosnkx dx =< cosmkx, cosnkx > = b a for m = n, or = 0 for m n < sinmkx, cosnkx >= 0 for all m, n < sinmkx, sinnkx >= b a for m = n, or = 0 for m n < cosmkx, gx > { } = cosmkx, A 0 + [A n cosnkx + B n sinnkx] n=1 =< cosmkx, A m cosmkx >= A m b a A m 67

73 Chapter 9 = data = / / t data Fourier spectrum analysis data t data data Fourier 1 data Fourier data t t t data N + 1 data t j j t + t 0, f j ft j for j = 0, 1,,, N 1.1a, b t 0 t j f j data t j < t < t j+1 for j = 0, 1,,, N 1 T = N t F F t Fourier F t = [A m expiω m t + c.c.] + A M ω m π m=1 T m A m A m ω m ω m m mode 1. c.c. A m A m i 1 A M t 0 t t 0 + T F t 68

74 1. DATA FOURIER 69 Fourier 1. m M M = N t = t j [ expiω N t j = exp i π ] [ T Nj t + t 0 = exp iπ j + t ] 0 = exp iπ t 0 t t t j j = 0, 1,,, N ; data noise level M > N M = N/ M 1.3 ω M t π M N + 1 data A M, A m, A m for m = 1,,, M M +1 M +1 = N +1 M = N/ M N/ F t A M Fourier A m Fourier data {t j, f j } data {t j, f j } Fourier f j M f j = [A m expiω m t j + c.c.] + A M 1.5 m=1 1.5 t/ j = 1,,, N 1.5 t/ j = 0, 1,,, N 1 A M N N 1 t f j j=1 + t N f j j=0 = f j + f j 1 t j=1 [ N M ] [ t N 1 = A m expiω m t j + c.c. j=1 m=1 + M ] t A m expiω m t j + c.c. j=0 m=1 + A MN t { t0 +T M } = [A m expiω m t + c.c.] dt + A M T + ɛ 0 = A M T + ɛ 0 t 0 m=1 A M = 1 N f j + f j 1 t T j=1 ɛ 0 1.6a ɛ 0 ɛ 0 t, N, M f j T f 0 = f N 1.6a A M = 1 T N f j t ɛ 0 j= b

75 70 CHAPTER exp iω k t j t/ for each k; k = 1,,, M j = 1,,, N j = 0, 1,,, N 1 A k = N f j exp iω k t j t N 1 j=1 + f j exp iω k t j t j=0 { N M } = [A m expiω m t j + c.c.] + A M exp iω k t j t j=1 m=1 + N 1 j=0 { t0 +T M t 0 { M } [A m expiω m t j + c.c.] + A M exp iω k t j t m=1 } [A m expiω m t + c.c.] + A M exp iω k t dt + ɛ k = A k T + ɛ k m=1 A k = 1 T N [f j exp iω k t j + f j 1 exp iω k t j 1 ] t j=1 ɛ k for k = 1,,, M 1.7a ɛ k ɛ k t, N, M A k 1.7a T f 0 = f N 1.7a A k = 1 T N f j exp iω k t j t ɛ k for k = 1,,, M 1.7b j=1 Fourier data f ft M ft = [A m expiω m t + c.c.] + A M 1.8 m=1 ft spectrum [ ] algorithm t = t j 1.5 g j M g j [A m expiω m t j + c.c.] + A M 1.9 m=1 g j f j δ N δ g j f j 1.10 j=1 70 f j

76 . DATA 71 δ A M, A k k = 1,,, M δ A M, A k δ δ = N N g j f j g j g j gj = g j f j = 1 A M A M A M A M A M j=1 j=1 N = g j f j = a j=1 A M δ = N N g j f j g j g j = g j f j A k A k A k A k j=1 j=1 N = g j f j expiω k t j = 0 for k = 1,,, M 1.11b j=1 A k, A k j = 1,,, N 1.6a,1.7a j = 0, 1,,, N f 0, f N data data data {t j, f j } Fourier 0 t 1 ft = sinπt.1 N t = 1/N data {t j, f j } {t j, f j } = {j t, sinπj t} for j = 0, 1,,, N. data program 1 [1] M = 3, N = 10, [] M = 3, N = 0, [3] M = 5, N = 0 data computer 16 Fourier sinω 1 t Im{A 1 } zero ɛ k = 0 for k = 0, 1,, 3, 4, 5 71

77 7 CHAPTER 9. ft = sinπt /π ft = ft + T data 3 ft = sin[π t].4 T = 1/ ft T = 1 Fourier A M A k ft ft π ft = C sin T t [ ft = C + δc sin C + δc sin [ π t + δt T [ π π C + δc sin T t cos π +C + δc cos T t sin ] π T + δt t + δt ] T [ π T 1 δt T δt δtt ] t δt δtt t ] δc δt t δt data δc δc, δt, δt δt T data δt = 0 ft.5.6 ft = ft + T.7 1 data {t j, f j }.7 f j = f j+n N ft j = sinπt j f 0 = f k k k = N/ k = N k = N/.7 data ft j Df j df = 1 dt t j t f j+1 f j + O t.8a 7

78 . DATA 73 D f d f = 1 j dt t j t f j+ f j+1 + f j + O t.8b 4 π π f j = sin T t j = sin N t t j j = 0, 1,,, N,, N data N.7,.8a,b f 0 f k < t, f f 1 + f 0 t f 1 f 0 t f k+1 f k t f k+ f k+1 + f k t.9 < t.10a, b < t.10c.10a k k.10b,c T = k t data.9.10b,c data t.8a,b O t.10b,c O t ft ft + T.8a,b.10b,c noise t.10b,c noise tj+ t j tj+1 t j ft dt = t f j+1 + f j + O t.11a ft dt = t f j+ + f j+1 + f j + O t.11b.7 j = 0 j = k f 0 f k < t,.1a f 1 + f 0 t f k+1 + f k t < t.1b f k+ + f k+1 + f k t < t.1c f + f 1 + f 0 t.1a k k.1b,c T = k t.11a,b O t.1b,c O t 73

79 74 CHAPTER 9. data [ ] 1 mode mode A 1, A ω 1, ω mode ft = A 1 sinω 1 t + A sinω t.13 ω 1 ω data data Fourier ω 1 ω ft = ft + T T data N data M ω 1 /ω / / for j = 0, 1,,, N,, N

80 Chapter 10 Fourier /8.8. [ ] x N fx N fx = A n x n n=0 A n : A N x 1 fx Fourier fx Fourier fx = a 0 + [a m cosω m x + b m sinω m x] m=1 ω m = mπ m = 1,,, 1 N A n x n = a 0 + [a m cosmπx + b m sinmπx] 3 n=0 m=1 1 x 1 fx a 0 1 N { } 1 A n x n dx = a 0 + [a m cosmπx + b m sinmπx] dx 1 n=0 1 m=1 a 0 = N n=0 A n n + 1 x 1 x 1 zero n 3 coskπx k = 1,,, Fourier a k { 1 } [a m cosmπx + b m sinmπx] coskπx dx = a k 1 m=1 [ 1 N ] N = A n x n 1 a 0 coskπx dx = A n x n coskπx dx 1 n=0 n= 1 N 1 a k = A n x n coskπx dx 5 n=

81 76 CHAPTER 10. FOURIER 3 sinkπx k = 1,,, Fourier b k { 1 } [a m cosmπx + b m sinmπx] sinkπx dx = b k 1 m=1 [ 1 N ] N = A n x n 1 a 0 sinkπx dx = A n x n sinkπx dx 1 n=0 n=1 1 N 1 b k = A n x n sinkπx dx 6 n=1 1 n 5,6 cosy x 1 1 cosy x dx = Y siny 7 Y parameter Y = kπ 7 Y Y 1 1 cosy x dx = 1 1 x siny x dx = Y [ Y siny ] [ ] x n cosy x dx = 1 n/ n Y n Y siny [ ] x n siny x dx = 1 n+1/ n Y n Y siny n : 8a n : 8b a k, b k k = 1,,, a k = b k = N n=1 N n= A n 1 n/ { n Y n A n 1 n+1/ { n Y n [ 1 Y siny ] } 9a,b = m=0 [ 1 Y siny ] } Y =kπ Y =kπ n [ ] 1 n Y n Y siny m n m 1 = nc m [siny ] m=0 Y m Y n m Y { n nc m 1 m/ siny 1 n m n m! Y n+m 1 m : nc m 1 m+3/ cosy 1 n m n m! Y n+m 1 m : Y = kπ { n [ ] } 1 Y siny 9a 9b Y n Y =kπ 76

82 = n m=1 nc m 1 m+3/ coskπ 1 n m n m! kπ n+m 1 = n m=1 10 9a,b a k = b k = N n= N n=1 77 n! m! 1n m+3/ coskπkπ n+m 1 10 A n [ n m=1 A n [ n m=1 ] n! m! 13n m+3/ kπ n+m 1 coskπ ] n! m! 13n m+4/ kπ n+m 1 coskπ 11a,b,4 fx Fourier 11a 11b [ ] [1] 1 x 1 x 3 Fourier [] 1 x 1 x 4 Fourier [3] c x c c : c > 0 N Fourier N fx = B n x n n=0 [1] 1 x 1 x 3 Fourier N = 3, A 0 = A 1 = A = 0, A 3 = 1 Fourier n=1 m=1 a 0 = N n=0 A n n + 1 = 0 [ N n ] n! a k = A n n= m=1 m! 13n m+3/ kπ n+m 1 coskπ = 0 [ N n ] n! b k = A n m! 13n m+4/ kπ n+m 1 coskπ [ 3 ] 3! = m! 11 m/ kπ 4+m coskπ m=1 = 1 kπ [ 1 kπ 1 ] coskπ 3! [] 1 x 1 x 4 Fourier 77

83 78 CHAPTER 10. FOURIER N = 4, A 0 = A 1 = A = A 3 = 0, A 4 = 1 Fourier N A n a 0 = n=0 n + 1 = 1 5 [ N n ] n! a k = A n n= m=1 m! 13n m+3/ kπ n+m 1 coskπ [ 4 ] 4! = m=1 m! 1 m+3/ kπ 5+m coskπ = 48 [ 1 kπ kπ 1 ] coskπ 3! [ N n ] n! b k = A n m! 13n m+4/ kπ n+m 1 coskπ = 0 n=1 m=1 [3] c x c c : c > 0 N N fx = B n x n n=0 Fourier y = x/c, A n = B n c n fx y N N fx = B n x n = A n y n = fy n=0 n=0 Fourier a k = b k = N n= N n=1 A n [ n m=1 A n [ n m=1 a 0 = N n=0 A n n + 1 ] n! m! 13n m+3/ kπ n+m 1 coskπ ] n! m! 13n m+4/ kπ n+m 1 coskπ Fourier fy = a 0 + [a m cosmπy + b m sinmπy] m=1 78

84 Chapter 11 line of swiftest descent m g = [m/sec ] P 0 P 1 x y x, y P 0 P 1 x 1, y 1 x 1 > 0, y 1 > 0 x P, y P x P x P t, y P y P t, t : energy E E = m dxp dyp + mgx P = constant 1.1 dt dt t = 0 P 0 zero E = 0 t > 0 q qt q > 0 dxp dyp q = + = gx P 1. dt dt y yx ds q ds = qdt y y P = yx P ds = 1 + dyp dx P dx P 1.3 P 0 P 1 T x1 1 dyp T = 1 + dx P = 1 x1 f dx P q dx P g 0 f f f x P, dy P dx P = 1 xp 79 dyp 1 + dx P 1.5

85 80 CHAPTER 11. LINE OF SWIFTEST DESCENT T T 1 zero 1.4 f Euler d dx P f P P = f y P where P P dy P dx P f/ y P = f = 1 dy P P P xp dx P 1 + dyp dx P 1/ = constant = 1 A A : A dy P = dyp x P 1 + dx P dx P dy P xp = ± 1.7 dx P A x P y P = yx P 1.7 0,0 x P, y P xp 0 dy xp P xp dx P = dx dx P 0 A P 1.8 x P x P = A 1 cos θ y P = A θ sin θ ,1.10 line of swiftest descent x 1, y 1 1.9,1.10 θ 1 x 1 = A 1 cos θ 1 y 1 = A θ 1 sin θ a, b θ 1 θ 1 sin θ 1 = y 1 x 1 1 cos θ θ 1 = 0 θ 1 > a 1.11b A θ θ 1 θ θ = y [ ] x 1 θ

86 θ 1 θ 1 3 y 1 x 1 81 = 0 θ 1 = 0, θ 1 = 3 y 1 x a, b y 1 /x 1 1 θ 1 1 θ 1 = 3y 1 /x 1 y 1 /x 1 1 θ 1 = α + β α π β β β α + β β 1 6 β3 + = y [ ] x 1 β + β = x 1 y 1 α β = ± x 1 y 1 α 1.14 [ ] 1.9, b,1.14 [ ] P 0 0, 0 P 1 x 1, y 1 L y yx L = x1 0 dy 1 + dx dx [ ] P 1 x 1, y 1 P x, y x 1 < x, y 1 > 0, y > 0 y yx x S yx x dy S = π y 1 + dx x 1 dx [ ] Fermat [3 ] f fy, P = y 1 + P y yx, P dy dx S x S = π fy, P dx x 1 S yx f Euler Euler d f = f dx P y 81

87 8 CHAPTER 11. LINE OF SWIFTEST DESCENT d dx f P = yp 1 + P 1/ f = P + y dp P dx P + y dp dx f y = 1 + P 1 + P 1/ yp dp dx 1 + P 3/ 1 + P yp dp dx = 1 + P y dp dx = 1 + P yp dp dy = 1 + P Euler P dp 1 + P = dy 1 + P y = ay a : P = dy dx = ± a y 1 ay = coshz dy dx = dz sinhz dx a = a y 1 = sinhz dz = adx z = ax + b b : ay = coshz = coshax + b Euler catenary catenoid y = y 1 at x = x 1 y = y at x = x ay 1 = coshax 1 + b = coshax 1 coshb + sinhax 1 sinhb ay = coshax + b = coshax coshb + sinhax sinhb coshb sinhb coshb = ay 1 sinhax ay sinhax 1 sinh[ax x 1 ] sinhb = ay coshax 1 ay 1 coshax sinh[ax x 1 ] cosh b sinh b = 1 [ay 1 sinhax ay sinhax 1 ] [ay coshax 1 ay 1 coshax ] = sinh [ax x 1 ] 8

88 83 ay 1 ay + ay 1 ay cosh[ax x 1 ] = sinh [ax x 1 ] Z = cosh[ax x 1 ] Z Z 1 Z Z ay 1 ay Z + ay 1 + ay 1 = 0 3 ax x 1, ay 1, ay Z = ay 1 ay ± ay 1 ay ay 1 ay + 1 cosh[ax x 1 ] = ay 1 ay ± [ay 1 1][ay 1] x 1 = c c :, c > 0 x = c y 1 = y = A A :, A > 0 u ac B A/c coshu = ub ± [ub 1] coshu = 1 u = 0 coshu = ub 1 cosh u = ub coshu = ub B = 1 u coshu coshu/u u [ ] d 1 du u coshu = 1 u sinhu 1 coshu = 0 u = cothu u u = u 0 u 0 B B 1 u 0 coshu 0 = sinhu B < sinhu 0 ub = coshu B sinhu 0 B u B = 1 u coshu u 1, u u u x = x 1 = c, y 1 = y = A b = 0 aa = coshac ub = coshu ay = coshax S S c dy S = π y 1 + dx = π c dx a 83 u u coshz 1 + sinh z dz

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y [ ] 7 0.1 2 2 + y = t sin t IC ( 9) ( s090101) 0.2 y = d2 y 2, y = x 3 y + y 2 = 0 (2) y + 2y 3y = e 2x 0.3 1 ( y ) = f x C u = y x ( 15) ( s150102) [ ] y/x du x = Cexp f(u) u (2) x y = xey/x ( 16) ( s160101)

More information

y π π O π x 9 s94.5 y dy dx. y = x + 3 y = x logx + 9 s9.6 z z x, z y. z = xy + y 3 z = sinx y 9 s x dx π x cos xdx 9 s93.8 a, fx = e x ax,. a =

y π π O π x 9 s94.5 y dy dx. y = x + 3 y = x logx + 9 s9.6 z z x, z y. z = xy + y 3 z = sinx y 9 s x dx π x cos xdx 9 s93.8 a, fx = e x ax,. a = [ ] 9 IC. dx = 3x 4y dt dy dt = x y u xt = expλt u yt λ u u t = u u u + u = xt yt 6 3. u = x, y, z = x + y + z u u 9 s9 grad u ux, y, z = c c : grad u = u x i + u y j + u k i, j, k z x, y, z grad u v =

More information

211 kotaro@math.titech.ac.jp 1 R *1 n n R n *2 R n = {(x 1,..., x n ) x 1,..., x n R}. R R 2 R 3 R n R n R n D D R n *3 ) (x 1,..., x n ) f(x 1,..., x n ) f D *4 n 2 n = 1 ( ) 1 f D R n f : D R 1.1. (x,

More information

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) II 214-1 : October 2, 214 Version : 1.1 Kawahira, Tomoki TA (Kondo, Hirotaka ) http://www.math.nagoya-u.ac.jp/~kawahira/courses/14w-biseki.html pdf 1 2 1 9 1 16 1 23 1 3 11 6 11 13 11 2 11 27 12 4 12 11

More information

K E N Z OU

K E N Z OU K E N Z OU 11 1 1 1.1..................................... 1.1.1............................ 1.1..................................................................................... 4 1.........................................

More information

December 28, 2018

December 28, 2018 e-mail : kigami@i.kyoto-u.ac.jp December 28, 28 Contents 2............................. 3.2......................... 7.3..................... 9.4................ 4.5............. 2.6.... 22 2 36 2..........................

More information

i 6 3 ii 3 7 8 9 3 6 iii 5 8 5 3 7 8 v...................................................... 5.3....................... 7 3........................ 3.................3.......................... 8 3 35

More information

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2 No.2 1 2 2 δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i δx j (5) δs 2 = δx i δx i + 2 u i δx i δx j = δs 2 + 2s ij δx i δx j

More information

( 12 ( ( ( ( Levi-Civita grad div rot ( ( = 4 : 6 3 1 1.1 f(x n f (n (x, d n f(x (1.1 dxn f (2 (x f (x 1.1 f(x = e x f (n (x = e x d dx (fg = f g + fg (1.2 d dx d 2 dx (fg = f g + 2f g + fg 2... d n n

More information

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d S I.. http://ayapin.film.s.dendai.ac.jp/~matuda /TeX/lecture.html PDF PS.................................... 3.3.................... 9.4................5.............. 3 5. Laplace................. 5....

More information

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,. 9 α ν β Ξ ξ Γ γ o δ Π π ε ρ ζ Σ σ η τ Θ θ Υ υ ι Φ φ κ χ Λ λ Ψ ψ µ Ω ω Def, Prop, Th, Lem, Note, Remark, Ex,, Proof, R, N, Q, C [a, b {x R : a x b} : a, b {x R : a < x < b} : [a, b {x R : a x < b} : a,

More information

IA hara@math.kyushu-u.ac.jp Last updated: January,......................................................................................................................................................................................

More information

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt S I. x yx y y, y,. F x, y, y, y,, y n http://ayapin.film.s.dendai.ac.jp/~matuda n /TeX/lecture.html PDF PS yx.................................... 3.3.................... 9.4................5..............

More information

B 38 1 (x, y), (x, y, z) (x 1, x 2 ) (x 1, x 2, x 3 ) 2 : x 2 + y 2 = 1. (parameter) x = cos t, y = sin t. y = f(x) r(t) = (x(t), y(t), z(t)), a t b.

B 38 1 (x, y), (x, y, z) (x 1, x 2 ) (x 1, x 2, x 3 ) 2 : x 2 + y 2 = 1. (parameter) x = cos t, y = sin t. y = f(x) r(t) = (x(t), y(t), z(t)), a t b. 2009 7 9 1 2 2 2 3 6 4 9 5 14 6 18 7 23 8 25 9 26 10 29 11 32 12 35 A 37 1 B 38 1 (x, y), (x, y, z) (x 1, x 2 ) (x 1, x 2, x 3 ) 2 : x 2 + y 2 = 1. (parameter) x = cos t, y = sin t. y = f(x) r(t) = (x(t),

More information

2019 1 5 0 3 1 4 1.1.................... 4 1.1.1......................... 4 1.1.2........................ 5 1.1.3................... 5 1.1.4........................ 6 1.1.5......................... 6 1.2..........................

More information

構造と連続体の力学基礎

構造と連続体の力学基礎 II 37 Wabash Avenue Bridge, Illinois 州 Winnipeg にある歩道橋 Esplanade Riel 橋6 6 斜張橋である必要は多分無いと思われる すぐ横に道路用桁橋有り しかも塔基部のレストランは 8 年には営業していなかった 9 9. 9.. () 97 [3] [5] k 9. m w(t) f (t) = f (t) + mg k w(t) Newton

More information

i

i i 3 4 4 7 5 6 3 ( ).. () 3 () (3) (4) /. 3. 4/3 7. /e 8. a > a, a = /, > a >. () a >, a =, > a > () a > b, a = b, a < b. c c n a n + b n + c n 3c n..... () /3 () + (3) / (4) /4 (5) m > n, a b >, m > n,

More information

M3 x y f(x, y) (= x) (= y) x + y f(x, y) = x + y + *. f(x, y) π y f(x, y) x f(x + x, y) f(x, y) lim x x () f(x,y) x 3 -

M3 x y f(x, y) (= x) (= y) x + y f(x, y) = x + y + *. f(x, y) π y f(x, y) x f(x + x, y) f(x, y) lim x x () f(x,y) x 3 - M3............................................................................................ 3.3................................................... 3 6........................................... 6..........................................

More information

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT I (008 4 0 de Broglie (de Broglie p λ k h Planck ( 6.63 0 34 Js p = h λ = k ( h π : Dirac k B Boltzmann (.38 0 3 J/K T U = 3 k BT ( = λ m k B T h m = 0.067m 0 m 0 = 9. 0 3 kg GaAs( a T = 300 K 3 fg 07345

More information

x = a 1 f (a r, a + r) f(a) r a f f(a) 2 2. (a, b) 2 f (a, b) r f(a, b) r (a, b) f f(a, b)

x = a 1 f (a r, a + r) f(a) r a f f(a) 2 2. (a, b) 2 f (a, b) r f(a, b) r (a, b) f f(a, b) 2011 I 2 II III 17, 18, 19 7 7 1 2 2 2 1 2 1 1 1.1.............................. 2 1.2 : 1.................... 4 1.2.1 2............................... 5 1.3 : 2.................... 5 1.3.1 2.....................................

More information

i

i 009 I 1 8 5 i 0 1 0.1..................................... 1 0.................................................. 1 0.3................................. 0.4........................................... 3

More information

pdf

pdf http://www.ns.kogakuin.ac.jp/~ft13389/lecture/physics1a2b/ pdf I 1 1 1.1 ( ) 1. 30 m µm 2. 20 cm km 3. 10 m 2 cm 2 4. 5 cm 3 km 3 5. 1 6. 1 7. 1 1.2 ( ) 1. 1 m + 10 cm 2. 1 hr + 6400 sec 3. 3.0 10 5 kg

More information

B ver B

B ver B B ver. 2017.02.24 B Contents 1 11 1.1....................... 11 1.1.1............. 11 1.1.2.......................... 12 1.2............................. 14 1.2.1................ 14 1.2.2.......................

More information

Untitled

Untitled II 14 14-7-8 8/4 II (http://www.damp.tottori-u.ac.jp/~ooshida/edu/fluid/) [ (3.4)] Navier Stokes [ 6/ ] Navier Stokes 3 [ ] Reynolds [ (4.6), (45.8)] [ p.186] Navier Stokes I 1 balance law t (ρv i )+ j

More information

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0 1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0 0 < t < τ I II 0 No.2 2 C x y x y > 0 x 0 x > b a dx

More information

x x x 2, A 4 2 Ax.4 A A A A λ λ 4 λ 2 A λe λ λ2 5λ + 6 0,...λ 2, λ 2 3 E 0 E 0 p p Ap λp λ 2 p 4 2 p p 2 p { 4p 2 2p p + 2 p, p 2 λ {

x x x 2, A 4 2 Ax.4 A A A A λ λ 4 λ 2 A λe λ λ2 5λ + 6 0,...λ 2, λ 2 3 E 0 E 0 p p Ap λp λ 2 p 4 2 p p 2 p { 4p 2 2p p + 2 p, p 2 λ { K E N Z OU 2008 8. 4x 2x 2 2 2 x + x 2. x 2 2x 2, 2 2 d 2 x 2 2.2 2 3x 2... d 2 x 2 5 + 6x 0 2 2 d 2 x 2 + P t + P 2tx Qx x x, x 2 2 2 x 2 P 2 tx P tx 2 + Qx x, x 2. d x 4 2 x 2 x x 2.3 x x x 2, A 4 2

More information

5.. z = f(x, y) y y = b f x x g(x) f(x, b) g x ( ) A = lim h 0 g(a + h) g(a) h g(x) a A = g (a) = f x (a, b)

5.. z = f(x, y) y y = b f x x g(x) f(x, b) g x ( ) A = lim h 0 g(a + h) g(a) h g(x) a A = g (a) = f x (a, b) 5 partial differentiation (total) differentiation 5. z = f(x, y) (a, b) A = lim h 0 f(a + h, b) f(a, b) h............................................................... ( ) f(x, y) (a, b) x A (a, b) x

More information

2011de.dvi

2011de.dvi 211 ( 4 2 1. 3 1.1............................... 3 1.2 1- -......................... 13 1.3 2-1 -................... 19 1.4 3- -......................... 29 2. 37 2.1................................ 37

More information

Introduction to Numerical Analysis of Differential Equations Naoya Enomoto (Kyoto.univ.Dept.Science(math))

Introduction to Numerical Analysis of Differential Equations Naoya Enomoto (Kyoto.univ.Dept.Science(math)) Introduction to Numerical Analysis of Differential Equations Naoya Enomoto (Kyoto.univ.Dept.Science(math)) 2001 1 e-mail:s00x0427@ip.media.kyoto-u.ac.jp 1 1 Van der Pol 1 1 2 2 Bergers 2 KdV 2 1 5 1.1........................................

More information

( ) ( )

( ) ( ) 20 21 2 8 1 2 2 3 21 3 22 3 23 4 24 5 25 5 26 6 27 8 28 ( ) 9 3 10 31 10 32 ( ) 12 4 13 41 0 13 42 14 43 0 15 44 17 5 18 6 18 1 1 2 2 1 2 1 0 2 0 3 0 4 0 2 2 21 t (x(t) y(t)) 2 x(t) y(t) γ(t) (x(t) y(t))

More information

1W II K =25 A (1) office(a439) (2) A4 etc. 12:00-13:30 Cafe David 1 2 TA appointment Cafe D

1W II K =25 A (1) office(a439) (2) A4 etc. 12:00-13:30 Cafe David 1 2 TA  appointment Cafe D 1W II K200 : October 6, 2004 Version : 1.2, kawahira@math.nagoa-u.ac.jp, http://www.math.nagoa-u.ac.jp/~kawahira/courses.htm TA M1, m0418c@math.nagoa-u.ac.jp TA Talor Jacobian 4 45 25 30 20 K2-1W04-00

More information

08-Note2-web

08-Note2-web r(t) t r(t) O v(t) = dr(t) dt a(t) = dv(t) dt = d2 r(t) dt 2 r(t), v(t), a(t) t dr(t) dt r(t) =(x(t),y(t),z(t)) = d 2 r(t) dt 2 = ( dx(t) dt ( d 2 x(t) dt 2, dy(t), dz(t) dt dt ), d2 y(t) dt 2, d2 z(t)

More information

Part () () Γ Part ,

Part () () Γ Part , Contents a 6 6 6 6 6 6 6 7 7. 8.. 8.. 8.3. 8 Part. 9. 9.. 9.. 3. 3.. 3.. 3 4. 5 4.. 5 4.. 9 4.3. 3 Part. 6 5. () 6 5.. () 7 5.. 9 5.3. Γ 3 6. 3 6.. 3 6.. 3 6.3. 33 Part 3. 34 7. 34 7.. 34 7.. 34 8. 35

More information

(u(x)v(x)) = u (x)v(x) + u(x)v (x) ( ) u(x) = u (x)v(x) u(x)v (x) v(x) v(x) 2 y = g(t), t = f(x) y = g(f(x)) dy dx dy dx = dy dt dt dx., y, f, g y = f (g(x))g (x). ( (f(g(x)). ). [ ] y = e ax+b (a, b )

More information

1. (8) (1) (x + y) + (x + y) = 0 () (x + y ) 5xy = 0 (3) (x y + 3y 3 ) (x 3 + xy ) = 0 (4) x tan y x y + x = 0 (5) x = y + x + y (6) = x + y 1 x y 3 (

1. (8) (1) (x + y) + (x + y) = 0 () (x + y ) 5xy = 0 (3) (x y + 3y 3 ) (x 3 + xy ) = 0 (4) x tan y x y + x = 0 (5) x = y + x + y (6) = x + y 1 x y 3 ( 1 1.1 (1) (1 + x) + (1 + y) = 0 () x + y = 0 (3) xy = x (4) x(y + 3) + y(y + 3) = 0 (5) (a + y ) = x ax a (6) x y 1 + y x 1 = 0 (7) cos x + sin x cos y = 0 (8) = tan y tan x (9) = (y 1) tan x (10) (1 +

More information

2.2 ( y = y(x ( (x 0, y 0 y (x 0 (y 0 = y(x 0 y = y(x ( y (x 0 = F (x 0, y(x 0 = F (x 0, y 0 (x 0, y 0 ( (x 0, y 0 F (x 0, y 0 xy (x, y (, F (x, y ( (

2.2 ( y = y(x ( (x 0, y 0 y (x 0 (y 0 = y(x 0 y = y(x ( y (x 0 = F (x 0, y(x 0 = F (x 0, y 0 (x 0, y 0 ( (x 0, y 0 F (x 0, y 0 xy (x, y (, F (x, y ( ( (. x y y x f y = f(x y x y = y(x y x y dx = d dx y(x = y (x = f (x y = y(x x ( (differential equation ( + y 2 dx + xy = 0 dx = xy + y 2 2 2 x y 2 F (x, y = xy + y 2 y = y(x x x xy(x = F (x, y(x + y(x 2

More information

II (10 4 ) 1. p (x, y) (a, b) ε(x, y; a, b) 0 f (x, y) f (a, b) A, B (6.5) y = b f (x, b) f (a, b) x a = A + ε(x, b; a, b) x a 2 x a 0 A = f x (

II (10 4 ) 1. p (x, y) (a, b) ε(x, y; a, b) 0 f (x, y) f (a, b) A, B (6.5) y = b f (x, b) f (a, b) x a = A + ε(x, b; a, b) x a 2 x a 0 A = f x ( II (1 4 ) 1. p.13 1 (x, y) (a, b) ε(x, y; a, b) f (x, y) f (a, b) A, B (6.5) y = b f (x, b) f (a, b) x a = A + ε(x, b; a, b) x a x a A = f x (a, b) y x 3 3y 3 (x, y) (, ) f (x, y) = x + y (x, y) = (, )

More information

5. [1 ] 1 [], u(x, t) t c u(x, t) x (5.3) ξ x + ct, η x ct (5.4),u(x, t) ξ, η u(ξ, η), ξ t,, ( u(ξ,η) ξ η u(x, t) t ) u(x, t) { ( u(ξ, η) c t ξ ξ { (

5. [1 ] 1 [], u(x, t) t c u(x, t) x (5.3) ξ x + ct, η x ct (5.4),u(x, t) ξ, η u(ξ, η), ξ t,, ( u(ξ,η) ξ η u(x, t) t ) u(x, t) { ( u(ξ, η) c t ξ ξ { ( 5 5.1 [ ] ) d f(t) + a d f(t) + bf(t) : f(t) 1 dt dt ) u(x, t) c u(x, t) : u(x, t) t x : ( ) ) 1 : y + ay, : y + ay + by : ( ) 1 ) : y + ay, : yy + ay 3 ( ): ( ) ) : y + ay, : y + ay b [],,, [ ] au xx

More information

A

A A 2563 15 4 21 1 3 1.1................................................ 3 1.2............................................. 3 2 3 2.1......................................... 3 2.2............................................

More information

δ ij δ ij ˆx ˆx ŷ ŷ ẑ ẑ 0, ˆx ŷ ŷ ˆx ẑ, ŷ ẑ ẑ ŷ ẑ, ẑ ˆx ˆx ẑ ŷ, a b a x ˆx + a y ŷ + a z ẑ b x ˆx + b

δ ij δ ij ˆx ˆx ŷ ŷ ẑ ẑ 0, ˆx ŷ ŷ ˆx ẑ, ŷ ẑ ẑ ŷ ẑ, ẑ ˆx ˆx ẑ ŷ, a b a x ˆx + a y ŷ + a z ẑ b x ˆx + b 23 2 2.1 n n r x, y, z ˆx ŷ ẑ 1 a a x ˆx + a y ŷ + a z ẑ 2.1.1 3 a iˆx i. 2.1.2 i1 i j k e x e y e z 3 a b a i b i i 1, 2, 3 x y z ˆx i ˆx j δ ij, 2.1.3 n a b a i b i a i b i a x b x + a y b y + a z b

More information

25 7 18 1 1 1.1 v.s............................. 1 1.1.1.................................. 1 1.1.2................................. 1 1.1.3.................................. 3 1.2................... 3

More information

x,, z v = (, b, c) v v 2 + b 2 + c 2 x,, z 1 i = (1, 0, 0), j = (0, 1, 0), k = (0, 0, 1) v 1 = ( 1, b 1, c 1 ), v 2 = ( 2, b 2, c 2 ) v

x,, z v = (, b, c) v v 2 + b 2 + c 2 x,, z 1 i = (1, 0, 0), j = (0, 1, 0), k = (0, 0, 1) v 1 = ( 1, b 1, c 1 ), v 2 = ( 2, b 2, c 2 ) v 12 -- 1 4 2009 9 4-1 4-2 4-3 4-4 4-5 4-6 4-7 4-8 4-9 4-10 c 2011 1/(13) 4--1 2009 9 3 x,, z v = (, b, c) v v 2 + b 2 + c 2 x,, z 1 i = (1, 0, 0), j = (0, 1, 0), k = (0, 0, 1) v 1 = ( 1, b 1, c 1 ), v 2

More information

[ ] 0.1 lim x 0 e 3x 1 x IC ( 11) ( s114901) 0.2 (1) y = e 2x (x 2 + 1) (2) y = x/(x 2 + 1) 0.3 dx (1) 1 4x 2 (2) e x sin 2xdx (3) sin 2 xdx ( 11) ( s

[ ] 0.1 lim x 0 e 3x 1 x IC ( 11) ( s114901) 0.2 (1) y = e 2x (x 2 + 1) (2) y = x/(x 2 + 1) 0.3 dx (1) 1 4x 2 (2) e x sin 2xdx (3) sin 2 xdx ( 11) ( s [ ]. lim e 3 IC ) s49). y = e + ) ) y = / + ).3 d 4 ) e sin d 3) sin d ) s49) s493).4 z = y z z y s494).5 + y = 4 =.6 s495) dy = 3e ) d dy d = y s496).7 lim ) lim e s49).8 y = e sin ) y = sin e 3) y =

More information

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202E646F63>

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202E646F63> 常微分方程式の局所漸近解析 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/007651 このサンプルページの内容は, 初版 1 刷発行当時のものです. i Leibniz ydy = y 2 /2 1675 11 11 [6] 100 Bernoulli Riccati 19 Fuchs

More information

第1章 微分方程式と近似解法

第1章 微分方程式と近似解法 April 12, 2018 1 / 52 1.1 ( ) 2 / 52 1.2 1.1 1.1: 3 / 52 1.3 Poisson Poisson Poisson 1 d {2, 3} 4 / 52 1 1.3.1 1 u,b b(t,x) u(t,x) x=0 1.1: 1 a x=l 1.1 1 (0, t T ) (0, l) 1 a b : (0, t T ) (0, l) R, u

More information

II 2 II

II 2 II II 2 II 2005 yugami@cc.utsunomiya-u.ac.jp 2005 4 1 1 2 5 2.1.................................... 5 2.2................................. 6 2.3............................. 6 2.4.................................

More information

C : q i (t) C : q i (t) q i (t) q i(t) q i(t) q i (t)+δq i (t) (2) δq i (t) δq i (t) C, C δq i (t 0 )0, δq i (t 1 ) 0 (3) δs S[C ] S[C] t1 t 0 t1 t 0

C : q i (t) C : q i (t) q i (t) q i(t) q i(t) q i (t)+δq i (t) (2) δq i (t) δq i (t) C, C δq i (t 0 )0, δq i (t 1 ) 0 (3) δs S[C ] S[C] t1 t 0 t1 t 0 1 2003 4 24 ( ) 1 1.1 q i (i 1,,N) N [ ] t t 0 q i (t 0 )q 0 i t 1 q i (t 1 )q 1 i t 0 t t 1 t t 0 q 0 i t 1 q 1 i S[q(t)] t1 t 0 L(q(t), q(t),t)dt (1) S[q(t)] L(q(t), q(t),t) q 1.,q N q 1,, q N t C :

More information

振動と波動

振動と波動 Report JS0.5 J Simplicity February 4, 2012 1 J Simplicity HOME http://www.jsimplicity.com/ Preface 2 Report 2 Contents I 5 1 6 1.1..................................... 6 1.2 1 1:................ 7 1.3

More information

1 filename=mathformula tex 1 ax 2 + bx + c = 0, x = b ± b 2 4ac, (1.1) 2a x 1 + x 2 = b a, x 1x 2 = c a, (1.2) ax 2 + 2b x + c = 0, x = b ± b 2

1 filename=mathformula tex 1 ax 2 + bx + c = 0, x = b ± b 2 4ac, (1.1) 2a x 1 + x 2 = b a, x 1x 2 = c a, (1.2) ax 2 + 2b x + c = 0, x = b ± b 2 filename=mathformula58.tex ax + bx + c =, x = b ± b 4ac, (.) a x + x = b a, x x = c a, (.) ax + b x + c =, x = b ± b ac. a (.3). sin(a ± B) = sin A cos B ± cos A sin B, (.) cos(a ± B) = cos A cos B sin

More information

all.dvi

all.dvi 5,, Euclid.,..,... Euclid,.,.,, e i (i =,, ). 6 x a x e e e x.:,,. a,,. a a = a e + a e + a e = {e, e, e } a (.) = a i e i = a i e i (.) i= {a,a,a } T ( T ),.,,,,. (.),.,...,,. a 0 0 a = a 0 + a + a 0

More information

20 6 4 1 4 1.1 1.................................... 4 1.1.1.................................... 4 1.1.2 1................................ 5 1.2................................... 7 1.2.1....................................

More information

webkaitou.dvi

webkaitou.dvi ( c Akir KANEKO) ).. m. l s = lθ m d s dt = mg sin θ d θ dt = g l sinθ θ l θ mg. d s dt xy t ( d x dt, d y dt ) t ( mg sin θ cos θ, sin θ sin θ). (.) m t ( d x dt, d y dt ) = t ( mg sin θ cos θ, mg sin

More information

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x [ ] IC. f(x) = e x () f(x) f (x) () lim f(x) lim f(x) x + x (3) lim f(x) lim f(x) x + x (4) y = f(x) ( ) ( s46). < a < () a () lim a log xdx a log xdx ( ) n (3) lim log k log n n n k=.3 z = log(x + y ),

More information

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202E646F63>

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202E646F63> 電気電子数学入門 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/073471 このサンプルページの内容は, 初版 1 刷発行当時のものです. i 14 (tool) [ ] IT ( ) PC (EXCEL) HP() 1 1 4 15 3 010 9 ii 1... 1 1.1 1 1.

More information

2S III IV K A4 12:00-13:30 Cafe David 1 2 TA 1 appointment Cafe David K2-2S04-00 : C

2S III IV K A4 12:00-13:30 Cafe David 1 2 TA 1  appointment Cafe David K2-2S04-00 : C 2S III IV K200 : April 16, 2004 Version : 1.1 TA M2 TA 1 10 2 n 1 ɛ-δ 5 15 20 20 45 K2-2S04-00 : C 2S III IV K200 60 60 74 75 89 90 1 email 3 4 30 A4 12:00-13:30 Cafe David 1 2 TA 1 email appointment Cafe

More information

I 1

I 1 I 1 1 1.1 1. 3 m = 3 1 7 µm. cm = 1 4 km 3. 1 m = 1 1 5 cm 4. 5 cm 3 = 5 1 15 km 3 5. 1 = 36 6. 1 = 8.64 1 4 7. 1 = 3.15 1 7 1 =3 1 7 1 3 π 1. 1. 1 m + 1 cm = 1.1 m. 1 hr + 64 sec = 1 4 sec 3. 3. 1 5 kg

More information

simx simxdx, cosxdx, sixdx 6.3 px m m + pxfxdx = pxf x p xf xdx = pxf x p xf x + p xf xdx 7.4 a m.5 fx simxdx 8 fx fx simxdx = πb m 9 a fxdx = πa a =

simx simxdx, cosxdx, sixdx 6.3 px m m + pxfxdx = pxf x p xf xdx = pxf x p xf x + p xf xdx 7.4 a m.5 fx simxdx 8 fx fx simxdx = πb m 9 a fxdx = πa a = II 6 ishimori@phys.titech.ac.jp 6.. 5.4.. f Rx = f Lx = fx fx + lim = lim x x + x x f c = f x + x < c < x x x + lim x x fx fx x x = lim x x f c = f x x < c < x cosmx cosxdx = {cosm x + cosm + x} dx = [

More information

23 7 28 i i 1 1 1.1................................... 2 1.2............................... 3 1.2.1.................................... 3 1.2.2............................... 4 1.2.3 SI..............................

More information

1/1 lim f(x, y) (x,y) (a,b) ( ) ( ) lim limf(x, y) lim lim f(x, y) x a y b y b x a ( ) ( ) xy x lim lim lim lim x y x y x + y y x x + y x x lim x x 1

1/1 lim f(x, y) (x,y) (a,b) ( ) ( ) lim limf(x, y) lim lim f(x, y) x a y b y b x a ( ) ( ) xy x lim lim lim lim x y x y x + y y x x + y x x lim x x 1 1/5 ( ) Taylor ( 7.1) (x, y) f(x, y) f(x, y) x + y, xy, e x y,... 1 R {(x, y) x, y R} f(x, y) x y,xy e y log x,... R {(x, y, z) (x, y),z f(x, y)} R 3 z 1 (x + y ) z ax + by + c x 1 z ax + by + c y x +

More information

1 nakayama/print/ Def (Definition ) Thm (Theorem ) Prop (Proposition ) Lem (Lemma ) Cor (Corollary ) 1. (1) A, B (2) ABC

1   nakayama/print/ Def (Definition ) Thm (Theorem ) Prop (Proposition ) Lem (Lemma ) Cor (Corollary ) 1. (1) A, B (2) ABC 1 http://www.gem.aoyama.ac.jp/ nakayama/print/ Def (Definition ) Thm (Theorem ) Prop (Proposition ) Lem (Lemma ) Cor (Corollary ) 1. (1) A, B (2) ABC r 1 A B B C C A (1),(2),, (8) A, B, C A,B,C 2 1 ABC

More information

.5 z = a + b + c n.6 = a sin t y = b cos t dy d a e e b e + e c e e e + e 3 s36 3 a + y = a, b > b 3 s363.7 y = + 3 y = + 3 s364.8 cos a 3 s365.9 y =,

.5 z = a + b + c n.6 = a sin t y = b cos t dy d a e e b e + e c e e e + e 3 s36 3 a + y = a, b > b 3 s363.7 y = + 3 y = + 3 s364.8 cos a 3 s365.9 y =, [ ] IC. r, θ r, θ π, y y = 3 3 = r cos θ r sin θ D D = {, y ; y }, y D r, θ ep y yddy D D 9 s96. d y dt + 3dy + y = cos t dt t = y = e π + e π +. t = π y =.9 s6.3 d y d + dy d + y = y =, dy d = 3 a, b

More information

6. Euler x

6. Euler x ...............................................................................3......................................... 4.4................................... 5.5......................................

More information

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google I4 - : April, 4 Version :. Kwhir, Tomoki TA (Kondo, Hirotk) Google http://www.mth.ngoy-u.c.jp/~kwhir/courses/4s-biseki.html pdf 4 4 4 4 8 e 5 5 9 etc. 5 6 6 6 9 n etc. 6 6 6 3 6 3 7 7 etc 7 4 7 7 8 5 59

More information

A 2008 10 (2010 4 ) 1 1 1.1................................. 1 1.2..................................... 1 1.3............................ 3 1.3.1............................. 3 1.3.2..................................

More information

v er.1/ c /(21)

v er.1/ c /(21) 12 -- 1 1 2009 1 17 1-1 1-2 1-3 1-4 2 2 2 1-5 1 1-6 1 1-7 1-1 1-2 1-3 1-4 1-5 1-6 1-7 c 2011 1/(21) 12 -- 1 -- 1 1--1 1--1--1 1 2009 1 n n α { n } α α { n } lim n = α, n α n n ε n > N n α < ε N {1, 1,

More information

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10%

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10% 1 2006.4.17. A 3-312 tel: 092-726-4774, e-mail: hara@math.kyushu-u.ac.jp, http://www.math.kyushu-u.ac.jp/ hara/lectures/lectures-j.html Office hours: B A I ɛ-δ ɛ-δ 1. 2. A 1. 1. 2. 3. 4. 5. 2. ɛ-δ 1. ɛ-n

More information

chap1.dvi

chap1.dvi 1 1 007 1 e iθ = cos θ + isin θ 1) θ = π e iπ + 1 = 0 1 ) 3 11 f 0 r 1 1 ) k f k = 1 + r) k f 0 f k k = 01) f k+1 = 1 + r)f k ) f k+1 f k = rf k 3) 1 ) ) ) 1+r/)f 0 1 1 + r/) f 0 = 1 + r + r /4)f 0 1 f

More information

30 (11/04 )

30 (11/04 ) 30 (11/04 ) i, 1,, II I?,,,,,,,,, ( ),,, ϵ δ,,,,, (, ),,,,,, 5 : (1) ( ) () (,, ) (3) ( ) (4) (5) ( ) (1),, (),,, () (3), (),, (4), (1), (3), ( ), (5),,,,,,,, ii,,,,,,,, Richard P. Feynman, The best teaching

More information

Note.tex 2008/09/19( )

Note.tex 2008/09/19( ) 1 20 9 19 2 1 5 1.1........................ 5 1.2............................. 8 2 9 2.1............................. 9 2.2.............................. 10 3 13 3.1.............................. 13 3.2..................................

More information

2

2 III 22 7 4 3....................................... 3.2 Kepler ( ).......................... 2 2 4 2.................................. 4 2.2......................................... 8 3 20 3..........................................

More information

i 18 2H 2 + O 2 2H 2 + ( ) 3K

i 18 2H 2 + O 2 2H 2 + ( ) 3K i 18 2H 2 + O 2 2H 2 + ( ) 3K ii 1 1 1.1.................................. 1 1.2........................................ 3 1.3......................................... 3 1.4....................................

More information

1 B64653 1 1 3.1....................................... 3.......................... 3..1.............................. 4................................ 4..3.............................. 5..4..............................

More information

(Bessel) (Legendre).. (Hankel). (Laplace) V = (x, y, z) n (r, θ, ϕ) r n f n (θ, ϕ). f n (θ, ϕ) n f n (θ, ϕ) z = cos θ z θ ϕ n ν. P ν (z), Q ν (z) (Fou

(Bessel) (Legendre).. (Hankel). (Laplace) V = (x, y, z) n (r, θ, ϕ) r n f n (θ, ϕ). f n (θ, ϕ) n f n (θ, ϕ) z = cos θ z θ ϕ n ν. P ν (z), Q ν (z) (Fou (Bessel) (Legendre).. (Hankel). (Laplace) V = (x, y, z) n (r, θ, ϕ) r n f n (θ, ϕ). f n (θ, ϕ) n f n (θ, ϕ) z = cos θ z θ ϕ n ν. P ν (z), Q ν (z) (Fourier) (Fourier Bessel).. V ρ(x, y, z) V = 4πGρ G :.

More information

dynamics-solution2.dvi

dynamics-solution2.dvi 1 1. (1) a + b = i +3i + k () a b =5i 5j +3k (3) a b =1 (4) a b = 7i j +1k. a = 14 l =/ 14, m=1/ 14, n=3/ 14 3. 4. 5. df (t) d [a(t)e(t)] =ti +9t j +4k, = d a(t) d[a(t)e(t)] e(t)+ da(t) d f (t) =i +18tj

More information

20 4 20 i 1 1 1.1............................ 1 1.2............................ 4 2 11 2.1................... 11 2.2......................... 11 2.3....................... 19 3 25 3.1.............................

More information

II ( ) (7/31) II ( [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Re

II ( ) (7/31) II (  [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Re II 29 7 29-7-27 ( ) (7/31) II (http://www.damp.tottori-u.ac.jp/~ooshida/edu/fluid/) [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Reynolds [ (4.6), (45.8)] [ p.186] Navier Stokes I Euler Navier

More information

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0 1 1 1.1 1.) T D = T = D = kn 1. 1.4) F W = F = W/ = kn/ = 15 kn 1. 1.9) R = W 1 + W = 6 + 5 = 11 N. 1.9) W b W 1 a = a = W /W 1 )b = 5/6) = 5 cm 1.4 AB AC P 1, P x, y x, y y x 1.4.) P sin 6 + P 1 sin 45

More information

I A A441 : April 15, 2013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida )

I A A441 : April 15, 2013 Version : 1.1 I   Kawahira, Tomoki TA (Shigehiro, Yoshida ) I013 00-1 : April 15, 013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida) http://www.math.nagoya-u.ac.jp/~kawahira/courses/13s-tenbou.html pdf * 4 15 4 5 13 e πi = 1 5 0 5 7 3 4 6 3 6 10 6 17

More information

21 2 26 i 1 1 1.1............................ 1 1.2............................ 3 2 9 2.1................... 9 2.2.......... 9 2.3................... 11 2.4....................... 12 3 15 3.1..........

More information

24 I ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x

24 I ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x 24 I 1.1.. ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x 1 (t), x 2 (t),, x n (t)) ( ) ( ), γ : (i) x 1 (t),

More information

I , : ~/math/functional-analysis/functional-analysis-1.tex

I , : ~/math/functional-analysis/functional-analysis-1.tex I 1 2004 8 16, 2017 4 30 1 : ~/math/functional-analysis/functional-analysis-1.tex 1 3 1.1................................... 3 1.2................................... 3 1.3.....................................

More information

2 1 x 1.1: v mg x (t) = v(t) mv (t) = mg 0 x(0) = x 0 v(0) = v 0 x(t) = x 0 + v 0 t 1 2 gt2 v(t) = v 0 gt t x = x 0 + v2 0 2g v2 2g 1.1 (x, v) θ

2 1 x 1.1: v mg x (t) = v(t) mv (t) = mg 0 x(0) = x 0 v(0) = v 0 x(t) = x 0 + v 0 t 1 2 gt2 v(t) = v 0 gt t x = x 0 + v2 0 2g v2 2g 1.1 (x, v) θ 1 1 1.1 (Isaac Newton, 1642 1727) 1. : 2. ( ) F = ma 3. ; F a 2 t x(t) v(t) = x (t) v (t) = x (t) F 3 3 3 3 3 3 6 1 2 6 12 1 3 1 2 m 2 1 x 1.1: v mg x (t) = v(t) mv (t) = mg 0 x(0) = x 0 v(0) = v 0 x(t)

More information

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2 II No.1 [n/] [1]H n x) H n x) = 1) r n! r!n r)! x)n r r= []H n x) n,, H n x) = 1) n H n x) [3] H n x) = 1) n dn x e dx n e x [4] H n+1 x) = xh n x) nh n 1 x) ) d dx x H n x) = H n+1 x) d dx H nx) = nh

More information

difgeo1.dvi

difgeo1.dvi 1 http://matlab0.hwe.oita-u.ac.jp/ matsuo/difgeo.pdf ver.1 8//001 1 1.1 a A. O 1 e 1 ; e ; e e 1 ; e ; e x 1 ;x ;x e 1 ; e ; e X x x x 1 ;x ;x X (x 1 ;x ;x ) 1 1 x x X e e 1 O e x x 1 x x = x 1 e 1 + x

More information

I

I I 6 4 10 1 1 1.1............... 1 1................ 1 1.3.................... 1.4............... 1.4.1.............. 1.4................. 1.4.3........... 3 1.4.4.. 3 1.5.......... 3 1.5.1..............

More information

k m m d2 x i dt 2 = f i = kx i (i = 1, 2, 3 or x, y, z) f i σ ij x i e ij = 2.1 Hooke s law and elastic constants (a) x i (2.1) k m σ A σ σ σ σ f i x

k m m d2 x i dt 2 = f i = kx i (i = 1, 2, 3 or x, y, z) f i σ ij x i e ij = 2.1 Hooke s law and elastic constants (a) x i (2.1) k m σ A σ σ σ σ f i x k m m d2 x i dt 2 = f i = kx i (i = 1, 2, 3 or x, y, z) f i ij x i e ij = 2.1 Hooke s law and elastic constants (a) x i (2.1) k m A f i x i B e e e e 0 e* e e (2.1) e (b) A e = 0 B = 0 (c) (2.1) (d) e

More information

4 14 4 14 4 1 1 4 1.1................................................ 4 1............................................. 4 1.3................................................ 5 1.4 1............................................

More information

6kg 1.1m 1.m.1m.1 l λ ϵ λ l + λ l l l dl dl + dλ ϵ dλ dl dl + dλ dl dl 3 1. JIS 1 6kg 1% 66kg 1 13 σ a1 σ m σ a1 σ m σ m σ a1 f f σ a1 σ a1 σ m f 4

6kg 1.1m 1.m.1m.1 l λ ϵ λ l + λ l l l dl dl + dλ ϵ dλ dl dl + dλ dl dl 3 1. JIS 1 6kg 1% 66kg 1 13 σ a1 σ m σ a1 σ m σ m σ a1 f f σ a1 σ a1 σ m f 4 35-8585 7 8 1 I I 1 1.1 6kg 1m P σ σ P 1 l l λ λ l 1.m 1 6kg 1.1m 1.m.1m.1 l λ ϵ λ l + λ l l l dl dl + dλ ϵ dλ dl dl + dλ dl dl 3 1. JIS 1 6kg 1% 66kg 1 13 σ a1 σ m σ a1 σ m σ m σ a1 f f σ a1 σ a1 σ m

More information

Fubini

Fubini 3............................... 3................................ 5.3 Fubini........................... 7.4.............................5..........................6.............................. 3.7..............................

More information

最新耐震構造解析 ( 第 3 版 ) サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 3 版 1 刷発行時のものです.

最新耐震構造解析 ( 第 3 版 ) サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 第 3 版 1 刷発行時のものです. 最新耐震構造解析 ( 第 3 版 ) サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/052093 このサンプルページの内容は, 第 3 版 1 刷発行時のものです. i 3 10 3 2000 2007 26 8 2 SI SI 20 1996 2000 SI 15 3 ii 1 56 6

More information

1 1 x y = y(x) y, y,..., y (n) : n y F (x, y, y,..., y (n) ) = 0 n F (x, y, y ) = 0 1 y(x) y y = G(x, y) y, y y + p(x)y = q(x) 1 p(x) q(

1 1 x y = y(x) y, y,..., y (n) : n y F (x, y, y,..., y (n) ) = 0 n F (x, y, y ) = 0 1 y(x) y y = G(x, y) y, y y + p(x)y = q(x) 1 p(x) q( 1 1 y = y() y, y,..., y (n) : n y F (, y, y,..., y (n) ) = 0 n F (, y, y ) = 0 1 y() 1.1 1 y y = G(, y) 1.1.1 1 y, y y + p()y = q() 1 p() q() (q() = 0) y + p()y = 0 y y + py = 0 y y = p (log y) = p log

More information

4................................. 4................................. 4 6................................. 6................................. 9.................................................... 3..3..........................

More information

入試の軌跡

入試の軌跡 4 y O x 4 Typed by L A TEX ε ) ) ) 6 4 ) 4 75 ) http://kumamoto.s.xrea.com/plan/.. PDF) Ctrl +L) Ctrl +) Ctrl + Ctrl + ) ) Alt + ) Alt + ) ESC. http://kumamoto.s.xrea.com/nyusi/kumadai kiseki ri i.pdf

More information

数学の基礎訓練I

数学の基礎訓練I I 9 6 13 1 1 1.1............... 1 1................ 1 1.3.................... 1.4............... 1.4.1.............. 1.4................. 3 1.4.3........... 3 1.4.4.. 3 1.5.......... 3 1.5.1..............

More information

IA 2013 : :10722 : 2 : :2 :761 :1 (23-27) : : ( / ) (1 /, ) / e.g. (Taylar ) e x = 1 + x + x xn n! +... sin x = x x3 6 + x5 x2n+1 + (

IA 2013 : :10722 : 2 : :2 :761 :1 (23-27) : : ( / ) (1 /, ) / e.g. (Taylar ) e x = 1 + x + x xn n! +... sin x = x x3 6 + x5 x2n+1 + ( IA 2013 : :10722 : 2 : :2 :761 :1 23-27) : : 1 1.1 / ) 1 /, ) / e.g. Taylar ) e x = 1 + x + x2 2 +... + xn n! +... sin x = x x3 6 + x5 x2n+1 + 1)n 5! 2n + 1)! 2 2.1 = 1 e.g. 0 = 0.00..., π = 3.14..., 1

More information

ver.1 / c /(13)

ver.1 / c /(13) 1 -- 11 1 c 2010 1/(13) 1 -- 11 -- 1 1--1 1--1--1 2009 3 t R x R n 1 ẋ = f(t, x) f = ( f 1,, f n ) f x(t) = ϕ(x 0, t) x(0) = x 0 n f f t 1--1--2 2009 3 q = (q 1,..., q m ), p = (p 1,..., p m ) x = (q,

More information

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi) 0. A A = 4 IC () det A () A () x + y + z = x y z X Y Z = A x y z ( 5) ( s5590) 0. a + b + c b c () a a + b + c c a b a + b + c 0 a b c () a 0 c b b c 0 a c b a 0 0. A A = 7 5 4 5 0 ( 5) ( s5590) () A ()

More information

mugensho.dvi

mugensho.dvi 1 1 f (t) lim t a f (t) = 0 f (t) t a 1.1 (1) lim(t 1) 2 = 0 t 1 (t 1) 2 t 1 (2) lim(t 1) 3 = 0 t 1 (t 1) 3 t 1 2 f (t), g(t) t a lim t a f (t) g(t) g(t) f (t) = o(g(t)) (t a) = 0 f (t) (t 1) 3 1.2 lim

More information

notekiso1_09.dvi

notekiso1_09.dvi 39 3 3.1 2 Ax 1,y 1 Bx 2,y 2 x y fx, y z fx, y x 1,y 1, 0 x 1,y 1,fx 1,y 1 x 2,y 2, 0 x 2,y 2,fx 2,y 2 A s I fx, yds lim fx i,y i Δs. 3.1.1 Δs 0 x i,y i N Δs 1 I lim Δx 2 +Δy 2 0 x 1 fx i,y i Δx i 2 +Δy

More information