Microsoft PowerPoint - 04_28OCT2016間帅è³⁄挎.pptx

Size: px
Start display at page:

Download "Microsoft PowerPoint - 04_28OCT2016間帅è³⁄挎.pptx"

Transcription

1 無機化学 Ⅰa 06 年 0 月 ~07 年 月 0 月 8 日第 4 回 担当教員 : 回 ~8 回福井大学学術研究院工学系部門生物応用化学分野前田史郎 smaeda@u-fukui.ac.j 章分子の構造と結合 分子の対称性 対称性と対称操作, 対称要素 4. 分子の構造と結合 本講義は 0 月 0 日の補講です 9 回 ~6 回福井大学産学官連携本部米沢晋教科書 : 基礎無機化学下井守著 東京化学同人 対称操作 (smmetr oeration): 物体をある規則に従って移動させた前後で, その物体が同じ配向をとっているとき, この移動を対称操作という. 代表的な対称操作には, 回転, 鏡映, および反転がある. この授業の前半ではカードリーダーによる出席を取ります 各自学生証をカードリーダーに通してから 着席すること 学生証を忘れた人は, 当日の授業終了時までに申し出た人だけ出席扱いとします 後日出席の申し出は受け付けません 対称要素 (smmetr element): 幾何学的な意味での線 (line), 面 (lane), 点 (oint) であって, これらの対称要素に関して つあるいはそれ以上の対称操作を行う. 例えば回転 ( 対称操作 ) はある軸 ( 対称要素 ) の回りに実行する. 向い合う辺, 頂点, 面の中央を結ぶ線が,, 4 である. : 回軸 6 個 ( 辺は 個 ) : 回軸 4 個 ( 頂点は 8 個 ) 4 :4 回軸 個 ( 面は 6 個 ) n 回回転軸 n :n = 60/q q =90 のとき 4 回回転軸 立方体の対称要素の例. 回軸を 6 個, 回軸を 4 個,4 回軸を 個持っている. 回転軸を慣用の記号で示してある. 分子の対称性 対称操作記号 * 対称要素 ) 恒等 (identit) E 恒等要素 ) 回転 (rotation) n n 回回転軸 ) 鏡映 (reflection) s (S ) 鏡面 4) 対称心による反転 (inversion) i (S ) 対称心 ( 対称中心 ) 5) 回映 (imroer rotation) S n n 回回映軸 * 記号 : シェーンフリースの記号 鏡映は 回回映 (S ), また対称心による反転は 回回映 (S ) に等しい. 対称操作は, 大きく分けると回転 ( n ) と回映 (S n ) に分けることができる. そして, 回映対称 (S n ) を持たない分子はキラルである. 5 4

2 35 1 恒等 identit E n = /q OO N 35 2 対称軸のまわりの回転 rotation n 回転軸 L アラニン N 恒等操作 回転軸 分子に対して何もしないという対称操作 1 この対称要素しか持たない分子が存在する O 2 群の定義に 恒等操作が必要である 3 対称面での鏡映 reflection s 5 6 36 38 二等分鏡面 主軸に直交する軸を二等分する軸と主軸とを含む鏡面 (d:dihedral) s d s V 主軸を含む鏡面 (v:vertical) s v 主軸を含む鏡面 (v:vertical) s h 主軸に垂直な鏡面 (h:horiontal) 主軸に直交する軸を 二等分する軸 O分子は2つの鏡面を持つ これらは両方とも主軸に対して垂直で あり つまり主軸を含む σvとσv である 7 8

3 4 対称中心による反転 inversion i 39 5 回映 imroer rotation Sn 39 S 4 回映軸 4回回転 O N 4 正四面体は 対称心を持たない 球 立方体 正八面体は 対称心を持つ 全ての点を分子の中心まで移動させ さらに反対側に同じ距離移動 させたとき 元の形と同じになる場合 この分子は対称心を持つ 9 39 4の向い合う辺の中央を結 ぶ線はS4軸である 鏡映 元の図形と一致する 向い合う辺は ので 4回回映対称を 3組あるので 持つということができる 4は3本の 4回回映軸を 持つ n回回転の後 鏡映を行う対称操作をn回回映対称操作という 0 39 2回回映 S 回映軸 (a) 4分子は4回回映軸 S4 を持つ こ 2回回転 の分子を90 回転させ 続いて水平面で 鏡映させたあとの形はもとと区別できな い (b) エタンのねじれ形はS6軸を持つ これ S = s は 60 回転に続いて鏡映を行う 鏡映 S = i 2回回映対称は対称心による反転と同じ対称操作である 回回転は何も しないのと同じだから 回回映対称は鏡映と同じ対称操作である

4 4 つの異なる原子 ( 原子団 ) と結合している不斉炭素原子を持つキラル分子 9 4 つの異なる原子 ( 原子団 ) と結合している不斉炭素原子を持つキラル分子 9 S 4 分子 D 4 回回転 鏡映 D 鏡像体 S = i 分子 D 回回転 鏡映 D 鏡像体 分子 分子 この分子 は分子 とは一致しない. つまり, キラル分子は 4 回回映対称を持たない. 一般に, 回映対称を持つ分子はキラルではない. D 分子 分子 分子 D 分子 この分子 は分子 とは一致しない. つまり, キラル分子は 回回映対称を持たない. 一般に, 回映対称を持つ分子はキラルではない. 4 4 つの異なる原子 ( 原子団 ) と結合している不斉炭素原子を持つキラル分子 9 点群の種類 S = s 分子 分子 分子 D D 回回転 鏡映 D 鏡像体 分子 この分子 は分子 とは一致しない. つまり, キラル分子は 回回映対称を持たない. 一般に, 回映対称を持つ分子はキラルではない. 5 点群 Point Grou 全く同じ対称要素を持つ分子は同じ点群に属す, s, i 点群 群 :E 以外に対称要素を持たない分子は 群に属す OO N L- アラニン 6 4

5 s 群 :E 以外に鏡面 s のみを持つ分子は s 群に属す OO - n 群 E 以外に n 軸を 本のみ持つ分子は n 群に属す N キノリン N ニコチン酸 i 群 :E 以外に反転中心 i のみの要素を持つ分子は i 群に属す O OO OO O このような分子は必然的に S n 対称性を持つ S 群は S 対称性を持つ. i 群は S 対称性を持つ. l l 群 O O メソ酒石酸 恒等と反転中心を持つ : i n 群に属する分子はキラルである OO ( ) 8 O O O O L- アラニン N OO パラシクロファン 群 9 群 : 中心不斉 不斉炭素 (4 つの異なる原子 ( または原子団 ) と結合している炭素 ) を持つ 群 : 面不斉 不斉炭素を持たないがキラルである 0 5

6 l l - nv 点群 n 軸 本と s v をn 個持つ分子は nv 点群に属す O l s v O l O s' v N 群 : 軸不斉 不斉炭素を持たないがキラルである アレン 群 : 軸不斉 O v N v l l l l N l v 6 5 l v ピリジン v クロロホルム =O 一酸化炭素 v - nh 点群 n 軸 本と s h を つ持つ分子は nh 点群に属す l l trans-,- ジクロロエチレン l l 恒等,n 回回転軸と水平な鏡面を持つ : h h 点群に属する分子は必然的に S ( したがって,i ) を持つ. 回回転の後で鏡映させる対称操作は S である. 4 6

7 - D n 点群 n 軸を 本と, この n 軸に垂直な 軸を n 本持つ分子は D n 点群に属す - D nh 点群 D n 群の要素を有し, かつ主軸 ( n 軸 ) に垂直な鏡面 (s h ) を持つ分子は D nh 点群に属す 8 主軸 ビフェニル s h D h D h 5 三フッ化ホウ素エテン ( エチレン ) 6 - D nd 点群 重なり型エタン -- 6 D h アセチレン D h D n 群の要素を持ち, かつ全ての隣接した 軸の間の角を 等分する垂直な n 個の鏡面 (s d 面 ) を持つ分子は D nd 点群に属す ねじれ型エタン s d 7 6 D d 8 7

8 6- T d 点群 ( 正四面体群 ) 6- O h 点群 ( 正八面体群 ) 主軸の 軸が 4 本, 軸が 本, S 4 軸が 本,s d 面が 6 個を持つ分子は T d 点群に属す 4 軸が 6 本あり, かつ正八面体構造の分子は O h 点群に属す S 9 0 例えば, O 分子は, () 直線ではない. ()n> の n は 本以上ない. () である. (4) 最大の n である に垂直な n はない. (5)σ h はない. (6)σ v がある. したがって, 点群は v である. 点群の検索表分子の点群を決定するための流れ図. 上端から出発してそれぞれの菱形の枠内の質問に答えよ. 4 対称性と群論 いくつかの要素 (element) からなる集合を考えたとき, それらの要素に対する演算が定義されており, 次の 4 つの性質を満たすとき, その集合は群をなすという. (a) 集合の任意の要素 と について, 演算の結果 = はこの集合の要素である. (b) 集合の任意の要素 について, E = E = を満足する要素 E が, その集合の中に必ず 個存在する.E は単位要素である. (c) 集合の任意の要素について, 結合の法則 ( ) = ( ) が成立する. (d) 集合の任意の要素 について X = X = E を成立させる X がその集合の要素として存在する.X は の逆要素 X = である. 7 8

9 対称操作の掛け算 ( 積 ) 対称操作を 回連続して行った結果が, またつの対称操作であるとき, これを対称操作の演算と考え, この演算を積という. l l 点群 v 対称操作 回回転軸 鏡面 s() 鏡面 s() 恒等 E 対称操作 l l l l l l s() s ( ) l l l l l l 7 l l l l l s()s() l =s() s() s() s() l 積の操作 =( 第二の操作 ) ( 第一の操作 ) l s() s() l s() = s() s() = s() l l l 対称操作 l l l l l l 点群 v の対称操作の積 第一の操作 s() s() l l l E s s E E s s E s s s s s E s s s E l 第二の操作 l l 7 4 表 水分子 ( 点群 v ) の対称操作の掛け算表 (s v s,s v s ) 7 点群 v の対称操作と対称要素 7 v E s s E E s s E s s s s s E s s s E 群の定義 (a) 集合の任意の要素 と について, 演算の結果 = はこの集合の要素である. (b) 集合の任意の要素 について, E = E = を満足する要素 E が, その集合の中に必ず 個存在する.E は単位要素である. (c) 集合の任意の要素について, 結合の法則 ( ) = ( ) が成立する. (d) 集合の任意の要素 について X = X = E を成立させる X がその集合の要素として存在する.X は の逆要素 X = である. 分子の対称操作を要素とする群を点群という. 上の表から分かるように 点群 v は群である. また, 上の表の点線は {E, } が別の点群 である ことを示している. この場合, 点群 は点群 v の部分群であるという

10 点群 v の対称操作の積 7 7 操作の順番が変わると結果は異なる. 回転を 回繰り返すと 0 = 回転する. これを とする. 回転を 回繰り返すと 0 =60 回転する. これを恒等操作 E とする. 点群 は点群 v の部分群である. 7 8 共有結合 4 原子価結合法 (Valence ond Theor, V 法 ) 分子構造の理論 原子価結合法 Valence ond Theor V 法 ハイトラー ロンドンの水素分子の計算 (97) スレーターやポーリングによる多電子系への拡張 Walter eitler rit London 分子構造の理論 John Slater Linus Pauling 分子軌道法 Molecular Orbital Theor MO 法 V 法では, 原子が孤立した状態をほぼ保ちながら, 互いに相互作用をおよぼしていると考える. それぞれの原子に局在した波動関数の重ね合わせで化学結合を考える. 9 スピン対形成,σ 結合と π 結合, 混成などの用語が導入された. 0

11 同一線上にある つの オービタルの電子の間のオービタルの重なりとスピン対形成によって,σ 結合が形成される. オービタル軸 結合軸 オービタル軸 節面 結合軸 結合軸に垂直な軸を持つ オービタルにある電子の間のオービタルの重なりとスピン対形成によって π 結合ができる. 等核二原子分子 つの水素原子 および に, それぞれ電子 と があるとすると, 電子波動関数を () および () と書くことができる. したがって, 水素分子 - の波動関数は ψ=()() と書ける. しかし, 電子に個性はないので と を区別することはできない. そこで, 電子を交換した波動関数 ψ=()() と書くことができる. したがって, 最も優れた表し方は, これらの 次結合 ψ= ()()±()() である. これらのうち, エネルギーの低いのは + 符号の方である. V 法による波動関数は である. ψ= ()()+()() 44 原子価結合法 (V 法 ) による化学結合の説明 4 4 V 法の特徴は, 電子がスピン対を形成することと, それによって, 核間領域に電子密度の蓄積が起こることである. π 結合 :NN: π 結合 σ 結合 N : s 窒素分子における結合の構造.σ 結合 個と π 結合 個がある. 総合的な電子密度は, 結合軸の回りに円筒対称を持っている. 同一線上にある つの オービタルの電子の間のオービタルの重なりとスピン対形成によって,σ 結合が形成される. 4 多原子分子 O : s s s : s V 法によると, 水分子は直角に折れ曲がっていることになる. しかし, 実際の結合角は 05 である. 原子価結合法による O 分子の結合の様子を表したもの. おのおのの σ 結合は,s オービタルと O オービタルの 個が重なることによってできる

12 (a) 昇位 例 : 炭素原子 : s V 法では, 炭素原子は つの結合を作るはずであるが, 実際は 4 つの結合を作る. これは,s 電子の つが へ昇位したと考えれば, s となって,4 つの結合を説明できる. 昇位 つの結合 4 つの結合 (b) 混成 (a) の説明では,つの-s 結合とつのs-s 結合ができることになる. しかし, 実際には4 つの- 結合は等価である. そこで,つのsオービタルとつの オービタルから4つの等価な s 混成オービタルが作られると考える. そして, これらのオービタルは正四面体の頂点方向を向いている. 同じ原子上の s オービタルと オービタルが重なり合うことによってできる s オービタル s 混成 s 昇位 s 混成 4 つの等価な結合を作る s 混成軌道 47 Valence ond Theor 47 t 4.Tetrahedral t [s s hbrides t along (,, ) (,,) 方向 t [s along (-, -, ) (-,-,) 方向 t [s along (-,, -) (-,,-) 方向 メタン X t t t 4 4 [s along (, -, -) 47 (,-,-) 方向 48 htt://

13 s 混成オービタルの規格化 t t [s d [ s d d [ 4 - d t ~t も同様に規格直交化されている. 波動関数 i (i=,,) が規格直交化されていれば, 異なる波動関数の積の積分はゼロ, 同じ波動関数との積の積分は である. * i j d i j - d t [s t [s t [s 4 原子オービタルs,,, は規格化されているものとする s d d クロネッカーのデルタ記号 nm 0 for for d d n m n m 49 Valence ond Theor t 4 X 4.Tetrahedral s hbrides t t htt:// t t 4 混成オービタルは孤立電子対を含むことがある. X t N 結合角 09.5 結合角 07.5 結合角 04.5 t t t 4 X t O t t Valence ond Theor.Trigonal lanar 4 tr tr tr O htt:// O 4 48 tr tr tr s 混成オービタルの規格化 [s [s [s tr tr 0 tr 48 tr tr tr [s [s [s () 方向 (-,+ ) 方向 (-,- ) 方向 軸方向 O 軸から -0 方向 - 軸から 0 方向 60 5 tr,tr,tr は互いに tr は規格化されている. 0の角度をもつ. tr d s d d tr とtr も同様に規格化されている. 5

14 Valence ond Theor I. Diatomics N N O s s() fors - bond s s() ; s ; s for lone - airs s() s() htt:// s() s s() s : : [s [s 結合は と 49 分子軌道法 (Molecular Orbital Theor, MO 法 ) マリケン (98), ヒュッケル (99) によるハートリー フォックのつじつまの合う場 (S) 法の分子への拡張 MO 法では, いくつかの原子核と他の電子の作る場の中を運動する つの電子に注目し, その電子の波動関数を求めてエネルギーを計算する. この波動関数は分子全体に拡がっている. 原子オービタルs 5 ; ; bonds Orbitals change sign on refleation in lane containing - bond vector 5 分子オービタル σ s Robert Mulliken Erich uckel 54 反結合性 弱めあう干渉が 5 分子軌道 σ * 生じる領域 水素分子 が安定に存在する理由は? ψ - 5 E E s s 結合性分子軌道 σ s s s 強めあう干渉が生じる領域 s オービタルの重なりから作られた分子オービタル つの孤立した水素原子よりも, 水素分子を形成する方が安定である. 分子オービタルは分子全体に広がっており, 電子はどちらかの原子に局在していない. 55 基底状態 :s E Es E E 0 であるから,E( 水素分子 )<E( 水素原子 ) s 分子軌道のエネルギー相関図と電子配置 s オービタルの重なりから作られた水素分子の分子オービタルのエネルギー準位図. 水素分子のエネルギーは つの孤立した水素原子のエネルギーの和より低いので安定な水素分子を形成する. ψ

15 強め合う相互作用領域 5 ヘリウム分子 e が存在しない理由は? 5 E E s 原子核 - 電子間引力 弱め合う相互作用領域 E Es 基底状態 :s s * 図 (a) 結合効果と (b) 反結合効果.(a) 結合オービタルでは原子核は原子核間領域に集積した電子密度に引き寄せられるが,(b) 反結合オービタルでは核間領域の外側に集積した電子密度に引き寄せられる. 57 E E s E Es ヘリウム分子 e のエネルギー相関図と電子配置 e の s オービタルの重なりから作られたヘリウム分子の分子オービタルのエネルギー準位図. ヘリウム分子のエネルギーは つの孤立したヘリウム原子のエネルギーの和より高くて不安定なのでヘリウム分子を形成しない 原子価結合法と分子軌道法 58 原子価結合法 (V) と分子軌道法 (MO) の比較 MO 法においては, 電子は特定の結合に局在しているのではなく, 分子全体にわたって拡がっているとして取り扱う. 分子軌道法は 電子ハミルトニアンの固有関数である分子オービタル関数を求め, この積によって全電子波動関数を組み立てる. これに対して, 原子価結合 (V) 法では電子対に注目して基底関数を組み立て, 全電子波動関数をその線形結合 ( 和および差 ) で表わす. V 法 ( 共鳴理論 ) における基底関数が, 有機化学になじみ深い化学構造式に類似しているところから,Paulingにより共鳴構造式と呼ばれ, 有機化学に共鳴理論が多く取り入れられるようになった. しかし,V 法の具体的な計算はMO 法よりもかなり複雑である. むしろ, 有機電子理論の立場からは,MO 法が多く利用されている. 59 原子価結合法 (V 法 ) V 法は, 結合電子対の概念を出発点とする. 電子は, 特定の原子に所属しており, つの原子が つずつの電子を出し合って共有することで結合が作られると考える. 例 : 水素分子 つの電子を区別できないので, つの電子配置の重ね合わせで表現する. ここで, および は, それぞれ原子 および原子 の原子オービタルである

16 例 : 水素分子 59 分子軌道法 (MO 法 ) MO 法は, 原子における原子オービタルの概念を分子オービタルの概念に拡張する. 59 ψ V =() () + () () 電子 電子 電子 電子 ={ 原子オービタル に電子 が入った 電子波動関数 } つの電子が, 両方とも片方の原子の上に来ることもあり得る. { 原子オービタル に電子 が入った 電子波動関数 } +{ 原子オービタル に電子 が入った 電子波動関数 } { 原子オービタル に電子 が入った 電子波動関数 } = 電子波動関数 6 ψ MO ={()+()} {()+()} 電子 電子 ={ 分子オービタル (+) に電子 が入った 電子波動関数 } { 分子オービタル (+) に電子 が入った 電子波動関数 } = 電子波動関数 6 59 V 法とMO 法のつの理論は, 実は両極端の場合を表わしており, 真の状態は, これらの中間にある. ψ V =ψ OV ψ V =() () + () ()=ψ OV 電子 電子 電子 電子 共有結合項 共有結合項 - - ψ MO ={()+()} {()+()} 電子 電子 ψ MO =ψ OV +ψ ION V 法ではイオン項を無視しており,MO 法ではイオン項を評価しすぎている. =() () + () () + () () + () () 電子 電子 電子 電子 電子 電子 電子 電子 共有結合項 共有結合項 イオン結合項 イオン結合項 月 8 日学生番号氏名 () 原子価結合法 (V 法 ) と分子軌道法 (MO 法 ) を説明し, これらの違いについて簡単に説明しなさい () 本日の授業について 疑問 質問 意見等を書いてください =ψ OV +ψ ION 6 6

Microsoft PowerPoint - 第12章分子の対称.ppt

Microsoft PowerPoint - 第12章分子の対称.ppt 無機化学 2013 年 4 月 ~2013 年 8 月 水曜日 1 時間目 114M 講義室 12 章分子の対称 担当教員 : 福井大学大学院工学研究科生物応用化学専攻教授前田史郎 E-mail:smaeda@u-fukui.ac.jp URL:http://acbio2.acbio.u-fukui.ac.jp/phychem/maeda/kougi 教科書 : アトキンス物理化学 ( 第 8 版

More information

Microsoft PowerPoint - 11JUL06

Microsoft PowerPoint - 11JUL06 無機化学 2011 年 4 月 ~2011 年 8 月 第 12 回 7 月 6 日分子の対称による分類 担当教員 : 福井大学大学院工学研究科生物応用化学専攻准教授前田史郎 E-mail:smaeda@u-fukui.ac.jp URL:http://acbio2.acbio.u-fukui.ac.jp/phychem/maeda/kougi 教科書 : アトキンス物理化学 ( 第 8 版 ) 東京化学同人

More information

Microsoft PowerPoint - 27JUN12.ppt

Microsoft PowerPoint - 27JUN12.ppt 無機化学 2012 年 4 月 ~2012 年 8 月 水曜日 1 時間目 114M 講義室第 11 回 6 月 27 日分子の対称性 (1) 対称操作と対称要素 (2) 分子の対称による分類 構造異性と立体異性 担当教員 : 福井大学大学院工学研究科生物応用化学専攻 教授前田史郎 E-mail:smaeda@u-fukui.ac.jp URL:http://acbio2.acbio.u-fukui.ac.jp/phychem/maeda/kougi

More information

三重大学工学部

三重大学工学部 反応理論化学 ( その 軌道相互作用 複数の原子が相互作用して分子が形成される複数の原子軌道 ( または混成軌道 が混合して分子軌道が形成される原子軌道 ( または混成軌道 が混合して分子軌道に変化すると軌道エネルギーも変化する. 原子軌道 原子軌道は3つの量子数 ( nlm,, の組合せにより指定される量子数の取り得る値の範囲 n の値が定まる l の範囲は n の値に依存して定まる m の範囲は

More information

Microsoft PowerPoint - 基礎化学4revPart2 [互換モード]

Microsoft PowerPoint - 基礎化学4revPart2 [互換モード] 化学結合と分 の形 Part 2 軌道を使った考え方を学ぶ 3 原 価結合法 (V 法 ) 共有結合の本質は軌道の重なり軌道を意識した結合を簡単に理解する 共有結合の本質は軌道の重なり 原子価結合法 (V 法 ) Valance ond Method 原子価結合法 V 法で用いる原子価軌道とその重なり方 原子価軌道 Valence Orbital 軌道の重なり方から見た共有結合の種類 原子価結合法

More information

スライド 1

スライド 1 基礎無機化学第 回 分子構造と結合 (IV) 原子価結合法 (II): 昇位と混成 本日のポイント 昇位と混成 s 軌道と p 軌道を混ぜて, 新しい軌道を作る sp 3 混成 : 正四面体型 sp 混成 : 三角形 (p 軌道が つ残る ) sp 混成 : 直線形 (p 軌道が つ残る ) 多重結合との関係炭素などでは以下が基本 ( たまに違う ) 二重結合 sp 混成三重結合 sp 混成 逆に,

More information

Microsoft PowerPoint - 11JUN03

Microsoft PowerPoint - 11JUN03 基礎量子化学 年 4 月 ~8 月 6 月 3 日第 7 回 章分子構造 担当教員 : 福井大学大学院工学研究科生物応用化学専攻准教授前田史郎 -ail:saea@u-fukui.a.p URL:http://abio.abio.u-fukui.a.p/phyhe/aea/kougi 教科書 : アトキンス物理化学 ( 第 8 版 ) 東京化学同人 章原子構造と原子スペクトル 章分子構造 分子軌道法

More information

スライド 1

スライド 1 無機化学 II 第 3 回 化学結合 本日のポイント 分子軌道 原子が近づく 原子軌道が重なる 軌道が重なると, 原子軌道が組み合わさって 分子軌道 というものに変化 ( 分子に広がる ) 結合性軌道と反結合性軌道 軌道の重なりが大きい = エネルギー変化が大 分子軌道に電子が詰まった時に, 元の原子よりエネルギーが下がるなら結合を作る. 混成軌道と原子価結合法 ( もっと単純な考え方 ) わかりやすく,

More information

理工学部無機化学ノート

理工学部無機化学ノート 5 混成軌道と多重結合 分子軌道法 ) 混成軌道 様々な幾何構造の分子の結合を説明するために考え出された 例えば sp 混成軌道の場合 右図のように s 軌道と p 軌道二つが混じり合って三つで 組の混成軌道を作ると考える 混成軌道の例 sp 直線型チオシアン酸イオン sp 平面三角形型 三フッ化ホウ素 dsp 平面四配位型四フッ化キセノン sp 四面体型アンモニウムイオン dsp 三方両錐型五フッ化リン

More information

PowerPoint Presentation

PowerPoint Presentation 付録 2 2 次元アフィン変換 直交変換 たたみ込み 1.2 次元のアフィン変換 座標 (x,y ) を (x,y) に移すことを 2 次元での変換. 特に, 変換が と書けるとき, アフィン変換, アフィン変換は, その 1 次の項による変換 と 0 次の項による変換 アフィン変換 0 次の項は平行移動 1 次の項は座標 (x, y ) をベクトルと考えて とすれば このようなもの 2 次元ベクトルの線形写像

More information

<4D F736F F F696E74202D208AEE916289BB8A775F91E63989F18D758B A7790B A2E >

<4D F736F F F696E74202D208AEE916289BB8A775F91E63989F18D758B A7790B A2E > 基礎化学 第 9 回 分 構造の予測 担当 : 学院 学理 学部化学 命科学科阿部 朗 1 校化学の教科書に記述されている内容 原 価殻電 対反発理論 (VSEPR 理論 ) 2 メタンの分 構造 3 (a) 正四 体は 4 個の等価な頂点と 4 個の等価な平 からなる対称的な 体である (b) 正四 体形は 体に基づく構造としてみることもできる すなわち 体の 8 個の頂点のうち 図のように 4

More information

Microsoft PowerPoint - 20JUL12.ppt

Microsoft PowerPoint - 20JUL12.ppt 生物応用化学演習 Ⅰ 無機化学演習 3 2012 年 7 月 20 日 [1] 原子価殻電子対反発則 (VSEPR 則 ) を適用して金属錯体の構造を推定できる. 問 1.VSEPR 則を簡単に説明せよ. (1) 分子 ( イオン ) は電子対間の反発ができるだけ少なくなるような構造をとる. (2) 電子対間の反発は lp-lp>lp-bp>bp-bp の順に強い. (3) 電子対間の反発はその角度が

More information

2. 分子の形

2. 分子の形 基礎現代化学 ~ 第 4 回 ~ 分子の形と異性体 教養学部統合自然科学科 小島憲道 2014.04.30 第 1 章原子 1 元素の誕生 2 原子の電子構造と周期性第 2 章分子の形成 1 化学結合と分子の形成 2 分子の形と異性体第 3 章光と分子 1 分子の中の電子 2 物質の色の起源 3 分子を測る第 4 章化学反応 1 気相の反応 液相の反応 2 分子を創る第 5 章分子の集団 1 分子間に働く力

More information

Microsoft Word - 8章(CI).doc

Microsoft Word - 8章(CI).doc 8 章配置間相互作用法 : Configuration Interaction () etho [] 化学的精度化学反応の精密な解析をするためには エネルギー誤差は数 ~ kcal/mol 程度に抑えたいものである この程度の誤差内に治まる精度を 化学的精度 と呼ぶことがある He 原子のエネルギーをシュレーディンガー方程式と分子軌道法で計算した結果を示そう He 原子のエネルギー Hartree-Fock

More information

スライド 1

スライド 1 暫定版修正 加筆の可能性あり ( 付録 ) 点群基礎 (). 三回転対称 2. 表現行列. 基底変換 4. 具体例 5. 簡約化 6. 指標表 7. 直積 付録 (75 76) のアプローチ : 群論 (group thor) の基礎. アンモニア (NH) でお馴染みの点群 (point group) について検討する 2. ダイヤモンド窒素空孔 (nitrogn acanc cntr in diamond)

More information

Microsoft PowerPoint - 基礎IV演習1-8.pptx

Microsoft PowerPoint - 基礎IV演習1-8.pptx 地球惑星科学基礎 V 演習 3 次元の空間群 第 6 回 瀬 雄介 http://pmsl.plnet.si.koe-u..jp/~seto 2 次元空間群 3 次元空間群 2 次元空間群 格 並進 (p, ) 回転 (1, 2, 3, 4, 6) 鏡映 (m) 映進 (g) 3 次元空間群 格 並進 (P, I, F, A, B, C, R) 回転 (1, 2, 3, 4, 6) 回反 * (-1

More information

2012/10/17 第 3 章 Hückel 法 Schrödinger 方程式が提案された 1926 年から10 年を経た 1936 年に Hückel 法と呼ばれる分子軌道法が登場した 分子の化学的特徴を残しつつ 解法上で困難となる複雑な部分を最大限にカットした理論である Hückel 法は最

2012/10/17 第 3 章 Hückel 法 Schrödinger 方程式が提案された 1926 年から10 年を経た 1936 年に Hückel 法と呼ばれる分子軌道法が登場した 分子の化学的特徴を残しつつ 解法上で困難となる複雑な部分を最大限にカットした理論である Hückel 法は最 //7 第 3 章 ükel 法 Shrödnger 方程式が提案された 96 年から 年を経た 936 年に ükel 法と呼ばれる分子軌道法が登場した 分子の化学的特徴を残しつつ 解法上で困難となる複雑な部分を最大限にカットした理論である ükel 法は最も単純な分子軌道法だが それによって生まれた考え方は化学者の概念となって現在に生き続けている ükel 近似の前提 ükel 近似の前提となっている主要な近似を列挙する

More information

ギリシャ文字の読み方を教えてください

ギリシャ文字の読み方を教えてください 埼玉工業大学機械工学学習支援セミナー ( 小西克享 ) 慣性モーメント -1/6 テーマ 01: 慣性モーメント (Momet of ietia) コマ回しをすると, 長い時間回転させるには重くて大きなコマを選ぶことや, ひもを早く引くことが重要であることが経験的にわかります. 遊びを通して, 回転の運動エネルギーを増やせば, 回転の勢いが増すことを学習できるので, 機械系の学生にとってコマ回しも大切な体験学習のひとつと言えます.

More information

Microsoft PowerPoint - 9.pptx

Microsoft PowerPoint - 9.pptx 9/7/8( 水 9. 線形写像 ここでは 行列の積によって 写像を定義できることをみていく また 行列の積によって定義される写像の性質を調べていく 拡大とスカラー倍 行列演算と写像 ( 次変換 拡大後 k 倍 k 倍 k 倍拡大の関係は スカラー倍を用いて次のように表現できる p = (, ' = k ' 拡大前 p ' = ( ', ' = ( k, k 拡大 4 拡大と行列の積 拡大後 k 倍

More information

Microsoft PowerPoint - 9.pptx

Microsoft PowerPoint - 9.pptx 9. 線形写像 ここでは 行列の積によって 写像を定義できることをみていく また 行列の積によって定義される写像の性質を調べていく 行列演算と写像 ( 次変換 3 拡大とスカラー倍 p ' = ( ', ' = ( k, kk p = (, k 倍 k 倍 拡大後 k 倍拡大の関係は スカラー倍を用いて次のように表現できる ' = k ' 拡大前 拡大 4 拡大と行列の積 p ' = ( ', '

More information

Microsoft PowerPoint - 基礎IV演習1-8.pptx

Microsoft PowerPoint - 基礎IV演習1-8.pptx 地球惑星科学基礎 V 演習 群の概念 結晶系とブラベー格 の関係 第 3 回 瀬 雄介 http://pmsl.planet.sci.kobe-u.ac.jp/~seto 並進を伴わないもの 対称 ( 点対称 ) Center of symmetry, Inversion center 鏡映 ( 鏡 ) mirror 対称 鏡映 表記 : 1 (one bar) 表記 : m (mirror) 並進を伴わないもの

More information

Microsoft PowerPoint - 第2回半導体工学

Microsoft PowerPoint - 第2回半導体工学 17 年 1 月 16 日 月 1 限 8:5~1:15 IB15 第 回半導体工学 * バンド構造と遷移確率 天野浩 項目 1 章量子論入門 何故 Si は光らず GN は良く光るのか? *MOSFET ゲート SiO / チャネル Si 界面の量子輸送過程 MOSFET には どのようなゲート材料が必要なのか? http://www.iue.tuwien.c.t/ph/vsicek/noe3.html

More information

Microsoft PowerPoint - 第3回2.ppt

Microsoft PowerPoint - 第3回2.ppt 講義内容 講義内容 次元ベクトル 関数の直交性フーリエ級数 次元代表的な対の諸性質コンボリューション たたみこみ積分 サンプリング定理 次元離散 次元空間周波数の概念 次元代表的な 次元対 次元離散 次元ベクトル 関数の直交性フーリエ級数 次元代表的な対の諸性質コンボリューション たたみこみ積分 サンプリング定理 次元離散 次元空間周波数の概念 次元代表的な 次元対 次元離散 ベクトルの直交性 3

More information

座標変換におけるテンソル成分の変換行列

座標変換におけるテンソル成分の変換行列 座標変換におけるテンソル成分の変換行列 座標変換におけるテンソル成分の変換関係は 次元数によらず階数によって定義される変換行列で整理することができる 位置ベクトルの変換行列を D としてそれを示そう D の行列式を ( = D ) とするとき 鏡映や回映といった pseudo rotation に対しては = -1 である が問題になる基底は 対称操作に含まれる pseudo rotation に依存する

More information

02 配付資料(原子と分子・アルカンとアルケンとアルキン).key

02 配付資料(原子と分子・アルカンとアルケンとアルキン).key 1 4 20 4 23 18:45~ 13 1322 18:45~ 1 113 TEL: 03-5841-4321 E-mail kagaku@chem.s.u-tokyo.ac.jp 2 / 3 / 1s/2s 2s 1s 2s 1s Wikipedia 1s 2s 4 / s, p, d 1, 3, 5 5 / 50 2 2 2 2 6 6 メチルアニオン 陽子 6 個 = 正電荷 6 1s 電子

More information

ハートリー・フォック(HF)法とは?

ハートリー・フォック(HF)法とは? 大学院講義 電子相関編 阿部穣里 目的 電子相関法はハートリー フォック (F) 法に対してより良い電子状態の記述を行う理論です 主に量子化学で用いられるのが 配置換相互作用 (CI) 法多体摂動論 (PT) 法クラスター展開 (CC) 法です 電子相関法に慣れるために 最小基底を用いた 分子の Full CI 法と MP 法について 自ら導出を行い エクセルでポテンシャル曲線を求めます アウトライン

More information

補足 中学で学習したフレミング左手の法則 ( 電 磁 力 ) と関連付けると覚えやすい 電磁力は電流と磁界の外積で表される 力 F 磁 電磁力 F li 右ねじの回転の向き電 li ( l は導線の長さ ) 補足 有向線分とベクトル有向線分 : 矢印の位

補足 中学で学習したフレミング左手の法則 ( 電 磁 力 ) と関連付けると覚えやすい 電磁力は電流と磁界の外積で表される 力 F 磁 電磁力 F li 右ねじの回転の向き電 li ( l は導線の長さ ) 補足 有向線分とベクトル有向線分 : 矢印の位 http://totemt.sur.ne.p 外積 ( ベクトル積 ) の活用 ( 面積, 法線ベクトル, 平面の方程式 ) 3 次元空間の つのベクトルの積が つのベクトルを与えるようなベクトルの掛け算 ベクトルの積がベクトルを与えることからベクトル積とも呼ばれる これに対し内積は符号と大きさをもつ量 ( スカラー量 ) を与えるので, スカラー積とも呼ばれる 外積を使うと, 平行四辺形や三角形の面積,

More information

Microsoft PowerPoint - H21生物計算化学2.ppt

Microsoft PowerPoint - H21生物計算化学2.ppt 演算子の行列表現 > L いま 次元ベクトル空間の基底をケットと書くことにする この基底は完全系を成すとすると 空間内の任意のケットベクトルは > > > これより 一度基底を与えてしまえば 任意のベクトルはその基底についての成分で完全に記述することができる これらの成分を列行列の形に書くと M これをベクトル の基底 { >} による行列表現という ところで 行列 A の共役 dont 行列は A

More information

<4D F736F F D208C51985F82CD82B682DF82CC88EA95E A>

<4D F736F F D208C51985F82CD82B682DF82CC88EA95E A> 群論はじめの一歩 (6) 6. 指数 2の定理と2 面体群 命題 H を群 G の部分群とする そして 左剰余類全体 G/ H 右剰 余類全体 \ H G ともに指数 G: H 2 と仮定する このとき H は群 G の正規部分群である すなわち H 注意 ) 集合 A と B があるとき A から B を引いた差集合は A \ B と書かれるが ここで書いた H \ Gは差集合ではなく右剰余類の集合の意味である

More information

ハートレー近似(Hartree aproximation)

ハートレー近似(Hartree aproximation) ハートリー近似 ( 量子多体系の平均場近似 1) 0. ハミルトニアンの期待値の変分がシュレディンガー方程式と等価であること 1. 独立粒子近似という考え方. 電子系におけるハートリー近似 3.3 電子系におけるハートリー近似 Mde by R. Okmoto (Kyushu Institute of Technology) filenme=rtree080609.ppt (0) ハミルトニアンの期待値の変分と

More information

PowerPoint プレゼンテーション

PowerPoint プレゼンテーション 量子化学 原田 講義概要 第 回 概論 量子化学の基礎 第 回 演習 第 3 回 分子の電子状態の計算法 (Hückel 法 ) 第 4 回 演習 第 5 回 近似を高めた理論化学計算法 第 6 回 演習 3 第 7 回 試験 準教科書 参考書 準教科書 入門分子軌道法 藤永茂著 ( 講談社サイエンティフィク 990) 参考書 三訂量子化学入門 ( 上 ) 米澤 永田 加藤 今村 諸熊 ( 化学同人

More information

ベクトルの基礎.rtf

ベクトルの基礎.rtf 章ベクトルの表現方法 ベクトルは大きさと方向を持つ量である. 図.に示すように始点 Pから終点 Qに向かう有向線分として で表現する. 大きさは矢印の長さに対応している. Q P 図. ベクトルの表現方法 文字を使ったベクトルの表記方法として, あるいは の表記が用いられるが, このテキストでは太字表示 を採用する. 専門書では太字で書く の表記が一般的であり, 矢印を付ける表記は用いない. なお,

More information

2_分子軌道法解説

2_分子軌道法解説 2. 分子軌道法解説 分子軌道法計算を行ってその結果を正しく理解するには, 計算の背景となる理論を勉強 する必要がある この演習では詳細を講義する時間的な余裕がないので, それはいろいろ な講義を通しておいおい学んで頂くこととして, ここではその概要をごく簡単に説明しよう 2.1 原子軌道原子はその質量のほとんどすべてを占める原子核と, その周囲をまわっている何個かの電子からなっている 原子核は最も軽い水素の場合でも電子の約

More information

vecrot

vecrot 1. ベクトル ベクトル : 方向を持つ量 ベクトルには 1 方向 2 大きさ ( 長さ ) という 2 つの属性がある ベクトルの例 : 物体の移動速度 移動量電場 磁場の強さ風速力トルクなど 2. ベクトルの表現 2.1 矢印で表現される 矢印の長さ : ベクトルの大きさ 矢印の向き : ベクトルの方向 2.2 2 個の点を用いて表現する 始点 () と終点 () を結ぶ半直線の向き : ベクトルの方向

More information

2018/6/12 表面の電子状態 表面に局在する電子状態 表面電子状態表面準位 1. ショックレー状態 ( 準位 ) 2. タム状態 ( 準位 ) 3. 鏡像状態 ( 準位 ) 4. 表面バンドのナローイング 5. 吸着子の状態密度 鏡像力によるポテンシャル 表面からzの位置の電子に働く力とポテン

2018/6/12 表面の電子状態 表面に局在する電子状態 表面電子状態表面準位 1. ショックレー状態 ( 準位 ) 2. タム状態 ( 準位 ) 3. 鏡像状態 ( 準位 ) 4. 表面バンドのナローイング 5. 吸着子の状態密度 鏡像力によるポテンシャル 表面からzの位置の電子に働く力とポテン 表面の電子状態 表面に局在する電子状態 表面電子状態表面準位. ショックレー状態 ( 準位. タム状態 ( 準位 3. 鏡像状態 ( 準位 4. 表面バンドのナローイング 5. 吸着子の状態密度 鏡像力によるポテンシャル 表面からzの位置の電子に働く力とポテンシャル e F z ( z z e V ( z ( Fz dz 4z e V ( z 4z ( z > ( z < のときの電子の運動を考える

More information

Microsoft Word - note02.doc

Microsoft Word - note02.doc 年度 物理化学 Ⅱ 講義ノート. 二原子分子の振動. 調和振動子近似 モデル 分子 = 理想的なバネでつながった原子 r : 核間距離, r e : 平衡核間距離, : 変位 ( = r r e ), k f : 力の定数ポテンシャルエネルギー ( ) k V = f (.) 古典運動方程式 [ 振動数 ] 3.3 d kf (.) dt μ : 換算質量 (m, m : 原子, の質量 ) mm

More information

Microsoft PowerPoint _量子力学短大.pptx

Microsoft PowerPoint _量子力学短大.pptx . エネルギーギャップとrllouゾーン ブリルアン領域,t_8.. 周期ポテンシャル中の電子とエネルギーギャップ 簡単のため 次元に間隔 で原子が並んでいる結晶を考える 右方向に進行している電子の波は 間隔 で規則正しく並んでいる原子が作る格子によって散乱され 左向きに進行する波となる 波長 λ が の時 r の反射条件 式を満たし 両者の波が互いに強め合い 定在波を作る つまり 式 式を満たす波は

More information

H AB φ A,1s (r r A )Hφ B,1s (r r B )dr (9) S AB φ A,1s (r r A )φ B,1s (r r B )dr (10) とした (S AA = S BB = 1). なお,H ij は共鳴積分 (resonance integra),s ij は重

H AB φ A,1s (r r A )Hφ B,1s (r r B )dr (9) S AB φ A,1s (r r A )φ B,1s (r r B )dr (10) とした (S AA = S BB = 1). なお,H ij は共鳴積分 (resonance integra),s ij は重 半経験量子計算法 : Tight-binding( 強結合近似 ) 計算の基礎 1. 基礎 Tight-binding 近似 ( 強結合近似, TB 近似あるいは TB 法などとも呼ばれる ) とは, 電子が強く拘束されており隣り合う軌道へ自由に移動できない, とする近似であり, 自由電子近似とは対極にある. 但し, 軌道間はわずかに重なり合っているので, 全く飛び移れないわけではない. Tight-binding

More information

多体系の量子力学 ー同種の多体系ー

多体系の量子力学 ー同種の多体系ー スピンに依存する有効相互作用の発現と化学結合のしくみ 巨視的な物体の構造にとって 基本的な単位になるのは原子または分子であり 物性の基礎にあるのは原子または分子の性質である. ボルン オッペンハイマー近似. He 原子中の 電子状態 ( 中心 電子系 ) 外場の中の同種 粒子系ー. 電子間相互作用のない場合. 電子間相互作用がある場合.3 電子系の波動関数は全反対称.4 電子系のスピン演算子の固有関数と対称性.5

More information

化学I

化学I 化学 I 第 4 章 分子の構造 ( その 2) http://acbio2.acbio.u-fukui.ac.jp/indphy/hisada/chemistryi/ 授業計画 1 回物質観の進歩と自然科学の発展 2 回原子の電子構造 - 電子, 陽子, 原子量 - 3 回水素原子の電子スペクトル 4 回 Bohr の水素原子模型 5 回物質の波動性 6 回量子数 7 回原子の電子配置と周期律表

More information

Microsoft Word - 量子化学概論v1c.doc

Microsoft Word - 量子化学概論v1c.doc この講義ノートは以下の URL から入手できます http://www.sbchem.kyoto-u.ac.p/matsuda-lab/hase_fles/educaton_jh.html 量子化学概論講義ノート 3 正準 HF(Canoncal HF) 方程式 制限 HF(RHF) 方程式 HF-Roothaan(HFR) 方程式 京都大学工学研究科合成 生物化学専攻長谷川淳也 HF 解の任意性について式

More information

Microsoft Word - 201hyouka-tangen-1.doc

Microsoft Word - 201hyouka-tangen-1.doc 数学 Ⅰ 評価規準の作成 ( 単元ごと ) 数学 Ⅰ の目標及び図形と計量について理解させ 基礎的な知識の習得と技能の習熟を図り それらを的確に活用する機能を伸ばすとともに 数学的な見方や考え方のよさを認識できるようにする 評価の観点の趣旨 式と不等式 二次関数及び図形と計量における考え方に関 心をもつとともに 数学的な見方や考え方のよさを認識し それらを事象の考察に活用しようとする 式と不等式 二次関数及び図形と計量における数学的な見

More information

有機化合物の反応9(2018)講義用.ppt

有機化合物の反応9(2018)講義用.ppt 有機化合物の反応 ( 第 9 回 ) 創薬分子薬学講座薬化学部門 金光卓也 ハロゲン化アルキルの反応性 l S N 1 と S N 2 の特徴の復習 l S N 1=Unimolecular Nucleophilic Substitution 単分子求核置換反応 l S N 2=Bimolecular Nucleophilic Substitution 二分子求核置換反応 1 反応速度 l S N

More information

平成20年度 神戸大学 大学院理学研究科 化学専攻 入学試験問題

平成20年度 神戸大学 大学院理学研究科 化学専攻 入学試験問題 化学 Ⅰ- 表紙 平成 31 年度神戸大学大学院理学研究科化学専攻入学試験 化学 Ⅰ 試験時間 10:30-11:30(60 分 ) 表紙を除いて 7 ページあります 問題 [Ⅰ]~ 問題 [Ⅵ] の中から 4 題を選択して 解答しなさい 各ページ下端にある 選択する 選択しない のうち 該当する方を丸で囲みなさい 各ページに ( 用紙上端 ) と ( 用紙下端 ) を記入しなさい を誤って記入すると採点の対象とならないことがあります

More information

木村の理論化学小ネタ 体心立方構造 面心立方構造 六方最密構造 剛球の並べ方と最密構造剛球を平面上に の向きに整列させるのに次の 2 つの方法がある 図より,B の方が A より密であることがわかる A B 1

木村の理論化学小ネタ   体心立方構造 面心立方構造 六方最密構造 剛球の並べ方と最密構造剛球を平面上に の向きに整列させるのに次の 2 つの方法がある 図より,B の方が A より密であることがわかる A B 1 体心立方構造 面心立方構造 六方最密構造 剛球の並べ方と最密構造剛球を平面上に の向きに整列させるのに次の 2 つの方法がある 図より,B の方が A より密であることがわかる A B 1 体心立方構造 A を土台に剛球を積み重ねる 1 段目 2 2 段目 3 3 段目 他と色で区別した部分は上から見た最小繰り返し単位構造 ( 体心立方構造 ) 4 つまり,1 段目,2 段目,3 段目と順に重ねることにより,

More information

学習指導要領

学習指導要領 (1 ) 数と式 ア数と集合 ( ア ) 実数数を実数まで拡張する意義を理解し 簡単な無理数の四則計算をすること 自然数 整数 有理数 無理数の包含関係など 実 数の構成を理解する ( 例 ) 次の空欄に適当な言葉をいれて, 数の集合を表しなさい 実数の絶対値が実数と対応する点と原点との距離で あることを理解する ( 例 ) 次の値を求めよ (1) () 6 置き換えなどを利用して 三項の無理数の乗法の計

More information

<4D F736F F D CE38AFA92868AD48E8E8CB15F89F0939A97E15F8CF68A4A97702E646F6378>

<4D F736F F D CE38AFA92868AD48E8E8CB15F89F0939A97E15F8CF68A4A97702E646F6378> 平成 25 年度無機化学 2 期末試験 (11/13 実施 ) 解答例 (1) SnCl 2 の水溶液は Cu 2+ イオンの水溶液とどのような反応をするか また Pb 2+ イオンの水溶液とどのような反応をするか 反応しない場合は 反応せず 反応する場合は酸化還元反応式を書き Sn イオンの変化について 酸化 あるいは 還元 の言葉を用いて説明せよ 教科書 P380 を参照 Sn(II) 溶液は

More information

Microsoft PowerPoint - 11MAY06

Microsoft PowerPoint - 11MAY06 基礎量子化学 年 4 月 ~8 月 5 月 6 日第 4 回 章原子構造と原子スペクトル 3 分光学的遷移と選択律 多電子原子の構造 4 オービタル近似 (b) パウリの排他原理 (c) 浸透と遮蔽 (d) 構成原理 (Aufbu pincipe) (f) イオン化エネルギーと電子親和力 担当教員 : 福井大学大学院工学研究科生物応用化学専攻准教授 前田史郎 E-mi:smed@u-fukui.c.jp

More information

Microsoft Word - 1B2011.doc

Microsoft Word - 1B2011.doc 第 14 回モールの定理 ( 単純梁の場合 ) ( モールの定理とは何か?p.11) 例題 下記に示す単純梁の C 点のたわみ角 θ C と, たわみ δ C を求めよ ただし, 部材の曲げ 剛性は材軸に沿って一様で とする C D kn B 1.5m 0.5m 1.0m 解答 1 曲げモーメント図を描く,B 点の反力を求める kn kn 4 kn 曲げモーメント図を描く knm 先に得られた曲げモーメントの値を

More information

解法 1 原子の性質を周期表で理解する 原子の結合について理解するには まずは原子の種類 (= 元素 ) による性質の違いを知る必要がある 原子の性質は 次の 3 つによって理解することができる イオン化エネルギー = 原子から電子 1 個を取り除くのに必要なエネルギー ( イメージ ) 電子 原子

解法 1 原子の性質を周期表で理解する 原子の結合について理解するには まずは原子の種類 (= 元素 ) による性質の違いを知る必要がある 原子の性質は 次の 3 つによって理解することができる イオン化エネルギー = 原子から電子 1 個を取り除くのに必要なエネルギー ( イメージ ) 電子 原子 解法 1 原子の性質を周期表で理解する 原子の結合について理解するには まずは原子の種類 (= 元素 ) による性質の違いを知る必要がある 原子の性質は 次の 3 つによって理解することができる イオン化エネルギー = 原子から電子 1 個を取り除くのに必要なエネルギー ( イメージ ) 電子 原子 いやだ!! の強さ 電子親和力 = 原子が電子 1 個を受け取ったときに放出するエネルギー ( イメージ

More information

テンソル ( その ) テンソル ( その ) スカラー ( 階のテンソル ) スカラー ( 階のテンソル ) 階数 ベクトル ( 階のテンソル ) ベクトル ( 階のテンソル ) 行列表現 シンボリック表現 [ ]

テンソル ( その ) テンソル ( その ) スカラー ( 階のテンソル ) スカラー ( 階のテンソル ) 階数 ベクトル ( 階のテンソル ) ベクトル ( 階のテンソル ) 行列表現 シンボリック表現 [ ] Tsor th-ordr tsor by dcl xprsso m m Lm m k m k L mk kk quott rul by symbolc xprsso Lk X thrd-ordr tsor cotrcto j j Copyrght s rsrvd. No prt of ths documt my b rproducd for proft. テンソル ( その ) テンソル ( その

More information

Matrix and summation convention Kronecker delta δ ij 1 = 0 ( i = j) ( i j) permutation symbol e ijk = (even permutation) (odd permutation) (othe

Matrix and summation convention Kronecker delta δ ij 1 = 0 ( i = j) ( i j) permutation symbol e ijk = (even permutation) (odd permutation) (othe Matr ad summato covto Krockr dlta δ ( ) ( ) prmutato symbol k (v prmutato) (odd prmutato) (othrs) gvalu dtrmat dt 6 k rst r s kt opyrght s rsrvd. No part of ths documt may b rproducd for proft. 行列 行 正方行列

More information

Microsoft PowerPoint - qchem3-9

Microsoft PowerPoint - qchem3-9 008 年度冬学期 量子化学 Ⅲ 章量子化学の応用 4.4. 相対論的効果 009 年 月 8 日 担当 : 常田貴夫准教授 相対性理論 A. Einstein 特殊相対論 (905 年 ) 相対性原理: ローレンツ変換に対して物理法則の形は不変 光速度不変 : 互いに等速運動する座標系で光速度は常に一定 ミンコフスキーの4 次元空間座標系 ( 等速系のみ ) 一般相対論 (96 年 ) 等価原理

More information

PowerPoint プレゼンテーション

PowerPoint プレゼンテーション ガウシアンと群論 ( 名古屋工業大学 ) 川崎晋司 ガウシアンの特徴非経験的分子軌道計算 分子のシュレディンガー方程式をどう解くか HΨ = EΨ 電子だけでなく原子核も入る もちろん複数 一電子波動関数の形にして解こう = 分子軌道法 例えばハートリー法では多電子波動関数 Ψを一電子波動関数 φの積で近似 Ψ r 1, r, = ϕ r 1 ϕ r しかし この近似ではパウリの原理 ( 電子の入れ替えに反対称

More information

三重大学工学部

三重大学工学部 量子化学 : 量子力学を化学の問題に適用分子に対する Schödige 方程式を解く ˆ Ψ x, x, x,, x EΨ x, x, x,, x 3 N 3 Ĥ :milto 演算子 Ψ x, x, x,, x : 多電子波動関数, 3 N 反応理論化学 ( その ) E : エネルギー一般の多原子分子に対して厳密に解くことはできない N x : 電子の座標 ( 空間座標とスピン座標 ) Schödige

More information

2-1 [ 第 1 部 基礎および構造論 ] 2. 有機化合物を構成する原子と結合 2.1. 有機化合物を構成する主要な原子周期表 Periodic Table 族 周期 Positive 1 H 電気陰性度 Electronegativity Negative

2-1 [ 第 1 部 基礎および構造論 ] 2. 有機化合物を構成する原子と結合 2.1. 有機化合物を構成する主要な原子周期表 Periodic Table 族 周期 Positive 1 H 電気陰性度 Electronegativity Negative 2-1 [ 第 1 部 基礎および構造論 ] 2. 有機化合物を構成する原子と結合 2.1. 有機化合物を構成する主要な原子周期表 Periodic Table 族 1 2 13 14 15 16 17 周期 Positive 1 電気陰性度 Electronegativity egative 2 Li B F 3 a Mg Al Si P S l 4 K a Br 電気陰性度 5 I Positive

More information

Microsoft Word - Chap11

Microsoft Word - Chap11 第 章 次元回転群とそのリー代数. SO のリー代数. 節でリー代数を定義したが 以下にその定義を再録する なお 多くの教科書に従って本章以降は ep t A の代わりに ep t と書くこととする 定義.. G を 次の線型リー群とすると 任意の実数 t に対して ep t G となる gl C の全体をGのリー代数 またはリー環 という 例えば ep t が 次の特殊直交群 SO の元であれば

More information

PowerPoint プレゼンテーション

PowerPoint プレゼンテーション 量子化学 原田 講義概要 第 1 回 概論 量子化学の基礎 第 2 回 演習 1 第 3 回 分子の電子状態の計算法 (Hückel 法 ) 第 4 回 演習 2 第 5 回 近似を高めた理論化学計算法 第 6 回 演習 3 第 7 回 試験 3 近似を高めた理論化学計算法 到達目標 : 近似を高めた理論化学計算法の概要を知る. 経験的と非経験的計算法 cf. 定性的 定量的 半経験的 : 計算途中で経験的パラメータを部分的に導入して計算コストを下げる.

More information

スライド 1

スライド 1 立体構造の表し方 眼 こちらから見ると 破線 - くさび型表示 実線 破線 くさび型線の 種類で官能基の立体的な配置を示す ( 最もよく使われる ) sp 混成は 正四面体 構造であることを思い出す! 破線 -くさび型表示 ニューマン投影式 フィッシャー投影式 実線 ( 結合は紙面上 ) 破線 ( 結合は紙面よりも奥側 ) くさび型線 ( 結合は紙面よりも手前側 ) こちらから見たものを押しつぶして書くと

More information

2 図微小要素の流体の流入出 方向の断面の流体の流入出の収支断面 Ⅰ から微小要素に流入出する流体の流量 Q 断面 Ⅰ は 以下のように定式化できる Q 断面 Ⅰ 流量 密度 流速 断面 Ⅰ の面積 微小要素の断面 Ⅰ から だけ移動した断面 Ⅱ を流入出する流体の流量 Q 断面 Ⅱ は以下のように

2 図微小要素の流体の流入出 方向の断面の流体の流入出の収支断面 Ⅰ から微小要素に流入出する流体の流量 Q 断面 Ⅰ は 以下のように定式化できる Q 断面 Ⅰ 流量 密度 流速 断面 Ⅰ の面積 微小要素の断面 Ⅰ から だけ移動した断面 Ⅱ を流入出する流体の流量 Q 断面 Ⅱ は以下のように 3 章 Web に Link 解説 連続式 微分表示 の誘導.64 *4. 連続式連続式は ある領域の内部にある流体の質量の収支が その表面からの流入出の合計と等しくなることを定式化したものであり 流体における質量保存則を示したものである 2. 連続式 微分表示 の誘導図のような微小要素 コントロールボリューム の領域内の流体の増減と外部からの流体の流入出を考えることで定式化できる 微小要素 流入

More information

問題-1.indd

問題-1.indd 科目名学科 学年 組学籍番号氏名採点結果 016 年度材料力学 Ⅲ 問題 1 1 3 次元的に外力負荷を受ける物体を考える際にデカルト直交座標 - を採る 物体 内のある点 を取り囲む微小六面体上に働く応力 が v =- 40, = 60 =- 30 v = 0 = 10 v = 60 である 図 1 の 面上にこれらの応力 の作用方向を矢印で記入し その脇にその矢印が示す応力成分を記入しなさい 図

More information

<4D F736F F D EBF97CD8A B7982D189898F4B A95748E9197BF4E6F31312E646F63>

<4D F736F F D EBF97CD8A B7982D189898F4B A95748E9197BF4E6F31312E646F63> 土質力学 Ⅰ 及び演習 (B 班 : 小高担当 ) 配付資料 N.11 (6.1.1) モールの応力円 (1) モールの応力円を使う上での3つの約束 1 垂直応力は圧縮を正とし, 軸の右側を正の方向とする 反時計まわりのモーメントを起こさせるせん断応力 の組を正とする 3 物体内で着目する面が,θ だけ回転すると, モールの応力円上では θ 回転する 1とは物理的な実際の作用面とモールの応力円上との回転の方向を一致させるために都合の良い約束である

More information

Microsoft Word - thesis.doc

Microsoft Word - thesis.doc 剛体の基礎理論 -. 剛体の基礎理論初めに本論文で大域的に使用する記号を定義する. 使用する記号トルク撃力力角運動量角速度姿勢対角化された慣性テンソル慣性テンソル運動量速度位置質量時間 J W f F P p .. 質点の並進運動 質点は位置 と速度 P を用いる. ニュートンの運動方程式 という状態を持つ. 但し ここでは速度ではなく運動量 F P F.... より質点の運動は既に明らかであり 質点の状態ベクトル

More information

物性物理学 I( 平山 ) 補足資料 No.6 ( 量子ポイントコンタクト ) 右図のように 2つ物質が非常に小さな接点を介して接触している状況を考えましょう 物質中の電子の平均自由行程に比べて 接点のサイズが非常に小さな場合 この接点を量子ポイントコンタクトと呼ぶことがあります この系で左右の2つ

物性物理学 I( 平山 ) 補足資料 No.6 ( 量子ポイントコンタクト ) 右図のように 2つ物質が非常に小さな接点を介して接触している状況を考えましょう 物質中の電子の平均自由行程に比べて 接点のサイズが非常に小さな場合 この接点を量子ポイントコンタクトと呼ぶことがあります この系で左右の2つ 物性物理学 I( 平山 ) 補足資料 No.6 ( 量子ポイントコンタクト ) 右図のように つ物質が非常に小さな接点を介して接触している状況を考えましょう 物質中の電子の平均自由行程に比べて 接点のサイズが非常に小さな場合 この接点を量子ポイントコンタクトと呼ぶことがあります この系で左右のつの物質の間に電位差を設けて左から右に向かって電流を流すことを行った場合に接点を通って流れる電流を求めるためには

More information

20~22.prt

20~22.prt [ 三クリア W] 辺が等しいことの証明 ( 円周角と弦の関係利用 ) の の二等分線がこの三角形の外接円と交わる点をそれぞれ とするとき 60 ならば であることを証明せよ 60 + + 0 + 0 80-60 60 から ゆえに 等しい長さの弧に対する弦の長さは等しいから [ 三クリア ] 方べきの定理 接線と弦のなす角と円周角を利用 線分 を直径とする円 があり 右の図のように の延長上の点

More information

スライド 1

スライド 1 暫定版修正 加筆の可能性あり ( 付録 ) 電磁波 ( 光 ) の角運動量. 復習 : 電磁波 ( 光 ) のエネルギー. 運動量 角運動量 ( 実空間 ) 3. 軌道 スピン角運動量 4. 円偏光状態 5. 螺旋状態 付録 8 のアプローチ. 本付録では電磁波 ( 光 ) の軌道 スピン角運動量ついて古典的に扱う. スピン角運動量は直線偏光状態では零 円偏光状態では非零 右 左回りで大きさは同じ

More information

第1章 単 位

第1章  単  位 H. Hamano,. 長柱の座屈 - 長柱の座屈 長い柱は圧縮荷重によって折れてしまう場合がある. この現象を座屈といい, 座屈するときの荷重を座屈荷重という.. 換算長 長さ の柱に荷重が作用する場合, その支持方法によって, 柱の理論上の長さ L が異なる. 長柱の計算は, この L を用いて行うと都合がよい. この L を換算長 ( あるいは有効長さという ) という. 座屈荷重は一般に,

More information

4 3. (a) 2 (b) 1 2 xy xz- x , 4 R1 R2 R1 R xz- 2(a) 2(b) B 1 B 2 B 1 B 2 2

4 3. (a) 2 (b) 1 2 xy xz- x , 4 R1 R2 R1 R xz- 2(a) 2(b) B 1 B 2 B 1 B 2 2 2017 Vol. 16 1-33 1 2 1. 2. 21 [5], 1 2 2 [1] [2] [3] 1 4 3. (a) 2 (b) 1 2 xy- 2 1. xz- x 2. 3. 1 3 3, 4 R1 R2 R1 R2 3 1 4 2 xz- 2(a) 2(b) 1 4 2 B 1 B 2 B 1 B 2 2 5 8 7 6 5(a) 5(b) 9 7 8 2 (a) 5 (b) 1

More information

Microsoft PowerPoint - Quiz.ppt

Microsoft PowerPoint - Quiz.ppt 無機化学 03 年 4 月 ~03 年 8 月 水曜日 時間目 4M 講義室 小テストと 8 9 章のチェックリスト集 担当教員 : 福井大学大学院工学研究科生物応用化学専攻教授前田史郎 E-mil:sme@u-fukui.c.jp URL:p://cbio.cbio.u-fukui.c.jp/pycem/me/kougi 教科書 : アトキンス物理化学 第 8 版 東京化学同人主に8 9 章を解説するとともに0

More information

学力スタンダード(様式1)

学力スタンダード(様式1) (1) 数と式 学習指導要領ア数と集合 ( ア ) 実数数を実数まで拡張する意義を理解し 簡単な無理数の四則計算をすること 稔ヶ丘高校学力スタンダード 有理数 無理数の定義や実数の分類について理解し ている 絶対値の意味と記号表示を理解している 実数と直線上の点が一対一対応であることを理解 し 実数を数直線上に示すことができる 例 実数 (1) -.5 () π (3) 数直線上の点はどれか答えよ

More information

情報処理論 第2回 情報の符号化 2004/10/8

情報処理論 第2回 情報の符号化 2004/10/8 数学 第 5 回群の構造 : 正規部分群 009/10/8 数学 #5 009/10/8 いろいろなシンメトリーを考える話はまだ続くのですが 今回は間を入れて 群自体についての考察 です 1. 部分群 正三角形は三角形として最大にシンメトリックな図形です これに対して二等辺三角形は 回転のシンメトリーは失われていますが 鏡映のシンメトリーを残しています 逆に考えると 正三角形は二等辺三角形のシンメトリーを

More information

木村の物理小ネタ ケプラーの第 2 法則と角運動量保存則 A. 面積速度面積速度とは平面内に定点 O と動点 P があるとき, 定点 O と動点 P を結ぶ線分 OP( 動径 OP という) が単位時間に描く面積を 動点 P の定点 O に

木村の物理小ネタ   ケプラーの第 2 法則と角運動量保存則 A. 面積速度面積速度とは平面内に定点 O と動点 P があるとき, 定点 O と動点 P を結ぶ線分 OP( 動径 OP という) が単位時間に描く面積を 動点 P の定点 O に ケプラーの第 法則と角運動量保存則 A. 面積速度面積速度とは平面内に定点 O と動点 P があるとき, 定点 O と動点 P を結ぶ線分 OP( 動径 OP という が単位時間に描く面積を 動点 P の定点 O に関する面積速度の大きさ という 定点 O まわりを回る面積速度の導き方導き方 A ( x( + D, y( + D v ( q r ( A ( x (, y( 動点 P が xy 座標平面上を時刻

More information

Microsoft Word - 素粒子物理学I.doc

Microsoft Word - 素粒子物理学I.doc 6. 自発的対称性の破れとヒッグス機構 : 素粒子の標準模型 Dc 方程式.5 を導くラグランジアンは ϕ ϕ mϕϕ 6. である [H] Eu-nn 方程式 を使って 6. のラグランジア ンから Dc 方程式が導かれることを示せ 6. ゲージ対称性 6.. U 対称性 :QED ディラック粒子の複素場 ψに対する位相変換 ϕ ϕ 6. に対して ラグランジアンが不変であることを要請する これは簡単に示せる

More information

Microsoft Word - 断面諸量

Microsoft Word - 断面諸量 応用力学 Ⅱ 講義資料 / 断面諸量 断面諸量 断面 次 次モーメントの定義 図 - に示すような形状を有する横断面を考え その全断面積を とする いま任意に定めた直交座標軸 O-, をとり また図中の斜線部の微小面積要素を d とするとき d, d () で定義される, をそれぞれ与えられた横断面の 軸, 軸に関する断面 次モーメント (geometrcal moment of area) という

More information

Microsoft Word - 化学系演習 aG.docx

Microsoft Word - 化学系演習 aG.docx 有機化学反応の基礎 () 芳香族化合物 ) 芳香族化合物の性質 ベンゼンに代表される芳香族化合物は 環構造を構成する原子すべてが p 軌道をもち 隣同士の原子間で p 軌道が重なり合うことができるので 電子が非局在化 ( 共鳴安定化 ) している 芳香族性をもつため 求電子付加反応ではなく求電子置換反応を起こしやすい 全ての炭素が sp ² 混成 π 結合 p 軌道 π 電子がドーナツ状に分布し 極めて安定

More information

学習指導要領

学習指導要領 (1) 数と式 学習指導要領ア数と集合 ( ア ) 実数数を実数まで拡張する意義を理解し 簡単な無理数の四則計算をすること 第 1 章第 節実数 東高校学力スタンダード 4 実数 (P.3~7) 自然数 整数 有理数 無理数 実数のそれぞれの集 合について 四則演算の可能性について判断できる ( 例 ) 下の表において, それぞれの数の範囲で四則計算を考えるとき, 計算がその範囲で常にできる場合には

More information

(Microsoft Word - 10ta320a_\220U\223\256\212w\223\301\230__6\217\315\221O\224\274\203\214\203W\203\201.docx)

(Microsoft Word - 10ta320a_\220U\223\256\212w\223\301\230__6\217\315\221O\224\274\203\214\203W\203\201.docx) 6 章スペクトルの平滑化 スペクトルの平滑化とはフーリエスペクトルやパワ スペクトルのギザギザを取り除き 滑らかにする操作のことをいう ただし 波のもっている本質的なものをゆがめてはいけない 図 6-7 パワ スペクトルの平滑化 6. 合積のフーリエ変換スペクトルの平滑化を学ぶ前に 合積とそのフーリエ変換について説明する 6. データ ウィンドウデータ ウィンドウの定義と特徴について説明する 6.3

More information

第2章

第2章 第 2 章 企業の行動 : 第二部 ここでは 短期の供給曲線がなぜ右上がりになるのか述べます 企業は利潤を最大化すると仮定します (1) π = TR TC π : 利潤 TR : 総収入 TC : 総費用 企業は自己の生産物の価格 P に影響をしない と仮定します このことは 生 産物市場が完全競争市場であるということを意味します 詳しくは 完全競争 市場の定義について教科書などを参考にしてください

More information

<4D F736F F D E4F8E9F82C982A882AF82E98D7397F1>

<4D F736F F D E4F8E9F82C982A882AF82E98D7397F1> 3 三次における行列 要旨高校では ほとんど 2 2 の正方行列しか扱ってなく 三次の正方行列について考えてみたかったため 数 C で学んだ定理を三次の正方行列に応用して 自分たちで仮説を立てて求めていったら 空間における回転移動を表す行列 三次のケーリー ハミルトンの定理 三次における逆行列を求めたり 仮説をたてることができた. 目的 数 C で学んだ定理を三次の正方行列に応用する 2. 概要目的の到達点として

More information

オートマトン 形式言語及び演習 1. 有限オートマトンとは 酒井正彦 形式言語 言語とは : 文字列の集合例 : 偶数個の 1 の後に 0 を持つ列からなる集合 {0, 110, 11110,

オートマトン 形式言語及び演習 1. 有限オートマトンとは 酒井正彦   形式言語 言語とは : 文字列の集合例 : 偶数個の 1 の後に 0 を持つ列からなる集合 {0, 110, 11110, オートマトン 形式言語及び演習 1 有限オートマトンとは 酒井正彦 wwwtrscssinagoya-uacjp/~sakai/lecture/automata/ 形式言語 言語とは : 文字列の集合例 : 偶数個の 1 の後に 0 を持つ列からなる集合 {0, 110, 11110, } 形式言語 : 数学モデルに基づいて定義された言語 認識機械 : 文字列が該当言語に属するか? 文字列 機械 受理

More information

断面の諸量

断面の諸量 断面の諸量 建設システム工学科高谷富也 断面 次モーメント 定義 G d G d 座標軸の平行移動 断面 次モーメント 軸に平行な X Y 軸に関する断面 次モーメント G X G Y を求める X G d d d Y 0 0 G 0 G d d d 0 0 G 0 重心 軸に関する断面 次モーメントを G G とし 軸に平行な座標軸 X Y の原点が断面の重心に一致するものとする G G, G G

More information

Microsoft PowerPoint - 構造力学Ⅰ第03回.pptx

Microsoft PowerPoint - 構造力学Ⅰ第03回.pptx 分布荷重の合力 ( 効果 ) 前回の復習 ( 第 回 ) p. 分布荷重は平行な力が連続して分布していると考えられる 例 : 三角形分布 l dx P=ql/ q l qx q l 大きさ P dx x 位置 Px 0 x x 0 l ql 0 : 面積に等しい 0 l l 重心に等しいモーメントの釣合より ( バリノンの定理 ) l qx l qx ql q 3 l ql l xdx x0 xdx

More information

Microsoft Word ã‡»ã…«ã‡ªã…¼ã…‹ã…žã…‹ã…³ã†¨åłºæœ›å•¤(佒芤喋çfl�)

Microsoft Word ã‡»ã…«ã‡ªã…¼ã…‹ã…žã…‹ã…³ã†¨åłºæœ›å•¤(佒芤喋çfl�) Cellulr uo nd heir eigenlues 東洋大学総合情報学部 佐藤忠一 Tdzu So Depren o Inorion Siene nd rs Toyo Uniersiy. まえがき 一次元セルオ-トマトンは数学的には記号列上の行列の固有値問題である 固有値問題の行列はふつう複素数体上の行列である 量子力学における固有値問題も無限次元ではあるが関数環上の行列でその成分は可換環である

More information

学習指導要領

学習指導要領 (1) 数と式 ア数と集合 ( ア ) 実数数を実数まで拡張する意義を理解し 簡単な無理数の四則計算をすること 絶対値の意味を理解し適切な処理することができる 例題 1-3 の絶対値をはずせ 展開公式 ( a + b ) ( a - b ) = a 2 - b 2 を利用して根号を含む分数の分母を有理化することができる 例題 5 5 + 2 の分母を有理化せよ 実数の整数部分と小数部分の表し方を理解している

More information

重要例題113

重要例題113 04_ 高校 数学 Ⅱ 必須基本公式 定理集 数学 Ⅱ 第 章式の計算と方程式 0 商と余り についての整式 A をについての整式 B で割ったときの商を Q, 余りを R とすると, ABQ+R (R の次数 ) > 0

More information

Microsoft PowerPoint - 10JUL13.ppt

Microsoft PowerPoint - 10JUL13.ppt 無機化学 03 年 4 月 ~03 年 8 月 水曜日 時間目 4M 講義室第 3 回 7 月 0 日ミラー指数面の間隔 X 線回折ブラッグの法則 (0 章材料 : 固体 ) 結晶構造 担当教員 : 福井大学大学院工学研究科生物応用化学専攻教授前田史郎 E-mil:sme@u-fukui.c.jp URL:http://cbio.cbio.u-fukui.c.jp/phychem/me/kougi

More information

<4D F736F F D208D5C91A297CD8A7793FC96E591E631308FCD2E646F63>

<4D F736F F D208D5C91A297CD8A7793FC96E591E631308FCD2E646F63> 第 1 章モールの定理による静定梁のたわみ 1-1 第 1 章モールの定理による静定梁のたわみ ポイント : モールの定理を用いて 静定梁のたわみを求める 断面力の釣合と梁の微分方程式は良く似ている 前章では 梁の微分方程式を直接積分する方法で 静定梁の断面力と変形状態を求めた 本章では 梁の微分方程式と断面力による力の釣合式が類似していることを利用して 微分方程式を直接解析的に解くのではなく 力の釣合より梁のたわみを求める方法を学ぶ

More information

本 文 で 述 べたように アレン 誘 導 体 の 軸 性 キラリテイーは 直 交 したπ 分 子 平 面 が 回 転 で きず その 面 内 にそれぞれ 二 つの 置 換 基 が 固 定 されているために 起 こる よって 立 体 障 害 などによって 単 結 合 が 回 転 できなくなっても 同

本 文 で 述 べたように アレン 誘 導 体 の 軸 性 キラリテイーは 直 交 したπ 分 子 平 面 が 回 転 で きず その 面 内 にそれぞれ 二 つの 置 換 基 が 固 定 されているために 起 こる よって 立 体 障 害 などによって 単 結 合 が 回 転 できなくなっても 同 6 章 工 学 ナビ Web に link アレンやビフェニル 誘 導 体 のキラリテイーは 軸 性 キラリテイーという ここで アレン 誘 導 体 の 四 つの 置 換 基 が 頂 点 を 占 める 四 面 体 を 考 える 例 として 本 文 にある 1,3-ジメチルアレ ンを 考 えよう まず 1) 分 子 の 中 心 を 通 る 軸 つまり メチル 基 と 水 素 を 結 ぶ 二 本 の 線

More information

Microsoft Word - Chap17

Microsoft Word - Chap17 第 7 章化学反応に対する磁場効果における三重項機構 その 7.. 節の訂正 年 7 月 日. 節 章の9ページ の赤枠に記載した説明は間違いであった事に気付いた 以下に訂正する しかし.. 式は 結果的には正しいので安心して下さい 磁場 の存在下でのT 状態のハミルトニアン は ゼーマン項 と時間に依存するスピン-スピン相互作用の項 との和となる..=7.. g S = g S z = S z g

More information

CG

CG Grahics with Processig 7-6 座標変換と同次座標 htt://vilab.org 塩澤秀和 6-7 H. SHIOZAWA htt://vilab.org 6. * 座標系 座標系の変換 座標系 目盛りのつけかた 原点の位置 軸と 軸の方向 軸と 軸の目盛りの刻み 論理座標系 描画命令で使う目盛り ( 座標系 ) をつけかえることができる 論理座標系 描画命令で使う 座標 画面座標系

More information

座標系.rtf

座標系.rtf 2 章座標系 場 空間は3 次元なので, ベクトルを表現するには少なくとも3 成分を指定する必要がある. そのために座標系が必要となる. 座標系として最も一般的なものは,,, 成分を使った直角座標系である. しかし, 他にも円柱座標, 球座標, だ円座標, 放物線座標など様々なものがある. 現在までに3 成分で変数分離可能な座標系は11 個あるといわれている (Moon & Spencer, Field

More information

Microsoft PowerPoint - 基礎化学4revPart1b [互換モード]

Microsoft PowerPoint - 基礎化学4revPart1b [互換モード] 化学結合と分 の形 なぜ原 と原 はつながるのかなぜ分 はきまった形をしているのか化学結合の本質を理解しよう 分子の形と電子状態には強い相関がある! 原子 分子 基礎化学 ( 化学結合論 構造化学 量子化学 ) 電子配置分子の形強い相関関係 ( 電子状態 ) ( 立体構造 ) 分子の性質 ( 反応性 物性 ) 先端化学 ( 分子設計 機能化学 ) 機能 分子の形と電子配置の基礎的理解 基礎 ( 簡単

More information

相対性理論入門 1 Lorentz 変換 光がどのような座標系に対しても同一の速さ c で進むことから導かれる座標の一次変換である. (x, y, z, t ) の座標系が (x, y, z, t) の座標系に対して x 軸方向に w の速度で進んでいる場合, 座標系が一次変換で関係づけられるとする

相対性理論入門 1 Lorentz 変換 光がどのような座標系に対しても同一の速さ c で進むことから導かれる座標の一次変換である. (x, y, z, t ) の座標系が (x, y, z, t) の座標系に対して x 軸方向に w の速度で進んでいる場合, 座標系が一次変換で関係づけられるとする 相対性理論入門 Lorentz 変換 光がどのような座標系に対しても同一の速さ で進むことから導かれる座標の一次変換である. x, y, z, t ) の座標系が x, y, z, t) の座標系に対して x 軸方向に w の速度で進んでいる場合, 座標系が一次変換で関係づけられるとすると, x A x wt) y y z z t Bx + Dt 弨弱弩弨弲弩弨弳弩弨弴弩 が成立する. 図 : 相対速度

More information

千葉大学 ゲーム論II

千葉大学 ゲーム論II 千葉大学ゲーム論 II 第五, 六回 担当 上條良夫 千葉大学ゲーム論 II 第五 六回上條良夫 本日の講義内容 前回宿題の問題 3 の解答 Nash の交渉問題 Nash 解とその公理的特徴づけ 千葉大学ゲーム論 II 第五 六回上條良夫 宿題の問題 3 の解答 ホワイトボードでやる 千葉大学ゲーム論 II 第五 六回上條良夫 3 Nash の二人交渉問題 Nash の二人交渉問題は以下の二つから構成される

More information

<4D F736F F D FCD B90DB93AE96402E646F63>

<4D F736F F D FCD B90DB93AE96402E646F63> 7 章摂動法講義のメモ 式が複雑なので 黒板を何度も修正したし 間違ったことも書いたので メモを置きます 摂動論の式の導出無摂動系 先ず 厳密に解けている Schrödiger 方程式を考える,,,3,... 3,,,3,... は状態を区別する整数であり 状態 はエネルギー順に並んでいる 即ち は基底状態 は励起状態である { m } は相互に規格直交条件が成立する k m k mdx km k

More information

Microsoft PowerPoint - JUN09.ppt [互換モード]

Microsoft PowerPoint - JUN09.ppt [互換モード] 無機化学 2010 年 4 月 ~2010 年 8 月 第 9 回 6 月 9 日水素原子の構造と原子スペクトル 多電子原子の構造 典型元素と遷移元素 担当教員 : 福井大学大学院工学研究科生物応用化学専攻 准教授前田史郎 E-mail:smaeda@u-fukui.ac.jp URL:http://acbio2.acbio.u-fukui.ac.jp/phychem/maeda/kougi p 教科書

More information

学習指導要領

学習指導要領 (1) 数と式 学習指導要領 数と式 (1) 式の計算二次の乗法公式及び因数分解の公式の理解を深め 式を多面的にみたり目的に応じて式を適切に変形したりすること 東京都立町田高等学校学力スタンダード 整式の加法 減法 乗法展開の公式を利用できる 式を1 つの文字におき換えることによって, 式の計算を簡略化することができる 式の形の特徴に着目して変形し, 展開の公式が適用できるようにすることができる 因数分解因数分解の公式を利用できる

More information

<4D F736F F D208CF68BA48C6F8DCF8A C30342C CFA90B68C6F8DCF8A7782CC8AEE967B92E8979D32288F4390B394C529332E646F63>

<4D F736F F D208CF68BA48C6F8DCF8A C30342C CFA90B68C6F8DCF8A7782CC8AEE967B92E8979D32288F4390B394C529332E646F63> 2. 厚生経済学の ( 第 ) 基本定理 2 203 年 4 月 7 日 ( 水曜 3 限 )/8 本章では 純粋交換経済において厚生経済学の ( 第 ) 基本定理 が成立することを示す なお より一般的な生産技術のケースについては 4.5 補論 2 で議論する 2. 予算集合と最適消費点 ( 完全 ) 競争市場で達成される資源配分がパレート効率的であることを示すための準備として 個人の最適化行動を検討する

More information

ベクトル公式.rtf

ベクトル公式.rtf 6 章ラプラシアン, ベクトル公式, 定理 6.1 ラプラシアン Laplacian φ はベクトル量である. そこでさらに発散をとると, φ はどういう形になるであろうか? φ = a + a + a φ a + a φ + a φ = φ + φ + φ = 2 φ + 2 φ 2 + 2 φ 2 2 φ = 2 φ 2 + 2 φ 2 + 2 φ 2 = 2 φ したがって,2 階の偏微分演算となる.

More information

オートマトン 形式言語及び演習 3. 正規表現 酒井正彦 正規表現とは 正規表現 ( 正則表現, Regular Expression) オートマトン : 言語を定義する機械正規表現 : 言語

オートマトン 形式言語及び演習 3. 正規表現 酒井正彦   正規表現とは 正規表現 ( 正則表現, Regular Expression) オートマトン : 言語を定義する機械正規表現 : 言語 オートマトン 形式言語及び演習 3. 酒井正彦 www.trs.css.i.nagoya-u.ac.jp/~sakai/lecture/automata/ とは ( 正則表現, Regular Expression) オートマトン : 言語を定義する機械 : 言語を記号列で定義 - 記述しやすい ( ユーザフレンドリ ) 例 :01 + 10 - UNIX の grep コマンド - UNIX の

More information