q n/2 X H n (X Fq,et, Q l) Frobenius q 1/2 (Deligne, [D5]) X (I) (II) X κ open (proper )smooth X κ proper strictly semi-stable weight filtration cohom

Size: px
Start display at page:

Download "q n/2 X H n (X Fq,et, Q l) Frobenius q 1/2 (Deligne, [D5]) X (I) (II) X κ open (proper )smooth X κ proper strictly semi-stable weight filtration cohom"

Transcription

1 Weight filtration on log crystalline cohomology ( ) 1 κ κ X cohomology X H n (X) Grothendieck, Deligne weight yoga ([G], [D1], [D4]) 1.1. H n (X) filtrationp k H n (X) (k Z) (1) gr P k Hn (X) := P k H n (X)/P k 1 H n (X) (k Z) κ proper, smooth k cohomology (2) filtration cohomology (pull back, push forward, base change, Künneth formula, Poincaré duality ) compatible (3) P k H n (X) smooth. ( proper, smooth Y k cohomology H k+2i (Y )(i) (i Z) (i) twist cohomology ) filtration P k H n (X) (k Z) H n (X) weight filtration Weight filtration (1) (proper, smooth )X cohomology proper, smooth cohomology proper, smooth cohomology proper, smooth cohomology 1.2. (1) X C proper, smooth Betti cohomology H n (X an, Q) pure Hodge X Betti cohomology H n (X an, Q) Hodge (Deligne, [D2],[D3]) ( X an X ) (2) X F q proper, smooth, l q X Fq l cohomology H n (X Fq,et, Q l) Frobenius 1

2 q n/2 X H n (X Fq,et, Q l) Frobenius q 1/2 (Deligne, [D5]) X (I) (II) X κ open (proper )smooth X κ proper strictly semi-stable weight filtration cohomology ( (II) log ) 1 Betti cohomology de Rham cohomology. κ = C X Betti cohomologyh n (X an, Q) weight filtration de Rham cohomology HdR n (X/C) := Hn (X, Ω X/C ) weight filtration (I) Deligne([D2]) (II) Steenbrink([St1]) Betti cohomology de Rham cohomology (de Rham ) H n (X an, Q) Q C = HdR n (X/k) filtration cohomology Hodge (II) Steenbrink-Zucker([St-Zu]), Steenbrink([St2]), F.Kato([Kf]), K.Kato-Nakayama([Kk-Ny]), Matsubara([Ma]), K.Kato-Matsubara- Nakayama([Kk-Ma-Ny]), Fujisawa-Nakayama ([F-Ny]) 2 l etale cohomology κ p (p l) κ X κ (X κ base change) l cohomology H n (X κ,et, Q l ) weight filtration (I) Deligne([D5]) (II) Rapoport-Zink([R-Zi]) (II) Nakayama ([Ny]) 3 log de Rham-Witt cohomology κ p > 0 X log de Rham-Witt cohomology weight filtration (I), (II) Mokrane([Mo1], [Mo2]), κ p > 0 X log crystalline cohomology weight filtration remark X log crystalline cohomology log de Rham-Witt cohomology (Illusie[I1], Hyodo-Kato[H-Kk]), 3 (Mokrane ) log crystalline cohomology weight filtration 1 2

3 Betti cohomology, de Rham cohomology ( )weight filtration log crystalline cohomology weight filtration Illusie, Hyodo- Kato log de Rham-Witt cohomology (Mokrane )weight filtration compatible log crystalline cohomology weight filtration (I) weight filtration smooth (Mokrane ), 1.1 (3) ( weight filtration ) Mokrane 2 (I) X open, smooth Betti de Rham cohomology weight filtration log crystalline cohomology weight filtration Betti de Rham cohomology log crystalline cohomology ( )Betti cohomology 2 3 (II) X proper strictly semi-stable l etale cohomology Rapoport-Zink 2 Open, smooth cohomology 2.1 Betti, de Rham cohomology weight filtration X C open, smooth j : X X compact D := X \ X X simple normal crossing divisor( SNCD ) ( j ) D = m i=1 D i D k 0 D (k) := 1 i 1 <i 2 < <i k m D i 1 D i2 D ik a (k) : D (k) X D ij X (k = 0 D (k) = X, a (0) = id X.) X an, X an, j an U, X, j X Betti cohomology H n (X an, Q) = H n (X an, Rj an Q) weight filtration 2.1 (purity). R k j an Q = a (k) an Q( k) ( exponential sequence cup ) τ k Rj an Q (k Z) 3

4 Rj an Q canonical filtration ( { H l H l (Rj an Q), (if l k), (τ k Rj an Q) = 0, if l > k). filtration) gr τ k Rj an Q = a (k) an Q( k) filtration E k,n+k 1 = H n k (D (k) an, Q( k)) = H n (X an, Q) weight H n (X an, Q) filtration weight filtration weight filtration filter filter object (Rj an Q, τ k ) filter H n (X an, ) H n (X an, (Rj an Q, τ k )) weight filtration Betti cohomology H n (X an, Q) filtration X de Rham cohomology HdR n (X/C) := Hn (X Zar, Ω X/C ) = Hn (X, Rj Ω X/C ) = H n (X, Ω X/C (log D)) weight filtration Ω (log D) filtration P k Ω (log D) X/C X/C P k Ω (log D) := X/C 0, (if k < 0), (log D) Ω k (log D)), (if 0 k ), Im(Ω k X/C Ω (log D), X/C X/C Ω X/C (if < k) gr P k Ω (log D) = a (k) X/C Ω k D (k) /C ( k) ( Poincaré residue ) filtration P k Ω X/C (log D) E k,n+k 1 = H n k (D (k), Ω ) = D (k) /C Hn (X, Ω (log D)), X/C E k,n+k 1 = H n k (D(k) /C) = HdR(X/C) n dr weight H dr n (X/C) filtration weight filtration filter filter object (Ω (log D), P X/C k) filter H n (X, ) H n (X, (Ω X/C (log D), P k )) weight filtration de Rham cohomology HdR n (X/C) de Rham H n (X an, Q) Q C = HdR n (X/C) 4

5 2.3. H n (X an, Q) Q C = HdR n (X/C) weight filtration Proof. X an X u filter (Ω X/C (log D), P k) Ru (Ω X an/c (log D an), P k ) Ru (Ω X an /C (log D an), τ k ) Ru (Rj an Ω X an/c, τ k ) Ru ((Rj an Q) Q C, τ k ) ((Ω (log D X an /C an), P k ) log de Rham Ω (log D X an /C an) P k filtration.) filter GAGA filter Ω (log D X an /C an) Rj an Ω X an /C filter Poincaré filter log de Rham Poincaré residue filter filter H n (X, ) 2.4., log de Rham Ω (log D X an/c an) = u (Ω X/C (log D)) 2.2 log crystalline cohomology weight filtration p S quasi-compact p scheme p-adic Noetherian formal scheme I O S p quasi-coherent PD-ideal S 0 := Spec S O S /I X S 0 smooth scheme X X S 0 compact D := X \ X S 0 SNCD S 0 = Spec κ X X (X, D) (Fontaine-Illusie-Kato )S fine log scheme crystalline cohomology proper scheme ( ) X S crystalline cohomology cohomology cohomology log scheme (X, D) S crystalline cohomology (X, D) S crystalline cohomology log scheme (X, D) 2.1 X k Z, k 0 D (k), a (k) : D (k) X 2.1 ((X, D)/S) crys, (X/S) crys, (D (k) /S) crys (X, D), X, D (k) S crystalline site 2.1 X an, X an, D an (k) 5

6 O (X,D/S), O X/S, O D (k) /S ((X, D)/S) crys, (X/S) crys, (D (k) / S) crys X an, X an, D an (k) C j : (X, D) X log scheme crystalline site ((X, D)/S) crys (X/S) crys j crys 2.1 j, j an a (k) crystalline site (D (k) /S) crys (X/S) crys a crys (k). (X, D) S 0 site f (X,D)/S : ((X, D)/S) crys S Zar R n f (X,D)/S O (X,D)/S (X, D) S crystalline cohomology H n S(((X, D)/S) crys, O (X,D)/S ) X, D (k) S crystalline cohomology H n S((X/S) crys, O X/S ), H n S((D (k) /S) crys, O D /S) (k) crystalline cohomology H n S(((X, D)/S) crys, O (X,D)/S ) = H n S((X/S) crys, Rj crys O (X,D)/S ) weight filtration 2.5 (purity). R k j crys O (X,D)/S = a crys O (k) D /S( k) (k) log de Rham Poincaré residue Rj crys O (X,D)/S canonical filtration τ k Rj crys O (X,D)/S E k,n+k 1 = H n k S ((D (k) /S) crys, O D (k) /S )( k) = Hn S(((X, D)/S) crys, O (X,D)/S ) (2.1) weight H n S(((X, D)/S) crys, O (X,D)/S ) filtration weight filtration filter filter object (Rj crys O (X,D)/S, τ k ) filter H n S((X/S) crys, ) H n S((X/S) crys, (Rj crys O (X,D)/S, τ k )) weight filtration crystalline cohomologyh n S(((X, D)/S) crys, O (X,D)/S ) crystalline cohomology weight filtration cohomology weight filtration 1 de Rham cohomology S 0 S, (X, D) (X, D) S (X, D) X := X \ D X S de Rham cohomology H n dr(x /S) := H n S(X, Ω X/S ) = H n S(X, Ω (log D)) ( X /S Hn S(?, )? S ) 2.1 filtration P k Ω (log D) weight X /S filtration Berthelot([B]), K.Kato([Kk]), H n dr(x /S) = H n S(((X, D)/S) crys, O (X,D)/S ) [Nj-Sh] 6

7 2.6. weight filtration 2.3 log de Rham filter u : (X/S) crys X Zar = X Zar Zariski site ( 2.1 u ) (X/S) crys X X crystalline site ϕ : (X/S) crys X X Zar, ψ : (X/S) crys X (X/S) crys site O X - M L(M) := ψ ϕ M ([Nj-Sh]) 2.7 (Rj O (X,D)/S Poincaré ). (1) L(Ω (log D)) O X /S X/S - ( crystal.) (2) Rj crys O (X,D)/S L(Ω (log D)) X /S L(Ω (log D)) log de Rham ( site X /S ϕ = u ψ u site u L = ψ ϕ 2.4 ) filter (Ω X /S (log D), P k) Ru (L(Ω X /S (log D)), P k) Ru (L(Ω X /S (log D)), τ k) Ru (Rj crys Ω (X,D)/S, τ k). filter L(Ω (log D)) u X /S - (GAGA ) filter L(Ω (log D)) X /S Poincaré residue. (.) filter filter H n S(X, ) 2 log de Rham-Witt cohomology (Mokrane filtration) κ p S 0 = Spec κ, S = Spf W m (κ) X, (X, D) crystalline cohomology H n S Hn log de Rham-Witt complex X W m Ω (log D) X cohomology H n (X, W m Ω (log D)) ( log de Rham-Witt cohomology X ) crystalline cohomologyh n (((X, D)/S) crys, O (X,D)/S ) (Illusie[I1], Hyodo-Kato[H-Kk]. Nakkajima [Nj1] ) Mokrane([Mo1],[Mo2]) W m Ω (log D) filtration P X kw m Ω (log D) X (log de Rham ) H n (X, W n Ω (log D)) weight X filtration [Nj-Sh] 7

8 2.8. Illusie, Hyodo-Kato H n (X, W m Ω (log D)) = H n (((X, D)/S) X crys, O (X,D)/S ) weight filtration S proper, smooth scheme X X S SNCD D (X, D) Frobenius (X, D) (X, D) (X, D) (X, D) PD envelope Y Ru Rj crys O (X,D)/S O Y OX Ω (log D) W X /S m Ω (log D) X (Illusie, Hyodo-Kato ) filtration filter global weight V (0, p) S (Ogus[O1] )p formal V -scheme, S 0 := Spec S O S /po S X, (X, D) 2.9. crystalline cohomology H n S(((X, D)/S) crys, O (X,D)/S ) weight (2.1) modulo torsion E 2 Betti, de Rham, l etale cohomology V = W (κ), S = Spf W (κ) κ (log de Rham-Witt cohomology ) Mokrane κ Nakkajima ([Nj1]). Step 1: S = Spf W (κ)(κ ) Mokrane crystalline cohomology Weil (Katz-Messing[Kz-Me], Chiarellotto-Le Stum[C-L1]) Step 2: S = Spf A Spf W (κ)(κ ) formally smooth S Frobenius A W (A/m) weight pa m A m: ideal specialize Step 1 Step 3: S = Spf W (κ)(κ ) model Step 2 Step 4: S = Spf A A Q := A Z Q Artin m A Q ideal B := Im(A A Q /m), C := B C V κ C 8

9 Spf B Spf A Ogus formal V -scheme A Spf A Spf A Spf A Spf B A A A Q A Q implication Step 4 Step 3 = (S = Spf W (κ ) ) = ( ) (S = Spf C ) = (S = Spf B ) = (S = Spf A ) = (S = Spf A ). ( ) log crystalline cohomology (modulo torsion) (Berthelot-Ogus[B-O2]) weight filtration Berthelot-Ogus Step 5: S = Spf A A Q ideal m m A (m) := Im(A A Q /m m ) Step 4 S = Spf A (m) (A Q ) m lim ma Q /m m = lim ma (m)q open, smooth crystalline cohmology weight filtration (1) S 0, S 2.9 crystalline cohomology H n S(((X, D)/S) crys, O (X,D)/S ) S S/V convergent isocrystal ([O1]) (2) Weight filtration pull-back strictly compatible (Compatibility strictness crystalline cohomology Weil.) (3) Compact support crystalline cohmology weight filtration (4) crystalline cohomology base change theorem, Künneth formula, Poincaré duality ([B],[B-O1],[Kk],[O1],[Tj] ) weight filtration compatible (5) S = Spf W (κ) ( κ ) crystalline cohomology H n (((X, D)/ S) crys, O (X,D)/S ) X rigid cohomology Hrig(X) n ([Sh2]). Hrig(X) n weight filtration ( Hrig(X) n 9

10 weight filtration Chiarellotto-Le Stum([C-L2]) ) (6) κ (smooth ) scheme X Nakkajima([Nj2]) Hrig(X) n weight filtration (5) Tsuzuki([Tz]) rigid cohomology cohomological descent 3 Strictly semi-stable cohomology p V (0, p) κ K V K K S = Spec V, Ŝ := Spf V, S 0 := Spec κ X S proper scheme strictly semi-stable reduction X S proper, flat scheme X S generic fiber X K smooth, special fiber X S S 0 =: Y SNCD Y = m i=1 D i k 0 Y (k) := 1 i 0 <i 1 < <i k m D i 0 D i1 D ik a (k) : Y (k) Y D ij Y ( (k) 2 ) SNCD Y X X log structure M, S 0 S S log structure N M Y N Ŝ, S 0, Y M, N f : Y S 0 ( X S special fiber) log smooth (Y, M) (S 0, N) f log 3.1 l etale cohomology weight filtration V ur V Y κ Y i X V ur i X j X K j X K Y κ Y κ base change, X? X? base change, i, j i, j i, j l p l nearby cycle RψQ l RψQ l := i Rj Q l l etale cohomology H n (X K,et, Q l ) = H n (Y κ,et, RψQ l ) weight filtration ([R-Zi], [I2]) 10

11 3.1. (1) (purity) i R k+1 j Q l (k + 1) = a (k) Q l (2) 1 a (0) Q l = i R 1 j Q l (1) cup i R k j Q l i R k+1 j Q l (1)[1] θ k 0 R k ψq l ( 1) α k i R k+1 β k+1 j Q l R k+1 ψq l 0 θ k = α k β k i Rj Q l L 1 a (0) Q l = i Rj Q l (1) cup i Rj Q l i Rj Q l (1)[1] θ : L L(1)[1] RψQ l A := [(τ 1 L(1))[1] (τ 2 L(2))[2] (τ i+1 L(i + 1))[i + 1] ] ((τ 1 L(1))[1]) 0 (0, 0) ) associate Q τ i Q canonical filtration ( { H l H l (Rj an Q), (if l i), (τ i Q) = 0, if l < i). filtration) A filtration P k A (k Z) P k A := [(τ [1,k+1] L(1))[1] (τ [2,k+3] L(2))[2] (τ [i+1,k+2i+1] L(i + 1))[i + 1] ] Q τ [i,j] Q := τ j τ i Q gr P k A gr P k A = i R k+2i+1 j Q l (i + 1)[ 2i k] i 0,i k = a (2i+k) Q l ( i k)[ 2i k] i 0,i k filtration P k A (k Z) E k,n+k = H 2n i k (Y (2i+k) κ, Q l ( i)) = H n (X K, Q l ) i 0,i k weight H n (X K, Q l ) filtration weight filtration 3.2. H n (X K, Q l ) l log etale cohomology H n ((Y, M) κ,tl, Q l ) ((Y, M) κ,tl [Ny] ) H n ((Y, M) κ,tl, Q l ) weight filtration. H n ((Y, M) κ,tl, Q l ) weight filtration f log : (Y, M) (S, N) (Nakayama [Ny]) 3.3. RψQ l Y κ,et perverse (Illusie [I2]), filtration P k ( ) (T.Saito [Sa]). 11

12 3.2 Log crystalline cohomology weight filtration ((Y, M)/(Ŝ, N)) crys (Y, M) (Ŝ, N) log crystalline site O (Y,M)/(Ŝ,N) (Y, M) (Ŝ, N) log crystalline cohomology Hn (((Y, M)/(Ŝ, N)) crys, O (Y,M)/( Ŝ,N) ) Q ( Q Z Q ) H n ((Y, M) κ,tl, Q l ) H n (X K, Q l ) H n (((Y, M)/(Ŝ, N)) crys, O (Y,M)/( Ŝ,N) ) Q weight filtration ( ) Weight filtration 3.1 i Rj Q l nearby cycle RψQ l (Y, L) := (Y, M) Y (Y, N) j : (Y, L) (Y.N) j : (Y, M) (Y, N) f log (f j = f log ) j, j 2.1 j, j. j crys : ((Y, L)/(Ŝ, N)) crys ((Y, N)/(Ŝ, N)) crys = (Y/Ŝ) crys, j crys : ((Y, M)/(Ŝ, N)) crys ((Y, N)/(Ŝ, N)) crys = (Y/Ŝ) crys crystalline site Rj crys O (Y,L)/( Ŝ,N), Rj crys O (Y,M)/( Ŝ,N) 2.1 Rj Q l, RψQ l 3.4. (R 1 j O (Y,L)/( Ŝ,N) (1)) Q (a (0) crys O ((Y (0),N)/(Ŝ,N)) Q ( Q (Y/Ŝ) crys Hom Z Q ) U Y f smooth locus affine open sub log scheme U T S 0 Ŝ PD T affine log formal V -scheme T n := Spec T O T /p n O T U T n ((Y, M)/(Ŝ, N)) crys object R := Γ(T, O T ) (R 1 j O (Y,L)/( Ŝ,N) (1)), (a(0) crys O ((Y (0),N)/(Ŝ,N)) U T n P n, Q n (lim np n ) Q = (R t /tr t ) Q, (lim nq n ) Q = R Q ( R t R PD p ) 3.4 log crystalline site 3.1 weight filtration 3.1 log crystalline cohomology singularity scheme Y log crystalline site log convergent site ((Y, M)/(Ŝ, N)) conv ([O1], [O2], [Sh1], [Sh2]) Log convergent site log crystalline site p Log convergent site ([Sh2]) 12

13 3.5. K (Y,M)/( Ŝ,N) log convergent site ((Y, M)/(Ŝ, N)) conv Q H n (((Y, M)/(Ŝ, N)) crys, O (Y,M)/( Ŝ,N) ) Q = H n (((Y, M)/(Ŝ, N)) conv, K (Y,M)/( Ŝ,N) ) weight filtration cohomology log convergent cohomology log convergent site Rj conv K (Y,L)/( Ŝ,N), Rj conv K (Y,M)/( Ŝ,N) 3.1 Rj Q l, RψQ l ( j conv, j conv j crys, j crys log convergent site ) 3.6. (1) (purity) R k+1 j conv K (Y,L)/( Ŝ,N) (k + 1) = a (k) conv K (Y (k),n)/(ŝ,n) (2) 1 a (0) conv K (Y (0),N)/(Ŝ,N) = R 1 j conv K (Y,L)/( Ŝ,N) cup R k j conv K (Y,L)/( Ŝ,N) i R k+1 j conv K (Y,L)/( Ŝ,N) [1] θ k 0 R k j conv K (Y,M)/( Ŝ,N) ( 1) α k R k+1 β k+1 j conv K (Y,L)/( Ŝ,N) R k+1 j conv K (Y,M)/( Ŝ,N) 0 θ k = α k β k Crystalline site 3.4 (lim np n ) Q R Q t /tr Q t = R Q ( R Q t R Q [[t]] ) 3.1 log convergent cohomology H n (((Y, M)/(Ŝ, N)) conv, K (Y,M)/( Ŝ,N) ) weight filtration (1) Mokrane 3.2 (Y, M) (Spf W (κ), N) (N Spf W (κ) ) log de Rham-Witt cohomology ( Illusie, Hyodo-Kato ([I1],[H-Kk]) log crystalline cohomology ) weight filtration log de Rham-Witt complex Hyodo-Steenbrink complex (3.1 A ) filtration (2) Nakkajima log crystalline cohomology weight filtration Mokrane Hyodo-Steenbrink complex crystalline site ( ) 13

14 (1) (3) 3.3 Rj conv K (Y,M)/( Ŝ,N) perverse (4) 3.2 p nearby cycle Gros [B] [B-O1] Berthelot, P. Cohomologie cristalline des schémas de caractéristique p > 0. Lecture Notes in Math. 407, Springer-Verlag, Berlin-New York, (1974). Berthelot, P., Ogus, A. Notes on crystalline cohomology. Princeton Univ. Press, (1978). [B-O2] Berthelot, P., Ogus, A. F -isocrystals and de Rham cohomology. I. Invent. Math. 72, (1983), [C-L1] Chiarellotto, B., Le Stum, B. Sur la pureté de la cohomologie cristalline. C. R. Acad. Sci. Paris, Série I, 326, (1998), [C-L2] Chiarellotto, B., Le Stum, B. A comparison theorem for weights. J. reine angew. Math. 546, (2002), [D1] Deligne, P. Théorie de Hodge I. Actes du Congrès International des Mathématiciens (Nice, 1970), Tome 1, pp Gauthier-Villars, Paris, (1971). [D2] Deligne, P. Théorie de Hodge, II. IHES Publ. Math. 40, (1971), [D3] Deligne, P. Théorie de Hodge, III. IHES Publ. Math. 44, (1974),

15 [D4] Deligne, P. Poids dans la cohomologie des variétés algébriques. Proceedings of the International Congress of Mathematicians (Vancouver, B. C., 1974), Vol. 1, pp [D5] Deligne, P. La conjecture de Weil, II. IHES Publ. Math. 52, (1980), [F-Ny] [G] [H-Kk] [H] Fujisawa, T., Nakayama, C., Mixed Hodge structures on log deformations. Rend. Sem. Mat. Univ. Padova 110 (2003), Grothendieck, A. Récoltes et s les: Réflexions et témoinage sur un passé de mathématicien I, II, IV. Gendai-Sugaku-sha, Japanese translation by Y. Tsuji, (1989), (1990), unpublished. Hyodo, O., Kato, K. Semi-stable reduction and crystalline cohomology with logarithmic poles. Périodes p-adiques (Bures-sur-Yvette, 1988). Astérisque 223, (1994), Hyodo, O. On the de Rham-Witt complex attached to a semi-stable family. Comp. Math. 78, (1991), [I1] Illusie, L. Complexe de de Rham-Witt et cohomologie cristalline. Ann. Scient. Éc. Norm. Sup. 4e série 12, (1979), [I2] [Kf] Illusie, L., Autour du theoreme de monodromie locale. In: Periodes p-adiques (Bures-sur-Yvette, 1988). Asterisque No. 223 (1994), Kato, F., The relative log Poincare lemma and relative log de Rham theory. Duke Math. J. 93 (1998), [Kk] Kato, K. Logarithmic structures of Fontaine-Illusie. In: Algebraic analysis, geometry, and number theory, Johns Hopkins Univ. Press, (1989), [Kk-Ny] Kato, K., Nakayama, C. Log Betti cohomology, log étale cohomology, and log de Rham cohomology of log schemes over C. Kodai Math. J. 22, (1999), [Kk-Ma-Ny] Kato, K., Matsubara, T., Nakayama, C., Log C -functions and degenerations of Hodge structures. In: Algebraic geometry 2000, Azumino (Hotaka), , Adv. Stud. Pure Math., 36, Math. Soc. Japan, Tokyo,

16 [Kz-Me] [Ma] [Mo1] Katz, N., Messing, W. Some consequences of the Riemann hypothesis for varieties over finite fields. Invent. Math. 23, (1974), Matsubara, T., On log Hodge structures of higher direct images. Kodai Math. J. 21 (1998), no. 2, Mokrane, A. La suite spectrale des poids en cohomologie de Hyodo- Kato. Duke Math. J. 72, (1993), [Mo2] Mokrane, A. Cohomologie cristalline des variétés ouvertes. Rev. Maghrebine Math. 2, (1993), [Ny] Nakayama, C., Degeneration of l-adic weight spectral sequences. Amer. J. Math. 122 (2000), [Nj1] Nakkajima, Y. p-adic weight spectral sequences of log varieties. Preprint. [Nj2] [Nj-Sh] Nakkajima, Y. Weight filtration and slope filtration on the rigid cohomology of a variety in characteristic p > 0. Preprint. Nakkajima, Y., Shiho, A. Weight filtrations on log crystalline cohomologies of families of open smooth varieties of characteristic p > 0. Preprint. [O1] Ogus, A. F -isocrystals and de Rham cohomology. II. Convergent isocrystals. Duke Math. J. 51, (1984), [O2] Ogus, A. F -crystals on schemes with constant log structure. Compositio Math. 97, (1995), [R-Zi] Rapoport, M., Zink, Th., Uber die lokale Zetafunktion von Shimuravarietaten. Monodromiefiltration und verschwindende Zyklen in ungleicher Charakteristik. Invent. Math. 68 (1982), [Sa] Saito, T., Weight spectral sequences and independence of l. J. Inst. Math. Jussieu 2 (2003), [Sc] Schneiders, J.-P., Quasi-abelian categories and sheaves. Mém. Soc. Math. Fr. (N.S.) 76, (1999). [Sh1] Shiho, A. Crystalline fundamental groups I Isocrystals on log crystalline site and log convergent site. J. Math. Sci. Univ. Tokyo 7, (2000),

17 [Sh2] Shiho, A. Crystalline fundamental groups II Log convergent cohomology and rigid cohomology. J. Math. Sci. Univ. Tokyo 9, (2002), [St1] Steenbrink, J. H. M., Limits of Hodge structures. Invent. Math. 31 (1975/76), [St2] [St-Zu] [Tj] [Tz] Steenbrink, J. H. M., Logarithmic embeddings of varieties with normal crossings and mixed Hodge structures. Math. Ann. 301 (1995), Steenbrink, J. H. M., Zucker, S., Variation of mixed Hodge structure. I. Invent. Math. 80 (1985), Tsuji, T. Poincaré duality for logarithmic crystalline cohomology. Compositio Math. 118, (1999), Tsuzuki, N. Cohomological descent of rigid cohomology for proper coverings. Invent. Math. 151 (2003),

日本数学会・2011年度年会(早稲田大学)・総合講演

日本数学会・2011年度年会(早稲田大学)・総合講演 日本数学会 2011 年度年会 ( 早稲田大学 ) 総合講演 2011 年度日本数学会春季賞受賞記念講演 MSJMEETING-2011-0 ( ) 1. p>0 p C ( ) p p 0 smooth l (l p ) p p André, Christol, Mebkhout, Kedlaya K 0 O K K k O K k p>0 K K : K R 0 p = p 1 Γ := K k

More information

[Oc, Proposition 2.1, Theorem 2.4] K X (a) l (b) l (a) (b) X [M3] Huber adic 1 Huber ([Hu1], [Hu2], [Hu3]) adic 1.1 adic A I I A {I n } 0 adic 2

[Oc, Proposition 2.1, Theorem 2.4] K X (a) l (b) l (a) (b) X [M3] Huber adic 1 Huber ([Hu1], [Hu2], [Hu3]) adic 1.1 adic A I I A {I n } 0 adic 2 On the action of the Weil group on the l-adic cohomology of rigid spaces over local fields (Yoichi Mieda) Graduate School of Mathematical Sciences, The University of Tokyo 0 l Galois K F F q l q K, F K,

More information

K 2 X = 4 MWG(f), X P 2 F, υ 0 : X P 2 2,, {f λ : X λ P 1 } λ Λ NS(X λ ), (υ 0 ) λ : X λ P 2 ( 1) X 6, f λ K X + F, f ( 1), n, n 1 (cf [10]) X, f : X

K 2 X = 4 MWG(f), X P 2 F, υ 0 : X P 2 2,, {f λ : X λ P 1 } λ Λ NS(X λ ), (υ 0 ) λ : X λ P 2 ( 1) X 6, f λ K X + F, f ( 1), n, n 1 (cf [10]) X, f : X 2 E 8 1, E 8, [6], II II, E 8, 2, E 8,,, 2 [14],, X/C, f : X P 1 2 3, f, (O), f X NS(X), (O) T ( 1), NS(X), T [15] : MWG(f) NS(X)/T, MWL(f) 0 (T ) NS(X), MWL(f) MWL(f) 0, : {f λ : X λ P 1 } λ Λ NS(X λ

More information

( ) 1., ([SU] ): F K k., Z p -, (cf. [Iw2], [Iw3], [Iw6]). K F F/K Z p - k /k., Weil., K., K F F p- ( 4.1).,, Z p -,., Weil..,,. Weil., F, F projectiv

( ) 1., ([SU] ): F K k., Z p -, (cf. [Iw2], [Iw3], [Iw6]). K F F/K Z p - k /k., Weil., K., K F F p- ( 4.1).,, Z p -,., Weil..,,. Weil., F, F projectiv ( ) 1 ([SU] ): F K k Z p - (cf [Iw2] [Iw3] [Iw6]) K F F/K Z p - k /k Weil K K F F p- ( 41) Z p - Weil Weil F F projective smooth C C Jac(C)/F ( ) : 2 3 4 5 Tate Weil 6 7 Z p - 2 [Iw1] 2 21 K k k 1 k K

More information

k + (1/2) S k+(1/2) (Γ 0 (N)) N p Hecke T k+(1/2) (p 2 ) S k+1/2 (Γ 0 (N)) M > 0 2k, M S 2k (Γ 0 (M)) Hecke T 2k (p) (p M) 1.1 ( ). k 2 M N M N f S k+

k + (1/2) S k+(1/2) (Γ 0 (N)) N p Hecke T k+(1/2) (p 2 ) S k+1/2 (Γ 0 (N)) M > 0 2k, M S 2k (Γ 0 (M)) Hecke T 2k (p) (p M) 1.1 ( ). k 2 M N M N f S k+ 1 SL 2 (R) γ(z) = az + b cz + d ( ) a b z h, γ = SL c d 2 (R) h 4 N Γ 0 (N) {( ) } a b Γ 0 (N) = SL c d 2 (Z) c 0 mod N θ(z) θ(z) = q n2 q = e 2π 1z, z h n Z Γ 0 (4) j(γ, z) ( ) a b θ(γ(z)) = j(γ, z)θ(z)

More information

.5.1. G K O E, O E T, G K Aut OE (T ) (T, ρ). ρ, (T, ρ) T. Aut OE (T ), En OE (F ) p..5.. G K E, E V, G K GL E (V ) (V, ρ). ρ, (V, ρ) V. GL E (V ), En

.5.1. G K O E, O E T, G K Aut OE (T ) (T, ρ). ρ, (T, ρ) T. Aut OE (T ), En OE (F ) p..5.. G K E, E V, G K GL E (V ) (V, ρ). ρ, (V, ρ) V. GL E (V ), En p 1. 1.1., 01 8 3, 57,,.. 1.., Gal(Q p /Q p ), 1. Wach,,. 1.3. Part I,,. Part II, Part III. 1.4.., Paé. Part 1. p.. p p.1. p Q p p (Q p p )... E Q p, E p Z p E, O E. O E E. E Q p, O E. v p : E Q Q E, v

More information

Milnor 1 ( ), IX,. [KN].,. 2 : (1),. (2). 1 ; 1950, Milnor[M1, M2]. Milnor,,. ([Hil, HM, IO, St] ).,.,,, ( 2 5 )., Milnor ( 4.1)..,,., [CEGS],. Ω m, P

Milnor 1 ( ), IX,. [KN].,. 2 : (1),. (2). 1 ; 1950, Milnor[M1, M2]. Milnor,,. ([Hil, HM, IO, St] ).,.,,, ( 2 5 )., Milnor ( 4.1)..,,., [CEGS],. Ω m, P Milnor 1 ( ), IX,. [KN].,. 2 : (1),. (2). 1 ; 1950, Milnor[M1, M2]. Milnor,,. ([Hil, HM, IO, St] ).,.,,, ( 2 5 )., Milnor ( 4.1)..,,., [CEGS],. Ω m, PC ( 4 5 )., 5, Milnor Milnor., ( 6 )., (I) Z modulo

More information

Noether [M2] l ([Sa]) ) ) ) ) ) ( 1, 2) ) ( 3) K F = F q O K K l q K Spa(K, O K ) adc adc [Hu1], [Hu2], [Hu3] K A Spa(A, A ) Sp A A B X A X B = X Spec

Noether [M2] l ([Sa]) ) ) ) ) ) ( 1, 2) ) ( 3) K F = F q O K K l q K Spa(K, O K ) adc adc [Hu1], [Hu2], [Hu3] K A Spa(A, A ) Sp A A B X A X B = X Spec l Wel (Yoch Meda) Graduate School of Mathematcal Scences, The Unversty of Tokyo 0 Galos ([M1], [M2]) Galos Langlands ([Ca]) K F F q l q K, F K, F Fr q Gal(F /F ) F Frobenus q Fr q Fr q Gal(F /F ) φ: Gal(K/K)

More information

1.2 (Kleppe, cf. [6]). C S 3 P 3 3 S 3. χ(p 3, I C (3)) 1 C, C P 3 ( ) 3 S 3( S 3 S 3 ). V 3 del Pezzo (cf. 2.1), S V, del Pezzo 1.1, V 3 del Pe

1.2 (Kleppe, cf. [6]). C S 3 P 3 3 S 3. χ(p 3, I C (3)) 1 C, C P 3 ( ) 3 S 3( S 3 S 3 ). V 3 del Pezzo (cf. 2.1), S V, del Pezzo 1.1, V 3 del Pe 3 del Pezzo (Hirokazu Nasu) 1 [10]. 3 V C C, V Hilbert scheme Hilb V [C]. C V C S V S. C S S V, C V. Hilbert schemes Hilb V Hilb S [S] [C] ( χ(s, N S/V ) χ(c, N C/S )), Hilb V [C] (generically non-reduced)

More information

Mazur [Ma1] Schlessinger [Sch] [SL] [Ma1] [Ma1] [Ma2] Galois [] 17 R m R R R M End R M) M R ut R M) M R R G R[G] R G Sets 1 Λ Noether Λ k Λ m Λ k C Λ

Mazur [Ma1] Schlessinger [Sch] [SL] [Ma1] [Ma1] [Ma2] Galois [] 17 R m R R R M End R M) M R ut R M) M R R G R[G] R G Sets 1 Λ Noether Λ k Λ m Λ k C Λ Galois ) 0 1 1 2 2 4 3 10 4 12 5 14 16 0 Galois Galois Galois TaylorWiles Fermat [W][TW] Galois Galois Galois 1 Noether 2 1 Mazur [Ma1] Schlessinger [Sch] [SL] [Ma1] [Ma1] [Ma2] Galois [] 17 R m R R R

More information

2018 : msjmeeting-2018mar-02i002 ( ) 1. 1:. X (= ), X, X., X Z, 1 π1 ab (X) 0 Chow ( CH 0 (X) := Coker div X : κ(x) ) Z x X 1 x X 0 2., x X, x

2018 : msjmeeting-2018mar-02i002 ( ) 1. 1:. X (= ), X, X., X Z, 1 π1 ab (X) 0 Chow ( CH 0 (X) := Coker div X : κ(x) ) Z x X 1 x X 0 2., x X, x 2018 :2018 21 msjmeeting-2018mar-02i002 () 1. 1:. (= ),,., Z, 1 π1 ab () 0 Chow ( CH 0 () := Coker iv : κ(x) ) Z x 1 x 0 2., x, x Frobenius ϱ : CH 0 () π ab 1 (), ϱ, π ab 1 () 3 (, Artin, Lang [23], Bloch

More information

1

1 1 Borel1956 Groupes linéaire algébriques, Ann. of Math. 64 (1956), 20 82. Chevalley1956/58 Sur la classification des groupes de Lie algébriques, Sém. Chevalley 1956/58, E.N.S., Paris. Tits1959 Sur la classification

More information

1 M = (M, g) m Riemann N = (N, h) n Riemann M N C f : M N f df : T M T N M T M f N T N M f 1 T N T M f 1 T N C X, Y Γ(T M) M C T M f 1 T N M Levi-Civi

1 M = (M, g) m Riemann N = (N, h) n Riemann M N C f : M N f df : T M T N M T M f N T N M f 1 T N T M f 1 T N C X, Y Γ(T M) M C T M f 1 T N M Levi-Civi 1 Surveys in Geometry 1980 2 6, 7 Harmonic Map Plateau Eells-Sampson [5] Siu [19, 20] Kähler 6 Reports on Global Analysis [15] Sacks- Uhlenbeck [18] Siu-Yau [21] Frankel Siu Yau Frankel [13] 1 Surveys

More information

xia2.dvi

xia2.dvi Journal of Differential Equations 96 (992), 70-84 Melnikov method and transversal homoclinic points in the restricted three-body problem Zhihong Xia Department of Mathematics, Harvard University Cambridge,

More information

2 (March 13, 2010) N Λ a = i,j=1 x i ( d (a) i,j x j ), Λ h = N i,j=1 x i ( d (h) i,j x j ) B a B h B a = N i,j=1 ν i d (a) i,j, B h = x j N i,j=1 ν i

2 (March 13, 2010) N Λ a = i,j=1 x i ( d (a) i,j x j ), Λ h = N i,j=1 x i ( d (h) i,j x j ) B a B h B a = N i,j=1 ν i d (a) i,j, B h = x j N i,j=1 ν i 1. A. M. Turing [18] 60 Turing A. Gierer H. Meinhardt [1] : (GM) ) a t = D a a xx µa + ρ (c a2 h + ρ 0 (0 < x < l, t > 0) h t = D h h xx νh + c ρ a 2 (0 < x < l, t > 0) a x = h x = 0 (x = 0, l) a = a(x,

More information

( ),, ( [Ka93b],[FK06]).,. p Galois L, Langlands p p Galois (, ) p., Breuil, Colmez([Co10]), Q p Galois G Qp 2 p ( ) GL 2 (Q p ) p Banach ( ) (GL 2 (Q

( ),, ( [Ka93b],[FK06]).,. p Galois L, Langlands p p Galois (, ) p., Breuil, Colmez([Co10]), Q p Galois G Qp 2 p ( ) GL 2 (Q p ) p Banach ( ) (GL 2 (Q 2017 : msjmeeting-2017sep-00f006 p Langlands ( ) 1. Q, Q p Q Galois G Q p (p Galois ). p Galois ( p Galois ), L Selmer Tate-Shafarevich, Galois. Dirichlet ( Dedekind s = 0 ) Birch-Swinnerton-Dyer ( L s

More information

Donaldson Seiberg-Witten [GNY] f U U C 1 f(z)dz = Res f(a) 2πi C a U U α = f(z)dz dα = 0 U f U U P 1 α 0 a P 1 Res a α = 0. P 1 Donaldson Seib

Donaldson Seiberg-Witten [GNY] f U U C 1 f(z)dz = Res f(a) 2πi C a U U α = f(z)dz dα = 0 U f U U P 1 α 0 a P 1 Res a α = 0. P 1 Donaldson Seib ( ) Donaldson Seiberg-Witten Witten Göttsche [GNY] L. Göttsche, H. Nakajima and K. Yoshioka, Donaldson = Seiberg-Witten from Mochizuki s formula and instanton counting, Publ. of RIMS, to appear Donaldson

More information

k k Q (R )Z k X 1. X Q Cl (X) 2. nef cone Nef (X) nef semi-ample ( ) 3. 2 f i : X X i X i 1 2 movable cone Mov (X) fi (Nef (X i)) 3 movable

k k Q (R )Z k X 1. X Q Cl (X) 2. nef cone Nef (X) nef semi-ample ( ) 3. 2 f i : X X i X i 1 2 movable cone Mov (X) fi (Nef (X i)) 3 movable 1 (Mori dream space) 2000 [HK] toric toric ( 2.1) toric n n + 1 affine 1 torus ( GIT ) [Co] toric affine ( )torus GIT affine torus ( 2.2) affine Cox ( 3) Cox 2 okawa@ms.u-tokyo.ac.jp Supported by the Grant-in-Aid

More information

2.1 H f 3, SL(2, Z) Γ k (1) f H (2) γ Γ f k γ = f (3) f Γ \H cusp γ SL(2, Z) f k γ Fourier f k γ = a γ (n)e 2πinz/N n=0 (3) γ SL(2, Z) a γ (0) = 0 f c

2.1 H f 3, SL(2, Z) Γ k (1) f H (2) γ Γ f k γ = f (3) f Γ \H cusp γ SL(2, Z) f k γ Fourier f k γ = a γ (n)e 2πinz/N n=0 (3) γ SL(2, Z) a γ (0) = 0 f c GL 2 1 Lie SL(2, R) GL(2, A) Gelbart [Ge] 1 3 [Ge] Jacquet-Langlands [JL] Bump [Bu] Borel([Bo]) ([Ko]) ([Mo]) [Mo] 2 2.1 H = {z C Im(z) > 0} Γ SL(2, Z) Γ N N Γ (N) = {γ SL(2, Z) γ = 1 2 mod N} g SL(2,

More information

' , 24 :,,,,, ( ) Cech Index theorem 22 5 Stability 44 6 compact 49 7 Donaldson 58 8 Symplectic structure 63 9 Wall crossing 66 1

' , 24 :,,,,, ( ) Cech Index theorem 22 5 Stability 44 6 compact 49 7 Donaldson 58 8 Symplectic structure 63 9 Wall crossing 66 1 1998 1998 7 20 26, 44. 400,,., (KEK), ( ) ( )..,.,,,. 1998 1 '98 7 23, 24 :,,,,, ( ) 1 3 2 Cech 6 3 13 4 Index theorem 22 5 Stability 44 6 compact 49 7 Donaldson 58 8 Symplectic structure 63 9 Wall crossing

More information

SAMA- SUKU-RU Contents p-adic families of Eisenstein series (modular form) Hecke Eisenstein Eisenstein p T

SAMA- SUKU-RU Contents p-adic families of Eisenstein series (modular form) Hecke Eisenstein Eisenstein p T SAMA- SUKU-RU Contents 1. 1 2. 7.1. p-adic families of Eisenstein series 3 2.1. modular form Hecke 3 2.2. Eisenstein 5 2.3. Eisenstein p 7 3. 7.2. The projection to the ordinary part 9 3.1. The ordinary

More information

( ) (, ) ( )

( ) (, ) ( ) ( ) (, ) ( ) 1 2 2 2 2.1......................... 2 2.2.............................. 3 2.3............................... 4 2.4.............................. 5 2.5.............................. 6 2.6..........................

More information

2018/10/04 IV/ IV 2/12. A, f, g A. (1) D(0 A ) =, D(1 A ) = Spec(A), D(f) D(g) = D(fg). (2) {f l A l Λ} A I D(I) = l Λ D(f l ). (3) I, J A D(I) D(J) =

2018/10/04 IV/ IV 2/12. A, f, g A. (1) D(0 A ) =, D(1 A ) = Spec(A), D(f) D(g) = D(fg). (2) {f l A l Λ} A I D(I) = l Λ D(f l ). (3) I, J A D(I) D(J) = 2018/10/04 IV/ IV 1/12 2018 IV/ IV 10 04 * 1 : ( A 441 ) yanagida[at]math.nagoya-u.ac.jp https://www.math.nagoya-u.ac.jp/~yanagida 1 I: (ring)., A 0 A, 1 A. (ring homomorphism).. 1.1 A (ideal) I, ( ) I

More information

[AI] G. Anderson, Y. Ihara, Pro-l branched cov erings of P1 and higher circular l-units, Part 1 Ann. of Math. 128 (1988), 271-293 ; Part 2, Intern. J. Math. 1 (1990), 119-148. [B] G. V. Belyi, On Galois

More information

非可換Lubin-Tate理論の一般化に向けて

非可換Lubin-Tate理論の一般化に向けて Lubin-Tate 2012 9 18 ( ) Lubin-Tate 2012 9 18 1 / 27 ( ) Lubin-Tate 2012 9 18 2 / 27 Lubin-Tate p 1 1 ( ) Lubin-Tate 2012 9 18 2 / 27 Lubin-Tate p 1 1 Lubin-Tate GL n n 1 Lubin-Tate ( ) Lubin-Tate 2012

More information

Design of highly accurate formulas for numerical integration in weighted Hardy spaces with the aid of potential theory 1 Ken ichiro Tanaka 1 Ω R m F I = F (t) dt (1.1) Ω m m 1 m = 1 1 Newton-Cotes Gauss

More information

第5章 偏微分方程式の境界値問題

第5章 偏微分方程式の境界値問題 October 5, 2018 1 / 113 4 ( ) 2 / 113 Poisson 5.1 Poisson ( A.7.1) Poisson Poisson 1 (A.6 ) Γ p p N u D Γ D b 5.1.1: = Γ D Γ N 3 / 113 Poisson 5.1.1 d {2, 3} Lipschitz (A.5 ) Γ D Γ N = \ Γ D Γ p Γ N Γ

More information

D-brane K 1, 2 ( ) 1 K D-brane K K D-brane Witten [1] D-brane K K K K D-brane D-brane K RR BPS D-brane

D-brane K 1, 2   ( ) 1 K D-brane K K D-brane Witten [1] D-brane K K K K D-brane D-brane K RR BPS D-brane D-brane K 1, 2 E-mail: sugimoto@yukawa.kyoto-u.ac.jp (2004 12 16 ) 1 K D-brane K K D-brane Witten [1] D-brane K K K K D-brane D-brane K RR BPS D-brane D-brane RR D-brane K D-brane K D-brane K K [2, 3]

More information

Q p G Qp Q G Q p Ramanujan 12 q- (q) : (q) = q n=1 (1 qn ) 24 S 12 (SL 2 (Z))., p (ordinary) (, q- p a p ( ) p ). p = 11 a p ( ) p. p 11 p a p

Q p G Qp Q G Q p Ramanujan 12 q- (q) : (q) = q n=1 (1 qn ) 24 S 12 (SL 2 (Z))., p (ordinary) (, q- p a p ( ) p ). p = 11 a p ( ) p. p 11 p a p .,.,.,..,, 1.. Contents 1. 1 1.1. 2 1.2. 3 1.3. 4 1.4. Eisenstein 5 1.5. 7 2. 9 2.1. e p 9 2.2. p 11 2.3. 15 2.4. 16 2.5. 18 3. 19 3.1. ( ) 19 3.2. 22 4. 23 1. p., Q Q p Q Q p Q C.,. 1. 1 Q p G Qp Q G

More information

0. I II I II (1) linear type: GL( ), Sp( ), O( ), (2) loop type: loop current Kac-Moody affine, hyperbolic (3) diffeo t

0. I II I II (1) linear type: GL( ), Sp( ), O( ), (2) loop type: loop current Kac-Moody affine, hyperbolic (3) diffeo t e-mail: koyama@math.keio.ac.jp 0. I II I II (1) linear type: GL( ), Sp( ), O( ), (2) loop type: loop current Kac-Moody affine, hyperbolic (3) diffeo type: diffeo universal Teichmuller modular I. I-. Weyl

More information

untitled

untitled 18 1 2,000,000 2,000,000 2007 2 2 2008 3 31 (1) 6 JCOSSAR 2007pp.57-642007.6. LCC (1) (2) 2 10mm 1020 14 12 10 8 6 4 40,50,60 2 0 1998 27.5 1995 1960 40 1) 2) 3) LCC LCC LCC 1 1) Vol.42No.5pp.29-322004.5.

More information

λ n numbering Num(λ) Young numbering T i j T ij Young T (content) cont T (row word) word T µ n S n µ C(µ) 0.2. Young λ, µ n Kostka K µλ K µλ def = #{T

λ n numbering Num(λ) Young numbering T i j T ij Young T (content) cont T (row word) word T µ n S n µ C(µ) 0.2. Young λ, µ n Kostka K µλ K µλ def = #{T 0 2 8 8 6 3 0 0 Young Young [F] 0.. Young λ n λ n λ = (λ,, λ l ) λ λ 2 λ l λ = ( m, 2 m 2, ) λ = n, l(λ) = l {λ n n 0} P λ = (λ, ), µ = (µ, ) n λ µ k k k λ i µ i λ µ λ = µ k i= i= i < k λ i = µ i λ k >

More information

Twist knot orbifold Chern-Simons

Twist knot orbifold Chern-Simons Twist knot orbifold Chern-Simons 1 3 M π F : F (M) M ω = {ω ij }, Ω = {Ω ij }, cs := 1 4π 2 (ω 12 ω 13 ω 23 + ω 12 Ω 12 + ω 13 Ω 13 + ω 23 Ω 23 ) M Chern-Simons., S. Chern J. Simons, F (M) Pontrjagin 2.,

More information

1980年代半ば,米国中西部のモデル 理論,そして未来-モデル理論賛歌

1980年代半ば,米国中西部のモデル 理論,そして未来-モデル理論賛歌 2016 9 27 RIMS 1 2 3 1983 9-1989 6 University of Illinois at Chicago (UIC) John T Baldwin 1983 9-1989 6 University of Illinois at Chicago (UIC) John T Baldwin Y N Moschovakis, Descriptive Set Theory North

More information

Gauss Fuchs rigid rigid rigid Nicholas Katz Rigid local systems [6] Fuchs Katz Crawley- Boevey[1] [7] Katz rigid rigid Katz middle convolu

Gauss Fuchs rigid rigid rigid Nicholas Katz Rigid local systems [6] Fuchs Katz Crawley- Boevey[1] [7] Katz rigid rigid Katz middle convolu rigidity 2014.9.1-2014.9.2 Fuchs 1 Introduction y + p(x)y + q(x)y = 0, y 2 p(x), q(x) p(x) q(x) Fuchs 19 Fuchs 83 Gauss Fuchs rigid rigid rigid 7 1970 1996 Nicholas Katz Rigid local systems [6] Fuchs Katz

More information

E1 (4/12)., ( )., 3,4 ( ). ( ) Allen Hatcher, Vector bundle and K-theory ( HP ) 1

E1 (4/12)., ( )., 3,4 ( ). ( ) Allen Hatcher, Vector bundle and K-theory ( HP ) 1 E1 (4/12)., ( )., 3,4 ( ). ( ) Allen Hatcher, Vector bundle and K-theory ( HP ) 1 (4/12) 1 1.. 2. F R C H P n F E n := {((x 0,..., x n ), [v 0 : : v n ]) F n+1 P n F n x i v i = 0 }. i=0 E n P n F P n

More information

24 I ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x

24 I ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x 24 I 1.1.. ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x 1 (t), x 2 (t),, x n (t)) ( ) ( ), γ : (i) x 1 (t),

More information

References tll A. Hurwitz, IJber algebraischen Gebilde mit eindeutige Transformationen Ann. in sich, Math. L27 A. Kuribayashi-K. Komiya, On Weierstrass points of non-hyperelliptic compact Riemann surfaces

More information

0 17 l l Grothendieck Weil Grothendieck SGA (Séminaire de Géométrie Algébrique du Bois-Marie) [Del2], [Del3] Grothendieck Weil Ramanujan Deligne [Del1

0 17 l l Grothendieck Weil Grothendieck SGA (Séminaire de Géométrie Algébrique du Bois-Marie) [Del2], [Del3] Grothendieck Weil Ramanujan Deligne [Del1 l 0 2 1 4 1.1 Tate.......................... 4 1.2........................ 6 1.3...................... 9 1.4.................... 21 2 Galois 31 2.1 Galois.......... 31 2.2.................... 31 3 Galois

More information

Siegel Hecke 1 Siege Hecke L L Fourier Dirichlet Hecke Euler L Euler Fourier Hecke [Fr] Andrianov [An2] Hecke Satake L van der Geer ([vg]) L [Na1] [Yo

Siegel Hecke 1 Siege Hecke L L Fourier Dirichlet Hecke Euler L Euler Fourier Hecke [Fr] Andrianov [An2] Hecke Satake L van der Geer ([vg]) L [Na1] [Yo Siegel Hecke 1 Siege Hecke L L Fourier Dirichlet Hecke Euler L Euler Fourier Hecke [Fr] Andrianov [An2] Hecke Satake L van der Geer ([vg]) L [Na1] [Yo] 2 Hecke ( ) 0 1n J n =, Γ = Γ n = Sp(n, Z) = {γ GL(2n,

More information

Banach-Tarski Hausdorff May 17, 2014 3 Contents 1 Hausdorff 5 1.1 ( Unlösbarkeit des Inhaltproblems) 5 5 1 Hausdorff Banach-Tarski Hausdorff [H1, H2] Hausdorff Grundzüge der Mangenlehre [H1] Inhalte

More information

newmain.dvi

newmain.dvi 数論 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/008142 このサンプルページの内容は, 第 2 版 1 刷発行当時のものです. Daniel DUVERNEY: THÉORIE DES NOMBRES c Dunod, Paris, 1998, This book is published

More information

Chern-Simons Jones 3 Chern-Simons 1 - Chern-Simons - Jones J(K; q) [1] Jones q 1 J (K + ; q) qj (K ; q) = (q 1/2 q

Chern-Simons   Jones 3 Chern-Simons 1 - Chern-Simons - Jones J(K; q) [1] Jones q 1 J (K + ; q) qj (K ; q) = (q 1/2 q Chern-Simons E-mail: fuji@th.phys.nagoya-u.ac.jp Jones 3 Chern-Simons - Chern-Simons - Jones J(K; q) []Jones q J (K + ; q) qj (K ; q) = (q /2 q /2 )J (K 0 ; q), () J( ; q) =. (2) K Figure : K +, K, K 0

More information

, CH n. CH n, CP n,,,., CH n,,. RH n ( Cartan )., CH n., RH n CH n,,., RH n, CH n., RH n ( ), CH n ( 1.1 (v), (vi) )., RH n,, CH n,., CH n,. 1.2, CH n

, CH n. CH n, CP n,,,., CH n,,. RH n ( Cartan )., CH n., RH n CH n,,., RH n, CH n., RH n ( ), CH n ( 1.1 (v), (vi) )., RH n,, CH n,., CH n,. 1.2, CH n ( ), Jürgen Berndt,.,. 1, CH n.,,. 1.1 ([6]). CH n (n 2), : (i) CH k (k = 0,..., n 1) tube. (ii) RH n tube. (iii). (iv) ruled minimal, equidistant. (v) normally homogeneous submanifold F k tube. (vi) normally

More information

kb-HP.dvi

kb-HP.dvi Recent developments in the log minimal model program II II Birkar-Cascini-Hacon-McKernan 1 2 2 3 3 5 4 8 4.1.................. 9 4.2.......................... 10 5 11 464-8602, e-mail: fujino@math.nagoya-u.ac.jp

More information

( ; ) C. H. Scholz, The Mechanics of Earthquakes and Faulting : - ( ) σ = σ t sin 2π(r a) λ dσ d(r a) =

( ; ) C. H. Scholz, The Mechanics of Earthquakes and Faulting : - ( ) σ = σ t sin 2π(r a) λ dσ d(r a) = 1 9 8 1 1 1 ; 1 11 16 C. H. Scholz, The Mechanics of Earthquakes and Faulting 1. 1.1 1.1.1 : - σ = σ t sin πr a λ dσ dr a = E a = π λ σ πr a t cos λ 1 r a/λ 1 cos 1 E: σ t = Eλ πa a λ E/π γ : λ/ 3 γ =

More information

R R P N (C) 7 C Riemann R K ( ) C R C K 8 (R ) R C K 9 Riemann /C /C Riemann 10 C k 11 k C/k 12 Riemann k Riemann C/k k(c)/k R k F q Riemann 15

R R P N (C) 7 C Riemann R K ( ) C R C K 8 (R ) R C K 9 Riemann /C /C Riemann 10 C k 11 k C/k 12 Riemann k Riemann C/k k(c)/k R k F q Riemann 15 (Gen KUROKI) 1 1 : Riemann Spec Z 2? 3 : 4 2 Riemann Riemann Riemann 1 C 5 Riemann Riemann R compact R K C ( C(x) ) K C(R) Riemann R 6 (E-mail address: kuroki@math.tohoku.ac.jp) 1 1 ( 5 ) 2 ( Q ) Spec

More information

[bica]) our gmeff means Abel Milnor $K$ - motif (Mochizuki Satoshi) * Graduate School of Mathematical Sciences, the University o

[bica]) our gmeff means Abel Milnor $K$ - motif (Mochizuki Satoshi) * Graduate School of Mathematical Sciences, the University o Title 半 Abel 多様体に付随するMilnor $K$- 群のmotif 論的解釈 ( 代数的整数論とその周辺 ) Author(s) 望月, 哲史 Citation 数理解析研究所講究録 (2005), 1451: 155-164 Issue Date 2005-10 URL http://hdl.handle.net/2433/47730 Right Type Departmental

More information

Siegel modular forms of middle parahoric subgroups and Ihara lift ( Tomoyoshi Ibukiyama Osaka University 1. Introduction [8] Ihara Sp(2, R) p

Siegel modular forms of middle parahoric subgroups and Ihara lift ( Tomoyoshi Ibukiyama Osaka University 1. Introduction [8] Ihara Sp(2, R) p Siegel modular forms of middle parahoric subgroups and Ihara lift ( Tomoyoshi Ibukiyama Osaka University 1. Introduction [8] Ihara 80 1963 Sp(2, R) p L holomorphic discrete series Eichler Brandt Eichler

More information

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 第 2 版 1 刷発行時のものです. 医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/009192 このサンプルページの内容は, 第 2 版 1 刷発行時のものです. i 2 t 1. 2. 3 2 3. 6 4. 7 5. n 2 ν 6. 2 7. 2003 ii 2 2013 10 iii 1987

More information

Feynman Encounter with Mathematics 52, [1] N. Kumano-go, Feynman path integrals as analysis on path space by time slicing approximation. Bull

Feynman Encounter with Mathematics 52, [1] N. Kumano-go, Feynman path integrals as analysis on path space by time slicing approximation. Bull Feynman Encounter with Mathematics 52, 200 9 [] N. Kumano-go, Feynman path integrals as analysis on path space by time slicing approximation. Bull. Sci. Math. vol. 28 (2004) 97 25. [2] D. Fujiwara and

More information

(2) Fisher α (α) α Fisher α ( α) 0 Levi Civita (1) ( 1) e m (e) (m) ([1], [2], [13]) Poincaré e m Poincaré e m Kähler-like 2 Kähler-like

(2) Fisher α (α) α Fisher α ( α) 0 Levi Civita (1) ( 1) e m (e) (m) ([1], [2], [13]) Poincaré e m Poincaré e m Kähler-like 2 Kähler-like () 10 9 30 1 Fisher α (α) α Fisher α ( α) 0 Levi Civita (1) ( 1) e m (e) (m) ([1], [], [13]) Poincaré e m Poincaré e m Kähler-like Kähler-like Kähler M g M X, Y, Z (.1) Xg(Y, Z) = g( X Y, Z) + g(y, XZ)

More information

Centralizers of Cantor minimal systems

Centralizers of Cantor minimal systems Centralizers of Cantor minimal systems 1 X X X φ (X, φ) (X, φ) φ φ 2 X X X Homeo(X) Homeo(X) φ Homeo(X) x X Orb φ (x) = { φ n (x) ; n Z } x φ x Orb φ (x) X Orb φ (x) x n N 1 φ n (x) = x 1. (X, φ) (i) (X,

More information

() n C + n C + n C + + n C n n (3) n C + n C + n C 4 + n C + n C 3 + n C 5 + (5) (6 ) n C + nc + 3 nc n nc n (7 ) n C + nc + 3 nc n nc n (

() n C + n C + n C + + n C n n (3) n C + n C + n C 4 + n C + n C 3 + n C 5 + (5) (6 ) n C + nc + 3 nc n nc n (7 ) n C + nc + 3 nc n nc n ( 3 n nc k+ k + 3 () n C r n C n r nc r C r + C r ( r n ) () n C + n C + n C + + n C n n (3) n C + n C + n C 4 + n C + n C 3 + n C 5 + (4) n C n n C + n C + n C + + n C n (5) k k n C k n C k (6) n C + nc

More information

62 Serre Abel-Jacob Serre Jacob Jacob Jacob k Jacob Jac(X) X g X (g) X (g) Zarsk [Wel] [Ml] [BLR] [Ser] Jacob ( ) 2 Jacob Pcard 2.1 X g ( C ) X n P P

62 Serre Abel-Jacob Serre Jacob Jacob Jacob k Jacob Jac(X) X g X (g) X (g) Zarsk [Wel] [Ml] [BLR] [Ser] Jacob ( ) 2 Jacob Pcard 2.1 X g ( C ) X n P P 15, pp.61-80 Abel-Jacob I 1 Introducton Remann Abel-Jacob X g Remann X ω 1,..., ω g Λ = {( γ ω 1,..., γ ω g) C g γ H 1 (X, Z)} Λ C g lattce Jac(X) = C g /Λ Le Abel-Jacob (Theorem 2.2, 4.2) Jac(X) Pcard

More information

²ÄÀÑʬΥ»¶ÈóÀþ·¿¥·¥å¥ì¡¼¥Ç¥£¥ó¥¬¡¼ÊýÄø¼°¤ÎÁ²¶á²òÀÏ Asymptotic analysis for the integrable discrete nonlinear Schrödinger equation

²ÄÀÑʬΥ»¶ÈóÀþ·¿¥·¥å¥ì¡¼¥Ç¥£¥ó¥¬¡¼ÊýÄø¼°¤ÎÁ²¶á²òÀÏ  Asymptotic analysis for the integrable discrete nonlinear Schrödinger equation Asymptotic analysis for the integrable discrete nonlinear Schrödinger equation ( ) ( ) 2016 12 17 1. Schrödinger focusing NLS iu t + u xx +2 u 2 u = 0 u(x, t) =2ηe 2iξx 4i(ξ2 η 2 )t+i(ψ 0 +π/2) sech(2ηx

More information

TOP URL 1

TOP URL   1 TOP URL http://amonphys.web.fc.com/ 3.............................. 3.............................. 4.3 4................... 5.4........................ 6.5........................ 8.6...........................7

More information

2017 : msjmeeting-2017sep-00f003 ( ) 1. 1 = A 1.1. / R T { } Λ R = a i T λ i a i R, λ i R, lim λ i = + i i=0 R Λ R v T ( a i T λ i ) = inf λ i, v T (0

2017 : msjmeeting-2017sep-00f003 ( ) 1. 1 = A 1.1. / R T { } Λ R = a i T λ i a i R, λ i R, lim λ i = + i i=0 R Λ R v T ( a i T λ i ) = inf λ i, v T (0 2017 : msjmeeting-2017sep-00f003 ( ) 1. 1 = A 1.1. / R T { } Λ R = a i T λ i a i R, λ i R, lim λ i = + i i=0 R Λ R v T ( a i T λ i ) = inf λ i, v T (0) = + a i 0 i=0 v T Λ R 0 = {x Λ R v T (x) 0} R Remark

More information

( ) ( ) (B) ( , )

( ) ( ) (B) ( , ) () 2006 2 6 () 2006 2 6 2 7 7 (B) ( 574009, ) 2006 4 .,.. Introduction. [6], I. Simon (), J.-E. Pin. min-plus ().,,,. min-plus. (min-plus ). a, b R,, { a b := min(a, b), a b := a + b.. (R,, ) (, ). ( min-plus

More information

21(2009) I ( ) 21(2009) / 42

21(2009) I ( ) 21(2009) / 42 21(2009) 10 24 21(2009) 10 24 1 / 21(2009) 10 24 1. 2. 3.... 4. 5. 6. 7.... 8.... 2009 8 1 1 (1.1) z = x + iy x, y i R C i 2 = 1, i 2 + 1 = 0. 21(2009) 10 24 3 / 1 B.C. (N) 1, 2, 3,...; +,, (Z) 0, ±1,

More information

1 1.1 H = µc i c i + c i t ijc j + 1 c i c j V ijklc k c l (1) V ijkl = V jikl = V ijlk = V jilk () t ij = t ji, V ijkl = V lkji (3) (1) V 0 H mf = µc

1 1.1 H = µc i c i + c i t ijc j + 1 c i c j V ijklc k c l (1) V ijkl = V jikl = V ijlk = V jilk () t ij = t ji, V ijkl = V lkji (3) (1) V 0 H mf = µc 013 6 30 BCS 1 1.1........................ 1................................ 3 1.3............................ 3 1.4............................... 5 1.5.................................... 5 6 3 7 4 8

More information

(2004 ) 2 (A) (B) (C) 3 (1987) (1988) Shimono and Tachibanaki(1985) (2008) , % 2 (1999) (2005) 3 (2005) (2006) (2008)

(2004 ) 2 (A) (B) (C) 3 (1987) (1988) Shimono and Tachibanaki(1985) (2008) , % 2 (1999) (2005) 3 (2005) (2006) (2008) ,, 23 4 30 (i) (ii) (i) (ii) Negishi (1960) 2010 (2010) ( ) ( ) (2010) E-mail:fujii@econ.kobe-u.ac.jp E-mail:082e527e@stu.kobe-u.ac.jp E-mail:iritani@econ.kobe-u.ac.jp 1 1 16 (2004 ) 2 (A) (B) (C) 3 (1987)

More information

compact compact Hermann compact Hermite ( - ) Hermann Hermann ( ) compact Hermite Lagrange compact Hermite ( ) a, Σ a {0} a 3 1

compact compact Hermann compact Hermite ( - ) Hermann Hermann ( ) compact Hermite Lagrange compact Hermite ( ) a, Σ a {0} a 3 1 014 5 4 compact compact Hermann compact Hermite ( - ) Hermann Hermann ( ) compact Hermite Lagrange compact Hermite ( ) 1 1.1. a, Σ a {0} a 3 1 (1) a = span(σ). () α, β Σ s α β := β α,β α α Σ. (3) α, β

More information

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2 II No.1 [n/] [1]H n x) H n x) = 1) r n! r!n r)! x)n r r= []H n x) n,, H n x) = 1) n H n x) [3] H n x) = 1) n dn x e dx n e x [4] H n+1 x) = xh n x) nh n 1 x) ) d dx x H n x) = H n+1 x) d dx H nx) = nh

More information

1. R n Ω ε G ε 0 Ω ε B n 2 Ωε = with Bu = 0 on Ω ε i=1 x 2 i ε +0 B Bu = u (Dirichlet, D Ω ε ), Bu = u ν (Neumann, N Ω ε ), Ω ε G ( ) / 25

1. R n Ω ε G ε 0 Ω ε B n 2 Ωε = with Bu = 0 on Ω ε i=1 x 2 i ε +0 B Bu = u (Dirichlet, D Ω ε ), Bu = u ν (Neumann, N Ω ε ), Ω ε G ( ) / 25 .. IV 2012 10 4 ( ) 2012 10 4 1 / 25 1. R n Ω ε G ε 0 Ω ε B n 2 Ωε = with Bu = 0 on Ω ε i=1 x 2 i ε +0 B Bu = u (Dirichlet, D Ω ε ), Bu = u ν (Neumann, N Ω ε ), Ω ε G ( ) 2012 10 4 2 / 25 1. Ω ε B ε t

More information

Jacobi, Stieltjes, Gauss : :

Jacobi, Stieltjes, Gauss : : Jacobi, Stieltjes, Gauss : : 28 2 0 894 T. J. Stieltjes [St94a] Recherches sur les fractions continues Stieltjes 0 f(u)du, z + u f(u) > 0, z C z + + a a 2 z + a 3 +..., a p > 0 (a) Vitali (a) Stieltjes

More information

[2, 3, 4, 5] * C s (a m k (symmetry operation E m[ 1(a ] σ m σ (symmetry element E σ {E, σ} C s 32 ( ( =, 2 =, (3 0 1 v = x 1 1 +

[2, 3, 4, 5] * C s (a m k (symmetry operation E m[ 1(a ] σ m σ (symmetry element E σ {E, σ} C s 32 ( ( =, 2 =, (3 0 1 v = x 1 1 + 2016 12 16 1 1 2 2 2.1 C s................. 2 2.2 C 3v................ 9 3 11 3.1.............. 11 3.2 32............... 12 3.3.............. 13 4 14 4.1........... 14 4.2................ 15 4.3................

More information

takei.dvi

takei.dvi 0 Newton Leibniz ( ) α1 ( ) αn (1) a α1,...,α n (x) u(x) = f(x) x 1 x n α 1 + +α n m 1957 Hans Lewy Lewy 1970 1 1.1 Example 1.1. (2) d 2 u dx 2 Q(x)u = f(x), u(0) = a, 1 du (0) = b. dx Q(x), f(x) x = 0

More information

Z: Q: R: C: sin 6 5 ζ a, b

Z: Q: R: C: sin 6 5 ζ a, b Z: Q: R: C: 3 3 7 4 sin 6 5 ζ 9 6 6............................... 6............................... 6.3......................... 4 7 6 8 8 9 3 33 a, b a bc c b a a b 5 3 5 3 5 5 3 a a a a p > p p p, 3,

More information

Auerbach and Kotlikoff(1987) (1987) (1988) 4 (2004) 5 Diamond(1965) Auerbach and Kotlikoff(1987) 1 ( ) ,

Auerbach and Kotlikoff(1987) (1987) (1988) 4 (2004) 5 Diamond(1965) Auerbach and Kotlikoff(1987) 1 ( ) , ,, 2010 8 24 2010 9 14 A B C A (B Negishi(1960) (C) ( 22 3 27 ) E-mail:fujii@econ.kobe-u.ac.jp E-mail:082e527e@stu.kobe-u.ac.jp E-mail:iritani@econ.kobe-u.ac.jp 1 1 1 2 3 Auerbach and Kotlikoff(1987) (1987)

More information

T rank A max{rank Q[R Q, J] t-rank T [R T, C \ J] J C} 2 ([1, p.138, Theorem 4.2.5]) A = ( ) Q rank A = min{ρ(j) γ(j) J J C} C, (5) ρ(j) = rank Q[R Q,

T rank A max{rank Q[R Q, J] t-rank T [R T, C \ J] J C} 2 ([1, p.138, Theorem 4.2.5]) A = ( ) Q rank A = min{ρ(j) γ(j) J J C} C, (5) ρ(j) = rank Q[R Q, (ver. 4:. 2005-07-27) 1 1.1 (mixed matrix) (layered mixed matrix, LM-matrix) m n A = Q T (2m) (m n) ( ) ( ) Q I m Q à = = (1) T diag [t 1,, t m ] T rank à = m rank A (2) 1.2 [ ] B rank [B C] rank B rank

More information

p *2 DSGEDynamic Stochastic General Equilibrium New Keynesian *2 2

p *2 DSGEDynamic Stochastic General Equilibrium New Keynesian *2 2 2013 1 nabe@ier.hit-u.ac.jp 2013 4 11 Jorgenson Tobin q : Hayashi s Theorem : Jordan : 1 investment 1 2 3 4 5 6 7 8 *1 *1 93SNA 1 p.180 1936 100 1970 *2 DSGEDynamic Stochastic General Equilibrium New Keynesian

More information

untitled

untitled Lie L ( Introduction L Rankin-Selberg, Hecke L (,,, Rankin, Selberg L (GL( GL( L, L. Rankin-Selberg, Fourier, (=Fourier (= Basic identity.,,.,, L.,,,,., ( Lie G (=G, G.., 5, Sp(, R,. L., GL(n, R Whittaker

More information

1 = = = (set) (element) a A a A a A a A a A {2, 5, (0, 1)}, [ 1, 1] = {x; 1 x 1}. (proposition) A = {x; P (x)} P (x) x x a A a A Remark. (i) {2, 0, 0,

1 = = = (set) (element) a A a A a A a A a A {2, 5, (0, 1)}, [ 1, 1] = {x; 1 x 1}. (proposition) A = {x; P (x)} P (x) x x a A a A Remark. (i) {2, 0, 0, 2005 4 1 1 2 2 6 3 8 4 11 5 14 6 18 7 20 8 22 9 24 10 26 11 27 http://matcmadison.edu/alehnen/weblogic/logset.htm 1 1 = = = (set) (element) a A a A a A a A a A {2, 5, (0, 1)}, [ 1, 1] = {x; 1 x 1}. (proposition)

More information

2 K = f (x) K[[x]] = r f (x) r D = D (0, r) a D f (x) a D Figure X d : X X R 0 d(x, z) max{d(x, y), d(y, z)} x, y, z X (X, d) clopen 1.1. (X,

2 K = f (x) K[[x]] = r f (x) r D = D (0, r) a D f (x) a D Figure X d : X X R 0 d(x, z) max{d(x, y), d(y, z)} x, y, z X (X, d) clopen 1.1. (X, 2008. 1. 1.1.. 4 affinoids analytic reduction Raynaud visualization Zariski-Riemann 1.2.. 1905 K. Hensel p- 1918 A. Ostrowski Q 1930 W. Schöbe 1940 M. Krasner 1 2 K = f (x) K[[x]] = r f (x) r D = D (0,

More information

1 4 1 ( ) ( ) ( ) ( ) () 1 4 2

1 4 1 ( ) ( ) ( ) ( ) () 1 4 2 7 1995, 2017 7 21 1 2 2 3 3 4 4 6 (1).................................... 6 (2)..................................... 6 (3) t................. 9 5 11 (1)......................................... 11 (2)

More information

9 Feb 2008 NOGUCHI (UT) HDVT 9 Feb / 33

9 Feb 2008 NOGUCHI (UT) HDVT 9 Feb / 33 9 Feb 2008 NOGUCHI (UT) HDVT 9 Feb 2008 1 / 33 1 NOGUCHI (UT) HDVT 9 Feb 2008 2 / 33 1 Green-Griffiths (1972) NOGUCHI (UT) HDVT 9 Feb 2008 2 / 33 1 Green-Griffiths (1972) X f : C X f (C) X NOGUCHI (UT)

More information

,,,17,,, ( ),, E Q [S T F t ] < S t, t [, T ],,,,,,,,

,,,17,,, ( ),, E Q [S T F t ] < S t, t [, T ],,,,,,,, 14 5 1 ,,,17,,,194 1 4 ( ),, E Q [S T F t ] < S t, t [, T ],,,,,,,, 1 4 1.1........................................ 4 5.1........................................ 5.........................................

More information

December 28, 2018

December 28, 2018 e-mail : kigami@i.kyoto-u.ac.jp December 28, 28 Contents 2............................. 3.2......................... 7.3..................... 9.4................ 4.5............. 2.6.... 22 2 36 2..........................

More information

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,. 9 α ν β Ξ ξ Γ γ o δ Π π ε ρ ζ Σ σ η τ Θ θ Υ υ ι Φ φ κ χ Λ λ Ψ ψ µ Ω ω Def, Prop, Th, Lem, Note, Remark, Ex,, Proof, R, N, Q, C [a, b {x R : a x b} : a, b {x R : a < x < b} : [a, b {x R : a x < b} : a,

More information

平成 29 年度 ( 第 39 回 ) 数学入門公開講座テキスト ( 京都大学数理解析研究所, 平成 29 ~8 年月 73 月日開催 31 日 Riemann Riemann ( ). π(x) := #{p : p x} x log x (x ) Hadamard de

平成 29 年度 ( 第 39 回 ) 数学入門公開講座テキスト ( 京都大学数理解析研究所, 平成 29 ~8 年月 73 月日開催 31 日 Riemann Riemann ( ). π(x) := #{p : p x} x log x (x ) Hadamard de Riemann Riemann 07 7 3 8 4 ). π) : #{p : p } log ) Hadamard de la Vallée Poussin 896 )., f) g) ) lim f) g).. π) Chebychev. 4 3 Riemann. 6 4 Chebychev Riemann. 9 5 Riemann Res). A :. 5 B : Poisson Riemann-Lebesgue

More information

* 1 1 (i) (ii) Brückner-Hartree-Fock (iii) (HF, BCS, HFB) (iv) (TDHF,TDHFB) (RPA) (QRPA) (v) (vi) *

* 1 1 (i) (ii) Brückner-Hartree-Fock (iii) (HF, BCS, HFB) (iv) (TDHF,TDHFB) (RPA) (QRPA) (v) (vi) * * 1 1 (i) (ii) Brückner-Hartree-Fock (iii) (HF, BCS, HFB) (iv) (TDHF,TDHFB) (RPA) (QRPA) (v) (vi) *1 2004 1 1 ( ) ( ) 1.1 140 MeV 1.2 ( ) ( ) 1.3 2.6 10 8 s 7.6 10 17 s? Λ 2.5 10 10 s 6 10 24 s 1.4 ( m

More information

Part () () Γ Part ,

Part () () Γ Part , Contents a 6 6 6 6 6 6 6 7 7. 8.. 8.. 8.3. 8 Part. 9. 9.. 9.. 3. 3.. 3.. 3 4. 5 4.. 5 4.. 9 4.3. 3 Part. 6 5. () 6 5.. () 7 5.. 9 5.3. Γ 3 6. 3 6.. 3 6.. 3 6.3. 33 Part 3. 34 7. 34 7.. 34 7.. 34 8. 35

More information

30

30 3 ............................................2 2...........................................2....................................2.2...................................2.3..............................

More information

7 π L int = gψ(x)ψ(x)φ(x) + (7.4) [ ] p ψ N = n (7.5) π (π +,π 0,π ) ψ (σ, σ, σ )ψ ( A) σ τ ( L int = gψψφ g N τ ) N π * ) (7.6) π π = (π, π, π ) π ±

7 π L int = gψ(x)ψ(x)φ(x) + (7.4) [ ] p ψ N = n (7.5) π (π +,π 0,π ) ψ (σ, σ, σ )ψ ( A) σ τ ( L int = gψψφ g N τ ) N π * ) (7.6) π π = (π, π, π ) π ± 7 7. ( ) SU() SU() 9 ( MeV) p 98.8 π + π 0 n 99.57 9.57 97.4 497.70 δm m 0.4%.% 0.% 0.8% π 9.57 4.96 Σ + Σ 0 Σ 89.6 9.46 K + K 0 49.67 (7.) p p = αp + βn, n n = γp + δn (7.a) [ ] p ψ ψ = Uψ, U = n [ α

More information

2 R U, U Hausdorff, R. R. S R = (S, A) (closed), (open). (complete projective smooth algebraic curve) (cf. 2). 1., ( ).,. countable ( 2 ) ,,.,,

2 R U, U Hausdorff, R. R. S R = (S, A) (closed), (open). (complete projective smooth algebraic curve) (cf. 2). 1., ( ).,. countable ( 2 ) ,,.,, 15, pp.1-13 1 1.1,. 1.1. C ( ) f = u + iv, (, u, v f ). 1 1. f f x = i f x u x = v y, u y = v x.., u, v u = v = 0 (, f = 2 f x + 2 f )., 2 y2 u = 0. u, u. 1,. 1.2. S, A S. (i) A φ S U φ C. (ii) φ A U φ

More information

Affine Hecke ( A ) Irreducible representations of affine Hecke algebras (survey talk with emphasis on type A) (Syu Kato) Recently, there are

Affine Hecke ( A ) Irreducible representations of affine Hecke algebras (survey talk with emphasis on type A) (Syu Kato) Recently, there are Affine Hecke ( A ) Irreducible representations of affine Hecke algebras (survey talk with emphasis on type A) (Syu Kato) 20 10 29 Recently, there are several successful attempts on the classification of

More information

C p (.2 C p [[T ]] Bernoull B n,χ C p p q p 2 q = p p = 2 q = 4 ω Techmüller a Z p ω(a a ( mod q φ(q ω(a Z p a pz p ω(a = 0 Z p φ Euler Techmüller ω Q

C p (.2 C p [[T ]] Bernoull B n,χ C p p q p 2 q = p p = 2 q = 4 ω Techmüller a Z p ω(a a ( mod q φ(q ω(a Z p a pz p ω(a = 0 Z p φ Euler Techmüller ω Q p- L- [Iwa] [Iwa2] -Leopoldt [KL] p- L-. Kummer Remann ζ(s Bernoull B n (. ζ( n = B n n, ( n Z p a = Kummer [Kum] ( Kummer p m n 0 ( mod p m n a m n ( mod (p p a ( p m B m m ( pn B n n ( mod pa Z p Kummer

More information

Langlands 1 1. Langlands p GL n Langlands [HT] The local Langlands conjecture is one of those hydra-like conjectures which seems to grow as it gets pr

Langlands 1 1. Langlands p GL n Langlands [HT] The local Langlands conjecture is one of those hydra-like conjectures which seems to grow as it gets pr Langlands 1 1. Langlands p GL n Langlands [HT] The local Langlands conjecture is one of those hydra-like conjectures which seems to grow as it gets proved. ([HT], p.1) hydra [KP] Langlands Langlands Langlands

More information

Keiji Matsumoto (Hokkaido Univ.) Jan. 08, ,

Keiji Matsumoto (Hokkaido Univ.) Jan. 08, , Keiji Mtsumoto (Hokkido Univ.) Jn. 08, 009 009, . > b > 0 { n }, {b n } ( 0, b 0 ) = (, b), ( n+, b n+ ) = ( n + b n, n b n ). { n }, {b n } lim n n = lim b n n b M(, b) Theorem (C.F. Guss 799 ) Mple M(,

More information

$\ell$進層のSwan導手とunit-root overconvergent $F$-isocrystalの特性サイクルについて (Algebraic Number Theory and Related Topics 2007)

$\ell$進層のSwan導手とunit-root overconvergent $F$-isocrystalの特性サイクルについて (Algebraic Number Theory and Related Topics 2007) \cdots RIMS Kôkyûroku Bessatsu B12 (2009), 51 56 l 進層の Swan 導手と unit root overconvergent F isocrystal の特性サイクルについて By 阿部知行 (Tomoyuki Abe) * Abstract この要約ではまず P. Berthelot による数論的 \mathscr{d} 加群の理論を用いて unit

More information

G H J(g, τ G g G J(g, τ τ J(g 1 g, τ = J(g 1, g τj(g, τ J J(1, τ = 1 k g = ( a b c d J(g, τ = (cτ + dk G = SL (R SL (R G G α, β C α = α iθ (θ R

G H J(g, τ G g G J(g, τ τ J(g 1 g, τ = J(g 1, g τj(g, τ J J(1, τ = 1 k g = ( a b c d J(g, τ = (cτ + dk G = SL (R SL (R G G α, β C α = α iθ (θ R 1 1.1 SL (R 1.1.1 SL (R H SL (R SL (R H H H = {z = x + iy C; x, y R, y > 0}, SL (R = {g M (R; dt(g = 1}, gτ = aτ + b a b g = SL (R cτ + d c d 1.1. Γ H H SL (R f(τ f(gτ G SL (R G H J(g, τ τ g G Hol f(τ

More information

25 7 18 1 1 1.1 v.s............................. 1 1.1.1.................................. 1 1.1.2................................. 1 1.1.3.................................. 3 1.2................... 3

More information

平成 19 年度 ( 第 29 回 ) 数学入門公開講座テキスト ( 京都大学数理解析研究所, 平成 19 ~8 年月 72 月日開催 30 日 ) R = T, Fermat Wiles, Taylor-Wiles R = T.,,.,. 1. Fermat Fermat,. Fermat, 17

平成 19 年度 ( 第 29 回 ) 数学入門公開講座テキスト ( 京都大学数理解析研究所, 平成 19 ~8 年月 72 月日開催 30 日 ) R = T, Fermat Wiles, Taylor-Wiles R = T.,,.,. 1. Fermat Fermat,. Fermat, 17 R = T, Fermat Wiles, Taylor-Wiles R = T.,,.,. 1. Fermat Fermat,. Fermat, 17, 400.. Descartes ( ) Corneille ( ), Milton ( ), Velázquez ( ), Rembrandt van Rijn ( ),,,. Fermat, Fermat, Fermat, 1995 Wiles

More information

chap9.dvi

chap9.dvi 9 AR (i) (ii) MA (iii) (iv) (v) 9.1 2 1 AR 1 9.1.1 S S y j = (α i + β i j) D ij + η j, η j = ρ S η j S + ε j (j =1,,T) (1) i=1 {ε j } i.i.d(,σ 2 ) η j (j ) D ij j i S 1 S =1 D ij =1 S>1 S =4 (1) y j =

More information

( ) (, ) arxiv: hgm OpenXM search. d n A = (a ij ). A i a i Z d, Z d. i a ij > 0. β N 0 A = N 0 a N 0 a n Z A (β; p) = Au=β,u N n 0 A

( ) (, ) arxiv: hgm OpenXM search. d n A = (a ij ). A i a i Z d, Z d. i a ij > 0. β N 0 A = N 0 a N 0 a n Z A (β; p) = Au=β,u N n 0 A ( ) (, ) arxiv: 1510.02269 hgm OpenXM search. d n A = (a ij ). A i a i Z d, Z d. i a ij > 0. β N 0 A = N 0 a 1 + + N 0 a n Z A (β; p) = Au=β,u N n 0 A-. u! = n i=1 u i!, p u = n i=1 pu i i. Z = Z A Au

More information

(2 X Poisso P (λ ϕ X (t = E[e itx ] = k= itk λk e k! e λ = (e it λ k e λ = e eitλ e λ = e λ(eit 1. k! k= 6.7 X N(, 1 ϕ X (t = e 1 2 t2 : Cauchy ϕ X (t

(2 X Poisso P (λ ϕ X (t = E[e itx ] = k= itk λk e k! e λ = (e it λ k e λ = e eitλ e λ = e λ(eit 1. k! k= 6.7 X N(, 1 ϕ X (t = e 1 2 t2 : Cauchy ϕ X (t 6 6.1 6.1 (1 Z ( X = e Z, Y = Im Z ( Z = X + iy, i = 1 (2 Z E[ e Z ] < E[ Im Z ] < Z E[Z] = E[e Z] + ie[im Z] 6.2 Z E[Z] E[ Z ] : E[ Z ] < e Z Z, Im Z Z E[Z] α = E[Z], Z = Z Z 1 {Z } E[Z] = α = α [ α ]

More information

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T NHK 204 2 0 203 2 24 ( ) 7 00 7 50 203 2 25 ( ) 7 00 7 50 203 2 26 ( ) 7 00 7 50 203 2 27 ( ) 7 00 7 50 I. ( ν R n 2 ) m 2 n m, R = e 2 8πε 0 hca B =.09737 0 7 m ( ν = ) λ a B = 4πε 0ħ 2 m e e 2 = 5.2977

More information

meiji_resume_1.PDF

meiji_resume_1.PDF β β β (q 1,q,..., q n ; p 1, p,..., p n ) H(q 1,q,..., q n ; p 1, p,..., p n ) Hψ = εψ ε k = k +1/ ε k = k(k 1) (x, y, z; p x, p y, p z ) (r; p r ), (θ; p θ ), (ϕ; p ϕ ) ε k = 1/ k p i dq i E total = E

More information