2018 : msjmeeting-2018mar-02i002 ( ) 1. 1:. X (= ), X, X., X Z, 1 π1 ab (X) 0 Chow ( CH 0 (X) := Coker div X : κ(x) ) Z x X 1 x X 0 2., x X, x

Size: px
Start display at page:

Download "2018 : msjmeeting-2018mar-02i002 ( ) 1. 1:. X (= ), X, X., X Z, 1 π1 ab (X) 0 Chow ( CH 0 (X) := Coker div X : κ(x) ) Z x X 1 x X 0 2., x X, x"

Transcription

1 2018 : msjmeeting-2018mar-02i002 () 1. 1:. (= ),,., Z, 1 π1 ab () 0 Chow ( CH 0 () := Coker iv : κ(x) ) Z x 1 x 0 2., x, x Frobenius ϱ : CH 0 () π ab 1 (), ϱ, π ab 1 () 3 (, Artin, Lang [23], Bloch [2], [19]). 1 ϱ?, Poincaré,. 2:., n, j, n 1, i 0. F x = Spec(F ) Z/n(i) = Z/n(i) x. Z/n(i) := { µ i n W r Ω i x,log [ i] µ i m (n F ) (ch(f ) = p > 0, n = p r m, (p, m) = 1 ), µ n 1 n., W r Ω i x,log Hoge-Witt [14], x = Spec(F ) x [4]. (W r Ω i x,log) x = K M i (F )/p r (K M i i Milnor K ) ( F Galois ) H q (x, Z/n(i)), F.,. H 1 (x, Z/n) = Hom cont (Gal(F /F ), Z/n), H 2 (x, Z/n(1)) = n Br(F ), H 1 (x, Z/n(1)) = F /n, H i (x, Z/n(i)) = K M i (F )/n ([30], [51]),,, Lichtenbaum 1 R, R π1 ab (). 2 j x, {x} j. κ(x) O,x. iv, x 1 {x}. 3 Z, π1 ab(), Im(ϱ ), ϱ. 119

2 [18], 4 Bloch-Ogus () C q,i n ()., q = i + 1, x 0 [κ(x) : κ(x) p ] p i (, p := ch(x)), n. Cn q,i () : x j H q+j (x, Z/n(i + j)) H q+1 (x, Z/n(i + 1)) x 1 x 0 H q (x, Z/n(i)), Galois. x j j, C q,i n () (cochain complex). 1.3 ([18] Conjecture 0.5) Z, H q (Ĉ1,0 n ()) = 0 (q < 0), H 0 (Ĉ1,0 n ()) = Z/n 5. im() = 1, Hasse ( 1.4 ), im() = 2 ([18] Theorem 0.7). im() 3, [6], [15], [16], [21].,,,,. 2, C q,i n () Cousin, ()?, F,, F Cousin, E j,q 1 = x j H j+q x (Spec(O,x ), F ) = H j+q (, F ) E 1 6. E,q 1 (, F ) : E 0,q 1 E 1,q 1 E j,q K, O K. = Spec(O K ), F = G m ( ), Cousin E,q 1 (, G m ) q < 0 q = 1, q = 0, 2, 3,... (Hilbert 90 ). E,0 1 (, G m ) : K x 1 Z 4 ([40] 0.4 ),. excellent., Z. 5 Ĉn q,i (), Cn q,i (). 2-torsion, Ĉn q,i () = Cn q,i () 6 j, im(o,x ) = j x. E,q 1 (, F ) Ej,q 1 j. Cn q,i () E,q 1 (, F ), ( ). 120

3 E,2 1 (, G m ) : Br(K) x 1 H 1 (x, Q/Z) E,q 1 (, G m ) : H q (K, G m ) 0 (q 3), K n := G m L Z/nCousinE,q 1 (, K n ), q < 1, q 1. E, 1 1 (, K n ) : µ n (K) 0 E,0 1 (, K n ) : K /n x 1 E,1 1 (, K n ) : nbr(k) x 1 Z/n H 1 (x, Z/n) E,q 1 (, K n ) : H q+1 (K, µ n ) 0 (q 2),, C 1,0 n (), C 0,0 n (), C 1,0 n (), C q,0 n () (q 2), 2 = Spec(O K ) i = 0., Artin-Verier ([29], [31]), 7 Hc q (, Z/n) Ext 3 q (Z/n, G m) Hc 3 (, G m ) = Q/Z. K n = RH om(z/n, Gm )[1], H 1 (, K n ) = Ext 2 (Z/n, G m ) = Hom(H 1 c (, Z/n), Q/Z), ϱ. CH 0 () H 1 (, G m ) c 1 H 1 (, K n ) ϱ π ab 1 () /n = H 1 c (, Z/n), c 1 1 Chern (), K n, Lichtenbaum (Z ) 1, 2, Lichtenbaum.. [26], [27], [28], Lichtenbaum L0L7 {Z(i)} i 0, Z(2) K. 7 Z Y, H c (Y, ) Y. = Spec(O K ) Artin-Verier K. 8 Artin-Verier [46], [9]. 1 ( 1.4 ),.,, G m Lichtenbaum, Bloch (ualizing complex). 121

4 L0. Z(0) = Z, Z(1) = G m [ 1] L1. i 1, 1 q i, H q (Z(i)) 0. L2. ϵ : ét Zar Zariski, R i+1 ϵ Z(i) = 0. (i = 1 Hilbert 90, i 2 ) L3. n,, Z(i) n Z(i) µ i n Z(i)[1]. (i = 1 Kummer, i 2 ) L3. F p,,. (L3 p ) Z(i) pr Z(i) W r Ω i,log[ i] Z(i)[1] L4.,. Z(i) L Z(j) Z(i + j) L5. q [ H] q (Z(i)), K () gr i γ K 1 2i q, Z 9. ( K ) (i 1)! L6. i H i (Z(i)), Milnor K K M i. (Milnor K ) L7. α : Y, (Y ) Z(i c) Y [ 2c] = τ i+c Rα! Z(i) (c := coim (Y )). (), Bloch [3] 10 Z(i) cyc : ( ) U zi (U, )[ 2i], L0, L2L4, L7, L1 q > i H q (Z(i) cyc ) ([3], [7], [10], [37], [45]). L5, Q 11. L6 [20]., Deekin, Z(i) Z(i) cyc, L i 2 q 0 L5 L1, Beilinson-Soulé. 10, Suslin-Voevosky [ ] [47], [51]. 11 1, Z (, N i,q, = max{+i q+1, i 1}) N i,q,! [25]. 12 Deekin, Z(i) cyc L2, L3, L7, L1 q > i [8]. 122

5 ,, p, Y := ( Z F p ) re, U := Y = [p 1 ] (re ). Lichtenbaum, Z/p r (i) := Z(i) L Z/p r., F p ( = Y ), L3 Z(i) L Z/p r = Wr Ω i,log[ i],, Y ( U ). T1. t : Z/p r (i) U µ i p r. (Z(i) U L3 ) T2. 0 q i, H q (Z/p r (i) ) = 0. (L1 ) T3. α : T, T F p, T α! : W r Ω i c T,log [ i c] τ i+c Rα! Z/p r (i) (c := coim (T )). (L7, Z(i) T L3 ) T4. Z, x {y}, ch(x) = p 2 x Z c, y Z c 1, ( ( 1) ). H i c+1 (y, Z/p r (i c + 1)) y,x H i c (x, Z/p r (i c)) 2.1 H i+c 1 β y! = = β x! y (Spec(O Z,y ), Z/p r (i)) δy,x Hx i+c (Spec(O Z,x ), Z/p r (i)), w Z, β w : w Spec(O Z,w ). ch(w) = p, β w! T3, ch(w) = 0, β w! T1 t ([7], [37]). y,x Galois, δ y,x. (1) CousinE,i 1 (, Z/p r (i) )δ y,x. (2) ch(y) p, ch(x) p T4 [17]. (3) T4 Lichtenbaum, F = Z/p r (i) 2 q = i, n = p r. Milne ([32] Remark 2.7),. 2.2 j : U, α : Y, T1 T4 Z/p r (i)., (1). R i j µ i p β r y W r Ω i 1 y,log y Y 0 β x W r Ω i 2 x,log, x Y 1, z Y β z z Y, () Galois. () 123

6 (2),. α ν i 1 g Y,r [ i 1] Z/p r (i) t τ i Rj µ i p r σ r,i α ν i 1 Y,r [ i], t T1 tt2, ν i 1 Y,r () ( Y ). σ r,i (). 2.3 T1 T4 Z/p r (i) T1 t (Z/p r (i), t), T1 T q = i, n = p r. 3.1 ([41], [42]) A Deekin, A, ( ). ( ) Spec(A) p Σ, Spec(A) Σ ( Cartier Y ), 13., T1 T4 T r (i),. T5. Z/p r,, U µ i p r. (L4 ) T r (i) L T r (j) T r (i + j) µ j p r T6. f : = µ i+j p r T7. f : (T r (i) 3.1 ) Y normal crossing ivisor ( ( ) ), 2.2 (1) ()., Y (p) Hoge-Witt, Gros-Suwa [11]. () 2.2 (2) σ r,i. 2.2, T r (i). T r (i) := Cone ( σ r,i : τ i Rj µ i p r α ν i 1 Y,r [ i]) [ 1] (), T r (i) T2. T1. T3 α!, T r (i) T3, T4. T3, p α R q j µ q p (q i) (Bloch-Kato-Hyoo [4], [12]). 13 D, D x g : V v g 1 (x), g 1 (D) V O V,v ( m v, m v /m 2 v ). 124

7 3.2 i = 1, T r (1) = Gm L Z/p r [ 1]., T3, Brauer p. Br( T ){p} = Br(){p} (coim (T ) 2) 3.3 Lichtenbaum Z(i),, Bloch Z(i) cyc. Z/p r (i) cyc := Z(i)cyc Z/pr, T r (i)., Z/p r (i) cyc = T r (i) ([42] Conjecture 1.4.1), A, Geisser ([8] Theorems 1.2 (2), (4), 1.3)., Z/p r (i) cyc T r (i) Z/p r (i) cyc. [43], Zhong [53]. Z/p r (i) cyc Gersten, [53]. 3.4 ( [42]) A. A, p, 3.1 ( ). = im(), Hc q (, T r (i)) H 2+1 q (, T r ( i)) Hc 2+1 (, T r ()) = Z/p r p. Y := ( Z F p ) re, U := Y, Artin-Verier, Hc q (U, µ i p ) r H2+1 q (U, µ i p ) r H2+1 c (U, µ p ) = Z/p r r., ( [42]) 3.4, Σ Spec(A) p, Σ := s Σ A A s (= Z Z p )., A s A s., H q ( Σ, T r (i)) H 2+1 q Y (, T r ( i)) H 2+1 Y (, T r ()) = Z/p r p. 3.5, p (explicit reciprocity law), Y Serre. 125

8 ,. CH 0 () cl H 2 (, T r ()) ϱ π ab 1 () /p r = H 1 c (, Z/p r ), cl T3, T4, Gabber. 3.4., p 3 Hom alg (A, R) =, , F = Z/p r () ( := im()) 2 (q, i) = (1, 0), n = p r (, x 0, κ(x) ) [17] Theorem (4). 4. p regulator p, T r (i) s r (i) [22]. p,, (Bloch- Kato Selmer ). T r (i),, p, Bloch-Kato Selmer., T r (i), Selmer Hf 1, H1 g (4.3, 4.5 ). K, O K. G K := Gal(K/K). O K, p, 3.1 ( ). Q p. V q (i) := Q p Zp lim r 1 H q ( K, µ i p ) r H q ( K, Q p (i)) := Q p Zp lim r 1 H q ( K, µ i p ) r H q (, T Qp (i)) := Q p Zp lim r 1 H q (, T r (i)) V q (i) H q (, T Qp (i)) Q p, H q ( K, Q p (i)) (, 2i q = 1 )., 2i q 1. Bloch-Kato Selmer [5], (). 4.1 ( [5] ) reg q,i K (1) p regulator : K 2i q ( K ) chq,i H q ( K, Q p (i)) H 1 (G K, V q 1 (i)) H 1 g (G K, V q 1 (i))., ch q,i Chern. (2) reg q,i H 1 f (G K, V q 1 (i)). : K 2i q() K 2i q ( K ) reg q,i K H 1 (G K, V q 1 (i)) 126

9 (1), Im(reg q,i K ) Hg 1 (G K, V q 1 (i)) [24], [34]. (2), v p v goo reuction, Niziol Im(reg q,i ) H1 (G K, V q 1 (i)) [36]. 4.1 T r (i), (A) Niziol (B) H 1 g (G K, V 2 (2))/Im(reg 3,2 K ) ( Q p /Z p ). (A).. Φ q,i : H q (, T Qp (i)) H q ( K, Q p (i)) H 1 (G K, V q 1 (i)) 4.2 ([43]) Y := ( Z F p ) re. p 2 i, H q 1 log-crys (Y/W ) [13], [33]., Im(Φq,i ) = H 1 f (G K, V q 1 (i))., Fontaine-Jannsen [49], p [50]. 4.2 Chern ch q,i : K 2i q () H q (, T Qp (i)) ([43], [1]), , Im(reg q,i ) H1 f (G K, V q 1 (i)). 4.4 Scholl [44] K 2i q ( K ) Q K 2i q ( K ) OK, 4.3 K K (reg q,i K K 2i q ( K ) OK ).,, K., (B). H 3 ur(k(), 2) δ. δ : H 3 (Spec(K()), Q p /Z p (2)) x 1 H 4 x(spec(o,x ), T Qp /Z p (2)),, Q p /Z p (2) := lim r 1 µ 2 p, r T Q p/z p (2) := lim r 1 T r (2)., H 3 ur(k(), K ; 2) := H 3 ur(k(), 2) Im ( H 3 ( K, Q p /Z p (2)) H 3 (Spec(K()), Q p /Z p (2)) ). H 3 ur(k(), 2) Brauer p,., T r (2), K p regulator Q p /Z p reg 3,2 Q p /Z p : K 1 ( K ) Q p /Z p H 1 g (G K, A 2 (2)) (A 2 (2) := H 2 ( K, Q p /Z p (2))). 127

10 4.5 ([39], Theorem 7.1.1) p 5,. (i) Spec(O K ), Tate. (ii) CH 2 ( K ){p} (CH 2 ( K ){p}) Div,, p., Z p,. 0 CH 2 ( K ){p} H1 g (G K, A 2 (2)) Im ( reg 3,2 Q p /Z p ) H 3 ur(k(), K ; 2)., H 3 ur(k(), K ; 2) Div. H 1 (G K, V 2 (2)) H 1 (G K, A 2 (2)), H 1 g (G K, V 2 (2)) H 1 (G K, A 2 (2)) Div ([39] Lemma 2.4.1). 4.5 (), Im(reg 3,2 K ) = H 1 g (G K, V 2 (2)), (CH 2 ( K ){p}) Div = 0 H 3 ur(k(), K ; 2) Div = 0., Ker(CH 2 () CH 2 ( K )), ([39] Remark 3.2.5). [1] Asakura, M., Sato, K.: Chern class an Riemann-Roch theorem for cohomology theory without homotopy invariance. [2] Bloch, S.: Algebraic K-theory an classfiel theory for arithmetic surfaces. Ann. of Math. (2) 114, (1981) [3] Bloch, S.: Algebraic cycles an higher K-theory. Av. Math. 61, (1986) [4] Bloch, S., Kato, K.: p-aic étale cohomology. Inst. Hautes Étues Sci. Publ. Math. 63, (1986) [5] Bloch, S., Kato, K.: L-functions an Tamagawa numbers of motives. In: Cartier, P., Illusie, L., Katz, N. M., Laumon, G., Manin, Yu. I., Ribet, K. A. (es.) The Grothenieck Festscherift I, (Progr. Math. 86), pp , Boston, Birkhäuser, 1990 [6] Colliot-Thélène, J.-L.: On the reciprocity sequence in the higher class fiel theory of function fiels. In: Goerss, P. G., Jarine, J. F. (es.) Algebraic K -theory an algebraic topology, Lake Louise, 1991, NATO Av. Sci. Inst. Ser. C Math. Phys. Sci., 407, pp , Kluwer, Dorrecht, 1993 [7] Fujiwara, K.: A proof of the absolute purity conjecture (after Gabber). In: Usui, S., Green, M., Illusie, L., Kato, K., Looijenga, E., Mukai, S., Saito, S. (es.) Algebraic Geometry 2000, Azumino, (Av. Stu. Pure Math. 36), pp , Tokyo, Math. Soc. Japan, 2002 [8] Geisser, T.: Motivic cohomology over Deekin rings. Math. Z. 248, (2004) [9] Geisser, T.: Duality via cycle complexes. Ann. of Math. (2) 172, (2010) [10] Geisser, T., Levine, M.: The p-part of K-theory of fiels in characteristic p. Invent. Math. 139, (2000) 128

11 [11] Gros, M., Suwa, N.: La conjecture e Gersten pour les faisceaux e Hoge-Witt logarithmique. Duke Math. J. 57, (1988) [12] Hyoo, O.: A note on p-aic etale cohomology in the semi-stable reuction case. Invent. Math. 91, (1988) [13] Hyoo, O., Kato, K.: Semi-stable reuction an crystalline cohomology with logarithmic poles. In: Périoes p-aiques. Séminaire e Bures, 1988, (Astérisque 223), pp , Marseille, Soc. Math. France, 1994 [14] Illusie, L.: Complexe e e Rham-Witt et cohomologie cristalline. Ann. Sci. École Norm. Sup. (4) 12, (1979) [15] Jannsen, U.: Hasse principles for higher-imensional fiels. Ann. of Math. (2) 183, 1 71 (2016) [16] Jannsen, U., Saito, S.: Kato homology of arithmetic schemes an higher class fiel theory over local fiels. Documenta Math. Extra Volume: Kazuya Kato s Fiftieth Birthay, (2003) [17] Jannsen, U., Saito, S., Sato, K.: Étale uality for constructible sheaves on arithmetic schemes. J. Reine Angew. Math. 688, 1 66 (2014) [18] Kato, K.: A Hasse principle for two-imensional global fiels. (with an appenix by Colliot- Thélène, J.-L.), J. Reine Angew. Math. 366, (1986) [19] Kato, K., Saito, S.: Unramifie class fiel theory of arithmetical surfaces. Ann. of Math. (2) 118, (1983) [20] Kerz, M.: The Gersten conjecture for Milnor K-theory. Invent. Math. 175, 1 33 (2009) [21] Kerz, M., Saito, S.: Cohomological Hasse principle an motivic cohomology for arithmetic schemes. Publ. Math. Inst. Hautes Étues Sci. 115, (2012) [22] Kurihara, M.: A note on p-aic étale cohomology. Proc. Japan Aca. Ser. A 63, (1987) [23] Lang, S.: Unramifie class fiel theory over function fiels in several varieties. Ann. of Math. (2) 64, (1956) [24] Langer, A.: Local points of motives in semistable reuction. Compositio Math. 116, (1999) [25] Levine, M.: Lamba-operations, K-theory an motivic cohomology. In: Algebraic K -theory, Toronto, ON, 1996, (Fiels Inst. Commun. 16), pp , Provience, Amer. Math. Soc., 1997 [26] Lichtenbaum, S.: Values of zeta functions at non-negative integers. In: Jager, H. (e.) Number Theory, Noorwijkerhout 1983, (Lecture Notes in Math. 1068), pp , Berlin, Springer, 1984 [27] Lichtenbaum, S.: The construction of weight-two arithmetic cohomology. Invent. Math. 88, (1987) [28] Lichtenbaum, S.: New results on weight-two motivic cohomology. In: Cartier, P., Illusie, L., Katz, N. M., Laumon, G., Manin, Y., Ribet, K. A. (es.) The Grothenieck Festschrift III, (Progr. Math. 88), pp , Boston, Birkhäuser, 1990 [29] Mazur, B.: Notes on étale cohomology of number fiels. Ann. Sci. École Norm. Sup. (4) 6, (1973) [30] Merkur ev, A. S., Suslin, A. A.: K-cohomology of Severi-Brauer varieties an the norm resiue homomorphism. Math. USSR Izv. 21, (1983) [31] Milne, J. S.: Arithmetic Duality Theorems. (Perspectives in Math. 1), Boston, Acaemic Press, 1986 [32] Milne, J. S.: Motivic cohomology an values of zeta functions. Compositio Math. 68, (1988) [33] Mokrane, A.: La suite spectrale es pois en cohomologie e Hyoo-Kato. Duke Math. J. 72, (1993) 129

12 [34] Nekovář, J., Niziol, W.: Syntomic cohomology an p-aic regulators for varieties over p-aic fiels, with appenices by Berger, L. an Deglise, F. Algebra Number Theory 10, (2016) [35] Nesterenko, Y., Suslin, A. A.: Homology of the general linear group over a local ring, an Milnor s K-theory. Math. USSR-Izv. 34, (1990) [36] Niziol, W.: On the image of p-aic regulators. Invent. Math. 127, (1997) [37] Riou, J.: Classes e Chern, morphismes e Gysin et pureté absolue. In: Illusie, L., Laszlo, Y., Orgogozo, F. (es.) Travaux e Gabber sur l uniformisation locale et la cohomologie étale es schémas quasi-excellents, Séminaire à l École polytechnique , (Astérisque ), pp , Paris, Soc. Math. France, 2014 [38] Saito, S.: Unramifie class fiel theory of arithmetical schemes. Ann. of Math. (2) 121, (1985) [39] Saito, S., Sato, K.: A p-aic regulator map an finiteness results for arithmetic schemes. Documenta Math. Extra Volume: Anrei A. Suslin s Sixtieth Birthay, (2010) [40], :. 17,, 2012 [41] Sato, K.: Logarithmic Hoge-Witt sheaves on normal crossing varieties. Math. Z. 257, (2007) [42] Sato, K.: p-aic étale Tate twists an arithmetic uality, with an appenix by Hagihara, K. Ann. Sci. Éc. Norm. Sup. (4) 40, (2007) [43] Sato, K.: Cycle classes for p-aic étale Tate twists an the image of p-aic regulators. Doc. Math. 18, (2013) [44] Scholl, A. J.: Integral elements in K-theory an proucts of moular curves. In: Goron, B. B., Lewis, J. D., Müller-Stach, S., Saito, S., Yui, N. (es.) The arithmetic an geometry of algebraic cycles, Banff, 1998, (NATO Sci. Ser. C Math. Phys. Sci., 548), pp , Dorrecht, Kluwer, [45] Shiho, A.: On logarithmic Hoge-Witt cohomology of regular schemes. J. Math. Sci. Univ. Tokyo 14, (2007) [46] Spiess, M.: Artin-Verier uality for arithmetic surfaces. Math. Ann. 305, (1996) [47] Suslin, A. A., Voevosky, V.: Bloch-Kato conjecture an motivic cohomology with finite coefficients. In: Goron, B. B., Lewis, J. D., Müller-Stach, S., Saito, S., Yui, N. (es.) The Arithmetic an Geometry of Algebraic Cycles, Banff, 1998, (NATO Av. Sci. Inst. Ser. C Math. Phys. Sci. 548), pp , Dorrecht, Kluwer, 2000 [48] Totaro, B.: Milnor K-theory is the most simplest part of algebraic K-theory. K-Theory 6, (1992) [49] Tsuji, T.: p-aic étale cohomology an crystalline cohomology in the semi-stable reuction case. Invent. Math. 137, (1999) [50] Tsuji, T.: On p-aic nearby cycles of log smooth families. Bull. Soc. Math. France 128, (2000) [51] Voevosky, V.: Motivic cohomology groups are isomorphic to higher Chow groups in any characteristic. Internat. Math. Res. Notices 2002, [52] Voevosky, V.: On motivic cohomology with Z/l-coefficients. Ann of Math. (2) 174, (2011) [53] Zhong, C.: Comparison of ualizing complexes. J. Reine Angew. Math. 695, 1 39 (2014) 130

.5.1. G K O E, O E T, G K Aut OE (T ) (T, ρ). ρ, (T, ρ) T. Aut OE (T ), En OE (F ) p..5.. G K E, E V, G K GL E (V ) (V, ρ). ρ, (V, ρ) V. GL E (V ), En

.5.1. G K O E, O E T, G K Aut OE (T ) (T, ρ). ρ, (T, ρ) T. Aut OE (T ), En OE (F ) p..5.. G K E, E V, G K GL E (V ) (V, ρ). ρ, (V, ρ) V. GL E (V ), En p 1. 1.1., 01 8 3, 57,,.. 1.., Gal(Q p /Q p ), 1. Wach,,. 1.3. Part I,,. Part II, Part III. 1.4.., Paé. Part 1. p.. p p.1. p Q p p (Q p p )... E Q p, E p Z p E, O E. O E E. E Q p, O E. v p : E Q Q E, v

More information

[Oc, Proposition 2.1, Theorem 2.4] K X (a) l (b) l (a) (b) X [M3] Huber adic 1 Huber ([Hu1], [Hu2], [Hu3]) adic 1.1 adic A I I A {I n } 0 adic 2

[Oc, Proposition 2.1, Theorem 2.4] K X (a) l (b) l (a) (b) X [M3] Huber adic 1 Huber ([Hu1], [Hu2], [Hu3]) adic 1.1 adic A I I A {I n } 0 adic 2 On the action of the Weil group on the l-adic cohomology of rigid spaces over local fields (Yoichi Mieda) Graduate School of Mathematical Sciences, The University of Tokyo 0 l Galois K F F q l q K, F K,

More information

q n/2 X H n (X Fq,et, Q l) Frobenius q 1/2 (Deligne, [D5]) X (I) (II) X κ open (proper )smooth X κ proper strictly semi-stable weight filtration cohom

q n/2 X H n (X Fq,et, Q l) Frobenius q 1/2 (Deligne, [D5]) X (I) (II) X κ open (proper )smooth X κ proper strictly semi-stable weight filtration cohom Weight filtration on log crystalline cohomology ( ) 1 κ κ X cohomology X H n (X) Grothendieck, Deligne weight yoga ([G], [D1], [D4]) 1.1. H n (X) filtrationp k H n (X) (k Z) (1) gr P k Hn (X) := P k H

More information

日本数学会・2011年度年会(早稲田大学)・総合講演

日本数学会・2011年度年会(早稲田大学)・総合講演 日本数学会 2011 年度年会 ( 早稲田大学 ) 総合講演 2011 年度日本数学会春季賞受賞記念講演 MSJMEETING-2011-0 ( ) 1. p>0 p C ( ) p p 0 smooth l (l p ) p p André, Christol, Mebkhout, Kedlaya K 0 O K K k O K k p>0 K K : K R 0 p = p 1 Γ := K k

More information

Mazur [Ma1] Schlessinger [Sch] [SL] [Ma1] [Ma1] [Ma2] Galois [] 17 R m R R R M End R M) M R ut R M) M R R G R[G] R G Sets 1 Λ Noether Λ k Λ m Λ k C Λ

Mazur [Ma1] Schlessinger [Sch] [SL] [Ma1] [Ma1] [Ma2] Galois [] 17 R m R R R M End R M) M R ut R M) M R R G R[G] R G Sets 1 Λ Noether Λ k Λ m Λ k C Λ Galois ) 0 1 1 2 2 4 3 10 4 12 5 14 16 0 Galois Galois Galois TaylorWiles Fermat [W][TW] Galois Galois Galois 1 Noether 2 1 Mazur [Ma1] Schlessinger [Sch] [SL] [Ma1] [Ma1] [Ma2] Galois [] 17 R m R R R

More information

( ) 1., ([SU] ): F K k., Z p -, (cf. [Iw2], [Iw3], [Iw6]). K F F/K Z p - k /k., Weil., K., K F F p- ( 4.1).,, Z p -,., Weil..,,. Weil., F, F projectiv

( ) 1., ([SU] ): F K k., Z p -, (cf. [Iw2], [Iw3], [Iw6]). K F F/K Z p - k /k., Weil., K., K F F p- ( 4.1).,, Z p -,., Weil..,,. Weil., F, F projectiv ( ) 1 ([SU] ): F K k Z p - (cf [Iw2] [Iw3] [Iw6]) K F F/K Z p - k /k Weil K K F F p- ( 41) Z p - Weil Weil F F projective smooth C C Jac(C)/F ( ) : 2 3 4 5 Tate Weil 6 7 Z p - 2 [Iw1] 2 21 K k k 1 k K

More information

K 2 X = 4 MWG(f), X P 2 F, υ 0 : X P 2 2,, {f λ : X λ P 1 } λ Λ NS(X λ ), (υ 0 ) λ : X λ P 2 ( 1) X 6, f λ K X + F, f ( 1), n, n 1 (cf [10]) X, f : X

K 2 X = 4 MWG(f), X P 2 F, υ 0 : X P 2 2,, {f λ : X λ P 1 } λ Λ NS(X λ ), (υ 0 ) λ : X λ P 2 ( 1) X 6, f λ K X + F, f ( 1), n, n 1 (cf [10]) X, f : X 2 E 8 1, E 8, [6], II II, E 8, 2, E 8,,, 2 [14],, X/C, f : X P 1 2 3, f, (O), f X NS(X), (O) T ( 1), NS(X), T [15] : MWG(f) NS(X)/T, MWL(f) 0 (T ) NS(X), MWL(f) MWL(f) 0, : {f λ : X λ P 1 } λ Λ NS(X λ

More information

0. I II I II (1) linear type: GL( ), Sp( ), O( ), (2) loop type: loop current Kac-Moody affine, hyperbolic (3) diffeo t

0. I II I II (1) linear type: GL( ), Sp( ), O( ), (2) loop type: loop current Kac-Moody affine, hyperbolic (3) diffeo t e-mail: koyama@math.keio.ac.jp 0. I II I II (1) linear type: GL( ), Sp( ), O( ), (2) loop type: loop current Kac-Moody affine, hyperbolic (3) diffeo type: diffeo universal Teichmuller modular I. I-. Weyl

More information

[AI] G. Anderson, Y. Ihara, Pro-l branched cov erings of P1 and higher circular l-units, Part 1 Ann. of Math. 128 (1988), 271-293 ; Part 2, Intern. J. Math. 1 (1990), 119-148. [B] G. V. Belyi, On Galois

More information

( ),, ( [Ka93b],[FK06]).,. p Galois L, Langlands p p Galois (, ) p., Breuil, Colmez([Co10]), Q p Galois G Qp 2 p ( ) GL 2 (Q p ) p Banach ( ) (GL 2 (Q

( ),, ( [Ka93b],[FK06]).,. p Galois L, Langlands p p Galois (, ) p., Breuil, Colmez([Co10]), Q p Galois G Qp 2 p ( ) GL 2 (Q p ) p Banach ( ) (GL 2 (Q 2017 : msjmeeting-2017sep-00f006 p Langlands ( ) 1. Q, Q p Q Galois G Q p (p Galois ). p Galois ( p Galois ), L Selmer Tate-Shafarevich, Galois. Dirichlet ( Dedekind s = 0 ) Birch-Swinnerton-Dyer ( L s

More information

1

1 1 Borel1956 Groupes linéaire algébriques, Ann. of Math. 64 (1956), 20 82. Chevalley1956/58 Sur la classification des groupes de Lie algébriques, Sém. Chevalley 1956/58, E.N.S., Paris. Tits1959 Sur la classification

More information

1.2 (Kleppe, cf. [6]). C S 3 P 3 3 S 3. χ(p 3, I C (3)) 1 C, C P 3 ( ) 3 S 3( S 3 S 3 ). V 3 del Pezzo (cf. 2.1), S V, del Pezzo 1.1, V 3 del Pe

1.2 (Kleppe, cf. [6]). C S 3 P 3 3 S 3. χ(p 3, I C (3)) 1 C, C P 3 ( ) 3 S 3( S 3 S 3 ). V 3 del Pezzo (cf. 2.1), S V, del Pezzo 1.1, V 3 del Pe 3 del Pezzo (Hirokazu Nasu) 1 [10]. 3 V C C, V Hilbert scheme Hilb V [C]. C V C S V S. C S S V, C V. Hilbert schemes Hilb V Hilb S [S] [C] ( χ(s, N S/V ) χ(c, N C/S )), Hilb V [C] (generically non-reduced)

More information

k + (1/2) S k+(1/2) (Γ 0 (N)) N p Hecke T k+(1/2) (p 2 ) S k+1/2 (Γ 0 (N)) M > 0 2k, M S 2k (Γ 0 (M)) Hecke T 2k (p) (p M) 1.1 ( ). k 2 M N M N f S k+

k + (1/2) S k+(1/2) (Γ 0 (N)) N p Hecke T k+(1/2) (p 2 ) S k+1/2 (Γ 0 (N)) M > 0 2k, M S 2k (Γ 0 (M)) Hecke T 2k (p) (p M) 1.1 ( ). k 2 M N M N f S k+ 1 SL 2 (R) γ(z) = az + b cz + d ( ) a b z h, γ = SL c d 2 (R) h 4 N Γ 0 (N) {( ) } a b Γ 0 (N) = SL c d 2 (Z) c 0 mod N θ(z) θ(z) = q n2 q = e 2π 1z, z h n Z Γ 0 (4) j(γ, z) ( ) a b θ(γ(z)) = j(γ, z)θ(z)

More information

Noether [M2] l ([Sa]) ) ) ) ) ) ( 1, 2) ) ( 3) K F = F q O K K l q K Spa(K, O K ) adc adc [Hu1], [Hu2], [Hu3] K A Spa(A, A ) Sp A A B X A X B = X Spec

Noether [M2] l ([Sa]) ) ) ) ) ) ( 1, 2) ) ( 3) K F = F q O K K l q K Spa(K, O K ) adc adc [Hu1], [Hu2], [Hu3] K A Spa(A, A ) Sp A A B X A X B = X Spec l Wel (Yoch Meda) Graduate School of Mathematcal Scences, The Unversty of Tokyo 0 Galos ([M1], [M2]) Galos Langlands ([Ca]) K F F q l q K, F K, F Fr q Gal(F /F ) F Frobenus q Fr q Fr q Gal(F /F ) φ: Gal(K/K)

More information

第5章 偏微分方程式の境界値問題

第5章 偏微分方程式の境界値問題 October 5, 2018 1 / 113 4 ( ) 2 / 113 Poisson 5.1 Poisson ( A.7.1) Poisson Poisson 1 (A.6 ) Γ p p N u D Γ D b 5.1.1: = Γ D Γ N 3 / 113 Poisson 5.1.1 d {2, 3} Lipschitz (A.5 ) Γ D Γ N = \ Γ D Γ p Γ N Γ

More information

Milnor 1 ( ), IX,. [KN].,. 2 : (1),. (2). 1 ; 1950, Milnor[M1, M2]. Milnor,,. ([Hil, HM, IO, St] ).,.,,, ( 2 5 )., Milnor ( 4.1)..,,., [CEGS],. Ω m, P

Milnor 1 ( ), IX,. [KN].,. 2 : (1),. (2). 1 ; 1950, Milnor[M1, M2]. Milnor,,. ([Hil, HM, IO, St] ).,.,,, ( 2 5 )., Milnor ( 4.1)..,,., [CEGS],. Ω m, P Milnor 1 ( ), IX,. [KN].,. 2 : (1),. (2). 1 ; 1950, Milnor[M1, M2]. Milnor,,. ([Hil, HM, IO, St] ).,.,,, ( 2 5 )., Milnor ( 4.1)..,,., [CEGS],. Ω m, PC ( 4 5 )., 5, Milnor Milnor., ( 6 )., (I) Z modulo

More information

1 M = (M, g) m Riemann N = (N, h) n Riemann M N C f : M N f df : T M T N M T M f N T N M f 1 T N T M f 1 T N C X, Y Γ(T M) M C T M f 1 T N M Levi-Civi

1 M = (M, g) m Riemann N = (N, h) n Riemann M N C f : M N f df : T M T N M T M f N T N M f 1 T N T M f 1 T N C X, Y Γ(T M) M C T M f 1 T N M Levi-Civi 1 Surveys in Geometry 1980 2 6, 7 Harmonic Map Plateau Eells-Sampson [5] Siu [19, 20] Kähler 6 Reports on Global Analysis [15] Sacks- Uhlenbeck [18] Siu-Yau [21] Frankel Siu Yau Frankel [13] 1 Surveys

More information

2 (March 13, 2010) N Λ a = i,j=1 x i ( d (a) i,j x j ), Λ h = N i,j=1 x i ( d (h) i,j x j ) B a B h B a = N i,j=1 ν i d (a) i,j, B h = x j N i,j=1 ν i

2 (March 13, 2010) N Λ a = i,j=1 x i ( d (a) i,j x j ), Λ h = N i,j=1 x i ( d (h) i,j x j ) B a B h B a = N i,j=1 ν i d (a) i,j, B h = x j N i,j=1 ν i 1. A. M. Turing [18] 60 Turing A. Gierer H. Meinhardt [1] : (GM) ) a t = D a a xx µa + ρ (c a2 h + ρ 0 (0 < x < l, t > 0) h t = D h h xx νh + c ρ a 2 (0 < x < l, t > 0) a x = h x = 0 (x = 0, l) a = a(x,

More information

Q p G Qp Q G Q p Ramanujan 12 q- (q) : (q) = q n=1 (1 qn ) 24 S 12 (SL 2 (Z))., p (ordinary) (, q- p a p ( ) p ). p = 11 a p ( ) p. p 11 p a p

Q p G Qp Q G Q p Ramanujan 12 q- (q) : (q) = q n=1 (1 qn ) 24 S 12 (SL 2 (Z))., p (ordinary) (, q- p a p ( ) p ). p = 11 a p ( ) p. p 11 p a p .,.,.,..,, 1.. Contents 1. 1 1.1. 2 1.2. 3 1.3. 4 1.4. Eisenstein 5 1.5. 7 2. 9 2.1. e p 9 2.2. p 11 2.3. 15 2.4. 16 2.5. 18 3. 19 3.1. ( ) 19 3.2. 22 4. 23 1. p., Q Q p Q Q p Q C.,. 1. 1 Q p G Qp Q G

More information

Chern-Simons Jones 3 Chern-Simons 1 - Chern-Simons - Jones J(K; q) [1] Jones q 1 J (K + ; q) qj (K ; q) = (q 1/2 q

Chern-Simons   Jones 3 Chern-Simons 1 - Chern-Simons - Jones J(K; q) [1] Jones q 1 J (K + ; q) qj (K ; q) = (q 1/2 q Chern-Simons E-mail: fuji@th.phys.nagoya-u.ac.jp Jones 3 Chern-Simons - Chern-Simons - Jones J(K; q) []Jones q J (K + ; q) qj (K ; q) = (q /2 q /2 )J (K 0 ; q), () J( ; q) =. (2) K Figure : K +, K, K 0

More information

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 第 2 版 1 刷発行時のものです. 医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/009192 このサンプルページの内容は, 第 2 版 1 刷発行時のものです. i 2 t 1. 2. 3 2 3. 6 4. 7 5. n 2 ν 6. 2 7. 2003 ii 2 2013 10 iii 1987

More information

1980年代半ば,米国中西部のモデル 理論,そして未来-モデル理論賛歌

1980年代半ば,米国中西部のモデル 理論,そして未来-モデル理論賛歌 2016 9 27 RIMS 1 2 3 1983 9-1989 6 University of Illinois at Chicago (UIC) John T Baldwin 1983 9-1989 6 University of Illinois at Chicago (UIC) John T Baldwin Y N Moschovakis, Descriptive Set Theory North

More information

SAMA- SUKU-RU Contents p-adic families of Eisenstein series (modular form) Hecke Eisenstein Eisenstein p T

SAMA- SUKU-RU Contents p-adic families of Eisenstein series (modular form) Hecke Eisenstein Eisenstein p T SAMA- SUKU-RU Contents 1. 1 2. 7.1. p-adic families of Eisenstein series 3 2.1. modular form Hecke 3 2.2. Eisenstein 5 2.3. Eisenstein p 7 3. 7.2. The projection to the ordinary part 9 3.1. The ordinary

More information

17 Θ Hodge Θ Hodge Kummer Hodge Hodge

17 Θ Hodge Θ Hodge Kummer Hodge Hodge Teichmüller ( ) 2015 11 0 3 1 4 2 6 3 Teichmüller 8 4 Diophantus 11 5 13 6 15 7 19 8 21 9 25 10 28 11 31 12 34 13 36 14 41 15 43 16 47 1 17 Θ 50 18 55 19 57 20 Hodge 59 21 63 22 67 23 Θ Hodge 69 24 Kummer

More information

平成 30 年度 ( 第 40 回 ) 数学入門公開講座テキスト ( 京都大学数理解析研究所, 平成 30 ~8 年月 72 月日開催 30 日 [6] 1 4 A 1 A 2 A 3 l P 3 P 2 P 1 B 1 B 2 B 3 m 1 l 3 A 1, A 2, A 3 m 3 B 1,

平成 30 年度 ( 第 40 回 ) 数学入門公開講座テキスト ( 京都大学数理解析研究所, 平成 30 ~8 年月 72 月日開催 30 日 [6] 1 4 A 1 A 2 A 3 l P 3 P 2 P 1 B 1 B 2 B 3 m 1 l 3 A 1, A 2, A 3 m 3 B 1, [6] 1 4 A 1 A 2 A 3 l P 3 P 2 P 1 B 1 B 2 B 3 m 1 l 3 A 1, A 2, A 3 m 3 B 1, B 2, B 3 A i 1 B i+1 A i+1 B i 1 P i i = 1, 2, 3 3 3 P 1, P 2, P 3 1 *1 19 3 27 B 2 P m l (*) l P P l m m 1 P l m + m *1 A N

More information

Broadhurst-Kreimer Brown ( D3) 1 Broadhurst-Kreimer Zagier Gangl- -Zagi

Broadhurst-Kreimer Brown ( D3) 1 Broadhurst-Kreimer Zagier Gangl- -Zagi Broadhurst-Kreimer Brown ( D3) 1 Broadhurst-Kreimer 2 2 - -Zagier 5 2.1............................. 5 2.2........................... 8 3 Gangl- -Zagier 11 3.1.................................. 11 3.2

More information

Siegel modular forms of middle parahoric subgroups and Ihara lift ( Tomoyoshi Ibukiyama Osaka University 1. Introduction [8] Ihara Sp(2, R) p

Siegel modular forms of middle parahoric subgroups and Ihara lift ( Tomoyoshi Ibukiyama Osaka University 1. Introduction [8] Ihara Sp(2, R) p Siegel modular forms of middle parahoric subgroups and Ihara lift ( Tomoyoshi Ibukiyama Osaka University 1. Introduction [8] Ihara 80 1963 Sp(2, R) p L holomorphic discrete series Eichler Brandt Eichler

More information

wiles05.dvi

wiles05.dvi Andrew Wiles 1953, 20 Fermat.. Fermat 10,. 1 Wiles. 19 20., Fermat 1. (Fermat). p 3 x p + y p =1 xy 0 x, y 2., n- t n =1 ζ n Q Q(ζ n ). Q F,., F = Q( 5) 6=2 3 = (1 + 5)(1 5) 2. Kummer Q(ζ p ), p Fermat

More information

k k Q (R )Z k X 1. X Q Cl (X) 2. nef cone Nef (X) nef semi-ample ( ) 3. 2 f i : X X i X i 1 2 movable cone Mov (X) fi (Nef (X i)) 3 movable

k k Q (R )Z k X 1. X Q Cl (X) 2. nef cone Nef (X) nef semi-ample ( ) 3. 2 f i : X X i X i 1 2 movable cone Mov (X) fi (Nef (X i)) 3 movable 1 (Mori dream space) 2000 [HK] toric toric ( 2.1) toric n n + 1 affine 1 torus ( GIT ) [Co] toric affine ( )torus GIT affine torus ( 2.2) affine Cox ( 3) Cox 2 okawa@ms.u-tokyo.ac.jp Supported by the Grant-in-Aid

More information

2 Riemann Im(s) > 0 ζ(s) s R(s) = 2 Riemann [Riemann]) ζ(s) ζ(2) = π2 6 *3 Kummer s = 2n, n N ζ( 2) = 2 2, ζ( 4) =.3 2 3, ζ( 6) = ζ( 8)

2 Riemann Im(s) > 0 ζ(s) s R(s) = 2 Riemann [Riemann]) ζ(s) ζ(2) = π2 6 *3 Kummer s = 2n, n N ζ( 2) = 2 2, ζ( 4) =.3 2 3, ζ( 6) = ζ( 8) (Florian Sprung) p 2 p * 9 3 p ζ Mazur Wiles 4 5 6 2 3 5 2006 http://www.icm2006.org/video/ eighth session [ ] Coates [Coates] 2 735 Euler n n 2 = p p 2 p 2 = π2 6 859 Riemann ζ(s) = n n s = p p s s ζ(s)

More information

Jacobi, Stieltjes, Gauss : :

Jacobi, Stieltjes, Gauss : : Jacobi, Stieltjes, Gauss : : 28 2 0 894 T. J. Stieltjes [St94a] Recherches sur les fractions continues Stieltjes 0 f(u)du, z + u f(u) > 0, z C z + + a a 2 z + a 3 +..., a p > 0 (a) Vitali (a) Stieltjes

More information

compact compact Hermann compact Hermite ( - ) Hermann Hermann ( ) compact Hermite Lagrange compact Hermite ( ) a, Σ a {0} a 3 1

compact compact Hermann compact Hermite ( - ) Hermann Hermann ( ) compact Hermite Lagrange compact Hermite ( ) a, Σ a {0} a 3 1 014 5 4 compact compact Hermann compact Hermite ( - ) Hermann Hermann ( ) compact Hermite Lagrange compact Hermite ( ) 1 1.1. a, Σ a {0} a 3 1 (1) a = span(σ). () α, β Σ s α β := β α,β α α Σ. (3) α, β

More information

Twist knot orbifold Chern-Simons

Twist knot orbifold Chern-Simons Twist knot orbifold Chern-Simons 1 3 M π F : F (M) M ω = {ω ij }, Ω = {Ω ij }, cs := 1 4π 2 (ω 12 ω 13 ω 23 + ω 12 Ω 12 + ω 13 Ω 13 + ω 23 Ω 23 ) M Chern-Simons., S. Chern J. Simons, F (M) Pontrjagin 2.,

More information

Feynman Encounter with Mathematics 52, [1] N. Kumano-go, Feynman path integrals as analysis on path space by time slicing approximation. Bull

Feynman Encounter with Mathematics 52, [1] N. Kumano-go, Feynman path integrals as analysis on path space by time slicing approximation. Bull Feynman Encounter with Mathematics 52, 200 9 [] N. Kumano-go, Feynman path integrals as analysis on path space by time slicing approximation. Bull. Sci. Math. vol. 28 (2004) 97 25. [2] D. Fujiwara and

More information

9 Feb 2008 NOGUCHI (UT) HDVT 9 Feb / 33

9 Feb 2008 NOGUCHI (UT) HDVT 9 Feb / 33 9 Feb 2008 NOGUCHI (UT) HDVT 9 Feb 2008 1 / 33 1 NOGUCHI (UT) HDVT 9 Feb 2008 2 / 33 1 Green-Griffiths (1972) NOGUCHI (UT) HDVT 9 Feb 2008 2 / 33 1 Green-Griffiths (1972) X f : C X f (C) X NOGUCHI (UT)

More information

Donaldson Seiberg-Witten [GNY] f U U C 1 f(z)dz = Res f(a) 2πi C a U U α = f(z)dz dα = 0 U f U U P 1 α 0 a P 1 Res a α = 0. P 1 Donaldson Seib

Donaldson Seiberg-Witten [GNY] f U U C 1 f(z)dz = Res f(a) 2πi C a U U α = f(z)dz dα = 0 U f U U P 1 α 0 a P 1 Res a α = 0. P 1 Donaldson Seib ( ) Donaldson Seiberg-Witten Witten Göttsche [GNY] L. Göttsche, H. Nakajima and K. Yoshioka, Donaldson = Seiberg-Witten from Mochizuki s formula and instanton counting, Publ. of RIMS, to appear Donaldson

More information

2016 Course Description of Undergraduate Seminars (2015 12 16 ) 2016 12 16 ( ) 13:00 15:00 12 16 ( ) 1 21 ( ) 1 13 ( ) 17:00 1 14 ( ) 12:00 1 21 ( ) 15:00 1 27 ( ) 13:00 14:00 2 1 ( ) 17:00 2 3 ( ) 12

More information

Siegel Hecke 1 Siege Hecke L L Fourier Dirichlet Hecke Euler L Euler Fourier Hecke [Fr] Andrianov [An2] Hecke Satake L van der Geer ([vg]) L [Na1] [Yo

Siegel Hecke 1 Siege Hecke L L Fourier Dirichlet Hecke Euler L Euler Fourier Hecke [Fr] Andrianov [An2] Hecke Satake L van der Geer ([vg]) L [Na1] [Yo Siegel Hecke 1 Siege Hecke L L Fourier Dirichlet Hecke Euler L Euler Fourier Hecke [Fr] Andrianov [An2] Hecke Satake L van der Geer ([vg]) L [Na1] [Yo] 2 Hecke ( ) 0 1n J n =, Γ = Γ n = Sp(n, Z) = {γ GL(2n,

More information

λ n numbering Num(λ) Young numbering T i j T ij Young T (content) cont T (row word) word T µ n S n µ C(µ) 0.2. Young λ, µ n Kostka K µλ K µλ def = #{T

λ n numbering Num(λ) Young numbering T i j T ij Young T (content) cont T (row word) word T µ n S n µ C(µ) 0.2. Young λ, µ n Kostka K µλ K µλ def = #{T 0 2 8 8 6 3 0 0 Young Young [F] 0.. Young λ n λ n λ = (λ,, λ l ) λ λ 2 λ l λ = ( m, 2 m 2, ) λ = n, l(λ) = l {λ n n 0} P λ = (λ, ), µ = (µ, ) n λ µ k k k λ i µ i λ µ λ = µ k i= i= i < k λ i = µ i λ k >

More information

On a branched Zp-cover of Q-homology 3-spheres

On a branched Zp-cover of Q-homology 3-spheres Zp 拡大と分岐 Zp 被覆 GL1 表現の変形理論としての岩澤理論 SL2 表現の変形理論 On a branched Zp -cover of Q-homology 3-spheres 植木 潤 九州大学大学院数理学府 D2 December 23, 2014 植木 潤 九州大学大学院数理学府 D2 On a branched Zp -cover of Q-homology 3-spheres

More information

( ) (, ) ( )

( ) (, ) ( ) ( ) (, ) ( ) 1 2 2 2 2.1......................... 2 2.2.............................. 3 2.3............................... 4 2.4.............................. 5 2.5.............................. 6 2.6..........................

More information

E1 (4/12)., ( )., 3,4 ( ). ( ) Allen Hatcher, Vector bundle and K-theory ( HP ) 1

E1 (4/12)., ( )., 3,4 ( ). ( ) Allen Hatcher, Vector bundle and K-theory ( HP ) 1 E1 (4/12)., ( )., 3,4 ( ). ( ) Allen Hatcher, Vector bundle and K-theory ( HP ) 1 (4/12) 1 1.. 2. F R C H P n F E n := {((x 0,..., x n ), [v 0 : : v n ]) F n+1 P n F n x i v i = 0 }. i=0 E n P n F P n

More information

QCD 1 QCD GeV 2014 QCD 2015 QCD SU(3) QCD A µ g µν QCD 1

QCD 1 QCD GeV 2014 QCD 2015 QCD SU(3) QCD A µ g µν QCD 1 QCD 1 QCD GeV 2014 QCD 2015 QCD SU(3) QCD A µ g µν QCD 1 (vierbein) QCD QCD 1 1: QCD QCD Γ ρ µν A µ R σ µνρ F µν g µν A µ Lagrangian gr TrFµν F µν No. Yes. Yes. No. No! Yes! [1] Nash & Sen [2] Riemann

More information

Z[i] Z[i] π 4,1 (x) π 4,3 (x) 1 x (x ) 2 log x π m,a (x) 1 x ϕ(m) log x 1.1 ( ). π(x) x (a, m) = 1 π m,a (x) x modm a 1 π m,a (x) 1 ϕ(m) π(x)

Z[i] Z[i] π 4,1 (x) π 4,3 (x) 1 x (x ) 2 log x π m,a (x) 1 x ϕ(m) log x 1.1 ( ). π(x) x (a, m) = 1 π m,a (x) x modm a 1 π m,a (x) 1 ϕ(m) π(x) 3 3 22 Z[i] Z[i] π 4, (x) π 4,3 (x) x (x ) 2 log x π m,a (x) x ϕ(m) log x. ( ). π(x) x (a, m) = π m,a (x) x modm a π m,a (x) ϕ(m) π(x) ϕ(m) x log x ϕ(m) m f(x) g(x) (x α) lim f(x)/g(x) = x α mod m (a,

More information

I A A441 : April 15, 2013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida )

I A A441 : April 15, 2013 Version : 1.1 I   Kawahira, Tomoki TA (Shigehiro, Yoshida ) I013 00-1 : April 15, 013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida) http://www.math.nagoya-u.ac.jp/~kawahira/courses/13s-tenbou.html pdf * 4 15 4 5 13 e πi = 1 5 0 5 7 3 4 6 3 6 10 6 17

More information

xia2.dvi

xia2.dvi Journal of Differential Equations 96 (992), 70-84 Melnikov method and transversal homoclinic points in the restricted three-body problem Zhihong Xia Department of Mathematics, Harvard University Cambridge,

More information

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T NHK 204 2 0 203 2 24 ( ) 7 00 7 50 203 2 25 ( ) 7 00 7 50 203 2 26 ( ) 7 00 7 50 203 2 27 ( ) 7 00 7 50 I. ( ν R n 2 ) m 2 n m, R = e 2 8πε 0 hca B =.09737 0 7 m ( ν = ) λ a B = 4πε 0ħ 2 m e e 2 = 5.2977

More information

Hanbury-Brown Twiss (ver. 2.0) van Cittert - Zernike mutual coherence

Hanbury-Brown Twiss (ver. 2.0) van Cittert - Zernike mutual coherence Hanbury-Brown Twiss (ver. 2.) 25 4 4 1 2 2 2 2.1 van Cittert - Zernike..................................... 2 2.2 mutual coherence................................. 4 3 Hanbury-Brown Twiss ( ) 5 3.1............................................

More information

( ) ) ) ) 5) 1 J = σe 2 6) ) 9) 1955 Statistical-Mechanical Theory of Irreversible Processes )

( ) ) ) ) 5) 1 J = σe 2 6) ) 9) 1955 Statistical-Mechanical Theory of Irreversible Processes ) ( 3 7 4 ) 2 2 ) 8 2 954 2) 955 3) 5) J = σe 2 6) 955 7) 9) 955 Statistical-Mechanical Theory of Irreversible Processes 957 ) 3 4 2 A B H (t) = Ae iωt B(t) = B(ω)e iωt B(ω) = [ Φ R (ω) Φ R () ] iω Φ R (t)

More information

1 2 2 2 1 3 1.1............................................ 3 1.2......................................... 7 1.3.................................. 8 2 12 3 16 3.1.......................... 16 3.2.........................

More information

sequentially Cohen Macaulay Herzog Cohen Macaulay 5 unmixed semi-unmixed 2 Semi-unmixed Semi-unmixed G V V (G) V G V G e (G) G F(G) (G) F(G) G dim G G

sequentially Cohen Macaulay Herzog Cohen Macaulay 5 unmixed semi-unmixed 2 Semi-unmixed Semi-unmixed G V V (G) V G V G e (G) G F(G) (G) F(G) G dim G G Semi-unmixed 1 K S K n K[X 1,..., X n ] G G G 2 G V (G) E(G) S G V (G) = {1,..., n} I(G) G S square-free I(G) = (X i X j {i, j} E(G)) I(G) G (edge ideal) 1990 Villarreal [11] S/I(G) Cohen Macaulay G 2005

More information

C p (.2 C p [[T ]] Bernoull B n,χ C p p q p 2 q = p p = 2 q = 4 ω Techmüller a Z p ω(a a ( mod q φ(q ω(a Z p a pz p ω(a = 0 Z p φ Euler Techmüller ω Q

C p (.2 C p [[T ]] Bernoull B n,χ C p p q p 2 q = p p = 2 q = 4 ω Techmüller a Z p ω(a a ( mod q φ(q ω(a Z p a pz p ω(a = 0 Z p φ Euler Techmüller ω Q p- L- [Iwa] [Iwa2] -Leopoldt [KL] p- L-. Kummer Remann ζ(s Bernoull B n (. ζ( n = B n n, ( n Z p a = Kummer [Kum] ( Kummer p m n 0 ( mod p m n a m n ( mod (p p a ( p m B m m ( pn B n n ( mod pa Z p Kummer

More information

Design of highly accurate formulas for numerical integration in weighted Hardy spaces with the aid of potential theory 1 Ken ichiro Tanaka 1 Ω R m F I = F (t) dt (1.1) Ω m m 1 m = 1 1 Newton-Cotes Gauss

More information

2018/10/04 IV/ IV 2/12. A, f, g A. (1) D(0 A ) =, D(1 A ) = Spec(A), D(f) D(g) = D(fg). (2) {f l A l Λ} A I D(I) = l Λ D(f l ). (3) I, J A D(I) D(J) =

2018/10/04 IV/ IV 2/12. A, f, g A. (1) D(0 A ) =, D(1 A ) = Spec(A), D(f) D(g) = D(fg). (2) {f l A l Λ} A I D(I) = l Λ D(f l ). (3) I, J A D(I) D(J) = 2018/10/04 IV/ IV 1/12 2018 IV/ IV 10 04 * 1 : ( A 441 ) yanagida[at]math.nagoya-u.ac.jp https://www.math.nagoya-u.ac.jp/~yanagida 1 I: (ring)., A 0 A, 1 A. (ring homomorphism).. 1.1 A (ideal) I, ( ) I

More information

I

I I 6 4 10 1 1 1.1............... 1 1................ 1 1.3.................... 1.4............... 1.4.1.............. 1.4................. 1.4.3........... 3 1.4.4.. 3 1.5.......... 3 1.5.1..............

More information

i Version 1.1, (2012/02/22 24),.,..,.,,. R-space,, ( R- space),, Kahler (Kähler C-space)., R-space,., R-space, Hermite,.

i Version 1.1, (2012/02/22 24),.,..,.,,. R-space,, ( R- space),, Kahler (Kähler C-space)., R-space,., R-space, Hermite,. R-space ( ) Version 1.1 (2012/02/29) i Version 1.1, (2012/02/22 24),.,..,.,,. R-space,, ( R- space),, Kahler (Kähler C-space)., R-space,., R-space, Hermite,. ii 1 Lie 1 1.1 Killing................................

More information

006 11 8 0 3 1 5 1.1..................... 5 1......................... 6 1.3.................... 6 1.4.................. 8 1.5................... 8 1.6................... 10 1.6.1......................

More information

Venkatram and Wyngaard, Lectures on Air Pollution Modeling, m km 6.2 Stull, An Introduction to Boundary Layer Meteorology,

Venkatram and Wyngaard, Lectures on Air Pollution Modeling, m km 6.2 Stull, An Introduction to Boundary Layer Meteorology, 65 6 6.1 No.4 1982 1 1981 J. C. Kaimal 1993 1994 Turbulence and Diffusion in the Atmosphere : Lectures in Environmental Sciences, by A. K. Blackadar, Springer, 1998 An Introduction to Boundary Layer Meteorology,

More information

62 Serre Abel-Jacob Serre Jacob Jacob Jacob k Jacob Jac(X) X g X (g) X (g) Zarsk [Wel] [Ml] [BLR] [Ser] Jacob ( ) 2 Jacob Pcard 2.1 X g ( C ) X n P P

62 Serre Abel-Jacob Serre Jacob Jacob Jacob k Jacob Jac(X) X g X (g) X (g) Zarsk [Wel] [Ml] [BLR] [Ser] Jacob ( ) 2 Jacob Pcard 2.1 X g ( C ) X n P P 15, pp.61-80 Abel-Jacob I 1 Introducton Remann Abel-Jacob X g Remann X ω 1,..., ω g Λ = {( γ ω 1,..., γ ω g) C g γ H 1 (X, Z)} Λ C g lattce Jac(X) = C g /Λ Le Abel-Jacob (Theorem 2.2, 4.2) Jac(X) Pcard

More information

D-brane K 1, 2 ( ) 1 K D-brane K K D-brane Witten [1] D-brane K K K K D-brane D-brane K RR BPS D-brane

D-brane K 1, 2   ( ) 1 K D-brane K K D-brane Witten [1] D-brane K K K K D-brane D-brane K RR BPS D-brane D-brane K 1, 2 E-mail: sugimoto@yukawa.kyoto-u.ac.jp (2004 12 16 ) 1 K D-brane K K D-brane Witten [1] D-brane K K K K D-brane D-brane K RR BPS D-brane D-brane RR D-brane K D-brane K D-brane K K [2, 3]

More information

第 61 回トポロジーシンポジウム講演集 2014 年 7 月於東北大学 ( ) 1 ( ) [6],[7] J.W. Alexander 3 1 : t 2 t +1=0 4 1 : t 2 3t +1=0 8 2 : 1 3t +3t 2 3t 3 +3t 4 3t 5 + t

第 61 回トポロジーシンポジウム講演集 2014 年 7 月於東北大学 ( ) 1 ( ) [6],[7] J.W. Alexander 3 1 : t 2 t +1=0 4 1 : t 2 3t +1=0 8 2 : 1 3t +3t 2 3t 3 +3t 4 3t 5 + t ( ) 1 ( ) [6],[7] 1. 1928 J.W. Alexander 3 1 : t 2 t +1=0 4 1 : t 2 3t +1=0 8 2 : 1 3t +3t 2 3t 3 +3t 4 3t 5 + t 6 7 7 : 1 5t +9t 2 5t 3 + t 4 ( :25400086) 2010 Mathematics Subject Classification: 57M25,

More information

[bica]) our gmeff means Abel Milnor $K$ - motif (Mochizuki Satoshi) * Graduate School of Mathematical Sciences, the University o

[bica]) our gmeff means Abel Milnor $K$ - motif (Mochizuki Satoshi) * Graduate School of Mathematical Sciences, the University o Title 半 Abel 多様体に付随するMilnor $K$- 群のmotif 論的解釈 ( 代数的整数論とその周辺 ) Author(s) 望月, 哲史 Citation 数理解析研究所講究録 (2005), 1451: 155-164 Issue Date 2005-10 URL http://hdl.handle.net/2433/47730 Right Type Departmental

More information

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10%

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10% 1 2006.4.17. A 3-312 tel: 092-726-4774, e-mail: hara@math.kyushu-u.ac.jp, http://www.math.kyushu-u.ac.jp/ hara/lectures/lectures-j.html Office hours: B A I ɛ-δ ɛ-δ 1. 2. A 1. 1. 2. 3. 4. 5. 2. ɛ-δ 1. ɛ-n

More information

III III 2010 PART I 1 Definition 1.1 (, σ-),,,, Borel( ),, (σ-) (M, F, µ), (R, B(R)), (C, B(C)) Borel Definition 1.2 (µ-a.e.), (in µ), (in L 1 (µ)). T

III III 2010 PART I 1 Definition 1.1 (, σ-),,,, Borel( ),, (σ-) (M, F, µ), (R, B(R)), (C, B(C)) Borel Definition 1.2 (µ-a.e.), (in µ), (in L 1 (µ)). T III III 2010 PART I 1 Definition 1.1 (, σ-),,,, Borel( ),, (σ-) (M, F, µ), (R, B(R)), (C, B(C)) Borel Definition 1.2 (µ-a.e.), (in µ), (in L 1 (µ)). Theorem 1.3 (Lebesgue ) lim n f n = f µ-a.e. g L 1 (µ)

More information

20 9 19 1 3 11 1 3 111 3 112 1 4 12 6 121 6 122 7 13 7 131 8 132 10 133 10 134 12 14 13 141 13 142 13 143 15 144 16 145 17 15 19 151 1 19 152 20 2 21 21 21 211 21 212 1 23 213 1 23 214 25 215 31 22 33

More information

3 de Sitter CMC 1 (Shoichi Fujimori) Department of Mathematics, Kobe University 3 de Sitter S (CMC 1), 1 ( [AA]). 3 H 3 CMC 1 Bryant ([B, UY1]).

3 de Sitter CMC 1 (Shoichi Fujimori) Department of Mathematics, Kobe University 3 de Sitter S (CMC 1), 1 ( [AA]). 3 H 3 CMC 1 Bryant ([B, UY1]). 3 de Sitter CMC 1 (Shoichi Fujimori) Department of Mathematics, Kobe University 3 de Sitter S 3 1 1 (CMC 1), 1 ( [AA]) 3 H 3 CMC 1 Bryant ([B, UY1]) H 3 CMC 1, Bryant ([CHR, RUY1, RUY2, UY1, UY2, UY3,

More information

1.., M, M.,... : M. M?, RP 2 6, 2 S 1 S 1 7 ( 1 ).,, RP 2, S 1 S 1 6, 7., : RP 2 6 S 1 S 1 7,., 19., 4

1.., M, M.,... : M. M?, RP 2 6, 2 S 1 S 1 7 ( 1 ).,, RP 2, S 1 S 1 6, 7., : RP 2 6 S 1 S 1 7,., 19., 4 1.., M, M.,... : M. M?, RP 6, S 1 S 1 7 ( 1 ).,, RP, S 1 S 1 6, 7.,. 1 1 3 1 3 5 6 3 5 7 6 5 1 1 3 1 1: RP 6 S 1 S 1 7,., 19., RP 3 S 1 S 1 S 1., i., 10. h. h.,., h, h.,,,.. . (, )., i f i ( ). f 0 ( ),

More information

0 17 l l Grothendieck Weil Grothendieck SGA (Séminaire de Géométrie Algébrique du Bois-Marie) [Del2], [Del3] Grothendieck Weil Ramanujan Deligne [Del1

0 17 l l Grothendieck Weil Grothendieck SGA (Séminaire de Géométrie Algébrique du Bois-Marie) [Del2], [Del3] Grothendieck Weil Ramanujan Deligne [Del1 l 0 2 1 4 1.1 Tate.......................... 4 1.2........................ 6 1.3...................... 9 1.4.................... 21 2 Galois 31 2.1 Galois.......... 31 2.2.................... 31 3 Galois

More information

n (1.6) i j=1 1 n a ij x j = b i (1.7) (1.7) (1.4) (1.5) (1.4) (1.7) u, v, w ε x, ε y, ε x, γ yz, γ zx, γ xy (1.8) ε x = u x ε y = v y ε z = w z γ yz

n (1.6) i j=1 1 n a ij x j = b i (1.7) (1.7) (1.4) (1.5) (1.4) (1.7) u, v, w ε x, ε y, ε x, γ yz, γ zx, γ xy (1.8) ε x = u x ε y = v y ε z = w z γ yz 1 2 (a 1, a 2, a n ) (b 1, b 2, b n ) A (1.1) A = a 1 b 1 + a 2 b 2 + + a n b n (1.1) n A = a i b i (1.2) i=1 n i 1 n i=1 a i b i n i=1 A = a i b i (1.3) (1.3) (1.3) (1.1) (ummation convention) a 11 x

More information

kawa (Spin-Orbit Tomography: Kawahara and Fujii 21,Kawahara and Fujii 211,Fujii & Kawahara submitted) 2 van Cittert-Zernike Appendix A V 2

kawa (Spin-Orbit Tomography: Kawahara and Fujii 21,Kawahara and Fujii 211,Fujii & Kawahara submitted) 2 van Cittert-Zernike Appendix A V 2 Hanbury-Brown Twiss (ver. 1.) 24 2 1 1 1 2 2 2.1 van Cittert - Zernike..................................... 2 2.2 mutual coherence................................. 3 3 Hanbury-Brown Twiss ( ) 4 3.1............................................

More information

newmain.dvi

newmain.dvi 数論 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/008142 このサンプルページの内容は, 第 2 版 1 刷発行当時のものです. Daniel DUVERNEY: THÉORIE DES NOMBRES c Dunod, Paris, 1998, This book is published

More information

Gauss Fuchs rigid rigid rigid Nicholas Katz Rigid local systems [6] Fuchs Katz Crawley- Boevey[1] [7] Katz rigid rigid Katz middle convolu

Gauss Fuchs rigid rigid rigid Nicholas Katz Rigid local systems [6] Fuchs Katz Crawley- Boevey[1] [7] Katz rigid rigid Katz middle convolu rigidity 2014.9.1-2014.9.2 Fuchs 1 Introduction y + p(x)y + q(x)y = 0, y 2 p(x), q(x) p(x) q(x) Fuchs 19 Fuchs 83 Gauss Fuchs rigid rigid rigid 7 1970 1996 Nicholas Katz Rigid local systems [6] Fuchs Katz

More information

TOP URL 1

TOP URL   1 TOP URL http://amonphys.web.fc.com/ 3.............................. 3.............................. 4.3 4................... 5.4........................ 6.5........................ 8.6...........................7

More information

B 1 B.1.......................... 1 B.1.1................. 1 B.1.2................. 2 B.2........................... 5 B.2.1.......................... 5 B.2.2.................. 6 B.2.3..................

More information

Kullback-Leibler

Kullback-Leibler Kullback-Leibler 206 6 6 http://www.math.tohoku.ac.jp/~kuroki/latex/206066kullbackleibler.pdf 0 2 Kullback-Leibler 3. q i.......................... 3.2........... 3.3 Kullback-Leibler.............. 4.4

More information

2 R U, U Hausdorff, R. R. S R = (S, A) (closed), (open). (complete projective smooth algebraic curve) (cf. 2). 1., ( ).,. countable ( 2 ) ,,.,,

2 R U, U Hausdorff, R. R. S R = (S, A) (closed), (open). (complete projective smooth algebraic curve) (cf. 2). 1., ( ).,. countable ( 2 ) ,,.,, 15, pp.1-13 1 1.1,. 1.1. C ( ) f = u + iv, (, u, v f ). 1 1. f f x = i f x u x = v y, u y = v x.., u, v u = v = 0 (, f = 2 f x + 2 f )., 2 y2 u = 0. u, u. 1,. 1.2. S, A S. (i) A φ S U φ C. (ii) φ A U φ

More information

2/14 2 () (O O) O O (O O) id γ γ id O O γ O O O γ η id id η I O O O O I γ O. O(n) n *5 γ η γ S M, N M N (M N)(n) ( ) M(k) Sk Ind S n S i1 S ik N(i 1 )

2/14 2 () (O O) O O (O O) id γ γ id O O γ O O O γ η id id η I O O O O I γ O. O(n) n *5 γ η γ S M, N M N (M N)(n) ( ) M(k) Sk Ind S n S i1 S ik N(i 1 ) 1/14 * 1. Vassiliev Hopf P = k P k Kontsevich Bar-Natan P k (g,n) k=g 1+n, n>0, g 0 H 1 g ( S 1 H F(Com) ) ((g, n)) Sn. Com F Feynman ()S 1 H S n ()Kontsevich ( - - Lie ) 1 *2 () [LV12] Koszul 1.1 S F

More information

1 G K C 1.1. G K V ρ : G GL(V ) (ρ, V ) G V 1.2. G 2 (ρ, V ), (τ, W ) 2 V, W T : V W τ g T = T ρ g ( g G) V ρ g T W τ g V T W 1.3. G (ρ, V ) V W ρ g W

1 G K C 1.1. G K V ρ : G GL(V ) (ρ, V ) G V 1.2. G 2 (ρ, V ), (τ, W ) 2 V, W T : V W τ g T = T ρ g ( g G) V ρ g T W τ g V T W 1.3. G (ρ, V ) V W ρ g W Naoya Enomoto 2002.9. paper 1 2 2 3 3 6 1 1 G K C 1.1. G K V ρ : G GL(V ) (ρ, V ) G V 1.2. G 2 (ρ, V ), (τ, W ) 2 V, W T : V W τ g T = T ρ g ( g G) V ρ g T W τ g V T W 1.3. G (ρ, V ) V W ρ g W W G- G W

More information

Keiji Matsumoto (Hokkaido Univ.) Jan. 08, ,

Keiji Matsumoto (Hokkaido Univ.) Jan. 08, , Keiji Mtsumoto (Hokkido Univ.) Jn. 08, 009 009, . > b > 0 { n }, {b n } ( 0, b 0 ) = (, b), ( n+, b n+ ) = ( n + b n, n b n ). { n }, {b n } lim n n = lim b n n b M(, b) Theorem (C.F. Guss 799 ) Mple M(,

More information

基礎数学I

基礎数学I I & II ii ii........... 22................. 25 12............... 28.................. 28.................... 31............. 32.................. 34 3 1 9.................... 1....................... 1............

More information

R C Gunning, Lectures on Riemann Surfaces, Princeton Math Notes, Princeton Univ Press 1966,, (4),,, Gunning, Schwarz Schwarz Schwarz, {z; x}, [z; x] =

R C Gunning, Lectures on Riemann Surfaces, Princeton Math Notes, Princeton Univ Press 1966,, (4),,, Gunning, Schwarz Schwarz Schwarz, {z; x}, [z; x] = Schwarz 1, x z = z(x) {z; x} {z; x} = z z 1 2 z z, = d/dx (1) a 0, b {az; x} = {z; x}, {z + b; x} = {z; x} {1/z; x} = {z; x} (2) ad bc 0 a, b, c, d 2 { az + b cz + d ; x } = {z; x} (3) z(x) = (ax + b)/(cx

More information

nsg02-13/ky045059301600033210

nsg02-13/ky045059301600033210 φ φ φ φ κ κ α α μ μ α α μ χ et al Neurosci. Res. Trpv J Physiol μ μ α α α β in vivo β β β β β β β β in vitro β γ μ δ μδ δ δ α θ α θ α In Biomechanics at Micro- and Nanoscale Levels, Volume I W W v W

More information

1 1.1 H = µc i c i + c i t ijc j + 1 c i c j V ijklc k c l (1) V ijkl = V jikl = V ijlk = V jilk () t ij = t ji, V ijkl = V lkji (3) (1) V 0 H mf = µc

1 1.1 H = µc i c i + c i t ijc j + 1 c i c j V ijklc k c l (1) V ijkl = V jikl = V ijlk = V jilk () t ij = t ji, V ijkl = V lkji (3) (1) V 0 H mf = µc 013 6 30 BCS 1 1.1........................ 1................................ 3 1.3............................ 3 1.4............................... 5 1.5.................................... 5 6 3 7 4 8

More information

, CH n. CH n, CP n,,,., CH n,,. RH n ( Cartan )., CH n., RH n CH n,,., RH n, CH n., RH n ( ), CH n ( 1.1 (v), (vi) )., RH n,, CH n,., CH n,. 1.2, CH n

, CH n. CH n, CP n,,,., CH n,,. RH n ( Cartan )., CH n., RH n CH n,,., RH n, CH n., RH n ( ), CH n ( 1.1 (v), (vi) )., RH n,, CH n,., CH n,. 1.2, CH n ( ), Jürgen Berndt,.,. 1, CH n.,,. 1.1 ([6]). CH n (n 2), : (i) CH k (k = 0,..., n 1) tube. (ii) RH n tube. (iii). (iv) ruled minimal, equidistant. (v) normally homogeneous submanifold F k tube. (vi) normally

More information

数学の基礎訓練I

数学の基礎訓練I I 9 6 13 1 1 1.1............... 1 1................ 1 1.3.................... 1.4............... 1.4.1.............. 1.4................. 3 1.4.3........... 3 1.4.4.. 3 1.5.......... 3 1.5.1..............

More information

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) II 214-1 : October 2, 214 Version : 1.1 Kawahira, Tomoki TA (Kondo, Hirotaka ) http://www.math.nagoya-u.ac.jp/~kawahira/courses/14w-biseki.html pdf 1 2 1 9 1 16 1 23 1 3 11 6 11 13 11 2 11 27 12 4 12 11

More information

I II III IV V

I II III IV V I II III IV V N/m 2 640 980 50 200 290 440 2m 50 4m 100 100 150 200 290 390 590 150 340 4m 6m 8m 100 170 250 µ = E FRVβ β N/mm 2 N/mm 2 1.1 F c t.1 3 1 1.1 1.1 2 2 2 2 F F b F s F c F t F b F s 3 3 3

More information

( ) Note (e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ, µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) 3 * 2) [ ] [ ] [ ] ν e ν µ ν τ e

( ) Note (e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ, µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) 3 * 2) [ ] [ ] [ ] ν e ν µ ν τ e ( ) Note 3 19 12 13 8 8.1 (e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ, µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) 3 * 2) [ ] [ ] [ ] ν e ν µ ν τ e µ τ, e R, µ R, τ R (1a) L ( ) ) * 3) W Z 1/2 ( - )

More information

' , 24 :,,,,, ( ) Cech Index theorem 22 5 Stability 44 6 compact 49 7 Donaldson 58 8 Symplectic structure 63 9 Wall crossing 66 1

' , 24 :,,,,, ( ) Cech Index theorem 22 5 Stability 44 6 compact 49 7 Donaldson 58 8 Symplectic structure 63 9 Wall crossing 66 1 1998 1998 7 20 26, 44. 400,,., (KEK), ( ) ( )..,.,,,. 1998 1 '98 7 23, 24 :,,,,, ( ) 1 3 2 Cech 6 3 13 4 Index theorem 22 5 Stability 44 6 compact 49 7 Donaldson 58 8 Symplectic structure 63 9 Wall crossing

More information

[2, 3, 4, 5] * C s (a m k (symmetry operation E m[ 1(a ] σ m σ (symmetry element E σ {E, σ} C s 32 ( ( =, 2 =, (3 0 1 v = x 1 1 +

[2, 3, 4, 5] * C s (a m k (symmetry operation E m[ 1(a ] σ m σ (symmetry element E σ {E, σ} C s 32 ( ( =, 2 =, (3 0 1 v = x 1 1 + 2016 12 16 1 1 2 2 2.1 C s................. 2 2.2 C 3v................ 9 3 11 3.1.............. 11 3.2 32............... 12 3.3.............. 13 4 14 4.1........... 14 4.2................ 15 4.3................

More information

平成 19 年度 ( 第 29 回 ) 数学入門公開講座テキスト ( 京都大学数理解析研究所, 平成 19 ~8 年月 72 月日開催 30 日 ) R = T, Fermat Wiles, Taylor-Wiles R = T.,,.,. 1. Fermat Fermat,. Fermat, 17

平成 19 年度 ( 第 29 回 ) 数学入門公開講座テキスト ( 京都大学数理解析研究所, 平成 19 ~8 年月 72 月日開催 30 日 ) R = T, Fermat Wiles, Taylor-Wiles R = T.,,.,. 1. Fermat Fermat,. Fermat, 17 R = T, Fermat Wiles, Taylor-Wiles R = T.,,.,. 1. Fermat Fermat,. Fermat, 17, 400.. Descartes ( ) Corneille ( ), Milton ( ), Velázquez ( ), Rembrandt van Rijn ( ),,,. Fermat, Fermat, Fermat, 1995 Wiles

More information

B [ 0.1 ] x > 0 x 6= 1 f(x) µ 1 1 xn 1 + sin sin x 1 x 1 f(x) := lim. n x n (1) lim inf f(x) (2) lim sup f(x) x 1 0 x 1 0 (

B [ 0.1 ] x > 0 x 6= 1 f(x) µ 1 1 xn 1 + sin sin x 1 x 1 f(x) := lim. n x n (1) lim inf f(x) (2) lim sup f(x) x 1 0 x 1 0 ( . 28 4 14 [.1 ] x > x 6= 1 f(x) µ 1 1 xn 1 + sin + 2 + sin x 1 x 1 f(x) := lim. 1 + x n (1) lim inf f(x) (2) lim sup f(x) x 1 x 1 (3) lim inf x 1+ f(x) (4) lim sup f(x) x 1+ [.2 ] [, 1] Ω æ x (1) (2) nx(1

More information

H.Haken Synergetics 2nd (1978)

H.Haken Synergetics 2nd (1978) 27 3 27 ) Ising Landau Synergetics Fokker-Planck F-P Landau F-P Gizburg-Landau G-L G-L Bénard/ Hopfield H.Haken Synergetics 2nd (1978) (1) Ising m T T C 1: m h Hamiltonian H = J ij S i S j h i S

More information

I. (CREMONA ) : Cremona [C],., modular form f E f. 1., modular X H 1 (X, Q). modular symbol M-symbol, ( ) modular symbol., notation. H = { z = x

I. (CREMONA ) : Cremona [C],., modular form f E f. 1., modular X H 1 (X, Q). modular symbol M-symbol, ( ) modular symbol., notation. H = { z = x I. (CREMONA ) : Cremona [C],., modular form f E f. 1., modular X H 1 (X, Q). modular symbol M-symbol, ( ). 1.1. modular symbol., notation. H = z = x iy C y > 0, cusp H = H Q., Γ = PSL 2 (Z), G Γ [Γ : G]

More information

II ( ) (7/31) II ( [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Re

II ( ) (7/31) II (  [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Re II 29 7 29-7-27 ( ) (7/31) II (http://www.damp.tottori-u.ac.jp/~ooshida/edu/fluid/) [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Reynolds [ (4.6), (45.8)] [ p.186] Navier Stokes I Euler Navier

More information

φ 4 Minimal subtraction scheme 2-loop ε 2008 (University of Tokyo) (Atsuo Kuniba) version 21/Apr/ Formulas Γ( n + ɛ) = ( 1)n (1 n! ɛ + ψ(n + 1)

φ 4 Minimal subtraction scheme 2-loop ε 2008 (University of Tokyo) (Atsuo Kuniba) version 21/Apr/ Formulas Γ( n + ɛ) = ( 1)n (1 n! ɛ + ψ(n + 1) φ 4 Minimal subtraction scheme 2-loop ε 28 University of Tokyo Atsuo Kuniba version 2/Apr/28 Formulas Γ n + ɛ = n n! ɛ + ψn + + Oɛ n =,, 2, ψn + = + 2 + + γ, 2 n ψ = γ =.5772... Euler const, log + ax x

More information

ADM-Hamiltonian Cheeger-Gromov 3. Penrose

ADM-Hamiltonian Cheeger-Gromov 3. Penrose ADM-Hamiltonian 1. 2. Cheeger-Gromov 3. Penrose 0. ADM-Hamiltonian (M 4, h) Einstein-Hilbert M 4 R h hdx L h = R h h δl h = 0 (Ric h ) αβ 1 2 R hg αβ = 0 (Σ 3, g ij ) (M 4, h ij ) g ij, k ij Σ π ij = g(k

More information

2017 : msjmeeting-2017sep-00f003 ( ) 1. 1 = A 1.1. / R T { } Λ R = a i T λ i a i R, λ i R, lim λ i = + i i=0 R Λ R v T ( a i T λ i ) = inf λ i, v T (0

2017 : msjmeeting-2017sep-00f003 ( ) 1. 1 = A 1.1. / R T { } Λ R = a i T λ i a i R, λ i R, lim λ i = + i i=0 R Λ R v T ( a i T λ i ) = inf λ i, v T (0 2017 : msjmeeting-2017sep-00f003 ( ) 1. 1 = A 1.1. / R T { } Λ R = a i T λ i a i R, λ i R, lim λ i = + i i=0 R Λ R v T ( a i T λ i ) = inf λ i, v T (0) = + a i 0 i=0 v T Λ R 0 = {x Λ R v T (x) 0} R Remark

More information