<23368EBF96E282DC82C682DF2E786C7378>

Size: px
Start display at page:

Download "<23368EBF96E282DC82C682DF2E786C7378>"

Transcription

1 第 6 回 (12 月 7 日 ) Q&A 日本航空電子工業株式会社池田様 Q.1 P.14 で左下の式の左辺にポート 3.4 が無いのはなぜですか? A.1 シングルエンドの S パラメータを差動や同相モードの S パラメータに変換する場合は ポート 1 2 をポート 1 ポート 3,4 をポート 2 として 差動モード 同相モードに分けて考えますので ポート 3 4 は使いません Q.2 P.36 の PRBS パターンとは何ですか? A.2 Pseudo Random Bit Sequence の略で疑似ランダム信号になります PRBS7 では 2^7-1=128 ビット舞に同じ信号を繰り返しますので 完全なランダム信号ではありません ランダム性を上げたい場合は PRBS23(2^23-1) や PRBS31(2^31-1) を利用します PRBS パターンは D-FF と XOR を使ったフィードバック付きシフトレジスタで簡単に実現できますので ハードウエアへの実装は簡単です Q.3 P.36~38 で PRBS の段数によりノイズ量やアイパターンの開口が変わるとのことですが 最適な段数というものはどのように決めたら良いですか? A.3 PRBS は USB や PCI-Express 等では 同じデータを出力しても異なった信号になるようにスクランブラとして利用されています 信号受信側では デスクランブラで信号を元に戻しますので 現実的には 利用者側で設定できない場合が多いです もし スクランブラを自分で設定する場合ですが PRBS の段数が 1 段増えると 3dB ノイズが落ちます 一方で Eye-Diagram が劣化しますが こちらは 基板やケーブルの周波数特性によりますので ノイズをどの程度削減したいかを最初に検討後 その PRBS パターンで波形に問題がないか確認することになります ケーブルや基板の S パラメータや等価回路モデルがあれば こちらは シミュレーションで計算できます Q.4 説明の中で 電源 GND のインピーダンスカーブの低い所と高い所で放射ノイズが出やすいと説明があり P.42 のグラフではインピーダンスカーブの低い所 P.66 のグラフではインピーダンスカーブの高い所が EMI レベルが高くなっていますが どの PCB パターンのときにインピーダンスカーブの高 低どちら側のノイズが出やすいということがあれば教えてください A.4 厳密には 波源の出力抵抗を Rs 基板共振時の極大抵抗値を RH 極小抵抗値を RL とすれば Rs< の場合は インピーダンスが極小で放射ノイズが極大 Rs> の場合は インピーダンス極小で放射ノイズが極大となります 従って 終端抵抗が 10KΩ のマイクロストリップラインでは RH=1760Ω RL=1Ω となりますので となり 波源出力抵抗が 42Ω 以下では インピーダンスが極小で放射ノイズが極大となります 電源 - グラウンドを模した平行平板では RH=200Ω,RL=0.1Ω になりますのでとなり 波源出力抵抗が 3.2Ω 以上では インピーダンスが極大の時に 放射ノイズが極大となります もう少し簡単に考えると 配線の特性インピーダンスより 波源抵抗が小さければ 入力インピーダンスが極小で放射ノイズが極大となり ( いわゆる配線の場合 ) 配線の特性インピーダンスより波源抵抗が大きい場合 ( 平行平板の場合 ) は入力インピーダンスが極大で放射ノイズが極大となると考えて良いかと思います ( ちょっと正確性に欠けますが ) 1 / 6 ページ

2 Q.5 P.50 の GND が大きくなったほうが 放射ノイズが大きいのは GND 面がアンテナとして良い特性になるのが理由ということはないですか? A.5 はい マイクロストリップラインと電源とグラウンドが向かい合った平行平板では 平行平板の方が放射効率は高くなります Q.6 P.52 について 両端の GND 面になぜ電流が発生するのかメカニズムが分かりません A.6 両端の余分なグランドと配線端の間にも 微小な容量がありますので この容量により両端のグラウンドに電流が流れると考えられます ヒュービングの電圧駆動モデルと同じ考えです Q.7 P.58~59 について 基板端に配線した場合 GND 裏面まで電流が流れるのはなぜですか? A.7 配線が基板端に位置しますと 基板端で磁界が円を描き 配線が中央にあった場合より大きな磁界が発生します この磁界は基板表面と裏面で同じ方向に電流を流すために 放射ノイズが大きくなったと考えられます Q.8 P.66 の 左上と右下 X=0 Y=0 で条件が同じのように見えますが 結果が違うのはなぜですか? A.8 P66 の基板は縦方向と横方向で大きさが違いますので X=0 の場合と Y=0 の場合で異なった周波数で共振が発生します 平行平板の場合 共振周波数はで計算できます ここで a b は平行平板の長さ m n は適当な整数 c は光速 εr は比誘電率になります この式からもの場合は 共振周波数が異なる事が分かります Q.9 Mom はどのように放射を計算していますか?( 基板の外側はどう計算しているか ) A.9 モーメント法は 導体を微小領域 ( パッチ ) に分割し そのパッチ間のインピーダンス行列を求めます インピーダンス行列が分かれば 電圧源や電流源を置くことにより 基板全体に流れる電流分布が分かります この電流分布から ある点や平面における近傍 遠方の電磁界を計算します 従って 基板の内部 外部の関係なしに電流分布から電磁界を後処理で計算します ( 実際は 電流分布からベクトルポテンシャルを求め ベクトルポテンシャルのローテションを計算すれば 磁界 もう一回ローテションを計算すれば 電界が計算できます ) Q.10 空間にメッシュを切る必要があるかどうかは何で決まっていますか? A.10 解析対象 電磁界シミュレータの計算方法によりますが FEM や FDTD で放射電磁界を計算する場合は 放射対 ( アンテナや基板 ) の外側にもメッシュが必要です モーメント法は 解析対象に対してメッシュを作成します FEM や FDTD で導波管を解析する際は 導波管の外側にメッシュは不要になります 導体で囲まれた内部のみが計算対象になるためです 2 / 6 ページ

3 Q.11 オススメのフリーシミュレーターがあれば教えてください A.11 Open FDTD や PCB-Mom Wire-Mom PGPlaneEX 等があります Open FDTD はフリー版の FDTD になります PCB-Mom は 2.5 次元のモーメント法シミュレータで電流分布 遠方電界の計算が可能です Wire-Mom はアンテナなどのワイヤ形状をシミュレーションするモーメント法シミュレータです PGPlaneEX は 電源 - グラウンドのモデラーで LTSpice と組合わせて電源 - グラウンドを含めた電磁界シミュレーションが可能です PGPleneEX PCB-Mom はトランジスタ技術 2015 年 3 月号 電源 /GND パターンの SPICE モデルがポン! PGPlaneEx に使い方の記事を執筆しましたので 参考にして下さい また フリーウエアの紹介は 無償で使えるシミュレータの紹介と実例 実装学会誌 Vol.21 No.5,2018 にも寄稿しましたので こちらも合わせて参照して下さい PCB-Mom : Wire-Momhttps : Open FDTD : PGPlaneEX : トランジスタ技術 2015 年 3 月号 実装学会誌 Vol.21 No.5,2018: Q.12 PRBS5 と PRBS31 の Eye 波形の違いについて 0 が長く ( または 1 が長く ) 続いた後の 1 は立ち上がりが遅くなる理由は何ですか? 私は 配線や負荷の L,C により周波数応答ではないかと考えているのはどうでしょうか? A.12 同一ビットが連続した後 1 ビットだけ異なるビットが発生した場合に 波形の鈍りが発生しやすくなります ご指摘の通り 周波数応答の可能性も考えられると思います Q.13 グランド面が大きいと放射ノイズの原因 となりますが それを防ぐために極端にグランド面を少なくしてしまうと 今度は 配線が基板端にあると放射ノイズの原因となる という状況になります グランド面の広さは おおよそどの程度が良いのでしょうか?( ケースバイケースでしょうか ) A.13 グランド面の大きさは 配線の長さ方向に大きいとノイズの問題が発生します 幅方向については 広い方が放射ノイズは減ります 幅方向のグランド面が狭いと 配線を流れる電流に対して 完全に対象な電流とは成りませんので 同相成分の電流が発生して放射ノイズが増加する傾向にあります Q.14 メッシュグランドだと差動信号 (LVDS) が GND の非対称性が原因でコモンノイズになり イミュニティにも弱くなったりとのことですが LVCMOS などで動かした場合でも メッシュグランドだと何かしらに不具合がありますか? A.14 Scd21 や Sdc21 ですが -5dB 程度になると大きな影響がありますが -20dB 以下であれば 殆ど影響はありません 従って 資料で示した メッシュグラウンドの差動線路ですが 実際のところは 放射ノイズに関しては 差がありません シングルエンドの CMOS の場合は 元々 不平衡な伝送ですので 特性インピーダンスや挿入損失に大きな影響を与えるメッシュ構造で無い限りは 問題ないと思います ( 波長に対して十分に小さいメッシュの開口部であれば 影響はないと考えられます 波長の 20 分の 1 以下 ) 3 / 6 ページ

4 Q.15 差動配線の S パラメータを測定する場合 両端に SMA コネクタを配置するのが一般的だと思いますが 基板設計時に注意することはありますか? SMA コネクタのパッド部はインピーダンス整合するように内層 GND を抜くなどの工夫はしています 他に注意点があれば教えてください ( シングルエンド部の配線など ) A.15 SMA コネクタ部の反射が少ない方が良いですが 校正を行い SMA 部の特性を取り除く処理を行うのであれば それほど 気にする必要はありません SMA 部を半田付けで使いますと 被測定物が実装された基板と校正用の基板の特性が異なり 校正誤差が大きくなりますので 半田付けしないタイプの SMA コネクタを推奨します また SMA 部や基板トレースの校正ですが 基本的に製造交差がゼロではありませんので 必ず誤差が含まれます 反射や損失が非常に低いものを測定する場合は この誤差が大きく影響します 特に反射損失を正確に測定するのは 難しいです Q.16 S パラメータにおいて 磁性体を使う場合はなぜ S21 と S12 に違いが出るのでしょうか? A.16 磁性体を使ったサーキュレータやアイソレータのみが S12 S21 となり このような回路はマイクロ波回路でのみ利用されるので あまり気にする必要ありません 因みに サーキュレータは ポートが 3 個あり ポート 1 の信号はポート 2 に透過しますが ポート 2 の信号はポート 1 へ透過せず ポート 3 へ透過します 同様にポート 3 の信号はポート 1 へ透過しますが ポート 2 へは透過しません このように信号は一方向への伝送となります アイソレータは ポート 3 を整合終端したサーキュレータですので ポート 1 からポート 2 のみ信号は透過しますが ポート 2 の信号はポート 1 へ透過できません ( 一方通行となります ) 磁性体を使った回路で S12 S21 となる理由ですが 小川さんの説明の通り 磁性体の透磁率がテンソル (3 3 の行列 ) になり その非対称項が 同じで無い事が原因だと考えられます Q.17 面電源の定義は何ですか?( 幅 または高さ何 mm 以上でしょうか ) A.17 配線幅が伝送する信号の半波長程度の場合は 面電源と考えて下さい 波長を 光速を 周波数を基板の実効比誘電率をとすれば 以下の式で計算できます 実効比誘電率はマイクロストリップラインで 3~3.3 ストリップラインでは 基板の比誘電率と同じになります 1GHz の半波長は 86.5mm 10GHz では 8.7mm となります 従って ノイズの上限周波数が 1GHz であれば 配線幅が 86.5mm の半分以下 つまり 40mm 程度あれば線電源と考えられ 86.5mm より太い場合は 面電源と考える必要があります ノイズの上限周波数が 10GHz では 配線幅が 8.7mm 以上で 面電源と考える必要があります 高さに関しても配線幅と全く同じように考えて下さい プリント基板の場合は 高さ ( 絶縁層厚 ) が問題になることは 無いと思います Q.18 電解コンデンサは IC 近傍に置くのが比較的困難ですが EMC 的にはケアしたほうが良いでしょうか? A.18 電解コンデンサは容量が大きいため 低い周波数で共振し それ以降は コイルとして振舞いますので IC 近くに実装しても放射ノイズ抑制の効果はありませんので 無理にIC 近辺に置く必要はないかと思います しかし 伝導性ノイズ試験で問題が発生した場合は 何かしら対策が必要かもしれません ( 電解コンデンサに問題があると分かっていればの話しですが ) 電解コンデンサに関するトラブル等を耳にした事がないので 残念ながら的確な回答が難しいです 4 / 6 ページ

5 Q.19 一般的に矩形波の場合は周波数の奇数倍のスペクトラムが立つと思うが 偶数倍のスペクトラムが立つ場合はどのようなことが考えられるか? A.19 貫通電流が電源 GND 間に流れることにより偶数倍波が発生する Q.20 偶数倍波のレベルが大きくなる原因としては何が考えられるのでしょうか? 例えば 貫通電流の供給が最短ループで行われていない ( パスコンの配置が適切でないなどの理由 ) と 偶数倍波が大きくなると考えればよいでしょうか? A.20 貫通電流は ロジック IC が H L L H の両方の状態で IC の電源からグラウンドを貫通するように流れる電流ですので 基本周波数の奇数 偶数倍の両方のスペクトラムを持っています また IC も非線形な特性により 6 倍や 8 倍高調波といった周波数でスペクトラムが大きく成る事があります これはパスコンや電源 - グラウンド設計に関わらず IC の特性に影響されますので 電源設計やパスコンの配置によりません Q.21 貫通電流は IC により決まると考えますが 偶数倍波を抑える方法などがありましたらお教えください A.21 貫通電流を基本的に減らすことは難しいと考えています 貫通電流は 電源側から流れ込みますので ローパスフィルタ ( 電源回路側がインダクタンス LSI 側がキャパシタ構成 ) で不要な高周波側をカット出来れば 減らせるかもしれません また LSI の貫通電流のスペクトラムがある程度分かれば 貫通電流によるスペクトラムが大きくなる周波数で 電源 - グラウンドが共振しないように パスコン等で対策を採ることが考えられます 貫通電流のスペクトラムが大きくなる周波数で 電源 - グラウンドが共振していますと 非常に大きな放射ノイズが発生しますので注意が必要です 基本的にパスコンだけでは 電源 - グラウンドの共振周波数位置が変わるだけですので 放射ノイズが減る帯域もあれば 増える帯域も出てきますので モグラたたきになるかもしれません ESR の大きなコンデンサを使って共振の Q を小さくするのも一つの案かと思います Q.22 電磁界シミュレータは ここ 5 年 10 年でどう変化したか? A.22 OS が 32 ビットから 64 ビットに変化したタイミングでメモリ制限がほぼ無くなりましたので これが一つの変化点になります 32 ビット時代は 一つのアプリケーションで利用できる メモリの上限が 2G バイトでしたが 64 ビットは 2^64=1.8e13G のメモリアドレスが割り振れますので ほぼ無限にメモリが利用できます (OS の 64 ビット化は 10 年以上前でしたね ) その次の変化点は マルチコア マルチプロセッサ メモリ価格の下落があげられます CPU もマルチコア化していますので デスクトップパソコンで数十台のプロセッサを利用できます 周波数領域で計算するツール (FEM や Mom) では 周波数毎に計算が必要ですが これらの計算は 独立していますので コア数に応じて 計算速度が上がります 厳密には メッシュを作るルーチンは 一つのプロセスになるので 単純にコア数に比例するわけではありませんが 200 点に周波数領域のデータを計算するのに シングルコアでは 200 回の計算が必要ですが 20 コアの PC であれば 各コアで 10 回計算すれば 200 個の周波数を計算できますので 計算時間は 5% になります ( ただし ソフトウェア側でつかえるコア数をオプション扱いとして制限していますので ソフトウェアのライセンスが必要なります ) また メモリが安価になったため 128G バイト程度あれば それ程 高価ではありませんので かなり規模の大きな問題も解けるようになりました 5 / 6 ページ

6 感覚的には 10 年前と比較して 10 倍位は計算速度が上がったと思います 次の変化点としては AI でにぎわっている GPU の登場です ただし GPU は FDTD のような時間領域計算でメモリと CPU とのデータやり取りが頻繁に行われるような計算方法でないと効果が薄いです FDTD に GPU を使った場合 通常のマルチコア (16 コア程度 ) よりされに 3 倍程度の早くなります ( ベンダーは 10 倍と言っていますが GPU の登場も 10 年以上前でしたね ) したがって FDTD 法で GPU を使った場合 最近の PC では 5 年位前のスパコン (PC クラスター ) と同じ位のスピード感があります ( 東工大の TSUBAME と比較した感触です TSUBAME は過去に半年間 利用しました ) したがって PC のハードが劇的に良くなっていますので 10 年前では解けないか 1 か月以上かかるようなモデルの計算も可能になっています 因みに PC は 100 万円前後の価格帯となります Q.23 電磁界シミュレータはどの方向に行くのでしょうか? A.23 実設計とより複雑で大規模な問題の両方に適用されると思います ただし 実設計となると 電子部品のモデルの準備やオペレーションの問題もありますので より複雑な問題の適用の方が多いかもしれません 10 年前と比べますと 劇的に計算速度が上がっていますので 設計現場で活用される事は 多くなると思います 電磁界シミュレータには 配線長や配線幅をパラメータとして 最適化するアルゴリズムが組み込まれていますので 詳細設計は電磁界シミュレータにお任せという時代も来るかもしれません Q.24 あと 何倍パフォーマンスが上がれば 世界がどう変るのか? A.24 どのような対象を計算するかによりますが 後 二桁くらい計算速度があがれば コネクタ程度であれば 詳細な設計を電磁界シミュレータに任せる事もできるかもしれません (1 日で最適なコネクタの形状が分かる ) どこのツールも計算時間を短く見せるために デフォルトのメッシュは 大分粗いので 細かくする設定が必要ですが 十分細かくしても問題はありません (10 年前は 細かいメッシュでは計算出来ない事が多かったので 形状を弄ってメッシュ数を少なくする工夫が必要でした ) ここ 10 年から 15 年で PC もだいぶ高性能になっていますし 電磁界シミュレータ側も使い易くなっています それこを 20 年位前は CAD データを電磁界シミュレータに読み込むと エラーが発生して元データを修正することが良くあったのですが 最近はデータ修正することは殆どありません (20 年前は 電磁界シミュレーションする事も大変でしたので エラーが発生しないでシミュレータが動作すると それで満足して 終わりでした ) 私自身は 大規模なものや 複雑なものはシミュレーションしていませんが シンプルなモデルは それこそ 10 分とか 20 分程度で計算できますので いろいろ検証するのに役立っています 6 / 6 ページ

Microsoft PowerPoint - Renesas_AdvancedPPmL(2010_11_11_rev).ppt [互換モード]

Microsoft PowerPoint - Renesas_AdvancedPPmL(2010_11_11_rev).ppt [互換モード] Agilent EEsof 3D EM Application series 高速差動伝送ライン Advaced PPmL の評価 アジレント テクノロジー第 3 営業統括部 EDA アプリケーション エンジニアリング Page 1 アプリケーション概要 高速差動伝送路の特性評価 伝送レートの高速化に伴い 分布定数の考え方による伝送線路特性の評価が重要となると共に 伝送線路の高密度伝送線路の高密度化により

More information

スライド 1

スライド 1 プリント回路基板の EMC 設計 京都大学大学院工学研究科 松嶋徹 EMC( 電磁的両立性 ): 環境電磁工学 EMC とは? 許容できないような電磁妨害波を, 如何なるものに対しても与えず, かつ, その電磁環境において満足に機能するための, 機器 装置またはシステムの能力 高 Immunity イミュニティ ( 耐性 ) 低 EMI 電磁妨害 EMS 電磁感受性 低 電磁妨害波によって引き起こされる機器

More information

Microsoft Word - SPARQアプリケーションノートGating_3.docx

Microsoft Word - SPARQアプリケーションノートGating_3.docx SPARQ を使用したフィクスチャの S パラメータ抽出 TECHNICAL BRIEF 伊藤渉 Feb 3, 2014 概要 SMA や K コネクタ等ではない非同軸タイプのコネクタを使用する DUT をオシロスコープで測定するにはコネクタの変換の為にフィクスチャを使用します このフィクスチャの伝送特性を差し引き DUT のみの特性を求めたい場合 フィクスチャの伝送特性を抽出することは通常では困難です

More information

RMS(Root Mean Square value 実効値 ) 実効値は AC の電圧と電流両方の値を規定する 最も一般的で便利な値です AC 波形の実効値はその波形から得られる パワーのレベルを示すものであり AC 信号の最も重要な属性となります 実効値の計算は AC の電流波形と それによって

RMS(Root Mean Square value 実効値 ) 実効値は AC の電圧と電流両方の値を規定する 最も一般的で便利な値です AC 波形の実効値はその波形から得られる パワーのレベルを示すものであり AC 信号の最も重要な属性となります 実効値の計算は AC の電流波形と それによって 入門書 最近の数多くの AC 電源アプリケーションに伴う複雑な電流 / 電圧波形のため さまざまな測定上の課題が発生しています このような問題に対処する場合 基本的な測定 使用される用語 それらの関係について理解することが重要になります このアプリケーションノートではパワー測定の基本的な考え方やパワー測定において重要な 以下の用語の明確に定義します RMS(Root Mean Square value

More information

降圧コンバータIC のスナバ回路 : パワーマネジメント

降圧コンバータIC のスナバ回路 : パワーマネジメント スイッチングレギュレータシリーズ 降圧コンバータ IC では スイッチノードで多くの高周波ノイズが発生します これらの高調波ノイズを除去する手段の一つとしてスナバ回路があります このアプリケーションノートでは RC スナバ回路の設定方法について説明しています RC スナバ回路 スイッチングの 1 サイクルで合計 の損失が抵抗で発生し スイッチングの回数だけ損失が発生するので 発生する損失は となります

More information

RLC 共振回路 概要 RLC 回路は, ラジオや通信工学, 発信器などに広く使われる. この回路の目的は, 特定の周波数のときに大きな電流を得ることである. 使い方には, 周波数を設定し外へ発する, 外部からの周波数に合わせて同調する, がある. このように, 周波数を扱うことから, 交流を考える

RLC 共振回路 概要 RLC 回路は, ラジオや通信工学, 発信器などに広く使われる. この回路の目的は, 特定の周波数のときに大きな電流を得ることである. 使い方には, 周波数を設定し外へ発する, 外部からの周波数に合わせて同調する, がある. このように, 周波数を扱うことから, 交流を考える 共振回路 概要 回路は ラジオや通信工学 などに広く使われる この回路の目的は 特定の周波数のときに大きな電流を得ることである 使い方には 周波数を設定し外へ発する 外部からの周波数に合わせて同調する がある このように 周波数を扱うことから 交流を考える 特に ( キャパシタ ) と ( インダクタ ) のそれぞれが 周波数によってインピーダンス *) が変わることが回路解釈の鍵になることに注目する

More information

図 2.Cat2 ケーブルの減衰特性 通常伝送線路の減衰特性は 1-1) 式のように 3つのパラメータで近似されます DC 抵抗表皮効果誘電損失 A + f*b + f*c 1-1) ところが仕様書の特性を見ると0~825MHz までは-5dB でフラット 5.1GHz までは直線的な減衰になってい

図 2.Cat2 ケーブルの減衰特性 通常伝送線路の減衰特性は 1-1) 式のように 3つのパラメータで近似されます DC 抵抗表皮効果誘電損失 A + f*b + f*c 1-1) ところが仕様書の特性を見ると0~825MHz までは-5dB でフラット 5.1GHz までは直線的な減衰になってい LTSPICE による HDMI コンプライアンステストシミュレーション シグナル工房 : www.signalkhobho.com 野田敦人 LTSPICE はリニアテクノロジー社のノード制限のないフリーの SPICE 解析ツールです これまで LTSPICE でサポートされている伝送線路モデルは無損失の TLINE か一定損失の LTLINE であるため 広帯域の周波数特性が必要なタイムドメインのアイパターンシミュレーションには使われてきませんでした

More information

ディエンベディングとは冶具やケーブルによる観測信号の劣化を S パラメータデータを利用して計算により補正する TX 冶具ケーブル 被測定物の出力 De-Embedding 冶具 ケーブル等の影響を受けた波形 冶具 ケーブル等の S パラメータデータ TX 被測定物の出力 冶具 ケーブル等の影響のない

ディエンベディングとは冶具やケーブルによる観測信号の劣化を S パラメータデータを利用して計算により補正する TX 冶具ケーブル 被測定物の出力 De-Embedding 冶具 ケーブル等の影響を受けた波形 冶具 ケーブル等の S パラメータデータ TX 被測定物の出力 冶具 ケーブル等の影響のない Keysight Technologies を使用した De-Embedding 2016.4.27 キーサイト テクノロジー計測お客様窓口 ディエンベディングとは冶具やケーブルによる観測信号の劣化を S パラメータデータを利用して計算により補正する TX 冶具ケーブル 被測定物の出力 De-Embedding 冶具 ケーブル等の影響を受けた波形 冶具 ケーブル等の S パラメータデータ TX 被測定物の出力

More information

LTspice/SwitcherCADⅢマニュアル

LTspice/SwitcherCADⅢマニュアル LTspice による 設計の効率化 1 株式会社三共社フィールド アプリケーション エンジニア 渋谷道雄 JPCA-Seminar_20190606 シミュレーション シミュレータ シミュレーションの位置づけ まずは 例題で動作確認 実際のリップル波形と比較してみる シミュレーションへの心構え オシロスコープ / プロービングの取り扱い 参考図書の紹介 シミュレータは 汎用の SPICE モデルが利用できる

More information

スライド 1

スライド 1 アナログ検定 2014 1 アナログ検定 2014 出題意図 電子回路のアナログ的な振る舞いを原理原則に立ち返って解明できる能力 部品の特性や限界を踏まえた上で部品の性能を最大限に引き出せる能力 記憶した知識や計算でない アナログ技術を使いこなすための基本的な知識 知見 ( ナレッジ ) を問う問題 ボーデ線図などからシステムの特性を理解し 特性改善を行うための基本的な知識を問う問題 CAD や回路シミュレーションツールの限界を知った上で

More information

__________________

__________________ 第 1 回シミュレータとモデル第 3 回伝送線路シミュレータの検証 1. シミュレーション結果の検証電卓で計算をするとき みなさんは その結果を確認しますか? またどのような確認をするでしょう たとえば 108 x 39 = 5215 となった場合 5215 をそのまま答えとして書きますか? 多分 何らかの検算をして 答えはおかしいと思うでしょう もう一度 計算をしなおすか 暗算で大体の答えの予想を付けておいて

More information

Presentation Title Arial 28pt Bold Agilent Blue

Presentation Title Arial 28pt Bold Agilent Blue Agilent EEsof 3D EM Application series 磁気共鳴による無線電力伝送システムの解析 アジレント テクノロジー第 3 営業統括部 EDA アプリケーション エンジニアリングアプリケーション エンジニア 佐々木広明 Page 1 アプリケーション概要 実情と現状の問題点 非接触による電力の供給システムは 以前から研究 実用化されていますが そのほとんどが電磁誘導の原理を利用したシステムで

More information

(3) E-I 特性の傾きが出力コンダクタンス である 添え字 は utput( 出力 ) を意味する (4) E-BE 特性の傾きが電圧帰還率 r である 添え字 r は rrs( 逆 ) を表す 定数の値は, トランジスタの種類によって異なるばかりでなく, 同一のトランジスタでも,I, E, 周

(3) E-I 特性の傾きが出力コンダクタンス である 添え字 は utput( 出力 ) を意味する (4) E-BE 特性の傾きが電圧帰還率 r である 添え字 r は rrs( 逆 ) を表す 定数の値は, トランジスタの種類によって異なるばかりでなく, 同一のトランジスタでも,I, E, 周 トランジスタ増幅回路設計入門 pyrgt y Km Ksaka 005..06. 等価回路についてトランジスタの動作は図 のように非線形なので, その動作を簡単な数式で表すことができない しかし, アナログ信号を扱う回路では, 特性グラフのの直線部分に動作点を置くので線形のパラメータにより, その動作を簡単な数式 ( 一次式 ) で表すことができる 図. パラメータトランジスタの各静特性の直線部分の傾きを数値として特性を表したものが

More information

s ss s ss = ε = = s ss s (3) と表される s の要素における s s = κ = κ, =,, (4) jωε jω s は複素比誘電率に相当する物理量であり ここで PML 媒質定数を次のように定義する すなわち κξ をPML 媒質の等価比誘電率 ξ をPML 媒質の

s ss s ss = ε = = s ss s (3) と表される s の要素における s s = κ = κ, =,, (4) jωε jω s は複素比誘電率に相当する物理量であり ここで PML 媒質定数を次のように定義する すなわち κξ をPML 媒質の等価比誘電率 ξ をPML 媒質の FDTD 解析法 (Matlab 版 2 次元 PML) プログラム解説 v2.11 1. 概要 FDTD 解析における吸収境界である完全整合層 (Perfectl Matched Laer, PML) の定式化とプログラミングを2 次元 TE 波について解説する PMLは異方性の損失をもつ仮想的な物質であり 侵入して来る電磁波を逃さず吸収する 通常の物質と接する界面でインピーダンスが整合しており

More information

Microsoft Word - プロービングの鉄則.doc

Microsoft Word - プロービングの鉄則.doc プロービングの鉄則 基礎編 測定点とオシロスコープをどうやって接続するか?/ プロービング ノウハウが必要な理由 オシロスコープの精度って? まずは 標準プローブを使いこなす ~ プローブ補正で よくある 5 つの失敗例 ~ 1. 補正したプローブは他のスコープでそのまま使える? 2. アースはつながっていれば OK? 3. 安いプローブで十分? 4. トラブル シュートのために プローブを接続したら

More information

まず初めに Xilinx 社の FPGA である Vertex-5 と X 社の QDR2 メモリーの書き出し回 路を IBIS モデルと無損失の TLINE 伝送線路モデルの組み合わせで作成し アイパター ン解析を行うトポロジーを TinyCAD と PCBsim 用ライブラリーを使って入力してみ

まず初めに Xilinx 社の FPGA である Vertex-5 と X 社の QDR2 メモリーの書き出し回 路を IBIS モデルと無損失の TLINE 伝送線路モデルの組み合わせで作成し アイパター ン解析を行うトポロジーを TinyCAD と PCBsim 用ライブラリーを使って入力してみ PCBsim (HSPICE 互換 ) による伝送線路シミュレーション シグナル工房 : www.signalkhobho.com 野田敦人 PCBsim は Legend 社の MSIM-PCB のメインのシミュレーションエンジンとするシグナルインテグリティー解析ツールです 伝送線路解析機能を強化した MSIM-PCB と複数のソフトウエアを統合したパッケージとした形で提供されます 用途 価格によってフリーの回路図エディターとの組み合わせや専用トポロジーエディター

More information

NJM78L00 3 端子正定電圧電源 概要高利得誤差増幅器, 温度補償回路, 定電圧ダイオードなどにより構成され, さらに内部に電流制限回路, 熱暴走に対する保護回路を有する, 高性能安定化電源用素子で, ツェナーダイオード / 抵抗の組合せ回路に比べ出力インピーダンスが改良され, 無効電流が小さ

NJM78L00 3 端子正定電圧電源 概要高利得誤差増幅器, 温度補償回路, 定電圧ダイオードなどにより構成され, さらに内部に電流制限回路, 熱暴走に対する保護回路を有する, 高性能安定化電源用素子で, ツェナーダイオード / 抵抗の組合せ回路に比べ出力インピーダンスが改良され, 無効電流が小さ 3 端子正定電圧電源 概要高利得誤差増幅器, 温度補償回路, 定電圧ダイオードなどにより構成され, さらに内部に電流制限回路, 熱暴走に対する保護回路を有する, 高性能安定化電源用素子で, ツェナーダイオード / 抵抗の組合せ回路に比べ出力インピーダンスが改良され, 無効電流が小さくなり, さらに雑音特性も改良されています 外形 UA EA (5V,9V,12V のみ ) 特徴 過電流保護回路内蔵

More information

__________________

__________________ 第 1 回シミュレータとモデル第 2 回伝送線路シミュレータ 1. 伝送線路シミュレータ電子機器の動作速度の高速化に伴い 伝送線路シミュレータが多く使われるようになって来ました しかし 伝送線路シミュレータも実に簡単に 間違えた結果 を出力します しかも 電子機器は進歩が急で 信号スピードはどんどん速くなり 伝送線路シミュレータも毎年のように機能アップしたり 精度向上をした 新製品 新バージョンが出てきます

More information

Microsoft PowerPoint - 9.Analog.ppt

Microsoft PowerPoint - 9.Analog.ppt 9 章 CMOS アナログ基本回路 1 デジタル情報とアナログ情報 アナログ情報 大きさ デジタル信号アナログ信号 デジタル情報 時間 情報処理システムにおけるアナログ技術 通信 ネットワークの高度化 無線通信, 高速ネットワーク, 光通信 ヒューマンインタフェース高度化 人間の視覚, 聴覚, 感性にせまる 脳型コンピュータの実現 テ シ タルコンヒ ュータと相補的な情報処理 省エネルギーなシステム

More information

スライド タイトルなし

スライド タイトルなし 第 9 回情報伝送工学 情報を持った信号の加工 ( フィルタ ) 高周波フィルタとはフィルタとは ある周波数の電磁波のみを通過させる回路 ( 部品 ) であり アンテナからの微小な信号を選択増幅するために 得に初段の増幅器前のフィルタには低損失な性能が要求される たとえば 下図におけるアンテナ直下に配置されているフィルタは アンテナから入力された信号のうち 必要な周波数帯域のみを受信回路に送り 一方送信回路から送られてきた信号を周波数の違いにより受信回路には入れず

More information

Microsoft PowerPoint pptx

Microsoft PowerPoint pptx 4.2 小信号パラメータ 1 電圧利得をどのように求めるか 電圧ー電流変換 入力信号の変化 dv BE I I e 1 v be の振幅から i b を求めるのは難しい? 電流増幅 電流ー電圧変換 di B di C h FE 電流と電圧の関係が指数関数になっているのが問題 (-RC), ただし RL がない場合 dv CE 出力信号の変化 2 pn 接合の非線形性への対処 I B 直流バイアスに対する抵抗

More information

測定器の持つ誤差 と 使い方による誤差

測定器の持つ誤差 と 使い方による誤差 計測展 2007 チュートリアル Part2 Page 1 はじめに 測定器は高機能で便利になっている測定器は複雑化して 原理が見えにくくなっている 測定器が Black Box 化している 最も単純な例を中心に基本的な内容を解説する抵抗 1~2 本の回路をマルチ メータで測定する Page 2 講演の概要 1) 測定器の持つ誤差と使い方による誤差 抵抗とマルチメータを中心として 2) 設計と測定の融合

More information

Microsoft PowerPoint EM2_15.ppt

Microsoft PowerPoint EM2_15.ppt ( 第 5 回 ) 鹿間信介摂南大学理工学部電気電子工学科 後半部 (4~5 章 ) のまとめ 4. 導体 4.3 誘電体 5. 磁性体 5. 電気抵抗 演習 導体表面の電界強度 () 外部電界があっても導体内部の電界は ( ゼロ ) になる () 導体の電位は一定 () 導体表面は等電位面 (3) 導体表面の電界は導体に垂直 導体表面と平行な成分があると, 導体表面の電子が移動 導体表面の電界は不連続

More information

ACモーター入門編 サンプルテキスト

ACモーター入門編 サンプルテキスト 技術セミナーテキスト AC モーター入門編 目次 1 AC モーターの位置付けと特徴 2 1-1 AC モーターの位置付け 1-2 AC モーターの特徴 2 AC モーターの基礎 6 2-1 構造 2-2 動作原理 2-3 特性と仕様の見方 2-4 ギヤヘッドの役割 2-5 ギヤヘッドの仕様 2-6 ギヤヘッドの種類 2-7 代表的な AC モーター 3 温度上昇と寿命 32 3-1 温度上昇の考え方

More information

Microsoft PowerPoint - ch3

Microsoft PowerPoint - ch3 第 3 章トランジスタと応用 トランジスタは基本的には電流を増幅することができる部品である. アナログ回路では非常に多くの種類のトランジスタが使われる. 1 トランジスタの発明 トランジスタは,1948 年 6 月 30 日に AT&T ベル研究所のウォルター ブラッテン ジョン バーディーン ウィリアム ショックレーらのグループによりその発明が報告され, この功績により 1956 年にノーベル物理学賞受賞.

More information

周波数特性解析

周波数特性解析 周波数特性解析 株式会社スマートエナジー研究所 Version 1.0.0, 2018-08-03 目次 1. アナログ / デジタルの周波数特性解析................................... 1 2. 一巡周波数特性 ( 電圧フィードバック )................................... 4 2.1. 部分周波数特性解析..........................................

More information

s と Z(s) の関係 2019 年 3 月 22 日目次へ戻る s が虚軸を含む複素平面右半面の値の時 X(s) も虚軸を含む複素平面右半面の値でなけれ ばなりません その訳を探ります 本章では 受動回路をインピーダンス Z(s) にしていま す リアクタンス回路の駆動点リアクタンス X(s)

s と Z(s) の関係 2019 年 3 月 22 日目次へ戻る s が虚軸を含む複素平面右半面の値の時 X(s) も虚軸を含む複素平面右半面の値でなけれ ばなりません その訳を探ります 本章では 受動回路をインピーダンス Z(s) にしていま す リアクタンス回路の駆動点リアクタンス X(s) と Z の関係 9 年 3 月 日目次へ戻る が虚軸を含む複素平面右半面の値の時 X も虚軸を含む複素平面右半面の値でなけれ ばなりません その訳を探ります 本章では 受動回路をインピーダンス Z にしていま す リアクタンス回路の駆動点リアクタンス X も Z に含まれます Z に正弦波電流を入れた時最大値 抵抗 コイル コンデンサーで作られた受動回路の ラプラスの世界でのインピーダンスを Z とします

More information

NJM78M00 3 端子正定電圧電源 概要 NJM78M00 シリーズは,NJM78L00 シリーズを更に高性能化した安定化電源用 ICです 出力電流が 500mA と大きいので, 余裕ある回路設計が可能になります 用途はテレビ, ステレオ, 等の民生用機器から通信機, 測定器等の工業用電子機器迄

NJM78M00 3 端子正定電圧電源 概要 NJM78M00 シリーズは,NJM78L00 シリーズを更に高性能化した安定化電源用 ICです 出力電流が 500mA と大きいので, 余裕ある回路設計が可能になります 用途はテレビ, ステレオ, 等の民生用機器から通信機, 測定器等の工業用電子機器迄 3 端子正定電圧電源 概要 シリーズは,NJM78L00 シリーズを更に高性能化した安定化電源用 ICです 出力電流が 500mA と大きいので, 余裕ある回路設計が可能になります 用途はテレビ, ステレオ, 等の民生用機器から通信機, 測定器等の工業用電子機器迄広くご利用頂けます 外形 特徴 過電流保護回路内蔵 サーマルシャットダウン内蔵 高リップルリジェクション 高出力電流 (500mA max.)

More information

絶対最大定格 (T a =25 ) 項目記号定格単位 入力電圧 V IN 消費電力 P D (7805~7810) 35 (7812~7815) 35 (7818~7824) 40 TO-220F 16(T C 70 ) TO (T C 25 ) 1(Ta=25 ) V W 接合部温度

絶対最大定格 (T a =25 ) 項目記号定格単位 入力電圧 V IN 消費電力 P D (7805~7810) 35 (7812~7815) 35 (7818~7824) 40 TO-220F 16(T C 70 ) TO (T C 25 ) 1(Ta=25 ) V W 接合部温度 3 端子正定電圧電源 概要 NJM7800 シリーズは, シリーズレギュレータ回路を,I チップ上に集積した正出力 3 端子レギュレータ ICです 放熱板を付けることにより,1A 以上の出力電流にて使用可能です 外形 特徴 過電流保護回路内蔵 サーマルシャットダウン内蔵 高リップルリジェクション 高出力電流 (1.5A max.) バイポーラ構造 外形 TO-220F, TO-252 NJM7800FA

More information

PowerPoint プレゼンテーション

PowerPoint プレゼンテーション 電磁波工学 第 9 回アンテナ ( 基本性質 利得 インピーダンス整合 指向性 実効長 ) 柴田幸司 講義ノート アンテナとは 無線機器の信号 ( 電磁波 ) を空間に効率よく放射したり 空間にある電磁波を無線機器に導くための部品 より長距離での通信の為 非共振型アンテナ ホーン ( ラッパ ) パラボラレンズ 非共振型アンテナの動作原理 ホーンアンテナ 導波路がテーパ状に広がることにより反射させることなく開口面まで伝搬させ

More information

Microsoft PowerPoint - EMPro_ADS_co_design_draft.ppt [互換モード]

Microsoft PowerPoint - EMPro_ADS_co_design_draft.ppt [互換モード] 3 次元電磁界シミュレータ (EMPro) と 回路シミュレータ (ADS) との効率的な協調解析事例のご紹介 Page 1 EMPro 2010 3 次元電磁界解析専用プラットフォーム 3 次元形状入力に特化した操作性 Windows & Linux 対応 多くの 3D CAD フォーマットの Import をサポート Fastest, t Highest Capacity 3 次元フルウェーブ電磁界シミュレーション

More information

電流プローブと計測の基礎 (Tektronix 編 ) 電圧波形は違うのが当たり前 オームの法則 ( 図 1) により 電流は抵抗器によって電圧に変換することができます 電流波形を観測 するとき 電流経路に抵抗器を挿入し電圧に変換後 電圧波形として電圧プローブで観測する手法が あります この手法にお

電流プローブと計測の基礎 (Tektronix 編 ) 電圧波形は違うのが当たり前 オームの法則 ( 図 1) により 電流は抵抗器によって電圧に変換することができます 電流波形を観測 するとき 電流経路に抵抗器を挿入し電圧に変換後 電圧波形として電圧プローブで観測する手法が あります この手法にお 電流プローブと計測の基礎 (Tektronix 編 ) 電圧波形は違うのが当たり前 オームの法則 ( 図 1) により 電流は抵抗器によって電圧に変換することができます 電流波形を観測 するとき 電流経路に抵抗器を挿入し電圧に変換後 電圧波形として電圧プローブで観測する手法が あります この手法において陥りやすいまちがいは 抵抗器を安易に純抵抗とみなしてしまうことで す 図 1: オームの法則 十分に低い周波数

More information

電磁波解析入門セミナー 説明資料 All Rights Reserved, Copyright c Murata Software Co., Ltd. 1

電磁波解析入門セミナー 説明資料 All Rights Reserved, Copyright c Murata Software Co., Ltd. 1 電磁波解析入門セミナー 説明資料 1 もくじ 1. 電磁波解析の概要 2. 電磁波解析の機能 設定の紹介 2 もくじ 1. 電磁波解析の概要 Femtet の3つの電磁界ソルバ... 4 電磁波解析の3つの種類... 5 調和解析... 6 導波路解析... 7 共振解析... 8 2. 電磁波解析の機能 設定の紹介 3 Femtet の 3 つの電磁界ソルバ Femtet には 3 つの電磁界ソルバがあります

More information

基本的なノイズ発生メカニズムとその対策 電源 GND バウンス CMOS デジタル回路におけるスイッチング動作に伴い 駆動 MOS トランジスタのソース / ドレインに過渡的な充放電電流 及び貫通電流が生じます これが電源 GND に流れ込む際 配線の抵抗成分 及びインダクタンス成分によって電源電圧

基本的なノイズ発生メカニズムとその対策 電源 GND バウンス CMOS デジタル回路におけるスイッチング動作に伴い 駆動 MOS トランジスタのソース / ドレインに過渡的な充放電電流 及び貫通電流が生じます これが電源 GND に流れ込む際 配線の抵抗成分 及びインダクタンス成分によって電源電圧 デジアナ混載 IC ミックスド シグナル IC 設計の留意点 2005 年 5 月初版 2010 年 10 月改訂作成 : アナロジスト社森本浩之 まえがきデジタル アナログ混載 IC の回路本来の実力を引き出すためにはアナログ回路とデジタ ル回路の不要な干渉を抑える必要があり ノウハウを要します ですが十分な理解と注意の元で設 計を行えばさほど混載を恐れる必要もありません 用語 IP: Intellectual

More information

回路シミュレーションと技術支援ツール

回路シミュレーションと技術支援ツール 回路シミュレーションと技術支援ツール 評価 解析センター梅村哲也 江畑克史 2009.May.28 AN-TST09Z001_ja コンピュータシミュレーションの活用 近年の回路設計や機器設計では コンピュータシミュレーションが積極的に導入されています 実際に回路や機器を試作してテストを繰り返すよりも 大幅に時間を短縮してコストを削減できるからです また ハードウェア ソフトウェアともに性能が向上しているため

More information

NJM78L00S 3 端子正定電圧電源 概要 NJM78L00S は Io=100mA の 3 端子正定電圧電源です 既存の NJM78L00 と比較し 出力電圧精度の向上 動作温度範囲の拡大 セラミックコンデンサ対応および 3.3V の出力電圧もラインアップしました 外形図 特長 出力電流 10

NJM78L00S 3 端子正定電圧電源 概要 NJM78L00S は Io=100mA の 3 端子正定電圧電源です 既存の NJM78L00 と比較し 出力電圧精度の向上 動作温度範囲の拡大 セラミックコンデンサ対応および 3.3V の出力電圧もラインアップしました 外形図 特長 出力電流 10 端子正定電圧電源 概要 は Io=mA の 端子正定電圧電源です 既存の NJM78L と比較し 出力電圧精度の向上 動作温度範囲の拡大 セラミックコンデンサ対応および.V の出力電圧もラインアップしました 外形図 特長 出力電流 ma max. 出力電圧精度 V O ±.% 高リップルリジェクション セラミックコンデンサ対応 過電流保護機能内蔵 サーマルシャットダウン回路内蔵 電圧ランク V,.V,

More information

オペアンプの容量負荷による発振について

オペアンプの容量負荷による発振について Alicatin Nte オペアンプシリーズ オペアンプの容量負荷による発振について 目次 :. オペアンプの周波数特性について 2. 位相遅れと発振について 3. オペアンプの位相遅れの原因 4. 安定性の確認方法 ( 増幅回路 ) 5. 安定性の確認方法 ( 全帰還回路 / ボルテージフォロア ) 6. 安定性の確認方法まとめ 7. 容量負荷による発振の対策方法 ( 出力分離抵抗 ) 8. 容量負荷による発振の対策方法

More information

「リフレッシュ理科教室」テキスト執筆要領

「リフレッシュ理科教室」テキスト執筆要領 F. 部品を集めてラジオを作ろう 電波はラジオ テレビ 携帯電話をはじめとして 宇宙通信など多くの通信に広く使われている ただし 最近のラジオは IC を使用し 動作がよくわからない ここでは 簡単な回路を用いて基本的なラジオを作る ラジオ伝送では 変調と検波と呼ばれる操作があり これを理解しておこう 1. ラジオによる音声信号の送受信 1.1 ラジオ送信の考え方 ( 変調 ) ラジオなどに利用される電波は音声に比較するとはるかに高い周波数です

More information

PIC の書き込み解説 PICライターを使うときに間違った使い方を見受ける 書き込み失敗の原因は知識不足にある やってはいけないことをしている 単に失敗だけならまだしも部品を壊してしまう 正しい知識を身に着けよう 書き込みに必要なピンと意味 ICSPを意識した回路設計の必要性 ICSP:In Cir

PIC の書き込み解説 PICライターを使うときに間違った使い方を見受ける 書き込み失敗の原因は知識不足にある やってはいけないことをしている 単に失敗だけならまだしも部品を壊してしまう 正しい知識を身に着けよう 書き込みに必要なピンと意味 ICSPを意識した回路設計の必要性 ICSP:In Cir PIC の書き込み解説 PICライターを使うときに間違った使い方を見受ける 書き込み失敗の原因は知識不足にある やってはいけないことをしている 単に失敗だけならまだしも部品を壊してしまう 正しい知識を身に着けよう 書き込みに必要なピンと意味 ICSPを意識した回路設計の必要性 ICSP:In Circuit Serial Programmming 原則論を解説 PIC の種類によって多少異なる 1

More information

高速デジタル信号に対応するプリント基板の開発

高速デジタル信号に対応するプリント基板の開発 埼玉県産業技術総合センター研究報告第 5 巻 (007) 高速デジタル信号に対応するプリント基板の開発 井沢昌行 * 本多春樹 * 萩原玄 ** Development of printe wiring boar for high spee igital signal. IZAWA Masayuki*, HONDA Haruki*, HAGIWARA Gen**, 抄録 高次の高周波を含む高速なデジタル信号の品質を損なうことなく伝送するプリント配線

More information

TITAN マルチコンタクト プローブ TITAN マルチコンタクト プローブは MPI の独自の TITAN RF プロービング技術をさらに発展させた RF/ マイクロ波デバイス特性評価用プローブです 最大 15 コンタクトまでのプロービングが可能で 各コンタクトは RF ロジック バイパス電源の

TITAN マルチコンタクト プローブ TITAN マルチコンタクト プローブは MPI の独自の TITAN RF プロービング技術をさらに発展させた RF/ マイクロ波デバイス特性評価用プローブです 最大 15 コンタクトまでのプロービングが可能で 各コンタクトは RF ロジック バイパス電源の TITAN マルチコンタクト プローブ TITAN マルチコンタクト プローブは MPI の独自の TITAN RF プロービング技術をさらに発展させた RF/ マイクロ波デバイス特性評価用プローブです 最大 5 コンタクトまでのプロービングが可能で 各コンタクトは RF ロジック バイパス電源の中から選択可能です TITAN プローブのもつ優れたインピーダンス整合 電気特性 チップの視認性 長寿命をすべて兼ね備えています

More information

Microsoft PowerPoint - 集積回路工学(5)_ pptm

Microsoft PowerPoint - 集積回路工学(5)_ pptm 集積回路工学 東京工業大学大学院理工学研究科電子物理工学専攻 松澤昭 2009/0/4 集積回路工学 A.Matuzawa (5MOS 論理回路の電気特性とスケーリング則 資料は松澤研のホームページ htt://c.e.titech.ac.j にあります 2009/0/4 集積回路工学 A.Matuzawa 2 インバータ回路 このようなインバータ回路をシミュレーションした 2009/0/4 集積回路工学

More information

反射係数

反射係数 平面波の反射と透過 電磁波の性質として, 反射と透過は最も基礎的な現象である. 我々の生活している空間は, 各種の形状を持った媒質で構成されている. 人間から見れば, 空気, 水, 木, 土, 火, 金属, プラスチックなど, 全く異なるものに見えるが, 電磁波からすると誘電率, 透磁率, 導電率が異なるだけである. 磁性体を除く媒質は比透磁率がで, ほとんど媒質に当てはまるので, 実質的に我々の身の回りの媒質で,

More information

Microsoft PowerPoint EM2_15.ppt

Microsoft PowerPoint EM2_15.ppt ( 第 5 回 ) 鹿間信介摂南大学理工学部電気電子工学科 後半部 (4~5 章 ) のまとめ 4. 導体 4.3 誘電体 5. 磁性体 5. 電気抵抗 演習 静電誘導電界とその重ね合わせ 導体内部の電荷 : 外部電界 誘導電界の重ね合わせ電界を感じる () 内部電荷自身が移動することで作り出した電界にも反応 () さらに移動場所を変える (3) 上記 ()~() の繰り返し 最終的に落ち着く状態

More information

スライド 1

スライド 1 高速基板のパワー インテグリティ ~ シミュレーションによる取り組み ~ Seminar ID(D2-A-3) presented by: EDA テクニカルサポート コンサルティング明石芳雄 Agenda はじめに Power Integrity (PI) による問題とシミュレーション 電磁界解析の検証 PIによる電源ノイズと信号波形への影響 電磁界解析の高速化と時間領域解析 まとめ ディジタル信号伝送のトレンド

More information

2. λ/2 73Ω 36Ω 2 LF λ/4 36kHz λ/4 36kHz 2, 200/4 = 550m ( ) 0 30m λ = 2, 200m /200 /00 λ/ dB 3. λ/4 ( ) (a) C 0 l [cm] r [cm] 2 l 0 C 0 = [F] (2

2. λ/2 73Ω 36Ω 2 LF λ/4 36kHz λ/4 36kHz 2, 200/4 = 550m ( ) 0 30m λ = 2, 200m /200 /00 λ/ dB 3. λ/4 ( ) (a) C 0 l [cm] r [cm] 2 l 0 C 0 = [F] (2 JARL 36kHz 20.7.3 JA5FP/.... 36kHz ( ) = () + + 0m 00mΩ 0 00Ω 3 36kHz 36kHz 短小モノポールモノポールの設置環境 垂直なキャパシタンス 孤立キャパシタンス アンテナエレメント 短小モノポールモノポールの等価回路 浮遊容量 H 浮遊容量 電力線 L 接地抵抗 放射抵抗 対地容量 損失抵抗 損失抵抗 立木 水平なキャパシタンス 大地深部

More information

高速小型 DSP の電源ラインノイズ対策アプリケーションのご紹介 株式会社村田製作所コンポーネント事業本部 EMI 事業部商品開発部開発 2 課 Murata Manufacturing Co., Ltd. All Rights Reserved, Copyright (c) #1

高速小型 DSP の電源ラインノイズ対策アプリケーションのご紹介 株式会社村田製作所コンポーネント事業本部 EMI 事業部商品開発部開発 2 課 Murata Manufacturing Co., Ltd. All Rights Reserved, Copyright (c) #1 高速小型 DSP の電源ラインノイズ対策アプリケーションのご紹介 株式会社村田製作所コンポーネント事業本部 EMI 事業部商品開発部開発 2 課 Murata Manufacturing Co., Ltd. All Rights Reserved, Copyright (c) #1 目次 1. 背景 2. 電源ラインノイズ対策手法の基本原理 3. 電源ライン周辺のインピーダンスの概算 4. 電源ライン評価基板の紹介

More information

EMC 設計技術者試験問題例無断転載禁止

EMC 設計技術者試験問題例無断転載禁止 EMC 設計技術者資格練習問題 018 年 4 月 1 日 EMC 設計技術者試験問題例無断転載禁止 EMC 設計技術者試験問題例無断転載禁止 1. 定格静電容量が 1 [μf] の面実装セラミックキャパシタで 内部インダクタンスが 10 [nh] の場合 下記条件のもとで このキャパシタの自己共振周波数に近いのはいずれか 条件 サイズ 1608 [mm] 定格電圧 6.3[Vdc] 印加電圧 3.0[Vdc]

More information

-2 外からみたプロセッサ GND VCC CLK A0 A1 A2 A3 A4 A A6 A7 A8 A9 A10 A11 A12 A13 A14 A1 A16 A17 A18 A19 D0 D1 D2 D3 D4 D D6 D7 D8 D9 D10 D11 D12 D13 D14 D1 MEMR

-2 外からみたプロセッサ GND VCC CLK A0 A1 A2 A3 A4 A A6 A7 A8 A9 A10 A11 A12 A13 A14 A1 A16 A17 A18 A19 D0 D1 D2 D3 D4 D D6 D7 D8 D9 D10 D11 D12 D13 D14 D1 MEMR 第 回マイクロプロセッサのしくみ マイクロプロセッサの基本的なしくみについて解説する. -1 マイクロプロセッサと周辺回路の接続 制御バス プロセッサ データ バス アドレス バス メモリ 周辺インタフェース バスの基本構成 Fig.-1 バスによる相互接続は, 現在のコンピュータシステムのハードウェアを特徴づけている. バス (Bus): 複数のユニットで共有される信号線システム内の データの通り道

More information

Microsoft PowerPoint - ADS2009_SI._Intro_U.ppt

Microsoft PowerPoint - ADS2009_SI._Intro_U.ppt Advanced Design System 2009 デジタルアプリケーション向け EDA ソリューションのご紹介 1 こんなことで お困りではないですか 利用していた IC が製造中止ピンコンパチ代替 IC を利用急に動かなくなった 部品調達コストの関係で DDR メモリから DDR2 メモリへ切り替え高速なメモリバス設計は初めて自信が持てない データ伝送 PHY を PCI Express に決定さて

More information

Microsoft Word - VK5KLT_J2.doc

Microsoft Word - VK5KLT_J2.doc An Overview of the Underestimated Magnetic Loop HF Antenna 過小評価されているマグネチック ループ HF アンテナの概要 - その 2 Leigh Turner VK5KLT 訳者 : 小暮裕明 JG1UNE 2013/11/17 この文書は, 執筆者である Leigh Turner 氏の許可を得て翻訳しています. 一部に意訳が含まれますが,

More information

第 5 章復調回路 古橋武 5.1 組み立て 5.2 理論 ダイオードの特性と復調波形 バイアス回路と復調波形 復調回路 (II) 5.3 倍電圧検波回路 倍電圧検波回路 (I) バイアス回路付き倍電圧検波回路 本稿の Web ページ ht

第 5 章復調回路 古橋武 5.1 組み立て 5.2 理論 ダイオードの特性と復調波形 バイアス回路と復調波形 復調回路 (II) 5.3 倍電圧検波回路 倍電圧検波回路 (I) バイアス回路付き倍電圧検波回路 本稿の Web ページ ht 第 章復調回路 古橋武.1 組み立て.2 理論.2.1 ダイオードの特性と復調波形.2.2 バイアス回路と復調波形.2.3 復調回路 (II).3 倍電圧検波回路.3.1 倍電圧検波回路 (I).3.2 バイアス回路付き倍電圧検波回路 本稿の Web ページ http://mybook-pub-site.sakura.ne.jp/radio_note/index.html 1 C 4 C 4 C 6

More information

Microsoft PowerPoint pptx

Microsoft PowerPoint pptx 3.2 スイッチングの方法 1 電源の回路図表記 電源ラインの記号 GND ラインの記号 シミュレーションしない場合は 省略してよい ポイント : 実際には V CC と GND 配線が必要だが 線を描かないですっきりした表記にする 複数の電源電圧を使用する回路もあるので 電源ラインには V CC などのラベルを付ける 2 LED のスイッチング回路 LED の明るさを MCU( マイコン ) で制御する回路

More information

ピッチ図 2 ソケットコネクタ 中心導体用プローブ グランド用プローブ ソケットにおけるプローブの配置 約 2mm,Probe A 及びBのピッチが.25,.3mmなので, プレート及びタブ端子を介して, ソケット内に配置されたプローブと接続できるようにした プレートとタブ端子で構成される同軸構造の

ピッチ図 2 ソケットコネクタ 中心導体用プローブ グランド用プローブ ソケットにおけるプローブの配置 約 2mm,Probe A 及びBのピッチが.25,.3mmなので, プレート及びタブ端子を介して, ソケット内に配置されたプローブと接続できるようにした プレートとタブ端子で構成される同軸構造の 論文 長野県工技センター研報 No.6, p.p32p36 ( 極微小径スプリングテストプローブの 高周波特性評価技術の開発 * 工藤賢一 ** 蜜澤雅之 ** 小池博幸 *** Development of High Frequency Characterization Technology for pring Test Probe Kenichi KUDO, Masayuki MITUZAWA

More information

回路シミュレーションに必要な電子部品の SPICE モデル 回路シミュレータでシミュレーションを行うためには 使用する部品に対応した SPICE モデル が必要です SPICE モデルは 回路のシミュレーションを行うために必要な電子部品の振る舞い が記述されており いわば 回路シミュレーション用の部

回路シミュレーションに必要な電子部品の SPICE モデル 回路シミュレータでシミュレーションを行うためには 使用する部品に対応した SPICE モデル が必要です SPICE モデルは 回路のシミュレーションを行うために必要な電子部品の振る舞い が記述されており いわば 回路シミュレーション用の部 当社 SPICE モデルを用いたいたシミュレーションシミュレーション例 この資料は 当社 日本ケミコン ( 株 ) がご提供する SPICE モデルのシミュレーション例をご紹介しています この資料は OrCAD Capture 6.( 日本語化 ) に基づいて作成しています 当社 SPICE モデルの取り扱いに関するご注意 当社 SPICE モデルは OrCAD Capture/PSpice 及び

More information

Microsoft Word - p3-p7_研究報告_本文-1-ヘッダー付き

Microsoft Word - p3-p7_研究報告_本文-1-ヘッダー付き 各世代静電気放電試験機の相違明確化 生産技術室名和礼成, 足達幹雄 技術支援室城之内一茂 Difference clarification of each generation electrostatic discharge simulator Yukinari NAWA,Mikio ADACHI and Kazushige JOUNOUCHI 電気 電子機器は, 他機器や自然ノイズなどからの外来ノイズにより,

More information

CMOS リニアイメージセンサ用駆動回路 C CMOS リニアイメージセンサ S 等用 C は当社製 CMOSリニアイメージセンサ S 等用に開発された駆動回路です USB 2.0インターフェースを用いて C と PCを接続

CMOS リニアイメージセンサ用駆動回路 C CMOS リニアイメージセンサ S 等用 C は当社製 CMOSリニアイメージセンサ S 等用に開発された駆動回路です USB 2.0インターフェースを用いて C と PCを接続 CMOS リニアイメージセンサ用駆動回路 C13015-01 CMOS リニアイメージセンサ S11639-01 等用 C13015-01は当社製 CMOSリニアイメージセンサ S11639-01 等用に開発された駆動回路です USB 2.0インターフェースを用いて C13015-01と PCを接続することにより PCからC13015-01 を制御して センサのアナログビデオ信号を 16-bitデジタル出力に変換した数値データを

More information

Microsoft PowerPoint - 第5回電磁気学I 

Microsoft PowerPoint - 第5回電磁気学I  1 年 11 月 8 日 ( 月 ) 1:-1: Y 平成 年度工 系 ( 社会環境工学科 ) 第 5 回電磁気学 Ⅰ 天野浩 項目 電界と電束密度 ガウスの発散定理とガウスの法則の積分形と微分形 * ファラデーの電気力線の使い方をマスターします * 電界と電束密度を定義します * ガウスの発散定理を用いて ガウスの法則の積分形から微分形をガウスの法則の積分形から微分形を導出します * ガウスの法則を用いて

More information

Arduino 用電界強度計シールド組み立て説明書 この電界強度計は Analog Devices 社のログ アンプ AD8307 を使い 入力を 50Ωにマッチングさせ その出力を OP アンプで受けて Arduino の A/D コンバータで読み取り LCD ディスプレイに表示しています AD8

Arduino 用電界強度計シールド組み立て説明書 この電界強度計は Analog Devices 社のログ アンプ AD8307 を使い 入力を 50Ωにマッチングさせ その出力を OP アンプで受けて Arduino の A/D コンバータで読み取り LCD ディスプレイに表示しています AD8 Arduino 用電界強度計シールド組み立て説明書 この電界強度計は Analog Devices 社のログ アンプ AD8307 を使い 入力を 50Ωにマッチングさせ その出力を OP アンプで受けて Arduino の A/D コンバータで読み取り LCD ディスプレイに表示しています AD8307 の特長をデータシートで見ると 完全多段 LOG アンプ 92 db のダイナミック レンジ :-75

More information

AKI-PIC16F877A開発キット (Ver1

AKI-PIC16F877A開発キット (Ver1 STM32F101C8T6 STM32F103CxT6 マイコンキット仕様書 (Ver2012.05.11) この文書の情報は事前の通知なく変更されることがあります 本開発キットを使用したことによる 損害 損失については一切の責任を負いかねます 製造上の不良がございましたら 良品とお取替えいたします それ以外の責についてご容赦ください 変更履歴 Version Ver2012.05.08 新規 Ver2012.05.11

More information

PowerPoint Presentation

PowerPoint Presentation The World Leader in High Performance Signal Processing Solutions 最近のプリント基板で生じがちなトラブル対策に必要な知識 アナログ デバイセズ株式会社石井聡 2014 年 12 月 13 日 アジェンダ 1. 回路実現でトラブルを生じさせない 基本中の基本 2. 最近注意すべきトラブル 基板上 ( 層間 ) で生じる容量 3. マイコン回路とAD

More information

<8AEE B43979D985F F196DA C8E323893FA>

<8AEE B43979D985F F196DA C8E323893FA> 基礎電気理論 4 回目 月 8 日 ( 月 ) 共振回路, 電力教科書 4 ページから 4 ページ 期末試験の日程, 教室 試験日 : 月 4 日 ( 月 ) 時限 教室 :B-4 試験範囲 : 教科書 4ページまでの予定 http://ir.cs.yamanashi.ac.jp/~ysuzuki/kisodenki/ 特別試験 ( 予定 ) 月 5 日 ( 水 ) 学習日 月 6 日 ( 木 )

More information

2. 測定対象物 ( 単層ソレノイド コイル ) 線径 mm の PEW 線を 50mmφ の塩ビパイプに 0 回スペース巻きしてコイルを作製しま した Fig. Single layer coil under test 計算によると (

2. 測定対象物 ( 単層ソレノイド コイル ) 線径 mm の PEW 線を 50mmφ の塩ビパイプに 0 回スペース巻きしてコイルを作製しま した Fig. Single layer coil under test 計算によると ( アンテナアナライザ (AA-30) を用いたコイルの Q 測定 Koji Takei (JGPLD), Oct. 3, 204. はじめに RigExpert 社のアンテナアナライザ (AA-シリーズ) は 50Ω のリターンロスブリッジにより測定対象物の基準波に対する振幅と位相を検出し これから複素インピーダンスや VSWR を算出しています しかも設定した範囲を周波数スキャンしてくれるので短時間で有用な測定が完了する優れものです

More information

Microsoft PowerPoint - ›žŠpfidŠÍŁÏ−·“H−w5›ñŒÚ.ppt

Microsoft PowerPoint - ›žŠpfidŠÍŁÏ−·“H−w5›ñŒÚ.ppt 応用電力変換工学舟木剛 第 5 回本日のテーマ交流 - 直流変換半端整流回路 平成 6 年 月 7 日 整流器 (cfr) とは 交流を直流に変換する 半波整流器は 交直変換半波整流回路 小電力用途 入力電源側の平均電流が零にならない あんまり使われていない 全波整流回路の基本回路 変圧器が直流偏磁しやすい 変圧器の負荷電流に直流分を含むと その直流分により 鉄心が一方向に磁化する これにより 鉄心の磁束密度の増大

More information

3. 測定方法 測定系統図 測定風景写真

3. 測定方法 測定系統図 測定風景写真 ワンセグ切り出し方式室内実験結果 北日本放送株式会社 目的 ワンセグ切り出し方式の 固定受信への影響軽減 を検証 1. 内容 SFN 干渉による固定受信への影響について以下を測定し比較する フルセグ( 希望波 ) にフルセグ ( 再送信波 ) が重なった時の (B 階層 ) のC/N フルセグ( 希望波 ) にワンセグ切り出し ( 再送信波 ) が重なった時の (B 階層 ) のC/N 2. 被測定装置

More information

Microsoft Word - NJJ-105の平均波処理について_改_OK.doc

Microsoft Word - NJJ-105の平均波処理について_改_OK.doc ハンディサーチ NJJ-105 の平均波処理について 2010 年 4 月 株式会社計測技術サービス 1. はじめに平均波処理の処理アルゴリズムの内容と有効性の度合いを現場測定例から示す まず ほぼ同じ鉄筋かぶりの密接鉄筋 壁厚測定時の平均波処理画像について また ダブル筋 千鳥筋の現場測定例へ平均波処理とその他画像処理を施し 処理画像の差について比較検証し 考察を加えた ( 平均波処理画像はその他の各処理画像同様

More information

スライド 1

スライド 1 パワーインダクタ および高誘電率系チップ積層セラミックコンデンサの動的モデルについて 1 v1.01 2015/6 24 August 2015 パワーインダクタの動的モデルについて 2 24 August 2015 24 August 2015 動的モデルの必要性 Q. なぜ動的モデルが必要なのか? A. 静的モデルでは リアルタイムに変化するインダクタンスを反映したシミュレーション結果が得られないから

More information

観測波形 赤いエリアに波形が入り込まなければ規格を満足しています.5mではより厳しいTP2の規格でも満足しています.5mケーブル使用時 TP2規格 TP3規格 -.1-5mケーブル使用時 2

観測波形 赤いエリアに波形が入り込まなければ規格を満足しています.5mではより厳しいTP2の規格でも満足しています.5mケーブル使用時 TP2規格 TP3規格 -.1-5mケーブル使用時 2 2 1 2 2 224 48 7 11 15 12 2 2 48 21 1 4 IEEE1394 USB1.1 USB2. 1 2 1.5 12 1.5 12 (Low speed) (Full speed) 4 48 (High speed) 5 5 * 29 年には USB3. がリリースされる予定で 5Gbps の SuperSpeed が追加される 224 4824 TP4 TP3 TP2

More information

ReviveUSB(web)

ReviveUSB(web) リヴァイヴ USB キット作成方法 使用方法 2010/10/21 *ver1.00 (CreationDate 2010/10/21) Assembly Desk (http://a-desk.jp/) 概要 本文書は Assembly Desk で設計された REVIVE USB の使用方法 (A 項 ) とキット作成 (B 項 ) のマニュアルです 本キットに関する詳細資料は以下のサイトをご参照下さい

More information

スライド 1

スライド 1 劣化診断技術 ビスキャスの開発した水トリー劣化診断技術について紹介します 劣化診断技術の必要性 電力ケーブルは 電力輸送という社会インフラの一端を担っており 絶縁破壊事故による電力輸送の停止は大きな影響を及ぼします 電力ケーブルが使用される環境は様々ですが 長期間 使用環境下において性能を満足する必要があります 電力ケーブルに用いられる絶縁体 (XLPE) は 使用環境にも異なりますが 経年により劣化し

More information

アジェンダ 前編 1. イントロダクション 2. 大きさ を表すデシベル (db) と dbm の考え方 3. dbm をちょっと基本クイズで考える 4. db に関連して出てくる用語 5. 電圧と電流は伝送線路内を波として伝わっていく 後編 6. 伝送線路と特性インピーダンス 7. 電圧と電流が反

アジェンダ 前編 1. イントロダクション 2. 大きさ を表すデシベル (db) と dbm の考え方 3. dbm をちょっと基本クイズで考える 4. db に関連して出てくる用語 5. 電圧と電流は伝送線路内を波として伝わっていく 後編 6. 伝送線路と特性インピーダンス 7. 電圧と電流が反 The World Leader in High Performance Signal Processing Solutions 高速アナログ回路技術の基本を正しく理解して正しく設計する ( 後編 ) アナログ デバイセズ株式会社石井聡 アジェンダ 前編 1. イントロダクション 2. 大きさ を表すデシベル (db) と dbm の考え方 3. dbm をちょっと基本クイズで考える 4. db に関連して出てくる用語

More information

RA-485実習キット

RA-485実習キット はじめに回路図と部品表組み立て動作確認サンプルプログラム はじめに 少し前はどのパソコンにもシリアルポートが実装されていました パソコンのシリアルポートは RS-232C という規格です 1 対 1 で接続するためによく使われました しかし, 伝送速度が遅く, 不平衡伝送のためノイズに弱いという欠点があり, 最近の高速 長距離伝送に対応できなくなりました このキットで学習する RS-485 はこれらの欠点を改善した規格です

More information

Microsoft PowerPoint - H22パワエレ第3回.ppt

Microsoft PowerPoint - H22パワエレ第3回.ppt パワーエレトクロニクス ( 舟木担当分 ) 第三回サイリスタ位相制御回路逆変換動作 平成 年 月 日月曜日 限目 誘導負荷 位相制御単相全波整流回路 導通期間 ( 点弧角, 消弧角 β) ~β( 正の半波について ) ~ β( 負の半波について ) β> となる時に連続導通となる» この時, 正の半波の導通期間は~» ダイオードでは常に連続導通 連続導通と不連続導通の境界を求める オン状態の微分方程式

More information

エラー動作 スピンドル動作 スピンドルエラーの計測は 通常 複数の軸にあるセンサーによって行われる これらの計測の仕組みを理解するために これらのセンサーの 1つを検討する シングル非接触式センサーは 回転する対象物がセンサー方向またはセンサー反対方向に移動する1 軸上の対象物の変位を測定する 計測

エラー動作 スピンドル動作 スピンドルエラーの計測は 通常 複数の軸にあるセンサーによって行われる これらの計測の仕組みを理解するために これらのセンサーの 1つを検討する シングル非接触式センサーは 回転する対象物がセンサー方向またはセンサー反対方向に移動する1 軸上の対象物の変位を測定する 計測 LION PRECISION TechNote LT03-0033 2012 年 8 月 スピンドルの計測 : 回転数および帯域幅 該当機器 : スピンドル回転を測定する静電容量センサーシステム 適用 : 高速回転対象物の回転を計測 概要 : 回転スピンドルは 様々な周波数でエラー動作が発生する これらの周波数は 回転スピード ベアリング構成部品の形状のエラー 外部影響およびその他の要因によって決定される

More information

PowerPoint プレゼンテーション

PowerPoint プレゼンテーション 電磁波工学 第 5 回平面波の媒質への垂直および射入射と透過 柴田幸司 Bounda Plan Rgon ε μ Rgon Mdum ( ガラスなど ε μ z 平面波の反射と透過 垂直入射の場合 左図に示す様に 平面波が境界面に対して垂直に入射する場合を考える この時の入射波を とすると 入射波は境界において 透過波 と とに分解される この時の透過量を 反射量を Γ とおくと 領域 における媒質の誘電率に対して透過量

More information

elm1117hh_jp.indd

elm1117hh_jp.indd 概要 ELM7HH は低ドロップアウト正電圧 (LDO) レギュレータで 固定出力電圧型 (ELM7HH-xx) と可変出力型 (ELM7HH) があります この IC は 過電流保護回路とサーマルシャットダウンを内蔵し 負荷電流が.0A 時のドロップアウト電圧は.V です 出力電圧は固定出力電圧型が.V.8V.5V.V 可変出力電圧型が.5V ~ 4.6V となります 特長 出力電圧 ( 固定 )

More information

スライド 0

スライド 0 Copyright 2013 Oki Engineering Co., Ltd. All rights reserved 2013 OEG セミナー EMC 設計アドバイザーを用いた EMI 抑制サービス EMC 設計アドバイザーを用いた EMI 抑制サービス 2013 年 7 月 9 日 EMC 事業部 戸所祐策 Copyright 2013 Oki Engineerig Co., Ltd. All

More information

レベルシフト回路の作成

レベルシフト回路の作成 レベルシフト回路の解析 群馬大学工学部電気電子工学科通信処理システム工学第二研究室 96305033 黒岩伸幸 指導教官小林春夫助教授 1 ー発表内容ー 1. 研究の目的 2. レベルシフト回路の原理 3. レベルシフト回路の動作条件 4. レベルシフト回路のダイナミクスの解析 5. まとめ 2 1. 研究の目的 3 研究の目的 信号レベルを変換するレベルシフト回路の設計法を確立する このために 次の事を行う

More information

Microsoft Word - サイリスタ設計

Microsoft Word - サイリスタ設計 サイリスタのゲート回路設計 サイリスタはパワエレ関係の最初に出てくる素子ですが その駆動用ゲート回路に関する文献が少なく 学 生が使いこなせないでいる ゲート回路の設計例 ( ノイズ対策済み ) をここに記しておく 基本的にサイリス タのゲート信号は電流で ON させるものです 1. ノイズ対策済みゲート回路基本回路の説明 図 1 ノイズ対策済みゲート回路基本回路 1.1 パルストランス パルストランスは

More information

CCD リニアイメージセンサ用駆動回路 C CCD リニアイメージセンサ (S11155/S ) 用 C は 当社製 CCDリニアイメージセンサ S11155/S 用に開発された駆動回路です S11155/S11156-

CCD リニアイメージセンサ用駆動回路 C CCD リニアイメージセンサ (S11155/S ) 用 C は 当社製 CCDリニアイメージセンサ S11155/S 用に開発された駆動回路です S11155/S11156- CCD リニアイメージセンサ用駆動回路 C11165-02 CCD リニアイメージセンサ (S11155/S11156-2048-02) 用 C11165-02は 当社製 CCDリニアイメージセンサ S11155/S11156-2048-02 用に開発された駆動回路です S11155/S11156-2048-02と組み合わせることにより分光器に使用できます C11165-02 は CCD 駆動回路

More information

インダクタンス起因ノイズのトレンドークロストークと di/dt ノイズ JEITA EDA 技術専門委員会 DMD 研究会ノイズフリーデザインタスクグループ 山縣暢英 ( ソニー ) 貝原光男 ( リコー ) 蜂屋孝太郎 (NEC) 小野信任 ( セイコーインスツルメンツ )

インダクタンス起因ノイズのトレンドークロストークと di/dt ノイズ JEITA EDA 技術専門委員会 DMD 研究会ノイズフリーデザインタスクグループ 山縣暢英 ( ソニー ) 貝原光男 ( リコー ) 蜂屋孝太郎 (NEC) 小野信任 ( セイコーインスツルメンツ ) インダクタンス起因ノイズのトレンドークロストークと di/dt ノイズ JEITA EDA 技術専門委員会 DMD 研究会ノイズフリーデザインタスクグループ 山縣暢英 ( ソニー ) 貝原光男 ( リコー ) 蜂屋孝太郎 (NEC) 小野信任 ( セイコーインスツルメンツ ) 目次 活動目的と課題 ノイズの種類と影響 クロストークノイズのトレンド ダイナミック電源ノイズのトレンド まとめ 今後の課題

More information

CommCheckerManual_Ver.1.0_.doc

CommCheckerManual_Ver.1.0_.doc 通信チェックツール (CommChecker) 取扱説明書 (Ver.1.0) 2009 ESPEC Corp. 目次 1. 使用条件 4 2. ダウンロード & インストール 5 3. 環境設定 6 3-1.RS-485 通信 6 3-2.RS-232C 通信 7 3-3.GPIB 通信 8 4. ソフトウェアの使用方法 9 4-1. 起動 9 4-2. 通信設定 10 (1)RS485 通信 10

More information

メモリ トレンド DDR4 と LPDDR4 の速度域が重なる V DDR4 1.8V 1.2V LPDDR4 1.1V DDR4 と LPDDR4 の速度域が重なる DDR2 DDR3 DDR4 LPDDR1/2/3/

メモリ トレンド DDR4 と LPDDR4 の速度域が重なる V DDR4 1.8V 1.2V LPDDR4 1.1V DDR4 と LPDDR4 の速度域が重なる DDR2 DDR3 DDR4 LPDDR1/2/3/ キーサイトウェブセミナー 2016 誰もが陥る DDR メモリトラブル回避法 キーサイト テクノロジー合同会社アプリケーションエンジニアリング部門小室行央 メモリ トレンド DDR4 と LPDDR4 の速度域が重なる 12800 6400 3200 1600 800 400 200 100 1.5V DDR4 1.8V 1.2V LPDDR4 1.1V DDR4 と LPDDR4 の速度域が重なる

More information

<4D F736F F D CC93F18E9F91A482F08A4A95FA82CD89BD8CCC8A4A95FA82B582C482CD CC82A982CC98622E646F63>

<4D F736F F D CC93F18E9F91A482F08A4A95FA82CD89BD8CCC8A4A95FA82B582C482CD CC82A982CC98622E646F63> CT の二次側を開放しては何故イケナイのかという話 さて今回のお題は CT に関するものです 配電の実務では CT を沢山使います CT は大電流を計測するのに必要な機器ですが 二次側を開放したまま一次側に電流を流すと とんでもない事になります 何故こんな事になるのかと言う話です この話は電気技術者として確実に理解しておかなければならない事項です 下記の説明 ( 擬き?) をお読み下さい で 毎度の様にいきなり問題を出します

More information

49Z-12716-2.qxd (Page 1)

49Z-12716-2.qxd (Page 1) www.tektronix.co.jp µ 全 A = 1/4N * ( T 1-T 2 ), (i =1...N) ディスク ドライブ設計のための測定ソリューション アプリケーション ノート 図 6. リード チャンネルの電流を生成するために使用する任意波形ゼネレー タと電流プローブ リード ライト ヘッドの電流 ライト ヘッドの電流振幅は ヘッド リードを電流プ ローブでルーピングすることにより簡単に測定できま

More information

スライド 1

スライド 1 資 RJC-15J3 アプリケーションノート ( 第 3 版 ) チップアンテナ - 弊社標準基板におけるアンテナ特性 - 三菱マテリアル株式会社電子材料事業カンパニー電子デバイス事業部 Copyright 217 Mitsubishi Materials Corporation Version 3. 1 アプリケーションノート ( 第 3 版 ) もくじ ページ 1.AM11DP-ST1 3 1)315MHz

More information

インターリーブADCでのタイミングスキュー影響のデジタル補正技術

インターリーブADCでのタイミングスキュー影響のデジタル補正技術 1 インターリーブADCでのタイミングスキュー影響のデジタル補正技術 浅見幸司 黒沢烈士 立岩武徳 宮島広行 小林春夫 ( 株 ) アドバンテスト 群馬大学 2 目次 1. 研究背景 目的 2. インターリーブADCの原理 3. チャネル間ミスマッチの影響 3.1. オフセットミスマッチの影響 3.2. ゲインミスマッチの影響 3.3. タイミングスキューの影響 4. 提案手法 4.1. インターリーブタイミングミスマッチ補正フィルタ

More information

Kumamoto University Center for Multimedia and Information Technologies Lab. 熊本大学アプリケーション実験 ~ 実環境における無線 LAN 受信電波強度を用いた位置推定手法の検討 ~ InKIAI 宮崎県美郷

Kumamoto University Center for Multimedia and Information Technologies Lab. 熊本大学アプリケーション実験 ~ 実環境における無線 LAN 受信電波強度を用いた位置推定手法の検討 ~ InKIAI 宮崎県美郷 熊本大学アプリケーション実験 ~ 実環境における無線 LAN 受信電波強度を用いた位置推定手法の検討 ~ InKIAI プロジェクト @ 宮崎県美郷町 熊本大学副島慶人川村諒 1 実験の目的 従来 信号の受信電波強度 (RSSI:RecevedSgnal StrengthIndcator) により 対象の位置を推定する手法として 無線 LAN の AP(AccessPont) から受信する信号の減衰量をもとに位置を推定する手法が多く検討されている

More information

第1章 様々な運動

第1章 様々な運動 自己誘導と相互誘導 自己誘導 自己誘導起電力 ( 逆起電力 ) 図のように起電力 V V の電池, 抵抗値 R Ω の抵抗, スイッチS, コイルを直列につないだ回路を考える. コイルに電流が流れると, コイル自身が作る磁場による磁束がコイルを貫く. コイルに流れる電流が変化すると, コイルを貫く磁束も変化するのでコイルにはこの変化を妨げる方向に誘導起電力が生じる. この現象を自己誘導という. 自己誘導による起電力は電流変化を妨げる方向に生じるので逆起電力とも呼ばれる.

More information

3Dプリンタ用CADソフト Autodesk Meshmixer入門編[日本語版]

3Dプリンタ用CADソフト Autodesk Meshmixer入門編[日本語版] ご購入はこちら. http://shop.cqpub.co.jp/hanbai 第 1 章操作メニュー ソフトウェアの立ち上げ時に表示されるトップ メニューと, 各メニューの役割について紹介します. ソフトウェアを使うにあたり, どこからスタートさせるのか確認しましょう. 最初に, 操作メニューから確認していきましょう. ソフトウェアを立ち上げると, 図 1-1 が現れます. この画面で, 大きく三つの操作メニュー

More information

Microsoft PowerPoint - em01.pptx

Microsoft PowerPoint - em01.pptx No. 基礎 ~ マクスウェルの方程式 ~ t t D H B E d t d d d t d D l H B l E 微分形積分形 電磁気学の知識からマクスウェルの方程式を導く No. ファラデーの法則 V d dt E dl t B d ストークスの定理を使って E d E ファラデー : 近接作用 界の概念を提唱 B t t B d アンペアの法則 I H rh I H dl d r dl V

More information

正転時とは反対に回転する これが逆転である 図 2(d) の様に 4 つのスイッチ全てが OFF の場合 DC モータには電流が流れず 停止する ただし 元々 DC モータが回転していた場合は 惰性でしばらく回転を続ける 図 2(e) の様に SW2 と SW4 を ON SW1 と SW3 を O

正転時とは反対に回転する これが逆転である 図 2(d) の様に 4 つのスイッチ全てが OFF の場合 DC モータには電流が流れず 停止する ただし 元々 DC モータが回転していた場合は 惰性でしばらく回転を続ける 図 2(e) の様に SW2 と SW4 を ON SW1 と SW3 を O コンピュータ工学講義プリント (1 月 29 日 ) 今回は TA7257P というモータ制御 IC を使って DC モータを制御する方法について学ぶ DC モータの仕組み DC モータは直流の電源を接続すると回転するモータである 回転数やトルク ( 回転させる力 ) は 電源電圧で調整でき 電源の極性を入れ替えると 逆回転するなどの特徴がある 図 1 に DC モータの仕組みを示す DC モータは

More information

Microsoft PowerPoint - 基礎電気理論 07回目 11月30日

Microsoft PowerPoint - 基礎電気理論 07回目 11月30日 基礎電気理論 7 回目 月 30 日 ( 月 ) 時限 次回授業 時間 : 月 30 日 ( 月 )( 本日 )4 時限 場所 : B-3 L,, インピーダンス教科書 58 ページから 64 ページ http://ir.cs.yamanashi.ac.jp/~ysuzuki/kisodenki/ 授業評価アンケート ( 中間期評価 ) NS の授業のコミュニティに以下の項目について記入してください

More information

<4D F736F F F696E74202D E D836A834E83588AEE A837E B325F534995D C576322E B B B82AA914F89F195DB91B68DCF82DD5D>

<4D F736F F F696E74202D E D836A834E83588AEE A837E B325F534995D C576322E B B B82AA914F89F195DB91B68DCF82DD5D> A-2 2013 年 7 月 2 日 テクトロニクス イノベーション フォーラム 2013 高速信号伝送の基礎と設計トレンド最前線 2-SI 編 芝浦工業大学電子工学科 須藤俊夫 1 内容 1.SI PI EMIの課題と背景 2. クロストークとスルーホールクとスルル 3. 導体損失と誘電損失 4. ガラスクロスの影響 5. 銅箔粗化の影響 6. まとめ 2 SI PI EMI の相互関連性 SI

More information

今度は下図に示すような 電磁石 を用意します かなり変な格好をしていますので ヨ ~ ク見て下さい 取り敢えず直流電源を繋いで見ました 緑矢印 は磁力線の流れを示し 赤い矢印 は電流の流れを示します 図 2 下記に馬蹄形磁石の磁力線の流れを示します 同じ 図 3 この様に 空間を ( 一定の ) 磁

今度は下図に示すような 電磁石 を用意します かなり変な格好をしていますので ヨ ~ ク見て下さい 取り敢えず直流電源を繋いで見ました 緑矢印 は磁力線の流れを示し 赤い矢印 は電流の流れを示します 図 2 下記に馬蹄形磁石の磁力線の流れを示します 同じ 図 3 この様に 空間を ( 一定の ) 磁 回転磁界の話 皆様こんにちは普段お世話になっている 誘導電動機ですが 今回はこの仕組みの話 ( の一部 ) です 誘導電動機の中では 回転磁界 が出来ていますが これがどうして出来るのかが 参考書を読んでも良く解りません 小生のアタマが悪いのだ思いますが 参考書に書いてある説明では無く 別の考え方をすると理解することが出来ます 回転磁界の原理が解ったところで 仕事に役に立つとは思えませんが まぁ知らないより知っていた方が良い程度で御読み下さい

More information

NJG1660HA8 SPDT スイッチ GaAs MMIC 概要 NJG1660HA8 は WiMAX やデータ通信カードをはじめとする通信機器の高周波信号切り替え等の用途に最適な大電力 SPDT スイッチです 8GHz までの広周波数帯域をカバーし 高パワーハンドリング 低損失 高アイソレーショ

NJG1660HA8 SPDT スイッチ GaAs MMIC 概要 NJG1660HA8 は WiMAX やデータ通信カードをはじめとする通信機器の高周波信号切り替え等の用途に最適な大電力 SPDT スイッチです 8GHz までの広周波数帯域をカバーし 高パワーハンドリング 低損失 高アイソレーショ SPDT スイッチ GaAs MMIC 概要 は WiMAX やデータ通信カードをはじめとする通信機器の高周波信号切り替え等の用途に最適な大電力 SPDT スイッチです 8GHz までの広周波数帯域をカバーし 高パワーハンドリング 低損失 高アイソレーションを特徴とします また 保護素子を内蔵する事により高い ESD 耐圧を有しています USB-A8 パッケージを採用する事で小型 薄型化を実現し 低背化や高密度表面実装が必要な小型通信機器などへの応用が可能です

More information

Microsoft PowerPoint - 第06章振幅変調.pptx

Microsoft PowerPoint - 第06章振幅変調.pptx 通信システムのモデル コミュニケーション工学 A 第 6 章アナログ変調方式 : 振幅変調 変調の種類振幅変調 () 検波出力の信号対雑音電力比 (S/N) 送信機 送信メッセージ ( 例えば音声 ) をアナログまたはディジタル電気信号に変換. 変調 : 通信路で伝送するのに適した周波数帯の信号波形へ変換. 受信機フィルタで邪魔な雑音を除去し, 処理しやすい電圧まで増幅. 復調 : もとの周波数帯の電気信号波形に変換し,

More information

2. コンデンサー 極板面積 S m 2, 極板間隔 d m で, 極板間の誘電率が ε F/m の平行板コンデンサー 容量 C F は C = ( )(23) 容量 C のコンデンサーの極板間に電圧をかけたとき 蓄えられる電荷 Q C Q = ( )(24) 蓄えられる静電エネルギー U J U

2. コンデンサー 極板面積 S m 2, 極板間隔 d m で, 極板間の誘電率が ε F/m の平行板コンデンサー 容量 C F は C = ( )(23) 容量 C のコンデンサーの極板間に電圧をかけたとき 蓄えられる電荷 Q C Q = ( )(24) 蓄えられる静電エネルギー U J U 折戸の物理 簡単復習プリント 電磁気 1 基本事項の簡単な復習電磁気 1. 電場 クーロンの法則 電気量 q1,q2 C の電荷が距離 r m で置かれているとき働く 静電気力 F N は, クーロンの法則の比例定数を k N m 2 /s 2 として 電場 F = ( )(1) 力の向きは,q1,q2 が, 同符号の時 ( )(2) 異符号の時 ( )(3) 大きさ E V/m の電場に, 電気量

More information

第 11 回 R, C, L で構成される回路その 3 + SPICE 演習 目標 : SPICE シミュレーションを使ってみる LR 回路の特性 C と L の両方を含む回路 共振回路 今回は講義中に SPICE シミュレーションの演習を併せて行う これまでの RC,CR 回路に加え,L と R

第 11 回 R, C, L で構成される回路その 3 + SPICE 演習 目標 : SPICE シミュレーションを使ってみる LR 回路の特性 C と L の両方を含む回路 共振回路 今回は講義中に SPICE シミュレーションの演習を併せて行う これまでの RC,CR 回路に加え,L と R 第 回,, で構成される回路その + SPIE 演習 目標 : SPIE シミュレーションを使ってみる 回路の特性 と の両方を含む回路 共振回路 今回は講義中に SPIE シミュレーションの演習を併せて行う これまでの, 回路に加え, と を組み合わせた回路, と の両方を含む回路について, 周波数応答の式を導出し, シミュレーションにより動作を確認する 直列回路 演習問題 [] インダクタと抵抗による

More information

<4D F736F F D208E518D6C B791BD8F6482CC8FDA8DD72E646F63>

<4D F736F F D208E518D6C B791BD8F6482CC8FDA8DD72E646F63> 参考 4 波長多重の詳細 1 波長多重の基本 1.1 波長多重の方式異なる波長の光を 1 本の光ファイバで伝送することを波長多重伝送という 波長多重をする方式には 以下の 2 方式がある (1) 粗い波長多重 CWDM(Coarse Wavelength Division Multiplexing) (2) 密な波長多重 DWDM(Dense Wavelength Division Multiplexing)

More information