Broadhurst-Kreimer Brown ( D3) 1 Broadhurst-Kreimer Zagier Gangl- -Zagi

Size: px
Start display at page:

Download "Broadhurst-Kreimer Brown ( D3) 1 Broadhurst-Kreimer Zagier Gangl- -Zagi"

Transcription

1 Broadhurst-Kreimer Brown ( D3) 1 Broadhurst-Kreimer Zagier Gangl- -Zagier GKZ Brown Brown Lie Brown ,, Broadhurst-Kreimer ( 97). Broadhurst-Kreimer, Zagier ( 94),., SL 2 (Z), Broadhurst-Kreimer.,., Gangl,, Zagier GKZ,, Brown (exceptional element)., Lie 1

2 ., Brown. Brown, Q (totally odd MZV), Lie, Lie,., Brown. Brown,, ( ). Brown, - -Zagier( 06) (linearized double shuffle space) Lie., 1 Broadhurst-Kreimer,. 2,, Brown, - -Zagier. Brown, 3 Brown, Gangl- -Zagier ( GKZ ). 4, Lie, Lie Brown., Brown, 2, 3. 1 Broadhurst-Kreimer, Zagier [23]., Broadhurst- Kreimer[5]., Broadhurst-Kreimer. 1. n = ( 1,..., n ), ζ() = ζ( 1,..., n ) = m 1 > >m n >0 1. m 1 1 m n n wt() = n, dep() = n., 1 > 1., Zagier. 2

3 Zagier Q Z, {d } 0 1/(1 t 2 t 3 ) = d t., Z (n) dim Q Z? = d. Zagier, d ([21, 8] ), {ζ( 1,..., n ) i {2, 3}} Z ([2, 3], Hoffman ).,, Q Galois Gronthendiec-Teichmüller. (, [6].) Broadhurst-Kreimer,., n ( 1) Q Z (n) : := ζ() wt() =, dep() n Q, Z (n) 0 := Q. n,. Broadhurst-Kreimer, Z (n) /Z(n 1) ( ). E(s), O(s), S(s) : E(s) = s2 s3, O(s) = 1 s2 1 s, S(s) = s 12 2 (1 s 4 )(1 s 6 ). {d,n },n 0.,n 0 d,n s t n = 1 + E(s)t 1 O(s)t + S(s)t 2 S(s)t (Broadhurst-Kreimer vector space ver. ) > n > 0, d,n =? dim Q Z (n) /Z(n 1). d,n n\

4 2, (bigraded algebra) (algebra generator). (graded algebra) Z, augumentation I. Z := Z (n), Z := Z, I = Z. >n>0 0 1 Z (filtered algebra) {0} = Z (0) Z (1)... Z (n) Z ( Z (n) := 0 Z (n) )., T := I/I 2, (cotangent space) T,., M ( :[15, p.14]): M :=,n>0,n>0 M (n), M(n) := T (n) /T (n 1) (n) = Z /(Z(n 1) + Z (n) I 2 ). {D,n },n>0. ( ) D,n 1 1 = 1 s t n 1 O(s)t + S(s)t 2 S(s)t (Broadhurst-Kreimer algebra generator ver. ) > n > 0 (, (, n) (2, 1)), D?,n = dim Q M (n). D,n n\ : D,n log, D,n n = 2, 3, 4,. ( :[12]) M (n) D,2 s s 8 = (1 s 2 )(1 s 6 ), D,3 s s 11 (1 + s 2 s 4 ) = (1 s 2 )(1 s 4 )(1 s 6 ), >0 >0 D,4 s = s12 (1 + 2s 4 + s 6 + s 8 + 2s 10 + s 14 s 16 ). (1 s 2 )(1 s 6 )(1 s 8 )(1 s 12 ) >0 ( 4 ) 4

5 n\ ζ(2) ζ(3) ζ(5) ζ(7) ζ(9) ζ(11) ζ(13) 2 ζ(3, 5) ζ(3, 7) ζ(3, 9) 3 ζ(3, 3, 5) 4 ζ(4, 4, 2, 2) ζ(15) ζ(17) ζ(19) ζ(3,11) ζ(5,9) ζ(3, 3, 3, 5) ζ(3,3,9) ζ(3,5,7) ζ(3,13) ζ(5,11) ζ(3,3,3,7) ζ(3,3,5,5) ζ(4,4,2,6) ζ(3,3,11),ζ(3,5,9) ζ(3,7,7),ζ(5,5,7) ζ(3,15) ζ(5,13) ζ(3,3,3,9),ζ(3,3,5,7) ζ(3,5,5,5),ζ(3,5,3,7) ζ(4,8,4,2) ζ(3,3,13),ζ(3,5,11) ζ(3,7,9),ζ(5,5,9) ζ(5,7,7) ζ(3,5,5) ζ(3,3,7) ζ(3,17) ζ(5,15) ζ(7,13) 2 - -Zagier, (double shuffle relations) Broadhurst-Kreimer - -Zagier [13].,., dim M (n) (linearized double shuffle space),. 2.1,.,. [1] [13] ( [1] ).,,.,, : r + s = (r > s 1), ζ(r)ζ(s) = ζ(r, s) + ζ(s, r) + ζ(), (1) ζ(r)ζ(s) = (( ) ( )) i 1 i 1 + ζ(i, j). r 1 s 1 i+j= i,j 1 ( a,b>0 = a>b>0 + b>a>0 + a=b>0 ) ( ). 5

6 , s = 1,,., ζ(1) := 0 ζ(1, r) := ζ(r, 1) ζ(r + 1)., ( ) (Hoffman [11], [1, 1.4] ). x, y Q ( ) H, H 1, H 0 : H := Q x, y H 1 := Q + Hy H 0 := Q + xhy. H 0. Q- Z : H 0 R Z(x 1 1 y x n 1 y) = ζ( 1,..., n ) 1., Z(1) = 1. H 0. : Q- : H 1 H 1 H 1 z := x 1 y, w, w H 1, z w z l w = z (w z l w ) + z l (z w w ) + z +l (w w ),., 1. H 1 H 1 = Q z 1, z 2,.... H 0., Hoffman[11] (i.e. Z(w w ) = Z(w)Z(w )). : Q- x : H H H w, w H u, v {x, y}, uw x vw = u(w x vw ) + v(uw x w ),., 1 x., x H 0, (i.e. Z(w x w ) = Z(w)Z(w )). : Q Z H 1 R[T ]. {, x}, H 1, H 0., Q Z : H 1 R[T ], ([1, 1.4.3]): Z H 0 = Z, Z (y) = T., H 1 = H 0 [y], w H 1 w = w 0 + w 1 y + w n y n (w 0, w 1,..., w n H 0 )., Z (w) = Z(w 0 ) + Z(w 1 )T + + Z(w n )T n. 1 x = dt/t, y = dt/(1 t) 0 1 ( ). 6

7 4. ( [13]) w 0 H 0, w 1 H 1 Z (w 0 w 1 w 0 x w 1 ) = 0., T Z reg = Z T =0. Z reg(w 0 w 1 w 0 x w 1 ) = 0. Proof.. R ρ : R[T ] R[T ]( [1, 1.4.6]). ρ(exp(t u)) = exp ( ( 1) n n ζ(n)un) exp(t u). n>1, Z x = ρ Z ( ). w 1 H 1 w 0 H 0, ρ R.. 0 = Z(w 0 )Z x (w 1 ) Z(w 0 )ρ(z (w 1 )) = Z x (w 0 x w 1 ) ρ(z (w 0 w 1 )) = Z x (w 0 w 1 w 0 x w 1 ). 5. y n w 1 H 1, Z reg(w 1 ) Z x reg(w 1 ) (mod Z (n 1) + Z (n) I 2 ). Proof. w 1, : w 1 = v 0 + v 1 y + + v n y n (v i H 0 ). v i y n i., ρ(t i ) Q[ζ() 2] T i, i, ρ(z (w 1 )) = Z reg(w 1 ) + Z(v 1 )ρ(t ) + + Z(v n )ρ(t n ) Z reg(w 1 ) mod Z (n 1) + Z (n) I 2 : Z x reg(w 1 ) = Z x (w 1 ) T =0 = ρ(z (w 1 )) T =0 Z reg(w 1 ) (mod Z (n 1) + Z (n) I 2 ). ( : i 2, ρ(t i ), v i 0 i 2 ρ(z (w 1 )) T =0 Z reg(w 1 )., 2 (ρ(t i ) (i 2) ), ρ(z (w 1 )) T =0 = Z reg(w 1 ).) 7

8 2.2, M Q., M n n.,,,,., M (n). Z (n) /(Z(n 1) +Z (n) I 2 ) :, (1), M (2).. F2 (x 1, x 2 ) := Zreg(z 1 z 2 )x x 2 1 2,, F x 2 (x 1, x 2 ) := 1, 2 >0 1, 2 >0 Z x reg(z 1 z 2 )x x F 2 (x 1, x 2 ) = ζ(2) 2 +ζ(2, 1)x 1+( ζ(2, 1) ζ(3))x 2 +ζ(2, 2)x 1 x 2 +( ζ(3, 1) ζ(4))x (i) F 2 (x 1, x 2 ) = F x 2 (x 1, x 2 ), (ii) 0 F 2 (x 1, x 2 ) + F 2 (x 2, x 1 ) 1, 2 >0 F x 2 (x 1 + x 2, x 2 ) + F x 2 (x 1 + x 2, x 1 ) (mod Z (1) + Z (2) I 2 ). Proof. 5., (1)., 0 Zreg(z 1 z 2 )x x Zreg(z 1 z 2 + z 2 z 1 )x x 2 1 2, 0 1, 2 >0 = 1, 2 >0 = i,j>0 Z x reg(z 1 i+j= i,j>0 x z 2 )x x , 2 >0 (( ) ( )) i 1 i 1 + Z x reg(z i z j )x x Z x reg(z i z j ) ( (x 1 + x 2 ) i 1 x j (x 1 + x 2 ) i 1 x j 1 1 ). 8

9 6, mod Z (1) + Z (2) I 2, Q f(x 1, x 2 ) : 0 = f(x 1, x 2 ) + f(x 2, x 1 ) = f(x 1 + x 2, x 2 ) + f(x 1 + x 2, x 1 ). (2) (2), Q[x 1, x 2 ] DSh 2, d Q DSh 2 (d). 7. 2, DSh 2 := {f(x 1, x 2 ) Q[x 1, x 2 ] f satisfy (2)}. dim M (2) dim DSh 2 ( 2). Proof. DSh 2 ( 2), q 1,..., q g (g = dim DSh 2 ( 2)). 6, F2 (x 1, x 2 ) M (2) DSh 2, ζ i M (2), (F 2 (x 1, x 2 ) 2 ) = ζ 1 q ζ g q g. ζ 1,..., ζ g,. Remar. - -Zagier, dim DSh 2 ( 2) = D,2., Broadhurst-Kreimer n = 2 2.,, DSh n Broadhurst-Kreimer. n :. n 2, Q[x 1,..., x n ] sh (n) l Z[GL n (Q)] (1 l n 1) : f(x 1,..., x n ) (n) sh l := f(x σ 1 (1),..., x σ 1 (n)). σ S n σ(1)<...<σ(l) σ(l+1)<...<σ(n) ( ),., w 1,..., w n, ([18] ): w 1 w l x w l+1 w n = w σ 1 (1) w σ 1 (n). (3) σ S n σ(1)<...<σ(l) σ(l+1)<...<σ(n), f (x 1,..., x n ) := f(x x n,..., x n 1 + x n, x n ). n ( {, x}): Fn(x 1,..., x n ) := Zreg(z 1 z n )x x n 1 n. ( 1,..., n) N n 2, D,n Broadhurst- Kreimer. 9

10 8. n > 1 l {1,..., n 1},. (i) Fn Fn x (mod Z (n 1) + Z (n) I 2 ), (ii) 0 Fn (n) sh l (Fn x ) (n) sh l (mod Z (n 1) + Z (n) I 2 ). Proof. 5., 0 Z reg(z 1 z l z l+1 z n ) (mod Z (n) I 2 ) Z reg(z 1 z l x z l+1 z n ) (mod Z (n 1) + Z (n) I 2 ), (3) Fn (n) sh l 0.,, z 1 z l x z l+1 z n.,, 0 = (Fl x ) (x 1,..., x l ) (Fn l) x (x l+1,..., x n ) = (Fn x ) (x 1,..., x n ) (n) sh l ( :[13], [12, Proposition 9]). 9. n n > 1, DSh n := {f Q[x 1,..., x n ] f sh (n) l, d DSh n (d). 7,. 10. ( - -Zagier [13]) > n > 1, dim M (n) = f sh (n) l = 0 (1 l n 1)}. dim DSh n ( n). Remar. dim DSh n ( n) D,n, Broadhurst-Kreimer., DSh n (d). DSh n (d), Goncharov [10] GL n (Z), - [14] B d > 0 n > 0, DSh n (d) = {0} ([13, Prop. 17]). d > 0,. [ ] d dim DSh 2 (d) = = D d+2,2 ([10],[13, Prop. 18]), 6 [ ] d 2 1 dim DSh 3 (d) = = D d+3,3 ([10, 14])

11 3 Gangl- -Zagier Broadhurst-Kreimer (Zagier [23, 8], [24, 3] ), dim Q Z (2)? = 2 1 dim S (SL 2 (Z)) ( : even)., (GKZ ).,.,, GKZ. 3.1,, ( Gangl- -Zagier[7] ). F (X, Y ) GL 2 (Z), Z[GL 2 (Z)] : F (X, Y ) ( a b c d ) = F (ax + by, cx + dy )., GL 2 (Z). ( ) ( ) S =, T =, ε = ( ) ( 0 1, δ = , F (X, Y ) ε = F (Y, X), F (X, Y ) δ = F ( X, Y )., W : W := er(1 T t T ) (= {P (X, Y ) Q[X, Y ] P (X, Y ) (1 T t T ) = 0})., d W (d). PGL 2 (Z), (1 T t T )S = (1 + S) (1 + T S + (T S) 2 ). PSL 2 (Z) S T, P W G = P (1 + S) = P (1 + T S + (T S) 2 ), G SL 2 (Z), G 0., P (1 + S) = 0.,, W = er(1 + S) er(1 + T S + (T S) 2 )., ε(t S)ε = (T S) 2 P ε = P δ W. W ε ±1 W ± ( t T = εt ε): W ± = er(1 T T ε). : P W P δ = P,. ). 11

12 , W = er(1 + S) er(1 + T S + (T S) 2 )., f(z), n-th r n (f) r n (f) = 0 f(it)t n dt ( : f L- r n (f) = n!/(2π) n+1 L(n + 1, f)), : P f (X, Y ) = i 0 f(z)(x zy ) 2 dz. (f ), P f (X, Y ) γ = γ 1 (i ) f(z)(x zy ) 2 dz, SL γ 1 (0) 2 (Z) S, T S, P f (X, Y ) (1 + S) = Pf (X, Y ) (1 + T S + (T S) 2 ) = 0. P f (X, Y ), Q., P f (X, Y ) (1 + S) = 0 rn (f) = ( 1) n r 2 n (f). P f (X, Y ), P f (X, Y ) ( ) HP 1 (SL 2(Z), V Q C), SL 2 (Z)., V 2 ; V = Q[X, Y ] ( 2). f S (SL 2 (Z)), Z[SL 2 (Z)]- φ f : SL 2 (Z) V Q C φ f (γ) = γ 1 (i ) f(z)(x zy ) 2 dz, φ i f HP 1 (SL 2(Z), V Q C). ( φ f (γ 1 γ 2 ) = φ f (γ 1 ) γ2 + φ f (γ 2 ).) φ f, φ f (S) = P f (X, Y ) W ( 2), S 2 = (T S) 3 = 1 (PSL 2 (Z) ) φ f (S) W. ( [17, 19].) 12. (Eichler- -Manin [16]), r + : S (SL 2 (Z)) W + ( 2) Q C, f P f (X, Y ) (1 + δ), r : S (SL 2 (Z)) W ( 2) Q C, f P f (X, Y ) (1 δ) 1. Remar. W (d) Q(X d Y d )., W (d) = 12

13 W,0 (d) Q(X d Y d ), W,0 (d) d W,0. W,0 = d>0 W,0 (d). 3.2 GKZ Gangl- -Zagier[7] GKZ.,. 13. (Gangl- -Zagier [7]) P (X, Y ) W ( 2), q r,s. P (X + Y, Y ) = ( ) 2 q r,s X r 1 Y s 1. r 1,. r+s= r,s odd r+s= r,s 1 q r,s ζ(r, s) 0 (mod Qζ()). 1. X 2 Y 8 3X 4 Y 6 + 3X 6 Y 4 X 8 Y 2 W (10). GKZ-, 14ζ(9, 3) + 75ζ(7, 5) + 84ζ(5, 7) 0 (mod Qζ(12)). 13. D, Z, Z r,s (r+s =, r, s 1) Q,. Z r,s + Z s,r + Z = (( ) ( )) i 1 i 1 + Z i,j. (4) r 1 s 1 i+j= ( i+j= i, j 1.), D = Z, Z r,s r + s = Q. (relation (4)) 14. a r,s,. (i) D,. a r,s Z r,s 0 (mod QZ ). r+s= (ii) 2 H(X, Y ) er(1 ε, V ),. H(X, Y ) ( t T 1) = ( ) 2 a r,s X r 1 Y s 1. r 1 r+s= 13

14 Proof. er(1 ε, V ) H r,s (X, Y ) = ( 2 r 1) (X r 1 Y s 1 +X s 1 Y r 1 ) (r+s = ), H r,s ( t T 1)., ( 2 r 1) X r 1 (X+Y ) s 1 = ( 2 )( i 1 ) i+j= i 1 r 1 X i 1 Y j 1, Z r,s + Z s,r (( ) ( )) i 1 i 1 + Z i,j (mod QZ ) r 1 s 1 i+j=. D (4),. 15. q r,s q r,s = q s,r (r, s : even).,. (i) D,. q r,s Z r,s 3 q r,s Z r,s (mod QZ ). r+s= r,s even r+s= r,s odd (ii) P (X, Y ) W ( 2),. P (X, Y ) ( ) 2 T = q r,s X r 1 Y s 1. r 1 r+s= Proof. (ii) (i). P (X, Y ) = ( 2 r+s= r 1) pr,s X r 1 Y s 1 W ( 2), Q(X, Y ) = P (X, Y ) T. Q (1 ε) = P (T T ε) = P, q r,s q s,r = { pr,s r, s : odd, 0 r, s : even. (5), Q δ Q = Q ev + Q od, Q ev er(1 δ, V ), Q od er(1 + δ, V ). Q od (5), (i.e. Q od er(1 ε, V )). Q ev (5), Q ev = ( ) 2 (p r,s + q s,r )X r 1 Y s 1 = P + Q ev ε (6) r 1 r+s=., Q ev ε Q ev = Q ev,+ + Q ev,, Q ev,± er(1 ε), (6) 2Q ev, = P., 14, (i) F, F 2Q ev,+ 2Q od ( )., 2Q ev, t T = P t T = P T ε = Q ε = Q ev,+ + Q ev, Q od, (Q ev,+ Q ev, Q od ) t T = Q S t T = P T S t T = P S = P = 2Q ev,, (2Q ev,+ 2Q od ) t T = Q ev,+ 3Q ev, Q od, (2Q ev,+ 2Q od ) ( t T 1) = Q od 3Q ev. 14

15 15, Z r,s ζ(r, s), 15 (i), q r,s = q s,r ζ(r)ζ(s) (r + s =, r, s even) ζ() ( )., GKZ ( 13). 4 Brown DSh DSh := n>0 DSh n = DSh n (d)., DSh 1 := d>0 Qx2d 1. 2, Broadhurst-Kreimer DSh n ( n) D,n. Brown [4], DSh Lie.,. d,n>0 4.1, DSh Lie., DSh., Brown ( [4] ). Q-. : Q[y 0,..., y r ] Q Q[y 0,..., y s ] Q[y 0,..., y r+s ] f(y 0,..., y r ) g(y 0,..., y s ) f g(y 0,..., y r+s ), f g(y 0,..., y r+s ) = s deg f+r ( 1) s f(y i, y i+1,..., y i+r )g(y 0,..., y }{{} i, y i+r+1,..., y r+s )+ }{{} i+1 s i i=0 i=1, : f(y i+r,..., y i+1, y i )g(y 0,..., y }{{ i 1, y } i+r,..., y r+s ). }{{} i s i+1 {f, g} = f g(0, x 1,..., x r+s ) g f(0, x 1,..., x r+s ) 16. (Goncharov-Racinet-Brown) DSh {, }, Lie (bigraded Lie algebra). 15

16 , {, }, Jacobi, f i DSh ni (d i ), {f 1, f 2 } DSh n1 +n 2 (d 1 + d 2 )., {x 2n 1 1, x 2n 2 1 } = (x 2n 1 = x 2n x 2n 2 2 x 2n 2 1 x 2n 1 ( x 2n 2 2 (x 2 x 1 ) ) 2n 2 + (x 2 x 1 ) ( 2n 1 x 2n 2 1 x 2n ) (1 T + T ε), (7) ) + x 2n 1 ( 2 (x2 x 1 ) 2n 2 ) x 2n Brown Lie DSh, Lie. DSh (DSh/{DSh, DSh} = DSh ab ), DSh Lie A. A := Lie Q [x 2 1, x 4 1, x 6 1,...]. Lie A n ( x 2m 1 (m = 1, 2,...) n 1 ), d A A n (d).. A n (d) DSh n (d). (8) 2. n = 2 : A 2 (4) = {0}, A 2 (6) = Q{x 2 1, x 4 1}, A 2 (8) = Q{x 2 1, x 6 1}, A 2 (10) = Q{x 2 1, x 8 1} + Q{x 4 1, x 6 1}, A 2 (12) = Q{x 2 1, x 10 1 } + Q{x 4 1, x 8 1}. Lie A Lie., A ( -, Schneps[20]) d > 0, a n1,n 2 a n1,n 2 {x 2n 1 1, x 2n 2 1 } = 0 2n 1 +2n 2 =d n 1 >n 2 >0, a n1,n 2 (X 2n 1 Y 2n 2 X 2n 2 Y 2n 1 ) W,0 (d). 2n 1 +2n 2 =d n 1 >n 2 >0 Proof. (7). 0 W,0 DSh 1 DSh 1 A 2 0., DSh 1 DSh 1 n 1,n 2 >0 Q(x2n 1 1 x 2n 2 2 x 2n 2 1 x 2n 1 2 ). 3. 1, (X 2 Y 8 X 8 Y 2 ) 3(X 4 Y 6 X 6 Y 4 ) W (10)., (7) {x 2 1, x 8 1} 3{x 4 1, x 6 1} = 0. 16

17 dim A 4 (8) = 0, dim DSh 4 (8) = 1., A DSh, Brown [4], A DSh Lie,.. p(x, Y ) W,0. p(x, Y ) XY (X Y ). p 0 (X, Y ), p 1 (X, Y ) : p 0 (X, Y ) = p(x, Y )/XY (X Y ), p 1 (X, Y ) = p(x, Y )/XY. 18. p(x, Y ) W,0, e p (y 0,..., y 4 ) := ( p1 (y σ(4) y σ(3), y σ(2) y σ(1) ) + (y σ(0) y σ(1) )p 0 (y σ(2) y σ(3), y σ(4) y σ(3) ) ), σ Z/5Z e p (x 1,..., x 4 ) := e p (0, x 1,..., x 4 ). σ. 19. (Brown[4]) d > 0,. e : W,0 (d) DSh 4 (d 2) p(x, Y ) e p (x 1,..., x 4 ). DSh DSh 1 Lie, 19 Brown (Brown exceptional element, ), DSh Brown., Brown DSh Lie,. 20. DSh. H 1 (DSh, Q) = DSh 1 e(w,0 ) H 2 (DSh, Q) = W,0 H i (DSh, Q) = 0 (i 3). Remar. Brown 20, 19 DSh 4 DSh Lie W, DSh? = A W ( W := Lie Q (e(w,0 )) ),, DSh 17 A 2., 20, DSh n ( n), D,n ( [4] ). 17

18 4.3 Brown, , A,. 21. >n>0 ( 1 ) dim An( n)? = 1 s t n 1 1 O(s)t + S(s)t 2. (9), ζ( 1,..., n ) x x n 1 n, A 3 ζ(2l 1 + 1,..., 2l n + 1) (l i 1)( ) Z A 3., (9). Brown.,., n Z O (n). O (n) n (mod 2),. O (n) O (n 1) := ζ() Z (n) i 3 : odd Q. = O (n 2) O (n 3) = O (n 4). ζ(2) Z (ζ(2))., Z,n odd,, n, n 1, (ζ(2)). Z odd,n = O (n) /(Z(n 1) O (n) + (ζ(2)) O (n) ). 22. (Brown ). 1 + >n>0 dim Z odd,n s t n? = 1 1 O(s)t + S(s)t 2., 21, 22,. n = 2 ( ) : 21, [ ] 2 dim A 2 ( 2) = ( : even) 6 3, 1 M (n)., ( 19). 18

19 . A Lie, Poincaré-Birhoff-Witt ([22, p226]) ( ) dim An ( n) 1 1 s = 1 s t n 1 s(st + 1) >n>0, t 2 dim A 2 ( 2) = [( 4)/4] ( : even)., 17, A 2 ( 2) dim W,0 ( 2) = dim S (SL 2 (Z)) = [( 4)/4] [( 2)/6], 12,17 (8), A 2 = DSh 2 : [ ] [ ] 4 2 dim A 2 ( 2) = dim S (SL 2 (Z)) = = dim DSh 2 ( 2). 4 6 n = 3 ( ) : Brown [4], Goncharov A 3 = DSh 3., A 3 (12), (Jacobi ){x 2 1, {x 2 1, x 8 1} 3{x 4 1, x 6 1}} = 0. n = 2 ( ) : 22,. dim Q Z odd,2? = 2 2 dim S (SL 2 (Z))., Z odd,2 = ζ(2i + 1, 2i 1) 1 i /2 1 Q/ π Q, GKZ ( 13) dim S (SL 2 (Z)),. dim Q Z odd,2 2 2 dim S (SL 2 (Z)). n = 3 ( ) : 22, dim Q Z,3 odd s =? O(s) 3 2O(s)S(s). >0, 15 ( )., 1 GKZ ζ(3)., 14(ζ(3, 9, 3) + 2ζ(9, 3, 3)) + 75(ζ(3, 7, 5) + ζ(7, 3, 5) + ζ(7, 5, 3)) + 84(ζ(3, 5, 7) + ζ(5, 3, 7) + ζ(5, 7, 3)) 0 (mod Z (2) 15 ). 36ζ(5, 5, 5) + 6ζ(5, 7, 3) + 15ζ(7, 5, 3) 14ζ(9, 3, 3) 0 (mod Z (2) 15 ),., ( GKZ ), 3 d=12 dim S d(sl 2 (Z)),. 19

20 [1] T. Araawa, M. Kaneo,, MI 23. [2] F. Brown, Mixed Tate motives over Z, Ann. of Math. 175(2) (2012), [3] F. Brown, On the decomposition of motivic multiple zeta values, Galois-Teichmüller theory and Arithmetic Geometry, Advanced Studies in Pure Mathematics. [4] F. Brown, Depth-graded motivic multiple zeta values, arxiv: [5] D. Broadhurst, D. Kreimer, Association of multiple zeta values with positive nots via Feynman diagrams up to 9 loops, Phys. Lett. B 393, no. 3-4 (1997), [6] H. Furusho, The Multiple Zeta Value Algebra And The Stable Derivation Algebra, RIMS-oyurou 1200, Algebraic number theory and related topics, (2001), [7] H. Gangle, M. Kaneo, D. Zagier, Double zeta values and modular forms, Automorphic forms and Zeta functions, Proceedings of the conference in memory of Tsuneo Araawa, World Scientific, (2006), [8] P. Deligne, A.B. Goncharov, Groupes fondamentaux motiviques de Tate mixte, Ann. Sci. Ećole Norm. Sup. 38 (2005), 1 56 [9] A. B. Goncharov, Multiple polylogarithms, cyclotomy and modular complexes, Math. Res. Lett., 5 (1998), [10] A. B. Goncharov, The dihedral Lie algebras and Galois symmetries of π (l) 1 (P 1 ({0, } µ N )), Due Math. J. 110(3) (2001), [11] M. Hoffman, The algebra of multiple harmonic series, J. of Algebra, 194 (1997), [12] K. Ihara, Derivation and double shuffle relations for multiple zeta values, RIMS 1549 (2007), [13] K. Ihara, M. Kaneo, D. Zagier, Derivation and double shuffle relations for multiple zeta values, Compositio Math. 142 (2006),

21 [14] K. Ihara, H. Ochiai, Symmetry on linear relations for multiple zeta values, Nagoya Math. J. 189 (2008), [15] C. Kassel, Quantum groups, Graduate Texts in Mathematics, 155. Springer-Verlag, New Yor, [16] W. Kohnen, D. Zagier, Modular forms with rational periods, Modular forms (Durham, 1983), , Ellis Horwood [17] S. Lang, Introduction to modular forms. Grundlehren der mathematischen Wissenschaften, No Springer-Verlag, Berlin-New Yor, [18] C. Reutenauer, Free Lie algebras (Oxford Science Publications, Oxford, 1993). [19] G. Shimura, Introduction to the arithmetic theory of automorphic functions. Kanô Memorial Lectures, No. 1. Publications of the Mathematical Society of Japan, No. 11. Iwanami Shoten, Publishers, Toyo; Princeton University Press, Princeton, N.J., [20] L. Schneps, On the Poisson Bracet on the Free Lie Algebra in two Generators, Journal of Lie Theory 16(1) (2006), [21] T. Terasoma, Mixed Tate motives and multiple zeta values, Invent. Math. 149(2) (2002), [22] C. Weibel, An introduction to homological algebra, Cambridge Studies in Advanced Mathematics, 38. Cambridge University Press, [23] D. Zagier, Values of zeta functions and their applications, First European Congress of Mathematics, Vol. II (Paris, 1992), Progr. Math., 120, Birhäuser, Basel (1994), [24] D. Zagier, Periods of modular forms, traces of Hece operators, and multiple zeta values, in Hoei-eishii to L-ansuu no enyuu (= Research on Automorphic Forms and L-Functions), RIMS Koyurou 843 (1993),

SAMA- SUKU-RU Contents p-adic families of Eisenstein series (modular form) Hecke Eisenstein Eisenstein p T

SAMA- SUKU-RU Contents p-adic families of Eisenstein series (modular form) Hecke Eisenstein Eisenstein p T SAMA- SUKU-RU Contents 1. 1 2. 7.1. p-adic families of Eisenstein series 3 2.1. modular form Hecke 3 2.2. Eisenstein 5 2.3. Eisenstein p 7 3. 7.2. The projection to the ordinary part 9 3.1. The ordinary

More information

k + (1/2) S k+(1/2) (Γ 0 (N)) N p Hecke T k+(1/2) (p 2 ) S k+1/2 (Γ 0 (N)) M > 0 2k, M S 2k (Γ 0 (M)) Hecke T 2k (p) (p M) 1.1 ( ). k 2 M N M N f S k+

k + (1/2) S k+(1/2) (Γ 0 (N)) N p Hecke T k+(1/2) (p 2 ) S k+1/2 (Γ 0 (N)) M > 0 2k, M S 2k (Γ 0 (M)) Hecke T 2k (p) (p M) 1.1 ( ). k 2 M N M N f S k+ 1 SL 2 (R) γ(z) = az + b cz + d ( ) a b z h, γ = SL c d 2 (R) h 4 N Γ 0 (N) {( ) } a b Γ 0 (N) = SL c d 2 (Z) c 0 mod N θ(z) θ(z) = q n2 q = e 2π 1z, z h n Z Γ 0 (4) j(γ, z) ( ) a b θ(γ(z)) = j(γ, z)θ(z)

More information

2016 Course Description of Undergraduate Seminars (2015 12 16 ) 2016 12 16 ( ) 13:00 15:00 12 16 ( ) 1 21 ( ) 1 13 ( ) 17:00 1 14 ( ) 12:00 1 21 ( ) 15:00 1 27 ( ) 13:00 14:00 2 1 ( ) 17:00 2 3 ( ) 12

More information

[Oc, Proposition 2.1, Theorem 2.4] K X (a) l (b) l (a) (b) X [M3] Huber adic 1 Huber ([Hu1], [Hu2], [Hu3]) adic 1.1 adic A I I A {I n } 0 adic 2

[Oc, Proposition 2.1, Theorem 2.4] K X (a) l (b) l (a) (b) X [M3] Huber adic 1 Huber ([Hu1], [Hu2], [Hu3]) adic 1.1 adic A I I A {I n } 0 adic 2 On the action of the Weil group on the l-adic cohomology of rigid spaces over local fields (Yoichi Mieda) Graduate School of Mathematical Sciences, The University of Tokyo 0 l Galois K F F q l q K, F K,

More information

Siegel modular forms of middle parahoric subgroups and Ihara lift ( Tomoyoshi Ibukiyama Osaka University 1. Introduction [8] Ihara Sp(2, R) p

Siegel modular forms of middle parahoric subgroups and Ihara lift ( Tomoyoshi Ibukiyama Osaka University 1. Introduction [8] Ihara Sp(2, R) p Siegel modular forms of middle parahoric subgroups and Ihara lift ( Tomoyoshi Ibukiyama Osaka University 1. Introduction [8] Ihara 80 1963 Sp(2, R) p L holomorphic discrete series Eichler Brandt Eichler

More information

Mazur [Ma1] Schlessinger [Sch] [SL] [Ma1] [Ma1] [Ma2] Galois [] 17 R m R R R M End R M) M R ut R M) M R R G R[G] R G Sets 1 Λ Noether Λ k Λ m Λ k C Λ

Mazur [Ma1] Schlessinger [Sch] [SL] [Ma1] [Ma1] [Ma2] Galois [] 17 R m R R R M End R M) M R ut R M) M R R G R[G] R G Sets 1 Λ Noether Λ k Λ m Λ k C Λ Galois ) 0 1 1 2 2 4 3 10 4 12 5 14 16 0 Galois Galois Galois TaylorWiles Fermat [W][TW] Galois Galois Galois 1 Noether 2 1 Mazur [Ma1] Schlessinger [Sch] [SL] [Ma1] [Ma1] [Ma2] Galois [] 17 R m R R R

More information

0. I II I II (1) linear type: GL( ), Sp( ), O( ), (2) loop type: loop current Kac-Moody affine, hyperbolic (3) diffeo t

0. I II I II (1) linear type: GL( ), Sp( ), O( ), (2) loop type: loop current Kac-Moody affine, hyperbolic (3) diffeo t e-mail: koyama@math.keio.ac.jp 0. I II I II (1) linear type: GL( ), Sp( ), O( ), (2) loop type: loop current Kac-Moody affine, hyperbolic (3) diffeo type: diffeo universal Teichmuller modular I. I-. Weyl

More information

i Version 1.1, (2012/02/22 24),.,..,.,,. R-space,, ( R- space),, Kahler (Kähler C-space)., R-space,., R-space, Hermite,.

i Version 1.1, (2012/02/22 24),.,..,.,,. R-space,, ( R- space),, Kahler (Kähler C-space)., R-space,., R-space, Hermite,. R-space ( ) Version 1.1 (2012/02/29) i Version 1.1, (2012/02/22 24),.,..,.,,. R-space,, ( R- space),, Kahler (Kähler C-space)., R-space,., R-space, Hermite,. ii 1 Lie 1 1.1 Killing................................

More information

平成 30 年度 ( 第 40 回 ) 数学入門公開講座テキスト ( 京都大学数理解析研究所, 平成 30 ~8 年月 72 月日開催 30 日 [6] 1 4 A 1 A 2 A 3 l P 3 P 2 P 1 B 1 B 2 B 3 m 1 l 3 A 1, A 2, A 3 m 3 B 1,

平成 30 年度 ( 第 40 回 ) 数学入門公開講座テキスト ( 京都大学数理解析研究所, 平成 30 ~8 年月 72 月日開催 30 日 [6] 1 4 A 1 A 2 A 3 l P 3 P 2 P 1 B 1 B 2 B 3 m 1 l 3 A 1, A 2, A 3 m 3 B 1, [6] 1 4 A 1 A 2 A 3 l P 3 P 2 P 1 B 1 B 2 B 3 m 1 l 3 A 1, A 2, A 3 m 3 B 1, B 2, B 3 A i 1 B i+1 A i+1 B i 1 P i i = 1, 2, 3 3 3 P 1, P 2, P 3 1 *1 19 3 27 B 2 P m l (*) l P P l m m 1 P l m + m *1 A N

More information

平成 15 年度 ( 第 25 回 ) 数学入門公開講座テキスト ( 京都大学数理解析研究所, 平成 ~8 15 月年 78 日開催月 4 日 ) X 2 = 1 ( ) f 1 (X 1,..., X n ) = 0,..., f r (X 1,..., X n ) = 0 X = (

平成 15 年度 ( 第 25 回 ) 数学入門公開講座テキスト ( 京都大学数理解析研究所, 平成 ~8 15 月年 78 日開催月 4 日 ) X 2 = 1 ( ) f 1 (X 1,..., X n ) = 0,..., f r (X 1,..., X n ) = 0 X = ( 1 1.1 X 2 = 1 ( ) f 1 (X 1,..., X n ) = 0,..., f r (X 1,..., X n ) = 0 X = (X 1,..., X n ) ( ) X 1,..., X n f 1,..., f r A T X + XA XBR 1 B T X + C T QC = O X 1.2 X 1,..., X n X i X j X j X i = 0, P i

More information

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,. 9 α ν β Ξ ξ Γ γ o δ Π π ε ρ ζ Σ σ η τ Θ θ Υ υ ι Φ φ κ χ Λ λ Ψ ψ µ Ω ω Def, Prop, Th, Lem, Note, Remark, Ex,, Proof, R, N, Q, C [a, b {x R : a x b} : a, b {x R : a < x < b} : [a, b {x R : a x < b} : a,

More information

meiji_resume_1.PDF

meiji_resume_1.PDF β β β (q 1,q,..., q n ; p 1, p,..., p n ) H(q 1,q,..., q n ; p 1, p,..., p n ) Hψ = εψ ε k = k +1/ ε k = k(k 1) (x, y, z; p x, p y, p z ) (r; p r ), (θ; p θ ), (ϕ; p ϕ ) ε k = 1/ k p i dq i E total = E

More information

2.1 H f 3, SL(2, Z) Γ k (1) f H (2) γ Γ f k γ = f (3) f Γ \H cusp γ SL(2, Z) f k γ Fourier f k γ = a γ (n)e 2πinz/N n=0 (3) γ SL(2, Z) a γ (0) = 0 f c

2.1 H f 3, SL(2, Z) Γ k (1) f H (2) γ Γ f k γ = f (3) f Γ \H cusp γ SL(2, Z) f k γ Fourier f k γ = a γ (n)e 2πinz/N n=0 (3) γ SL(2, Z) a γ (0) = 0 f c GL 2 1 Lie SL(2, R) GL(2, A) Gelbart [Ge] 1 3 [Ge] Jacquet-Langlands [JL] Bump [Bu] Borel([Bo]) ([Ko]) ([Mo]) [Mo] 2 2.1 H = {z C Im(z) > 0} Γ SL(2, Z) Γ N N Γ (N) = {γ SL(2, Z) γ = 1 2 mod N} g SL(2,

More information

φ 4 Minimal subtraction scheme 2-loop ε 2008 (University of Tokyo) (Atsuo Kuniba) version 21/Apr/ Formulas Γ( n + ɛ) = ( 1)n (1 n! ɛ + ψ(n + 1)

φ 4 Minimal subtraction scheme 2-loop ε 2008 (University of Tokyo) (Atsuo Kuniba) version 21/Apr/ Formulas Γ( n + ɛ) = ( 1)n (1 n! ɛ + ψ(n + 1) φ 4 Minimal subtraction scheme 2-loop ε 28 University of Tokyo Atsuo Kuniba version 2/Apr/28 Formulas Γ n + ɛ = n n! ɛ + ψn + + Oɛ n =,, 2, ψn + = + 2 + + γ, 2 n ψ = γ =.5772... Euler const, log + ax x

More information

1 M = (M, g) m Riemann N = (N, h) n Riemann M N C f : M N f df : T M T N M T M f N T N M f 1 T N T M f 1 T N C X, Y Γ(T M) M C T M f 1 T N M Levi-Civi

1 M = (M, g) m Riemann N = (N, h) n Riemann M N C f : M N f df : T M T N M T M f N T N M f 1 T N T M f 1 T N C X, Y Γ(T M) M C T M f 1 T N M Levi-Civi 1 Surveys in Geometry 1980 2 6, 7 Harmonic Map Plateau Eells-Sampson [5] Siu [19, 20] Kähler 6 Reports on Global Analysis [15] Sacks- Uhlenbeck [18] Siu-Yau [21] Frankel Siu Yau Frankel [13] 1 Surveys

More information

. Mac Lane [ML98]. 1 2 (strict monoidal category) S 1 R 3 A S 1 [0, 1] C 2 C End C (1) C 4 1 U q (sl 2 ) Drinfeld double. 6 2

. Mac Lane [ML98]. 1 2 (strict monoidal category) S 1 R 3 A S 1 [0, 1] C 2 C End C (1) C 4 1 U q (sl 2 ) Drinfeld double. 6 2 2014 6 30. 2014 3 1 6 (Hopf algebra) (group) Andruskiewitsch-Santos [AFS09] 1980 Drinfeld (quantum group) Lie Lie (ribbon Hopf algebra) (ribbon category) Turaev [Tur94] Kassel [Kas95] (PD) x12005i@math.nagoya-u.ac.jp

More information

1

1 1 Borel1956 Groupes linéaire algébriques, Ann. of Math. 64 (1956), 20 82. Chevalley1956/58 Sur la classification des groupes de Lie algébriques, Sém. Chevalley 1956/58, E.N.S., Paris. Tits1959 Sur la classification

More information

D-brane K 1, 2 ( ) 1 K D-brane K K D-brane Witten [1] D-brane K K K K D-brane D-brane K RR BPS D-brane

D-brane K 1, 2   ( ) 1 K D-brane K K D-brane Witten [1] D-brane K K K K D-brane D-brane K RR BPS D-brane D-brane K 1, 2 E-mail: sugimoto@yukawa.kyoto-u.ac.jp (2004 12 16 ) 1 K D-brane K K D-brane Witten [1] D-brane K K K K D-brane D-brane K RR BPS D-brane D-brane RR D-brane K D-brane K D-brane K K [2, 3]

More information

Siegel Hecke 1 Siege Hecke L L Fourier Dirichlet Hecke Euler L Euler Fourier Hecke [Fr] Andrianov [An2] Hecke Satake L van der Geer ([vg]) L [Na1] [Yo

Siegel Hecke 1 Siege Hecke L L Fourier Dirichlet Hecke Euler L Euler Fourier Hecke [Fr] Andrianov [An2] Hecke Satake L van der Geer ([vg]) L [Na1] [Yo Siegel Hecke 1 Siege Hecke L L Fourier Dirichlet Hecke Euler L Euler Fourier Hecke [Fr] Andrianov [An2] Hecke Satake L van der Geer ([vg]) L [Na1] [Yo] 2 Hecke ( ) 0 1n J n =, Γ = Γ n = Sp(n, Z) = {γ GL(2n,

More information

Twist knot orbifold Chern-Simons

Twist knot orbifold Chern-Simons Twist knot orbifold Chern-Simons 1 3 M π F : F (M) M ω = {ω ij }, Ω = {Ω ij }, cs := 1 4π 2 (ω 12 ω 13 ω 23 + ω 12 Ω 12 + ω 13 Ω 13 + ω 23 Ω 23 ) M Chern-Simons., S. Chern J. Simons, F (M) Pontrjagin 2.,

More information

(2) Fisher α (α) α Fisher α ( α) 0 Levi Civita (1) ( 1) e m (e) (m) ([1], [2], [13]) Poincaré e m Poincaré e m Kähler-like 2 Kähler-like

(2) Fisher α (α) α Fisher α ( α) 0 Levi Civita (1) ( 1) e m (e) (m) ([1], [2], [13]) Poincaré e m Poincaré e m Kähler-like 2 Kähler-like () 10 9 30 1 Fisher α (α) α Fisher α ( α) 0 Levi Civita (1) ( 1) e m (e) (m) ([1], [], [13]) Poincaré e m Poincaré e m Kähler-like Kähler-like Kähler M g M X, Y, Z (.1) Xg(Y, Z) = g( X Y, Z) + g(y, XZ)

More information

main.dvi

main.dvi SGC - 70 2, 3 23 ɛ-δ 2.12.8 3 2.92.13 4 2 3 1 2.1 2.102.12 [8][14] [1],[2] [4][7] 2 [4] 1 2009 8 1 1 1.1... 1 1.2... 4 1.3 1... 8 1.4 2... 9 1.5... 12 1.6 1... 16 1.7... 18 1.8... 21 1.9... 23 2 27 2.1

More information

A11 (1993,1994) 29 A12 (1994) 29 A13 Trefethen and Bau Numerical Linear Algebra (1997) 29 A14 (1999) 30 A15 (2003) 30 A16 (2004) 30 A17 (2007) 30 A18

A11 (1993,1994) 29 A12 (1994) 29 A13 Trefethen and Bau Numerical Linear Algebra (1997) 29 A14 (1999) 30 A15 (2003) 30 A16 (2004) 30 A17 (2007) 30 A18 2013 8 29y, 2016 10 29 1 2 2 Jordan 3 21 3 3 Jordan (1) 3 31 Jordan 4 32 Jordan 4 33 Jordan 6 34 Jordan 8 35 9 4 Jordan (2) 10 41 x 11 42 x 12 43 16 44 19 441 19 442 20 443 25 45 25 5 Jordan 26 A 26 A1

More information

newmain.dvi

newmain.dvi 数論 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/008142 このサンプルページの内容は, 第 2 版 1 刷発行当時のものです. Daniel DUVERNEY: THÉORIE DES NOMBRES c Dunod, Paris, 1998, This book is published

More information

x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y)

x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y) x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 1 1977 x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y) ( x 2 y + xy 2 x 2 2xy y 2) = 15 (x y) (x + y) (xy

More information

1 Abstract 2 3 n a ax 2 + bx + c = 0 (a 0) (1) ( x + b ) 2 = b2 4ac 2a 4a 2 D = b 2 4ac > 0 (1) 2 D = 0 D < 0 x + b 2a = ± b2 4ac 2a b ± b 2

1 Abstract 2 3 n a ax 2 + bx + c = 0 (a 0) (1) ( x + b ) 2 = b2 4ac 2a 4a 2 D = b 2 4ac > 0 (1) 2 D = 0 D < 0 x + b 2a = ± b2 4ac 2a b ± b 2 1 Abstract n 1 1.1 a ax + bx + c = 0 (a 0) (1) ( x + b ) = b 4ac a 4a D = b 4ac > 0 (1) D = 0 D < 0 x + b a = ± b 4ac a b ± b 4ac a b a b ± 4ac b i a D (1) ax + bx + c D 0 () () (015 8 1 ) 1. D = b 4ac

More information

数学Ⅱ演習(足助・09夏)

数学Ⅱ演習(足助・09夏) II I 9/4/4 9/4/2 z C z z z z, z 2 z, w C zw z w 3 z, w C z + w z + w 4 t R t C t t t t t z z z 2 z C re z z + z z z, im z 2 2 3 z C e z + z + 2 z2 + 3! z3 + z!, I 4 x R e x cos x + sin x 2 z, w C e z+w

More information

Macdonald, ,,, Macdonald. Macdonald,,,,,.,, Gauss,,.,, Lauricella A, B, C, D, Gelfand, A,., Heckman Opdam.,,,.,,., intersection,. Macdona

Macdonald, ,,, Macdonald. Macdonald,,,,,.,, Gauss,,.,, Lauricella A, B, C, D, Gelfand, A,., Heckman Opdam.,,,.,,., intersection,. Macdona Macdonald, 2015.9.1 9.2.,,, Macdonald. Macdonald,,,,,.,, Gauss,,.,, Lauricella A, B, C, D, Gelfand, A,., Heckman Opdam.,,,.,,., intersection,. Macdonald,, q., Heckman Opdam q,, Macdonald., 1 ,,. Macdonald,

More information

Dynkin Serre Weyl

Dynkin Serre Weyl Dynkin Naoya Enomoto 2003.3. paper Dynkin Introduction Dynkin Lie Lie paper 1 0 Introduction 3 I ( ) Lie Dynkin 4 1 ( ) Lie 4 1.1 Lie ( )................................ 4 1.2 Killing form...........................................

More information

K 2 X = 4 MWG(f), X P 2 F, υ 0 : X P 2 2,, {f λ : X λ P 1 } λ Λ NS(X λ ), (υ 0 ) λ : X λ P 2 ( 1) X 6, f λ K X + F, f ( 1), n, n 1 (cf [10]) X, f : X

K 2 X = 4 MWG(f), X P 2 F, υ 0 : X P 2 2,, {f λ : X λ P 1 } λ Λ NS(X λ ), (υ 0 ) λ : X λ P 2 ( 1) X 6, f λ K X + F, f ( 1), n, n 1 (cf [10]) X, f : X 2 E 8 1, E 8, [6], II II, E 8, 2, E 8,,, 2 [14],, X/C, f : X P 1 2 3, f, (O), f X NS(X), (O) T ( 1), NS(X), T [15] : MWG(f) NS(X)/T, MWL(f) 0 (T ) NS(X), MWL(f) MWL(f) 0, : {f λ : X λ P 1 } λ Λ NS(X λ

More information

( ) 1., ([SU] ): F K k., Z p -, (cf. [Iw2], [Iw3], [Iw6]). K F F/K Z p - k /k., Weil., K., K F F p- ( 4.1).,, Z p -,., Weil..,,. Weil., F, F projectiv

( ) 1., ([SU] ): F K k., Z p -, (cf. [Iw2], [Iw3], [Iw6]). K F F/K Z p - k /k., Weil., K., K F F p- ( 4.1).,, Z p -,., Weil..,,. Weil., F, F projectiv ( ) 1 ([SU] ): F K k Z p - (cf [Iw2] [Iw3] [Iw6]) K F F/K Z p - k /k Weil K K F F p- ( 41) Z p - Weil Weil F F projective smooth C C Jac(C)/F ( ) : 2 3 4 5 Tate Weil 6 7 Z p - 2 [Iw1] 2 21 K k k 1 k K

More information

2 2 MATHEMATICS.PDF 200-2-0 3 2 (p n ), ( ) 7 3 4 6 5 20 6 GL 2 (Z) SL 2 (Z) 27 7 29 8 SL 2 (Z) 35 9 2 40 0 2 46 48 2 2 5 3 2 2 58 4 2 6 5 2 65 6 2 67 7 2 69 2 , a 0 + a + a 2 +... b b 2 b 3 () + b n a

More information

D 24 D D D

D 24 D D D 5 Paper I.R. 2001 5 Paper HP Paper 5 3 5.1................................................... 3 5.2.................................................... 4 5.3.......................................... 6

More information

R C Gunning, Lectures on Riemann Surfaces, Princeton Math Notes, Princeton Univ Press 1966,, (4),,, Gunning, Schwarz Schwarz Schwarz, {z; x}, [z; x] =

R C Gunning, Lectures on Riemann Surfaces, Princeton Math Notes, Princeton Univ Press 1966,, (4),,, Gunning, Schwarz Schwarz Schwarz, {z; x}, [z; x] = Schwarz 1, x z = z(x) {z; x} {z; x} = z z 1 2 z z, = d/dx (1) a 0, b {az; x} = {z; x}, {z + b; x} = {z; x} {1/z; x} = {z; x} (2) ad bc 0 a, b, c, d 2 { az + b cz + d ; x } = {z; x} (3) z(x) = (ax + b)/(cx

More information

20 6 4 1 4 1.1 1.................................... 4 1.1.1.................................... 4 1.1.2 1................................ 5 1.2................................... 7 1.2.1....................................

More information

X G P G (X) G BG [X, BG] S 2 2 2 S 2 2 S 2 = { (x 1, x 2, x 3 ) R 3 x 2 1 + x 2 2 + x 2 3 = 1 } R 3 S 2 S 2 v x S 2 x x v(x) T x S 2 T x S 2 S 2 x T x S 2 = { ξ R 3 x ξ } R 3 T x S 2 S 2 x x T x S 2

More information

xia2.dvi

xia2.dvi Journal of Differential Equations 96 (992), 70-84 Melnikov method and transversal homoclinic points in the restricted three-body problem Zhihong Xia Department of Mathematics, Harvard University Cambridge,

More information

Donaldson Seiberg-Witten [GNY] f U U C 1 f(z)dz = Res f(a) 2πi C a U U α = f(z)dz dα = 0 U f U U P 1 α 0 a P 1 Res a α = 0. P 1 Donaldson Seib

Donaldson Seiberg-Witten [GNY] f U U C 1 f(z)dz = Res f(a) 2πi C a U U α = f(z)dz dα = 0 U f U U P 1 α 0 a P 1 Res a α = 0. P 1 Donaldson Seib ( ) Donaldson Seiberg-Witten Witten Göttsche [GNY] L. Göttsche, H. Nakajima and K. Yoshioka, Donaldson = Seiberg-Witten from Mochizuki s formula and instanton counting, Publ. of RIMS, to appear Donaldson

More information

Z: Q: R: C:

Z: Q: R: C: 0 Z: Q: R: C: 3 4 4 4................................ 4 4.................................. 7 5 3 5...................... 3 5......................... 40 5.3 snz) z)........................... 4 6 46 x

More information

コホモロジー的AGT対応とK群類似

コホモロジー的AGT対応とK群類似 AGT K ( ) Encounter with Mathematics October 29, 2016 AGT L. F. Alday, D. Gaiotto, Y. Tachikawa, Liouville Correlation Functions from Four-dimensional Gauge Theories, Lett. Math. Phys. 91 (2010), arxiv:0906.3219.

More information

III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F

III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F F 1 F 2 F, (3) F λ F λ F λ F. 3., A λ λ A λ. B λ λ

More information

,2,4

,2,4 2005 12 2006 1,2,4 iii 1 Hilbert 14 1 1.............................................. 1 2............................................... 2 3............................................... 3 4.............................................

More information

(a) (b) (c) (d) 1: (a) (b) (c) (d) (a) (b) (c) 2: (a) (b) (c) 1(b) [1 10] 1 degree k n(k) walk path 4

(a) (b) (c) (d) 1: (a) (b) (c) (d) (a) (b) (c) 2: (a) (b) (c) 1(b) [1 10] 1 degree k n(k) walk path 4 1 vertex edge 1(a) 1(b) 1(c) 1(d) 2 (a) (b) (c) (d) 1: (a) (b) (c) (d) 1 2 6 1 2 6 1 2 6 3 5 3 5 3 5 4 4 (a) (b) (c) 2: (a) (b) (c) 1(b) [1 10] 1 degree k n(k) walk path 4 1: Zachary [11] [12] [13] World-Wide

More information

( 9 1 ) 1 2 1.1................................... 2 1.2................................................. 3 1.3............................................... 4 1.4...........................................

More information

Feynman Encounter with Mathematics 52, [1] N. Kumano-go, Feynman path integrals as analysis on path space by time slicing approximation. Bull

Feynman Encounter with Mathematics 52, [1] N. Kumano-go, Feynman path integrals as analysis on path space by time slicing approximation. Bull Feynman Encounter with Mathematics 52, 200 9 [] N. Kumano-go, Feynman path integrals as analysis on path space by time slicing approximation. Bull. Sci. Math. vol. 28 (2004) 97 25. [2] D. Fujiwara and

More information

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2 II No.1 [n/] [1]H n x) H n x) = 1) r n! r!n r)! x)n r r= []H n x) n,, H n x) = 1) n H n x) [3] H n x) = 1) n dn x e dx n e x [4] H n+1 x) = xh n x) nh n 1 x) ) d dx x H n x) = H n+1 x) d dx H nx) = nh

More information

20 9 19 1 3 11 1 3 111 3 112 1 4 12 6 121 6 122 7 13 7 131 8 132 10 133 10 134 12 14 13 141 13 142 13 143 15 144 16 145 17 15 19 151 1 19 152 20 2 21 21 21 211 21 212 1 23 213 1 23 214 25 215 31 22 33

More information

2/14 2 () (O O) O O (O O) id γ γ id O O γ O O O γ η id id η I O O O O I γ O. O(n) n *5 γ η γ S M, N M N (M N)(n) ( ) M(k) Sk Ind S n S i1 S ik N(i 1 )

2/14 2 () (O O) O O (O O) id γ γ id O O γ O O O γ η id id η I O O O O I γ O. O(n) n *5 γ η γ S M, N M N (M N)(n) ( ) M(k) Sk Ind S n S i1 S ik N(i 1 ) 1/14 * 1. Vassiliev Hopf P = k P k Kontsevich Bar-Natan P k (g,n) k=g 1+n, n>0, g 0 H 1 g ( S 1 H F(Com) ) ((g, n)) Sn. Com F Feynman ()S 1 H S n ()Kontsevich ( - - Lie ) 1 *2 () [LV12] Koszul 1.1 S F

More information

液晶の物理1:連続体理論(弾性,粘性)

液晶の物理1:連続体理論(弾性,粘性) The Physics of Liquid Crystals P. G. de Gennes and J. Prost (Oxford University Press, 1993) Liquid crystals are beautiful and mysterious; I am fond of them for both reasons. My hope is that some readers

More information

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 第 2 版 1 刷発行時のものです. 医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/009192 このサンプルページの内容は, 第 2 版 1 刷発行時のものです. i 2 t 1. 2. 3 2 3. 6 4. 7 5. n 2 ν 6. 2 7. 2003 ii 2 2013 10 iii 1987

More information

Z: Q: R: C: sin 6 5 ζ a, b

Z: Q: R: C: sin 6 5 ζ a, b Z: Q: R: C: 3 3 7 4 sin 6 5 ζ 9 6 6............................... 6............................... 6.3......................... 4 7 6 8 8 9 3 33 a, b a bc c b a a b 5 3 5 3 5 5 3 a a a a p > p p p, 3,

More information

1. A0 A B A0 A : A1,...,A5 B : B1,...,B

1. A0 A B A0 A : A1,...,A5 B : B1,...,B 1. A0 A B A0 A : A1,...,A5 B : B1,...,B12 2. 3. 4. 5. A0 A, B Z Z m, n Z m n m, n A m, n B m=n (1) A, B (2) A B = A B = Z/ π : Z Z/ (3) A B Z/ (4) Z/ A, B (5) f : Z Z f(n) = n f = g π g : Z/ Z A, B (6)

More information

2010 ( )

2010 ( ) 2010 (2010 1 8 2010 1 13 ( 1 29 ( 17:00 2 3 ( e-mail (1 3 (2 (3 (1 (4 2010 1 2 3 4 5 6 7 8 9 10 11 Hesselholt, Lars 12 13 i 1 ( 2 3 Cohen-Macaulay Auslander-Reiten [1] [2] 5 [1], :,, 2002 [2] I Assem,

More information

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d S I.. http://ayapin.film.s.dendai.ac.jp/~matuda /TeX/lecture.html PDF PS.................................... 3.3.................... 9.4................5.............. 3 5. Laplace................. 5....

More information

1 = = = (set) (element) a A a A a A a A a A {2, 5, (0, 1)}, [ 1, 1] = {x; 1 x 1}. (proposition) A = {x; P (x)} P (x) x x a A a A Remark. (i) {2, 0, 0,

1 = = = (set) (element) a A a A a A a A a A {2, 5, (0, 1)}, [ 1, 1] = {x; 1 x 1}. (proposition) A = {x; P (x)} P (x) x x a A a A Remark. (i) {2, 0, 0, 2005 4 1 1 2 2 6 3 8 4 11 5 14 6 18 7 20 8 22 9 24 10 26 11 27 http://matcmadison.edu/alehnen/weblogic/logset.htm 1 1 = = = (set) (element) a A a A a A a A a A {2, 5, (0, 1)}, [ 1, 1] = {x; 1 x 1}. (proposition)

More information

Basic Math. 1 0 [ N Z Q Q c R C] 1, 2, 3,... natural numbers, N Def.(Definition) N (1) 1 N, (2) n N = n +1 N, (3) N (1), (2), n N n N (element). n/ N.

Basic Math. 1 0 [ N Z Q Q c R C] 1, 2, 3,... natural numbers, N Def.(Definition) N (1) 1 N, (2) n N = n +1 N, (3) N (1), (2), n N n N (element). n/ N. Basic Mathematics 16 4 16 3-4 (10:40-12:10) 0 1 1 2 2 2 3 (mapping) 5 4 ε-δ (ε-δ Logic) 6 5 (Potency) 9 6 (Equivalence Relation and Order) 13 7 Zorn (Axiom of Choice, Zorn s Lemma) 14 8 (Set and Topology)

More information

, CH n. CH n, CP n,,,., CH n,,. RH n ( Cartan )., CH n., RH n CH n,,., RH n, CH n., RH n ( ), CH n ( 1.1 (v), (vi) )., RH n,, CH n,., CH n,. 1.2, CH n

, CH n. CH n, CP n,,,., CH n,,. RH n ( Cartan )., CH n., RH n CH n,,., RH n, CH n., RH n ( ), CH n ( 1.1 (v), (vi) )., RH n,, CH n,., CH n,. 1.2, CH n ( ), Jürgen Berndt,.,. 1, CH n.,,. 1.1 ([6]). CH n (n 2), : (i) CH k (k = 0,..., n 1) tube. (ii) RH n tube. (iii). (iv) ruled minimal, equidistant. (v) normally homogeneous submanifold F k tube. (vi) normally

More information

( ) (, ) ( )

( ) (, ) ( ) ( ) (, ) ( ) 1 2 2 2 2.1......................... 2 2.2.............................. 3 2.3............................... 4 2.4.............................. 5 2.5.............................. 6 2.6..........................

More information

λ n numbering Num(λ) Young numbering T i j T ij Young T (content) cont T (row word) word T µ n S n µ C(µ) 0.2. Young λ, µ n Kostka K µλ K µλ def = #{T

λ n numbering Num(λ) Young numbering T i j T ij Young T (content) cont T (row word) word T µ n S n µ C(µ) 0.2. Young λ, µ n Kostka K µλ K µλ def = #{T 0 2 8 8 6 3 0 0 Young Young [F] 0.. Young λ n λ n λ = (λ,, λ l ) λ λ 2 λ l λ = ( m, 2 m 2, ) λ = n, l(λ) = l {λ n n 0} P λ = (λ, ), µ = (µ, ) n λ µ k k k λ i µ i λ µ λ = µ k i= i= i < k λ i = µ i λ k >

More information

25 7 18 1 1 1.1 v.s............................. 1 1.1.1.................................. 1 1.1.2................................. 1 1.1.3.................................. 3 1.2................... 3

More information

Armstrong culture Web

Armstrong culture Web 2004 5 10 M.A. Armstrong, Groups and Symmetry, Springer-Verlag, NewYork, 1988 (2000) (1989) (2001) (2002) 1 Armstrong culture Web 1 3 1.1................................. 3 1.2.................................

More information

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google I4 - : April, 4 Version :. Kwhir, Tomoki TA (Kondo, Hirotk) Google http://www.mth.ngoy-u.c.jp/~kwhir/courses/4s-biseki.html pdf 4 4 4 4 8 e 5 5 9 etc. 5 6 6 6 9 n etc. 6 6 6 3 6 3 7 7 etc 7 4 7 7 8 5 59

More information

等質空間の幾何学入門

等質空間の幾何学入門 2006/12/04 08 tamaru@math.sci.hiroshima-u.ac.jp i, 2006/12/04 08. 2006, 4.,,.,,.,.,.,,.,,,.,.,,.,,,.,. ii 1 1 1.1 :................................... 1 1.2........................................ 2 1.3......................................

More information

30

30 3 ............................................2 2...........................................2....................................2.2...................................2.3..............................

More information

163 KdV KP Lax pair L, B L L L 1/2 W 1 LW = ( / x W t 1, t 2, t 3, ψ t n ψ/ t n = B nψ (KdV B n = L n/2 KP B n = L n KdV KP Lax W Lax τ KP L ψ τ τ Cha

163 KdV KP Lax pair L, B L L L 1/2 W 1 LW = ( / x W t 1, t 2, t 3, ψ t n ψ/ t n = B nψ (KdV B n = L n/2 KP B n = L n KdV KP Lax W Lax τ KP L ψ τ τ Cha 63 KdV KP Lax pair L, B L L L / W LW / x W t, t, t 3, ψ t n / B nψ KdV B n L n/ KP B n L n KdV KP Lax W Lax τ KP L ψ τ τ Chapter 7 An Introduction to the Sato Theory Masayui OIKAWA, Faculty of Engneering,

More information

sakigake1.dvi

sakigake1.dvi (Zin ARAI) arai@cris.hokudai.ac.jp http://www.cris.hokudai.ac.jp/arai/ 1 dynamical systems ( mechanics ) dynamical systems 3 G X Ψ:G X X, (g, x) Ψ(g, x) =:Ψ g (x) Ψ id (x) =x, Ψ gh (x) =Ψ h (Ψ g (x)) (

More information

Z[i] Z[i] π 4,1 (x) π 4,3 (x) 1 x (x ) 2 log x π m,a (x) 1 x ϕ(m) log x 1.1 ( ). π(x) x (a, m) = 1 π m,a (x) x modm a 1 π m,a (x) 1 ϕ(m) π(x)

Z[i] Z[i] π 4,1 (x) π 4,3 (x) 1 x (x ) 2 log x π m,a (x) 1 x ϕ(m) log x 1.1 ( ). π(x) x (a, m) = 1 π m,a (x) x modm a 1 π m,a (x) 1 ϕ(m) π(x) 3 3 22 Z[i] Z[i] π 4, (x) π 4,3 (x) x (x ) 2 log x π m,a (x) x ϕ(m) log x. ( ). π(x) x (a, m) = π m,a (x) x modm a π m,a (x) ϕ(m) π(x) ϕ(m) x log x ϕ(m) m f(x) g(x) (x α) lim f(x)/g(x) = x α mod m (a,

More information

8.1 Fubini 8.2 Fubini 9 (0%) 10 (50%) Carathéodory 10.3 Fubini 1 Introduction 1 (1) (2) {f n (x)} n=1 [a, b] K > 0 n, x f n (x) K < ( ) x [a

8.1 Fubini 8.2 Fubini 9 (0%) 10 (50%) Carathéodory 10.3 Fubini 1 Introduction 1 (1) (2) {f n (x)} n=1 [a, b] K > 0 n, x f n (x) K < ( ) x [a % 100% 1 Introduction 2 (100%) 2.1 2.2 2.3 3 (100%) 3.1 3.2 σ- 4 (100%) 4.1 4.2 5 (100%) 5.1 5.2 5.3 6 (100%) 7 (40%) 8 Fubini (90%) 2007.11.5 1 8.1 Fubini 8.2 Fubini 9 (0%) 10 (50%) 10.1 10.2 Carathéodory

More information

I

I I 6 4 10 1 1 1.1............... 1 1................ 1 1.3.................... 1.4............... 1.4.1.............. 1.4................. 1.4.3........... 3 1.4.4.. 3 1.5.......... 3 1.5.1..............

More information

1 filename=mathformula tex 1 ax 2 + bx + c = 0, x = b ± b 2 4ac, (1.1) 2a x 1 + x 2 = b a, x 1x 2 = c a, (1.2) ax 2 + 2b x + c = 0, x = b ± b 2

1 filename=mathformula tex 1 ax 2 + bx + c = 0, x = b ± b 2 4ac, (1.1) 2a x 1 + x 2 = b a, x 1x 2 = c a, (1.2) ax 2 + 2b x + c = 0, x = b ± b 2 filename=mathformula58.tex ax + bx + c =, x = b ± b 4ac, (.) a x + x = b a, x x = c a, (.) ax + b x + c =, x = b ± b ac. a (.3). sin(a ± B) = sin A cos B ± cos A sin B, (.) cos(a ± B) = cos A cos B sin

More information

n ( (

n ( ( 1 2 27 6 1 1 m-mat@mathscihiroshima-uacjp 2 http://wwwmathscihiroshima-uacjp/~m-mat/teach/teachhtml 2 1 3 11 3 111 3 112 4 113 n 4 114 5 115 5 12 7 121 7 122 9 123 11 124 11 125 12 126 2 2 13 127 15 128

More information

Milnor 1 ( ), IX,. [KN].,. 2 : (1),. (2). 1 ; 1950, Milnor[M1, M2]. Milnor,,. ([Hil, HM, IO, St] ).,.,,, ( 2 5 )., Milnor ( 4.1)..,,., [CEGS],. Ω m, P

Milnor 1 ( ), IX,. [KN].,. 2 : (1),. (2). 1 ; 1950, Milnor[M1, M2]. Milnor,,. ([Hil, HM, IO, St] ).,.,,, ( 2 5 )., Milnor ( 4.1)..,,., [CEGS],. Ω m, P Milnor 1 ( ), IX,. [KN].,. 2 : (1),. (2). 1 ; 1950, Milnor[M1, M2]. Milnor,,. ([Hil, HM, IO, St] ).,.,,, ( 2 5 )., Milnor ( 4.1)..,,., [CEGS],. Ω m, PC ( 4 5 )., 5, Milnor Milnor., ( 6 )., (I) Z modulo

More information

I. (CREMONA ) : Cremona [C],., modular form f E f. 1., modular X H 1 (X, Q). modular symbol M-symbol, ( ) modular symbol., notation. H = { z = x

I. (CREMONA ) : Cremona [C],., modular form f E f. 1., modular X H 1 (X, Q). modular symbol M-symbol, ( ) modular symbol., notation. H = { z = x I. (CREMONA ) : Cremona [C],., modular form f E f. 1., modular X H 1 (X, Q). modular symbol M-symbol, ( ). 1.1. modular symbol., notation. H = z = x iy C y > 0, cusp H = H Q., Γ = PSL 2 (Z), G Γ [Γ : G]

More information

C p (.2 C p [[T ]] Bernoull B n,χ C p p q p 2 q = p p = 2 q = 4 ω Techmüller a Z p ω(a a ( mod q φ(q ω(a Z p a pz p ω(a = 0 Z p φ Euler Techmüller ω Q

C p (.2 C p [[T ]] Bernoull B n,χ C p p q p 2 q = p p = 2 q = 4 ω Techmüller a Z p ω(a a ( mod q φ(q ω(a Z p a pz p ω(a = 0 Z p φ Euler Techmüller ω Q p- L- [Iwa] [Iwa2] -Leopoldt [KL] p- L-. Kummer Remann ζ(s Bernoull B n (. ζ( n = B n n, ( n Z p a = Kummer [Kum] ( Kummer p m n 0 ( mod p m n a m n ( mod (p p a ( p m B m m ( pn B n n ( mod pa Z p Kummer

More information

i

i 009 I 1 8 5 i 0 1 0.1..................................... 1 0.................................................. 1 0.3................................. 0.4........................................... 3

More information

006 11 8 0 3 1 5 1.1..................... 5 1......................... 6 1.3.................... 6 1.4.................. 8 1.5................... 8 1.6................... 10 1.6.1......................

More information

A

A A 2563 15 4 21 1 3 1.1................................................ 3 1.2............................................. 3 2 3 2.1......................................... 3 2.2............................................

More information

Chern-Simons Jones 3 Chern-Simons 1 - Chern-Simons - Jones J(K; q) [1] Jones q 1 J (K + ; q) qj (K ; q) = (q 1/2 q

Chern-Simons   Jones 3 Chern-Simons 1 - Chern-Simons - Jones J(K; q) [1] Jones q 1 J (K + ; q) qj (K ; q) = (q 1/2 q Chern-Simons E-mail: fuji@th.phys.nagoya-u.ac.jp Jones 3 Chern-Simons - Chern-Simons - Jones J(K; q) []Jones q J (K + ; q) qj (K ; q) = (q /2 q /2 )J (K 0 ; q), () J( ; q) =. (2) K Figure : K +, K, K 0

More information

untitled

untitled Lie L ( Introduction L Rankin-Selberg, Hecke L (,,, Rankin, Selberg L (GL( GL( L, L. Rankin-Selberg, Fourier, (=Fourier (= Basic identity.,,.,, L.,,,,., ( Lie G (=G, G.., 5, Sp(, R,. L., GL(n, R Whittaker

More information

x (x, ) x y (, y) iy x y z = x + iy (x, y) (r, θ) r = x + y, θ = tan ( y ), π < θ π x r = z, θ = arg z z = x + iy = r cos θ + ir sin θ = r(cos θ + i s

x (x, ) x y (, y) iy x y z = x + iy (x, y) (r, θ) r = x + y, θ = tan ( y ), π < θ π x r = z, θ = arg z z = x + iy = r cos θ + ir sin θ = r(cos θ + i s ... x, y z = x + iy x z y z x = Rez, y = Imz z = x + iy x iy z z () z + z = (z + z )() z z = (z z )(3) z z = ( z z )(4)z z = z z = x + y z = x + iy ()Rez = (z + z), Imz = (z z) i () z z z + z z + z.. z

More information

変 位 変位とは 物体中のある点が変形後に 別の点に異動したときの位置の変化で あり ベクトル量である 変位には 物体の変形の他に剛体運動 剛体変位 が含まれている 剛体変位 P(x, y, z) 平行移動と回転 P! (x + u, y + v, z + w) Q(x + d x, y + dy,

変 位 変位とは 物体中のある点が変形後に 別の点に異動したときの位置の変化で あり ベクトル量である 変位には 物体の変形の他に剛体運動 剛体変位 が含まれている 剛体変位 P(x, y, z) 平行移動と回転 P! (x + u, y + v, z + w) Q(x + d x, y + dy, 変 位 変位とは 物体中のある点が変形後に 別の点に異動したときの位置の変化で あり ベクトル量である 変位には 物体の変形の他に剛体運動 剛体変位 が含まれている 剛体変位 P(x, y, z) 平行移動と回転 P! (x + u, y + v, z + w) Q(x + d x, y + dy, z + dz) Q! (x + d x + u + du, y + dy + v + dv, z +

More information

数学の基礎訓練I

数学の基礎訓練I I 9 6 13 1 1 1.1............... 1 1................ 1 1.3.................... 1.4............... 1.4.1.............. 1.4................. 3 1.4.3........... 3 1.4.4.. 3 1.5.......... 3 1.5.1..............

More information

(Bessel) (Legendre).. (Hankel). (Laplace) V = (x, y, z) n (r, θ, ϕ) r n f n (θ, ϕ). f n (θ, ϕ) n f n (θ, ϕ) z = cos θ z θ ϕ n ν. P ν (z), Q ν (z) (Fou

(Bessel) (Legendre).. (Hankel). (Laplace) V = (x, y, z) n (r, θ, ϕ) r n f n (θ, ϕ). f n (θ, ϕ) n f n (θ, ϕ) z = cos θ z θ ϕ n ν. P ν (z), Q ν (z) (Fou (Bessel) (Legendre).. (Hankel). (Laplace) V = (x, y, z) n (r, θ, ϕ) r n f n (θ, ϕ). f n (θ, ϕ) n f n (θ, ϕ) z = cos θ z θ ϕ n ν. P ν (z), Q ν (z) (Fourier) (Fourier Bessel).. V ρ(x, y, z) V = 4πGρ G :.

More information

I A A441 : April 15, 2013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida )

I A A441 : April 15, 2013 Version : 1.1 I   Kawahira, Tomoki TA (Shigehiro, Yoshida ) I013 00-1 : April 15, 013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida) http://www.math.nagoya-u.ac.jp/~kawahira/courses/13s-tenbou.html pdf * 4 15 4 5 13 e πi = 1 5 0 5 7 3 4 6 3 6 10 6 17

More information

A bound of the number of reduced Arakelov divisors of a number field (joint work with Ryusuke Yoshimitsu) Takao Watanabe Department of Mathematics Osa

A bound of the number of reduced Arakelov divisors of a number field (joint work with Ryusuke Yoshimitsu) Takao Watanabe Department of Mathematics Osa A bound of the number of reduced Arakelov divisors of a number field (joint work with Ryusuke Yoshimitsu) Takao Watanabe Department of Mathematics Osaka University , Schoof Algorithmic Number Theory, MSRI

More information

( )/2 hara/lectures/lectures-j.html 2, {H} {T } S = {H, T } {(H, H), (H, T )} {(H, T ), (T, T )} {(H, H), (T, T )} {1

( )/2   hara/lectures/lectures-j.html 2, {H} {T } S = {H, T } {(H, H), (H, T )} {(H, T ), (T, T )} {(H, H), (T, T )} {1 ( )/2 http://www2.math.kyushu-u.ac.jp/ hara/lectures/lectures-j.html 1 2011 ( )/2 2 2011 4 1 2 1.1 1 2 1 2 3 4 5 1.1.1 sample space S S = {H, T } H T T H S = {(H, H), (H, T ), (T, H), (T, T )} (T, H) S

More information

z f(z) f(z) x, y, u, v, r, θ r > 0 z = x + iy, f = u + iv C γ D f(z) f(z) D f(z) f(z) z, Rm z, z 1.1 z = x + iy = re iθ = r (cos θ + i sin θ) z = x iy

z f(z) f(z) x, y, u, v, r, θ r > 0 z = x + iy, f = u + iv C γ D f(z) f(z) D f(z) f(z) z, Rm z, z 1.1 z = x + iy = re iθ = r (cos θ + i sin θ) z = x iy z fz fz x, y, u, v, r, θ r > z = x + iy, f = u + iv γ D fz fz D fz fz z, Rm z, z. z = x + iy = re iθ = r cos θ + i sin θ z = x iy = re iθ = r cos θ i sin θ x = z + z = Re z, y = z z = Im z i r = z = z

More information

1 1, 2016 D B. 1.1,.,,. (1). (2). (3) Milnor., (1) (2)., (3). 1.2,.,, ( )..,.,,. 1.3, webpage,.,,.

1 1, 2016 D B. 1.1,.,,. (1). (2). (3) Milnor., (1) (2)., (3). 1.2,.,, ( )..,.,,. 1.3, webpage,.,,. 1 1, 2016 D B. 1.1,.,,. (1). (2). (3) Milnor., (1) (2)., (3). 1.2,.,, ( )..,.,,. 1.3, 2015. webpage,.,,. 2 1 (1),, ( ). (2),,. (3),.,, : Hashinaga, T., Tamaru, H.: Three-dimensional solvsolitons and the

More information

第5章 偏微分方程式の境界値問題

第5章 偏微分方程式の境界値問題 October 5, 2018 1 / 113 4 ( ) 2 / 113 Poisson 5.1 Poisson ( A.7.1) Poisson Poisson 1 (A.6 ) Γ p p N u D Γ D b 5.1.1: = Γ D Γ N 3 / 113 Poisson 5.1.1 d {2, 3} Lipschitz (A.5 ) Γ D Γ N = \ Γ D Γ p Γ N Γ

More information

1980年代半ば,米国中西部のモデル 理論,そして未来-モデル理論賛歌

1980年代半ば,米国中西部のモデル 理論,そして未来-モデル理論賛歌 2016 9 27 RIMS 1 2 3 1983 9-1989 6 University of Illinois at Chicago (UIC) John T Baldwin 1983 9-1989 6 University of Illinois at Chicago (UIC) John T Baldwin Y N Moschovakis, Descriptive Set Theory North

More information

平成 29 年度 ( 第 39 回 ) 数学入門公開講座テキスト ( 京都大学数理解析研究所, 平成 29 ~8 年月 73 月日開催 31 日 Riemann Riemann ( ). π(x) := #{p : p x} x log x (x ) Hadamard de

平成 29 年度 ( 第 39 回 ) 数学入門公開講座テキスト ( 京都大学数理解析研究所, 平成 29 ~8 年月 73 月日開催 31 日 Riemann Riemann ( ). π(x) := #{p : p x} x log x (x ) Hadamard de Riemann Riemann 07 7 3 8 4 ). π) : #{p : p } log ) Hadamard de la Vallée Poussin 896 )., f) g) ) lim f) g).. π) Chebychev. 4 3 Riemann. 6 4 Chebychev Riemann. 9 5 Riemann Res). A :. 5 B : Poisson Riemann-Lebesgue

More information

³ÎΨÏÀ

³ÎΨÏÀ 2017 12 12 Makoto Nakashima 2017 12 12 1 / 22 2.1. C, D π- C, D. A 1, A 2 C A 1 A 2 C A 3, A 4 D A 1 A 2 D Makoto Nakashima 2017 12 12 2 / 22 . (,, L p - ). Makoto Nakashima 2017 12 12 3 / 22 . (,, L p

More information

Black-Scholes [1] Nelson [2] Schrödinger 1 Black Scholes [1] Black-Scholes Nelson [2][3][4] Schrödinger Nelson Parisi Wu [5] Nelson Parisi-W

Black-Scholes [1] Nelson [2] Schrödinger 1 Black Scholes [1] Black-Scholes Nelson [2][3][4] Schrödinger Nelson Parisi Wu [5] Nelson Parisi-W 003 7 14 Black-Scholes [1] Nelson [] Schrödinger 1 Black Scholes [1] Black-Scholes Nelson [][3][4] Schrödinger Nelson Parisi Wu [5] Nelson Parisi-Wu Nelson e-mail: takatoshi-tasaki@nifty.com kabutaro@mocha.freemail.ne.jp

More information

Gauss Fuchs rigid rigid rigid Nicholas Katz Rigid local systems [6] Fuchs Katz Crawley- Boevey[1] [7] Katz rigid rigid Katz middle convolu

Gauss Fuchs rigid rigid rigid Nicholas Katz Rigid local systems [6] Fuchs Katz Crawley- Boevey[1] [7] Katz rigid rigid Katz middle convolu rigidity 2014.9.1-2014.9.2 Fuchs 1 Introduction y + p(x)y + q(x)y = 0, y 2 p(x), q(x) p(x) q(x) Fuchs 19 Fuchs 83 Gauss Fuchs rigid rigid rigid 7 1970 1996 Nicholas Katz Rigid local systems [6] Fuchs Katz

More information

Part () () Γ Part ,

Part () () Γ Part , Contents a 6 6 6 6 6 6 6 7 7. 8.. 8.. 8.3. 8 Part. 9. 9.. 9.. 3. 3.. 3.. 3 4. 5 4.. 5 4.. 9 4.3. 3 Part. 6 5. () 6 5.. () 7 5.. 9 5.3. Γ 3 6. 3 6.. 3 6.. 3 6.3. 33 Part 3. 34 7. 34 7.. 34 7.. 34 8. 35

More information

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4 1. k λ ν ω T v p v g k = π λ ω = πν = π T v p = λν = ω k v g = dω dk 1) ) 3) 4). p = hk = h λ 5) E = hν = hω 6) h = h π 7) h =6.6618 1 34 J sec) hc=197.3 MeV fm = 197.3 kev pm= 197.3 ev nm = 1.97 1 3 ev

More information

Design of highly accurate formulas for numerical integration in weighted Hardy spaces with the aid of potential theory 1 Ken ichiro Tanaka 1 Ω R m F I = F (t) dt (1.1) Ω m m 1 m = 1 1 Newton-Cotes Gauss

More information

: , 2.0, 3.0, 2.0, (%) ( 2.

: , 2.0, 3.0, 2.0, (%) ( 2. 2017 1 2 1.1...................................... 2 1.2......................................... 4 1.3........................................... 10 1.4................................. 14 1.5..........................................

More information

G H J(g, τ G g G J(g, τ τ J(g 1 g, τ = J(g 1, g τj(g, τ J J(1, τ = 1 k g = ( a b c d J(g, τ = (cτ + dk G = SL (R SL (R G G α, β C α = α iθ (θ R

G H J(g, τ G g G J(g, τ τ J(g 1 g, τ = J(g 1, g τj(g, τ J J(1, τ = 1 k g = ( a b c d J(g, τ = (cτ + dk G = SL (R SL (R G G α, β C α = α iθ (θ R 1 1.1 SL (R 1.1.1 SL (R H SL (R SL (R H H H = {z = x + iy C; x, y R, y > 0}, SL (R = {g M (R; dt(g = 1}, gτ = aτ + b a b g = SL (R cτ + d c d 1.1. Γ H H SL (R f(τ f(gτ G SL (R G H J(g, τ τ g G Hol f(τ

More information