Agenda Monin-Obukhov Flux Richardson Prandtl

Size: px
Start display at page:

Download "Agenda 0. 1. Monin-Obukhov 2. 3. Flux Richardson Prandtl"

Transcription

1 2011 GFD (Sun.) :

2 Agenda Monin-Obukhov Flux Richardson Prandtl

3 0.

4 GABLS2 test case GEWEX ( 1

5 GABLS2 test case

6

7

8 Boussinesq : u i t + u iu j x j θ t + θu j x j = x j u j x j = 0. = 1 p + gθ δ ρ 0 x i θ i3 + 0 x j κ θ, x j (NB) p, θ ν u i x j, ( )

9 u i t + u iu j x j θ t + θu j x j u j x j = 0, = 1 p + gθ δ ρ 0 x i θ i3 τ ij + 0 x j x j = τ θj x j + x j κ θ x j τ ij = u i u j u i u j, τ θj = θu j θu j., ν u i x j,

10 ??? Yes.

11 The Kolmogorov length : Kolmogorov length = (ν 3 /ε) 1/4 O(10 3 m) ν = m 2 s 1 ε O(10 5 m 2 s 3 ) (Lilly et al. 1974) (1999)

12 τ ij, τ θj dissipation 1/LΔ kd

13 τ ij, τ θj τ ij, τ θj

14 τ ij, τ θj? τ ij, τ θj

15 δ O(10 3 m) Δz O(1m) O(10m) ( ) δ/δz << 1?

16 z U, Θ Θs

17 δ/δz << 1 Monin-Obukhov

18 τ ij, τ θj Kolmogorov length

19 ( )? (Mellor and Yamada ) Science and Art

20 1. Monin-Obukhov

21 Monin-Obukhov Buckingham Π Buckingham, E., 1914: On physically similar systems: illustrations of the use of dimensional equations. Phys. Rev., 4, Geoff Vallis web : ( general.html)

22 The Buckingham pi Theorem n q 1,..., q n, k f (q 1, q 2,, q n )=0 p = n k π 1,..., π p q 1,..., q n F(π 1, π 2,, π p )=0 π 1,..., π p

23 ? l[m], m[kg], g[ms -2 ] T g θ l (l/g) 1/2 T l/g. m

24 ρ σ σ U(z) ρ, σ, z u * κ (0.4 ) du dz = u κz, u := σ ρ.

25 U(z) = u κ log z z 0 z 0 ( ). z ρu w = σ U(z) = u κ log z z 0 : σ u w = σ ρ = u2. σ

26 U [m/s] u = u z κ log, z 0 κ = 0.4, u = [m/s], z 0 = [m] Z [m]

27 m m

28 Monin-Obukhov? Monin-Obukhov( ) ρ σ Q0 g/θ0, z Monin-Obukhov u := σ/ρ θ := Q 0 /u L := u 3 Θ 0 /(κgq 0 )

29 Monin-Obukhov Monin-Obukhov Monin-Obukhov Q0 > 0: Q0 < 0: 0 1/L

30 Monin-Obukhov F F F * F F * ς = z/l F F = g F (ζ) g F (ς)

31 Monin-Obukhov Monin-Obukhov U/ z u /L = g m(ζ), Θ/ z θ /L = g h(ζ). : U z = u κz φ m(ζ), φ m (ζ) := κζg m (ζ), Θ z = θ κz φ h(ζ), φ h (ζ) := κζg h (ζ). φ m (ς), φ h (ς) φ m (ς) 1

32 ( ) ς < 1 ς

33 U(z), Θ(z) U(z) = u κ Θ(z) = θ κ ψ m (ς), ψ h (ς) ψ m (ζ) := ψ h (ζ) := z log z log ζ 1 φ m (ζ ) ζ 0 ζ dζ, ζ z 0m z 0h ζ 0 1 φ h (ζ ) ζ dζ. u *, θ * U(z), Θ(z) ψ m (ζ) ψ h (ζ), + Θ s.

34 Businger (1971) ψ m (ζ) = 4.7ζ, (ζ 0), log[(1 + ξ(ζ)) 2 (1 + ξ(ζ) 2 )/8] 2 tan 1 ξ(ζ)+π/2, (ζ < 0), ψ h (ζ) = 4.7ζ, (ζ 0), 2 log[(1 + η(ζ))/2], (ζ < 0), ξ(ζ) =(1 15ζ) 1/4, η(ζ) =(1 9ζ) 1/2. Beljaas and Holtslag (1991) ψ m (ζ) = b(ζ c/d) exp( dζ) aζ bc/d (ζ 0), log[(1 + ξ(ζ)) 2 (1 + ξ(ζ) 2 )/8] 2 tan 1 ξ(ζ)+π/2, (ζ < 0), ψ h (ζ) = b(ζ c/d) exp( dζ) (1 + 2aζ/3) 3/2 bc/d + 1, (ζ 0), 2 log[(1 + ξ(ζ) 2 )/2], (ζ < 0), a = 1, b = 2/3, c = 5, d = 0.35, ξ(ζ) =(1 16ζ) 1/4.

35 z 0 = 0.1 [m], u* = 0.3 [m/s], Θ 0 = 288 [K] L = -100, -200, 100, 200 [m] ( )?( ) Altitude [m] 10 1 Altitude [m] U [m/s] Θ - Θ 0 [K]

36 :? Monin-Obukhov log-profile :

37 (u *2 ) (u * θ * ) U(z), Θ(z) u *, θ * σ/ρ = u 2 = C m U 2, Q 0 = u θ = C h U (Θ Θ s ), C m = C h =? log z z 0m κ 2 ψ m zl 2, κ 2 log z z 0m ψ m zl log z z0h ψ h zl.

38 No C m, C h L L u *, θ * ( ) L C m, C h u *, θ *

39 Richardson Rb := gzθ Θ 0 U 2 = z L Richardson log z z0h ψ zl h log z z 0m ψ zl 2. m Rb L C m, C h u *, θ *

40 Richardson (Louis 1979, Louis et al. 1982) Rb C m, C h u *, θ *

41 Louis (1979) Businger(1971) u 2 = a 2 mu 2 F m (z/z 0m, Rb), a m := κ/[log(z/z 0m )], a h := κ/[log(z/z 0h )], z 1 brb Rb < 0 1+c F m, Rb = m Rb 1/2 z 1 0m (1+b Rb 0 Rb) 2 z z 1 brb Rb < 0 1+c F h,, Rb = h Rb 1/2 z 0m z 1 0h (1+b Rb 0 Rb) 2 u θ = a m a h U Θ F h (z/z 0m, z/z 0h, Rb), b = 2b = 9.4, c m = 7.4a 2 mb z z 0m 1/2, c h = 5.3a m a h b z z 0h 1/2.

42 Louis et al. (1982) F m F h u 2 = a 2 mu 2 F m (z/z 0m, Rb), u θ = a m a h U Θ F h (z/z 0m, z/z 0h, Rb), a m := κ/[log(z/z 0m )], a h := κ/[log(z/z 0h )], 2bRb z 1 Rb < 0 1+c m Rb 1/2 F m, Rb = 1 z 0m 1 + 2bRb Rb 0 1+ f Rb F h z z 0m, z, Rb z 0h b = c = f = 5, = 1 3bRb Rb < 0 1+c h Rb 1/2 (1 + 3bRb 1 + f Rb) 1 Rb 0 z 1/2, c h = 3ba m a h c c m = 3ba 2 mc z 0m z z 0h 1/2.

43 z/z 0 = 10 2 z/z 0 = z/z 0 = z/z 0 = C m C h z/z 0 = z/z 0 = z/z 0 = 10 4 z/z 0 = Rb Rb Businger (1971) Louis (1979)

44 z/z 0 = 10 2 z/z 0 = 10 2 z/z 0 = z/z 0 = C m C h z/z 0 = z/z 0 = z/z 0 = 10 4 z/z 0 = Rb Rb Louis et al. (1982) Louis (1979)

45 z/z 0 = 10 2 z/z 0 = 10 2 z/z 0 = z/z 0 = C m z/z 0 = z/z 0 = z/z 0 = 10 4 C h z/z 0 = Rb Rb Louis et al. (1982) Beljaas and Holtslag (1991)

46 2 Richardson??

47 Richardson Richardson Richardson ζ (1/L ) Rb

48 Richardson Businger (1971): ψ m (ζ) =ψ h (ζ) = 4.7ζ, Rb = ζ [log(z/z 0h) ψ h (ζ)] [log(z/z 0m ) ψ m (ζ)] 2 4.7ζ ζ 2 = 1 4.7, (ζ ) Beljaas and Holtslag (1991): Rb 2 2ζ 5/2 =, (ζ ) 3 3aζ2

49 Businger (1971), Louis (1979) Beljaas and Holtslag (1991), Louis et al. (1982) ψ m, ψ h C h = log(z/z 0m) ψ m (ζ) C m log(z/z 0h ) ψ h (ζ)

50 Ri, Rf, Pr Richardson flux Richardson Prandtl Gradient Richardson number Flux Richardson number Turbulent Prandtl number Ri := Rf := Pr := K m K h g dθ θ 0 dz du dz 2 g θ 0 θ w u w du dz = Ri Rf

51 Ri, Rf, Pr Ri, Rf, Pr φ m (ς), φ h (ς) : u w = u 2, θ w = u θ, L = U z = u κz φ m(ζ), Θ z = θ κz φ h(ζ), Ri = ζφ h(ζ) φ 2 m(ζ), Rf = ζ φ m (ζ), Richardson Ri c? u 2 κg/θ 0 θ, Pr 1 = φ m(ζ) φ h (ζ). = Pr Rf

52 Rf(Ri) and Pr 1 (Ri) Rf 1/Pr Ri Ri Beljaas and Holtslag (1991) Businger (1971)

53 Businger (1971), Beljaas and Holtslag (1991), Louis (1979), Louis et al. (1982) Businger (1971) Richardson Beljaas and Holtslag (1991), Louis et al. (1982) Ri, Rf, Pr

54 2.

55 ( ): RANS ( ): LES(Large-eddy Simulation): ( ) u i t + u j u i x i = 0. u i x j = p x i + ν u i,

56 RANS LES RANS F(x, t) := P(F; x, t) F(x, t) LES G(x) F(x, t) := F(x, t)p(f; x, t)df. F(x, t)g(x x )dx. (GS) RANS

57 RANS LES RANS: LES: ( km km) ( m)

58 : ( u i t + u iu j x j u i x i = 0. u i u j u i = u i + u i ) = p x i u i u j x j + ν u i,

59 2 u i u j u i u j u k u i u j u k u i u j u k u l ( )

60 2 3 u i u j t + x k U k u i u j + u k u i u j ν u x i u j k U j U = u i u k u x j u i k β(g k x j u i θ + g i u j θ) + p k u j θ + U t x k u j θ + u j u k θ νθ u j θ αu k x j k x k + pu x i + pu j x j + f k ( ikl u i u l + jkl u j u l ) i u i u j + u j u i + x j pθ + jkl f k u l θ Θ = u j u k u x k θ U j βg k x j θ 2 + p θ (α + ν) u j θ, k x j x k x k θ 2 t + U x k θ 2 + u k θ 2 α θ2 = 2u k x k θ Θ 2α θ θ. k x k x k x k 2ν u i u k u j u k,

61 ( ) ( )

62 ( ) (Boussinesq 1877): ui u j = ν T S ij δ iju k u k, S ij = 1 u i + u j. 2 x j x i ν T?

63 Prandtl (1925) U z l u l U z. u w U(z + l) U(z) + l U z U(z)

64 Prandtl ( ) w u u w u w = l 2 U l Prandtl( ) z U z. ν T = l 2 U z. ( )?

65 Prandtl ν T = lv l v ν l v

66 Mellor-Yamada K m = lqs m, K h = lqs h. q S m, S h l, q, S m, S h

67 Anderson, P. S., 2009: Measurement of Prandtl Number as a Function of Richardson Number Avoiding Self-Correlation, Bound.-Layer Meteorol., 131, Balarac G., H. Pitsch, and V. Raman, 2008: Modeling of the subfilter scalar dissipation rate using the concept Modeling of the subfilter scalar dissipation rate using the concept of optimal estimators, Phys. Fluids, 29, Beljaas, A. C. M., and A. A. M. Holtslag, 1991: Flux parameterization over land surfaces for atmospheric models, J. Appl. Meteor., 30, Boussinesq, 1877: Essai sur la théorie des eaux courantes, Mém. prés. par div. savants à l Acad. Sci., 23, Buckingham, E., 1914: On physically similar systems: illustrations of the use of dimensional equations, Phys. Rev., 4, Businger, J. A., J. C. Wungaard, Y. Izumi, and E. F. Bradley, 1971: Flux-profile relationships in the atmospheric surface layer, J. Atmos. Sci., 28, Canuto, V. M., Y. Cheng, A. M. Howard, and I. N. Esau, 2008: Stably Stratified Flows: A Model with No Ri(cr), J. Atmos. Sci., 65, Cheng, Y., V. M. Canuto, and A. M. Howard, 2002: An Improved Model for the Turbulent PBL, J. Atmos. Sci., 59,

68 Galperin, B., S. Sukoriansky, and P. S. Anderson, 2007: On the critical Richardson number in stably stratified turbulence. Atmos. Sci. Lett., 8, Honnert, R., V. Masson, and F. Couvreux, 2011: A Diagnostic for evaluating the Representation of Turbulence in Atmospheric Models at the Kilometric Scale, J. Atmos. Sci., in press.,, 1999:,. Kitamura, Y., 2010: Modifications to the Mellor-Yamada-Nakanishi-Niino (MYNN) Model for the Stable Stratification Case, J. Meteor. Soc. Japan, 88, Langford, J. A., and Robert D. Moser, 1999: Optimal LES formulations for isotropic turbulence, J. Fluid Mech., 398, Lilly, D., D. E. Waco, and S. I. Adelfang, 1974: Stratospheric mixing estimated from highaltitude turbulence measurements., J. Appl. Meteor., 13, Louis, J. F., 1979: A parametric model of vertical eddy fluxes in the atmosphere, Bound.- Layer Meteorol., 17, Louis, J. F., M. Tiedtke, and J. F. Geleyn, 1982: A short history of the Operational PBL - parameterization at ECMWF, Proc. Workshop on Planetary Boundary Layer Parameterization,

69 Mauristen, T., G. Svensson, S. S. Zilitinkevich, I. Esau, L. Enger, and B. Grisogono, 2007: A total turbulent energy closure model for neutrally and stably stratified atmospheric boundary layers, J. Atmos. Sci., 64, Mellor, G. L., and T. Yamada, 1982: Development of a turbulence closure model for geophysical fluid problems, Rev. Geophys. and Space Phys., 20, Moreau A., O. Teytaud, and J. P. Bertoglio, 2006: Optimal estimation for large-eddy simulation of turbulence and application to the analysis of subgrid models, Phys. Fluids, 18, Nakanishi, M., 2001: Improvement of Mellor-Yamada turbulence closure model based on large-eddy simulation data, Bound.-Layer Meteor., 99, Nakanishi, M., and H. Niino, 2004: An improved Mellor-Yamada level-3 model with condensation physics: its design and verification, Bound.-Layer Meteor., 112, Nakanishi, M., and H. Niino, 2006: An improved Mellor-Yamada level-3 model: its numerical stability and application to a regional prediction of advection fog, Bound.-Layer Meteor., 119, Nakanishi, M., and H. Niino, 2009: Development of an improved turbulence closure model for the atmospheric boundary layer, J. Meteor. Soc. Japan, 87,

70 Prandtl, L., 1925: Bericht über die ausgebildete Turbulenz, Zs. angew. Math. Mech., 5, Sukoriansky, S., B. Galperin, and I. Staroselsky, 2005: A quasinormal scale elimination model of turbulent flows with stable stratification, Phys. Fluids, 17, ,, 1981: 1.,,,. Wyngaard, J. C., 2004: Toward Numerical Modeling in the ``Terra Incognita'', J. Atmos. Sci., 61, Zilitinkevich, S. S., T. Elperin, N. Kleeorin, and I. Rogachevskii, 2007: Energy- and flux-budget (EFB) turbulence closure model for stably stratified flow. Part I: steady-state, homogeneous regimes, Bound.-Layer Meteor., 125, Blackadar, A., 1962: A., 1962: The vertical The vertical distribution distribution of wind and turbulent of wind and exchange turbulent in exchange a neutral in a atmosphere. neutral in a neutral atmosphere. J. Geophys. atmosphere. J. Geophys. Res., 67, Res., J.Geophys , Res., 67, Frisch, U., U., 1995: Turbulence - The legacy - The of legacy A. N. Kolmogorov, of A. N. Kolmogorov, Canbridge University Canbridge Press. Blackadar, A., 1962: The vertical distribution of wind and turbulent exchange University Press.

,, Mellor 1973),, Mellor and Yamada 1974) Mellor 1973), Mellor and Yamada 1974) 4 2 3, 2 4,

,, Mellor 1973),, Mellor and Yamada 1974) Mellor 1973), Mellor and Yamada 1974) 4 2 3, 2 4, Mellor and Yamada1974) The Turbulence Closure Model of Mellor and Yamada 1974) Kitamori Taichi 2004/01/30 ,, Mellor 1973),, Mellor and Yamada 1974) Mellor 1973), 4 1 4 Mellor and Yamada 1974) 4 2 3, 2

More information

mains.dvi

mains.dvi 8 Λ MRI.COM 8.1 Mellor and Yamada (198) level.5 8. Noh and Kim (1999) 8.3 Large et al. (1994) K-profile parameterization 8.1 8.1: (MRI.COM ) Mellor and Yamada Noh and Kim KPP (avdsl) K H K B K x (avm)

More information

Venkatram and Wyngaard, Lectures on Air Pollution Modeling, m km 6.2 Stull, An Introduction to Boundary Layer Meteorology,

Venkatram and Wyngaard, Lectures on Air Pollution Modeling, m km 6.2 Stull, An Introduction to Boundary Layer Meteorology, 65 6 6.1 No.4 1982 1 1981 J. C. Kaimal 1993 1994 Turbulence and Diffusion in the Atmosphere : Lectures in Environmental Sciences, by A. K. Blackadar, Springer, 1998 An Introduction to Boundary Layer Meteorology,

More information

20 $P_{S}=v_{0}\tau_{0}/r_{0}$ (3) $v_{0}$ $r_{0}$ $l(r)$ $l(r)=p_{s}r$ $[3 $ $1+P_{s}$ $P_{s}\ll 1$ $P_{s}\gg 1$ ( ) $P_{s}$ ( ) 2 (2) (2) $t=0$ $P(t

20 $P_{S}=v_{0}\tau_{0}/r_{0}$ (3) $v_{0}$ $r_{0}$ $l(r)$ $l(r)=p_{s}r$ $[3 $ $1+P_{s}$ $P_{s}\ll 1$ $P_{s}\gg 1$ ( ) $P_{s}$ ( ) 2 (2) (2) $t=0$ $P(t 1601 2008 19-27 19 (Kentaro Kanatani) (Takeshi Ogasawara) (Sadayoshi Toh) Graduate School of Science, Kyoto University 1 ( ) $2 $ [1, ( ) 2 2 [3, 4] 1 $dt$ $dp$ $dp= \frac{dt}{\tau(r)}=(\frac{r_{0}}{r})^{\beta}\frac{dt}{\tau_{0}}$

More information

(2005) (2005) 1 2 ( 1 ) 20km 2 4km 20km 40km 400km 10 1km 2km Ruscher and Deardroff (1982) Dempsey and Rotunno (1988) Smolarkiewcz et al. (1988) Smola

(2005) (2005) 1 2 ( 1 ) 20km 2 4km 20km 40km 400km 10 1km 2km Ruscher and Deardroff (1982) Dempsey and Rotunno (1988) Smolarkiewcz et al. (1988) Smola (2005) (2005) 1 2 ( 1 ) 20km 2 4km 20km 40km 400km 10 1km 2km Ruscher and Deardroff (1982) Dempsey and Rotunno (1988) Smolarkiewcz et al. (1988) Smolarkiwicz and Rotunno (1989) F r = 0.15 0.5 ( F r = u/nh,

More information

$arrow$ $\yen$ T (Yasutala Nagano) $arrow$ $\yen$ ?,,?,., (1),, (, ).,, $\langle$2),, (3),.., (4),,,., CFD ( ),,., CFD,.,,,

$arrow$ $\yen$ T (Yasutala Nagano) $arrow$ $\yen$ ?,,?,., (1),, (, ).,, $\langle$2),, (3),.., (4),,,., CFD ( ),,., CFD,.,,, 892 1995 105-116 105 $arrow$ $\yen$ T (Yasutala Nagano) $arrow$ $\yen$ - 1 7?,,?,, (1),, (, ),, $\langle$2),, (3),, (4),,,, CFD ( ),,, CFD,,,,,,,,, (3), $\overline{uv}$ 106 (a) (b) $=$ 1 - (5), 2,,,,,

More information

24.15章.微分方程式

24.15章.微分方程式 m d y dt = F m d y = mg dt V y = dy dt d y dt = d dy dt dt = dv y dt dv y dt = g dv y dt = g dt dt dv y = g dt V y ( t) = gt + C V y ( ) = V y ( ) = C = V y t ( ) = gt V y ( t) = dy dt = gt dy = g t dt

More information

1.3 (heat transfer with phase change) (phase change) (evaporation) (boiling) (condensation) (melting) (solidification) 1.4 (thermal radiation) 4 2. 1

1.3 (heat transfer with phase change) (phase change) (evaporation) (boiling) (condensation) (melting) (solidification) 1.4 (thermal radiation) 4 2. 1 CAE ( 6 ) 1 1. (heat transfer) 4 1.1 (heat conduction) 1.2 (convective heat transfer) (convection) (natural convection) (free convection) (forced convection) 1 1.3 (heat transfer with phase change) (phase

More information

$\hat{\grave{\grave{\lambda}}}$ $\grave{\neg}\backslash \backslash ^{}4$ $\approx \mathrm{t}\triangleleft\wedge$ $10^{4}$ $10^{\backslash }$ $4^{\math

$\hat{\grave{\grave{\lambda}}}$ $\grave{\neg}\backslash \backslash ^{}4$ $\approx \mathrm{t}\triangleleft\wedge$ $10^{4}$ $10^{\backslash }$ $4^{\math $\mathrm{r}\mathrm{m}\mathrm{s}$ 1226 2001 76-85 76 1 (Mamoru Tanahashi) (Shiki Iwase) (Toru Ymagawa) (Toshio Miyauchi) Department of Mechanical and Aerospaoe Engineering Tokyo Institute of Technology

More information

0.,,., m Euclid m m. 2.., M., M R 2 ψ. ψ,, R 2 M.,, (x 1 (),, x m ()) R m. 2 M, R f. M (x 1,, x m ), f (x 1,, x m ) f(x 1,, x m ). f ( ). x i : M R.,,

0.,,., m Euclid m m. 2.., M., M R 2 ψ. ψ,, R 2 M.,, (x 1 (),, x m ()) R m. 2 M, R f. M (x 1,, x m ), f (x 1,, x m ) f(x 1,, x m ). f ( ). x i : M R.,, 2012 10 13 1,,,.,,.,.,,. 2?.,,. 1,, 1. (θ, φ), θ, φ (0, π),, (0, 2π). 1 0.,,., m Euclid m m. 2.., M., M R 2 ψ. ψ,, R 2 M.,, (x 1 (),, x m ()) R m. 2 M, R f. M (x 1,, x m ), f (x 1,, x m ) f(x 1,, x m ).

More information

7 OpenFOAM 6) OpenFOAM (Fujitsu PRIMERGY BX9, TFLOPS) Fluent 8) ( ) 9, 1) 11 13) OpenFOAM - realizable k-ε 1) Launder-Gibson 15) OpenFOAM 1.6 CFD ( )

7 OpenFOAM 6) OpenFOAM (Fujitsu PRIMERGY BX9, TFLOPS) Fluent 8) ( ) 9, 1) 11 13) OpenFOAM - realizable k-ε 1) Launder-Gibson 15) OpenFOAM 1.6 CFD ( ) 71 特集 オープンソースの大きな流れ Nonlinear Sloshing Analysis in a Three-dimensional Rectangular Pool Ken UZAWA, The Center for Computational Sciences and E-systems, Japan Atomic Energy Agency 1 1.1 ( ) (RIST) (ORNL/RSICC)

More information

基礎数学I

基礎数学I I & II ii ii........... 22................. 25 12............... 28.................. 28.................... 31............. 32.................. 34 3 1 9.................... 1....................... 1............

More information

Study of the "Vortex of Naruto" through multilevel remote sensing. Abstract Hydrodynamic characteristics of the "Vortex of Naruto" were investigated b

Study of the Vortex of Naruto through multilevel remote sensing. Abstract Hydrodynamic characteristics of the Vortex of Naruto were investigated b Study of the "Vortex of Naruto" through multilevel remote sensing. Abstract Hydrodynamic characteristics of the "Vortex of Naruto" were investigated based on the remotely sensed data. Small scale vortices

More information

untitled

untitled 48 B 17 4 Annuals of Disas. Prev. Res. Inst., Kyoto Univ., No. 48 B, 2005 (CO 2 ) (2003) Sim-CYCLE(Ito and Oikawa, 2000) CO 2 CO 2 Figure 1 CO 2 0 (Denning et al., 1995) CO 2 (2004) Sim-CYCLE CO 2 CO 2

More information

GNSS satellite or Quasar 10m [5] (n 1) 10 6 = K 1 ( P d T ) + K 2( P v T ) + K 3( P v T 2 ) (2) O 1 S G Earth Atmosphere [4] (ray bending) 1 S

GNSS satellite or Quasar 10m [5] (n 1) 10 6 = K 1 ( P d T ) + K 2( P v T ) + K 3( P v T 2 ) (2) O 1 S G Earth Atmosphere [4] (ray bending) 1 S - - ( ) A Software Package Development for Estimating Atmospheric Path Delay based on JMA Numerical Weather Prediction Model Ryuichi ICHIKAWA (KASHIMA SPACE RESEARCH CENTER, NICT) Key words: GNSS, VLBI,

More information

(Nobumasa SUGIMOTO) (Masatomi YOSHIDA) Graduate School of Engineering Science, Osaka University 1., [1].,., 30 (Rott),.,,,. [2].

(Nobumasa SUGIMOTO) (Masatomi YOSHIDA) Graduate School of Engineering Science, Osaka University 1., [1].,., 30 (Rott),.,,,. [2]. 1483 2006 112-121 112 (Nobumasa SUGIMOTO) (Masatomi YOSHIDA) Graduate School of Engineering Science Osaka University 1 [1] 30 (Rott) [2] $-1/2$ [3] [4] -\mbox{\boldmath $\pi$}/4 - \mbox{\boldmath $\pi$}/2

More information

QUARTERLY JOURNAL HYDROGRAPHY Establishing a JCG/UKHO cooperative framework on nautical charts -- Part. (p. ), Investigations on reproduced Ino-zu Maps, Japanese historical maps,owned by JHOD.(p. ), Various

More information

Report of Special Research from the National Institute for Environmental Studies, Japan NATIONAL INSTITUTE FOR ENVIRONMENTAL STUDIES

Report of Special Research from the National Institute for Environmental Studies, Japan NATIONAL INSTITUTE FOR ENVIRONMENTAL STUDIES Report of Special Research from the National Institute for Environmental Studies, Japan NATIONAL INSTITUTE FOR ENVIRONMENTAL STUDIES ) V O Cvolatile organic compounds V O C V O C 1940 10 1 1 N Ox V

More information

<32322D8EA D89CD8D8797B294C E8A968388DF814589C193A1899B E5290EC8F438EA12D966B8A4393B98F5C8F9F926E95FB82CC8BC7926E F5

<32322D8EA D89CD8D8797B294C E8A968388DF814589C193A1899B E5290EC8F438EA12D966B8A4393B98F5C8F9F926E95FB82CC8BC7926E F5 No.432008pp.287 302 Climatological Characteristics of Local Wind in the Tokachi District, Hokkaido, JAPAN Takashige KAWAI, Mai NAKAJYO, Hisashi KATO and Shuji YAMAKAWA Received September 30, 2007 Climatological

More information

60 1: (a) Navier-Stokes (21) kl) Fourier 2 $\tilde{u}(k_{1})$ $\tilde{u}(k_{4})$ $\tilde{u}(-k_{1}-k_{4})$ 2 (b) (a) 2 $C_{ijk}$ 2 $\tilde{u}(k_{1})$

60 1: (a) Navier-Stokes (21) kl) Fourier 2 $\tilde{u}(k_{1})$ $\tilde{u}(k_{4})$ $\tilde{u}(-k_{1}-k_{4})$ 2 (b) (a) 2 $C_{ijk}$ 2 $\tilde{u}(k_{1})$ 1051 1998 59-69 59 Reynolds (SUSUMU GOTO) (SHIGEO KIDA) Navier-Stokes $\langle$ Reynolds 2 1 (direct-interaction approximation DIA) Kraichnan [1] (\S 31 ) Navier-Stokes Navier-Stokes [2] 2 Navier-Stokes

More information

: u i = (2) x i Smagorinsky τ ij τ [3] ij u i u j u i u j = 2ν SGS S ij, (3) ν SGS = (C s ) 2 S (4) x i a u i ρ p P T u ν τ ij S c ν SGS S csgs

: u i = (2) x i Smagorinsky τ ij τ [3] ij u i u j u i u j = 2ν SGS S ij, (3) ν SGS = (C s ) 2 S (4) x i a u i ρ p P T u ν τ ij S c ν SGS S csgs 15 C11-4 Numerical analysis of flame propagation in a combustor of an aircraft gas turbine, 4-6-1 E-mail: tominaga@icebeer.iis.u-tokyo.ac.jp, 2-11-16 E-mail: ntani@iis.u-tokyo.ac.jp, 4-6-1 E-mail: itoh@icebeer.iis.u-tokyo.ac.jp,

More information

http://www2.math.kyushu-u.ac.jp/~hara/lectures/lectures-j.html 2 N(ε 1 ) N(ε 2 ) ε 1 ε 2 α ε ε 2 1 n N(ɛ) N ɛ ɛ- (1.1.3) n > N(ɛ) a n α < ɛ n N(ɛ) a n

http://www2.math.kyushu-u.ac.jp/~hara/lectures/lectures-j.html 2 N(ε 1 ) N(ε 2 ) ε 1 ε 2 α ε ε 2 1 n N(ɛ) N ɛ ɛ- (1.1.3) n > N(ɛ) a n α < ɛ n N(ɛ) a n http://www2.math.kyushu-u.ac.jp/~hara/lectures/lectures-j.html 1 1 1.1 ɛ-n 1 ɛ-n lim n a n = α n a n α 2 lim a n = 1 n a k n n k=1 1.1.7 ɛ-n 1.1.1 a n α a n n α lim n a n = α ɛ N(ɛ) n > N(ɛ) a n α < ɛ

More information

(Mamoru Tanahashi) Department of Mechanical and Aerospaoe Engineering Tokyo Institute of Technology ,,., ,, $\sim$,,

(Mamoru Tanahashi) Department of Mechanical and Aerospaoe Engineering Tokyo Institute of Technology ,,., ,, $\sim$,, 1601 2008 69-79 69 (Mamoru Tanahashi) Department of Mechanical and Aerospaoe Engineering Tokyo Institute of Technology 1 100 1950 1960 $\sim$ 1990 1) 2) 3) (DNS) 1 290 DNS DNS 8 8 $(\eta)$ 8 (ud 12 Fig

More information

$\mathrm{c}_{j}$ $u$ $u$ 1: (a) (b) (c) $y$ ($y=0$ ) (a) (c) $i$ (soft-sphere) ( $m$:(mj) $\sigma$:(\sigma j) $i$ $(r_{1j}.$ $j$ $r_{i}$ $r_{j}$ $=r:-

$\mathrm{c}_{j}$ $u$ $u$ 1: (a) (b) (c) $y$ ($y=0$ ) (a) (c) $i$ (soft-sphere) ( $m$:(mj) $\sigma$:(\sigma j) $i$ $(r_{1j}.$ $j$ $r_{i}$ $r_{j}$ $=r:- 1413 2005 60-69 60 (Namiko Mitarai) Frontier Research System, RIKEN (Hiizu Nakanishi) Department of Physics, Faculty of Science, Kyushu University 1 : [1] $[2, 3]$ 1 $[3, 4]$.$\text{ }$ [5] 2 (collisional

More information

467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 B =(1+R ) B +G τ C C G τ R B C = a R +a W W ρ W =(1+R ) B +(1+R +δ ) (1 ρ) L B L δ B = λ B + μ (W C λ B )

More information

untitled

untitled 10 log 10 W W 10 L W = 10 log 10 W 10 12 10 log 10 I I 0 I 0 =10 12 I = P2 ρc = ρcv2 L p = 10 log 10 p 2 p 0 2 = 20 log 10 p p = 20 log p 10 0 2 10 5 L 3 = 10 log 10 10 L 1 /10 +10 L 2 ( /10 ) L 1 =10

More information

τ p ω πτ p ω π τ p (t) = 2 2 t 2 exp(i t)exp 8 2 S(,t) = s( ) (t )d d 2 E x dz 2 = 2 E x z E x = E 0 e z, = + j = 1 2 0 tan = 0, v = c r 10 11 Horn Circulator Net Work Analyzer t H = E t E = H E t B =

More information

空力騒音シミュレータの開発

空力騒音シミュレータの開発 41 COSMOS-V, an Aerodynamic Noise Simulator Nariaki Horinouchi COSMOS-V COSMOS-V COSMOS-V 3 The present and future computational problems of the aerodynamic noise analysis using COSMOS-V, our in-house

More information

; 200 µs 0 1 ms 4 exponential 80 km 5 4 10 7 m/s 10 km 1 ms 5 E k N = e z/h n 6 ; N, H n :, z: ( ) 1 0 7 t ρ + (σe) = 0 E σ 1 σ σ σ e e (1/H e+1/h n )

; 200 µs 0 1 ms 4 exponential 80 km 5 4 10 7 m/s 10 km 1 ms 5 E k N = e z/h n 6 ; N, H n :, z: ( ) 1 0 7 t ρ + (σe) = 0 E σ 1 σ σ σ e e (1/H e+1/h n ) - [ : ( ) ] 1 (contact) (interaction) 1 2 19 MTI c Mesosphere Thermosphere Ionosphere (MTI) Research Group, Japan 1 2 (1) : (2 ) (2) : (3 ) (3) : (2, 3 ) (4) : - (4 ) 2 3 3 X 1 ; 200 µs 0 1 ms 4 exponential

More information

hPa ( ) hPa

hPa ( ) hPa 200520241 19 1 18 1993 850hPa 6 7 6 27 7 3 6 29 ( ) 250 200hPa i iii 1 1 1.1...................................... 1 1.1.1................................. 1 1.1.2......................... 1 1.1.3...........

More information

NUMERICAL CALCULATION OF TURBULENT OPEN-CHANNEL FLOWS BY USING A MODIFIED /g-e TURBULENCE MODEL By Iehisa NEZU and Hiroji NAKAGA WA Numerical calculat

NUMERICAL CALCULATION OF TURBULENT OPEN-CHANNEL FLOWS BY USING A MODIFIED /g-e TURBULENCE MODEL By Iehisa NEZU and Hiroji NAKAGA WA Numerical calculat NUMERICAL CALCULATION OF TURBULENT OPEN-CHANNEL FLOWS BY USING A MODIFIED /g-e TURBULENCE MODEL By Iehisa NEZU and Hiroji NAKAGA WA Numerical calculation techniques of turbulent shear flows are classified

More information

Colaprete and Toon , 212 K, 6.2 mbar,.,, 38 (Carr, 1986; Pollack et al., 1987).,, 25% (Gough, 1981)., CO 2. CO 2 CO 2. Pollack et al. (1987

Colaprete and Toon , 212 K, 6.2 mbar,.,, 38 (Carr, 1986; Pollack et al., 1987).,, 25% (Gough, 1981)., CO 2. CO 2 CO 2. Pollack et al. (1987 Colaprete and Toon 2003 4 16 4, 212 K, 6.2 mbar,.,, 38 (Carr, 1986; Pollack et al., 1987).,, 25% (Gough, 1981)., CO 2. CO 2 CO 2. Pollack et al. (1987) 1,. 75%, 5 bar CO 2. Kasting (1991) CO 2 1,. Pollack

More information

/ 2 ( ) ( ) ( ) = R ( ) ( ) 1 1 1/ 3 = 3 2 2/ R :. (topology)

/ 2 ( ) ( ) ( ) = R ( ) ( ) 1 1 1/ 3 = 3 2 2/ R :. (topology) 3 1 3.1. (set) x X x X x X 2. (space) Hilbert Teichmüller 2 R 2 1 2 1 / 2 ( ) ( ) ( ) 1 0 1 + = R 2 0 1 1 ( ) ( ) 1 1 1/ 3 = 3 2 2/ R 2 3 3.1:. (topology) 3.2 30 3 3 2 / 3 3.2.1 S O S (O1)-(O3) (O1) S

More information

NumRu::GPhys::EP Flux 2 2 NumRu::GPhys::EP Flux 3 2.................................. 3 2.2 EP............................. 4 2.3.....................

NumRu::GPhys::EP Flux 2 2 NumRu::GPhys::EP Flux 3 2.................................. 3 2.2 EP............................. 4 2.3..................... NumRu::GPhys::EP Flux 7 2 9 NumRu::GPhys::EP Flux 2 2 NumRu::GPhys::EP Flux 3 2.................................. 3 2.2 EP............................. 4 2.3................................. 5 2.4.............................

More information

Note5.dvi

Note5.dvi 12 2011 7 4 2.2.2 Feynman ( ) S M N S M + N S Ai Ao t ij (i Ai, j Ao) N M G = 2e2 t ij 2 (8.28) h i μ 1 μ 2 J 12 J 12 / μ 2 μ 1 (8.28) S S (8.28) (8.28) 2 ( ) (collapse) j 12-1 2.3 2.3.1 Onsager S B S(B)

More information

1 180m g 10m/s 2 2 6 1 3 v 0 (t=0) z max t max t z = z max 1 2 g(t t max) 2 (6) 1.3 2 3 3 r = (x, y, z) e x, e y, e z r = xe x + ye y + ze z. (7) v =

1 180m g 10m/s 2 2 6 1 3 v 0 (t=0) z max t max t z = z max 1 2 g(t t max) 2 (6) 1.3 2 3 3 r = (x, y, z) e x, e y, e z r = xe x + ye y + ze z. (7) v = 1. 2. 3 3. 4. 5. 6. 7. 8. 9. I http://risu.lowtem.hokudai.ac.jp/ hidekazu/class.html 1 1.1 1 a = g, (1) v = g t + v 0, (2) z = 1 2 g t2 + v 0 t + z 0. (3) 1.2 v-t. z-t. z 1 z 0 = dz = v, t1 dv v(t), v

More information

Microsoft Word - Wordで楽に数式を作る.docx

Microsoft Word - Wordで楽に数式を作る.docx Ver. 3.1 2015/1/11 門 馬 英 一 郎 Word 1 する必要がある Alt+=の後に Ctrl+i とセットで覚えておく 1.4. 変換が出来ない場合 ごく稀に以下で説明する変換機能が無効になる場合がある その際は Word を再起動するとまた使えるようになる 1.5. 独立数式と文中数式 数式のスタイルは独立数式 文中数式(2 次元)と文中数式(線形)の 3 種類があ り 数式モードの右端の矢印を選ぶとメニューが出てくる

More information

多孔質弾性体と流体の連成解析 (非線形現象の数理解析と実験解析)

多孔質弾性体と流体の連成解析 (非線形現象の数理解析と実験解析) 1748 2011 48-57 48 (Hiroshi Iwasaki) Faculty of Mathematics and Physics Kanazawa University quasi-static Biot 1 : ( ) (coup iniury) (contrecoup injury) 49 [9]. 2 2.1 Navier-Stokes $\rho(\frac{\partial

More information

チャネル乱流における流体線の伸長

チャネル乱流における流体線の伸長 69 d(l/l )/dt y + = 15 Re τ = 18 395 Kolmogorov τ η.1.18 Kolmogorov.65τ η,min 1 Stretching Rate of Material Lines in Turbulent Channel Flow Takahiro TSUKAHARA, Faculty of Science and Technology, Tokyo

More information

Optical Lenses CCD Camera Laser Sheet Wind Turbine with med Diffuser Pitot Tube PC Fig.1 Experimental facility. Transparent Diffuser Double Pulsed Nd:

Optical Lenses CCD Camera Laser Sheet Wind Turbine with med Diffuser Pitot Tube PC Fig.1 Experimental facility. Transparent Diffuser Double Pulsed Nd: *1 *2 *3 PIV Measurement of Field of the Wind Turbine with a med Diffuser Kazuhiko TOSHIMITSU *4, Koutarou NISHIKAWA and Yuji OHYA *4 Department of Mechanical Engineering, Matsue National Collage of Technology,

More information

2 (March 13, 2010) N Λ a = i,j=1 x i ( d (a) i,j x j ), Λ h = N i,j=1 x i ( d (h) i,j x j ) B a B h B a = N i,j=1 ν i d (a) i,j, B h = x j N i,j=1 ν i

2 (March 13, 2010) N Λ a = i,j=1 x i ( d (a) i,j x j ), Λ h = N i,j=1 x i ( d (h) i,j x j ) B a B h B a = N i,j=1 ν i d (a) i,j, B h = x j N i,j=1 ν i 1. A. M. Turing [18] 60 Turing A. Gierer H. Meinhardt [1] : (GM) ) a t = D a a xx µa + ρ (c a2 h + ρ 0 (0 < x < l, t > 0) h t = D h h xx νh + c ρ a 2 (0 < x < l, t > 0) a x = h x = 0 (x = 0, l) a = a(x,

More information

Part. 4. () 4.. () 4.. 3 5. 5 5.. 5 5.. 6 5.3. 7 Part 3. 8 6. 8 6.. 8 6.. 8 7. 8 7.. 8 7.. 3 8. 3 9., 34 9.. 34 9.. 37 9.3. 39. 4.. 4.. 43. 46.. 46..

Part. 4. () 4.. () 4.. 3 5. 5 5.. 5 5.. 6 5.3. 7 Part 3. 8 6. 8 6.. 8 6.. 8 7. 8 7.. 8 7.. 3 8. 3 9., 34 9.. 34 9.. 37 9.3. 39. 4.. 4.. 43. 46.. 46.. Cotets 6 6 : 6 6 6 6 6 6 7 7 7 Part. 8. 8.. 8.. 9..... 3. 3 3.. 3 3.. 7 3.3. 8 Part. 4. () 4.. () 4.. 3 5. 5 5.. 5 5.. 6 5.3. 7 Part 3. 8 6. 8 6.. 8 6.. 8 7. 8 7.. 8 7.. 3 8. 3 9., 34 9.. 34 9.. 37 9.3.

More information

8.1 Fubini 8.2 Fubini 9 (0%) 10 (50%) 10.1 10.2 Carathéodory 10.3 Fubini 1 Introduction [1],, [2],, [3],, [4],, [5],, [6],, [7],, [8],, [1, 2, 3] 1980

8.1 Fubini 8.2 Fubini 9 (0%) 10 (50%) 10.1 10.2 Carathéodory 10.3 Fubini 1 Introduction [1],, [2],, [3],, [4],, [5],, [6],, [7],, [8],, [1, 2, 3] 1980 % 100% 1 Introduction 2 (100%) 2.1 2.2 2.3 3 (100%) 3.1 3.2 σ- 4 (100%) 4.1 4.2 5 (100%) 5.1 5.2 5.3 6 (100%) 7 (40%) 8 Fubini (90%) 2006.11.20 1 8.1 Fubini 8.2 Fubini 9 (0%) 10 (50%) 10.1 10.2 Carathéodory

More information

mars-cloud_2007_DMseminar-pub.ppt

mars-cloud_2007_DMseminar-pub.ppt 3 chihiro@ep.sci.hokudai.ac.jp http://www.ep.sci.hokudai.ac.jp/~chihiro/ 2007/05/10 (Thu) / DM seminar 200 5? ( Udry et al. 2007 ) = habitable? (H 2 O, NH 3, CH 4, ) H 2 O water 1 現在の火星環境 太陽放射入射 : 地球の

More information

CFDEM DEM DEM(MPI) LIGGGHTS CFD CFD 5) 5) 5) 11) 10) β D n = βd (1) D n β D 10) 10) β = 0.2 0.5 β β β = 0.2 0.5 β = 0.2 β = 0.5 35 30 25 ( ) 20 15 10 5 0 0 0.1 0.2 0.3 0.4 0.5 0.6 β (-) β β 1) Zhu, H.P.,

More information

IHIMU Energy-Saving Principle of the IHIMU Semicircular Duct and Its Application to the Flow Field Around Full Scale Ships IHI GHG IHIMU CFD PIV IHI M

IHIMU Energy-Saving Principle of the IHIMU Semicircular Duct and Its Application to the Flow Field Around Full Scale Ships IHI GHG IHIMU CFD PIV IHI M IHIMU Energy-Saving Principle of the IHIMU Semicircular Duct and Its Application to the Flow Field Around Full Scale Ships IHI GHG IHIMU PIV IHI Marine United Inc. ( IHIMU ) has already developed several

More information

1. 2. 3. 2010-02- 22-24 1.1 1.1.1 1.1.2 1.1.3 F10.7 1.2 1.2.1 1.2.2 1.2.3 14 C 1.2.4 10 Be 1.2.5 14 C 10 Be 1.1 太陽放射とその変動 20100223-24森羅万象学校 1.1.1 (from Encyclopedia of Earth) op1cal depth (Lean et al.,

More information

カルマン渦列の発生の物理と数理 (オイラー方程式の数理 : カルマン渦列と非定常渦運動100年)

カルマン渦列の発生の物理と数理 (オイラー方程式の数理 : カルマン渦列と非定常渦運動100年) 1776 2012 28-42 28 (Yukio Takemoto) (Syunsuke Ohashi) (Hiroshi Akamine) (Jiro Mizushima) Department of Mechanical Engineering, Doshisha University 1 (Theodore von Ka rma n, l881-1963) 1911 100 [1]. 3 (B\

More information

溝乱流における外層の乱れの巨視的構造に関するモデル Titleシミュレーション ( 乱れの発生, 維持機構および統計法則の数理 ) Author(s) 奥田, 貢 ; 辻本, 公一 ; 三宅, 裕 Citation 数理解析研究所講究録 (2002), 1285: Issue Date

溝乱流における外層の乱れの巨視的構造に関するモデル Titleシミュレーション ( 乱れの発生, 維持機構および統計法則の数理 ) Author(s) 奥田, 貢 ; 辻本, 公一 ; 三宅, 裕 Citation 数理解析研究所講究録 (2002), 1285: Issue Date 溝乱流における外層の乱れの巨視的構造に関するモデル Titleシミュレーション ( 乱れの発生, 維持機構および統計法則の数理 ) Author(s) 奥田, 貢 ; 辻本, 公一 ; 三宅, 裕 Citation 数理解析研究所講究録 (2002), 1285: 92-99 Issue Date 2002-09 URL http://hdl.handle.net/2433/42433 Right

More information

地域総合研究第40巻第1号

地域総合研究第40巻第1号 * abstract This paper attempts to show a method to estimate joint distribution for income and age with copula function. Further, we estimate the joint distribution from National Survey of Family Income

More information

128 Howarth (3) (4) 2 ( ) 3 Goldstein (5) 2 $(\theta=79\infty^{\mathrm{o}})$ : $cp_{n}=0$ : $\Omega_{m}^{2}=1$ $(_{\theta=80}62^{\mathrm{o}})$

128 Howarth (3) (4) 2 ( ) 3 Goldstein (5) 2 $(\theta=79\infty^{\mathrm{o}})$ : $cp_{n}=0$ : $\Omega_{m}^{2}=1$ $(_{\theta=80}62^{\mathrm{o}})$ 1075 1999 127-142 127 (Shintaro Yamashita) 7 (Takashi Watanabe) $\mathrm{n}\mathrm{a}\mathrm{k}\mathrm{a}\mathrm{m}\mathrm{u}\mathrm{f}\mathrm{a}\rangle$ (Ikuo 1 1 $90^{\mathrm{o}}$ ( 1 ) ( / \rangle (

More information

IEEE HDD RAID MPI MPU/CPU GPGPU GPU cm I m cm /g I I n/ cm 2 s X n/ cm s cm g/cm

IEEE HDD RAID MPI MPU/CPU GPGPU GPU cm I m cm /g I I n/ cm 2 s X n/ cm s cm g/cm Neutron Visual Sensing Techniques Making Good Use of Computer Science J-PARC CT CT-PET TB IEEE HDD RAID MPI MPU/CPU GPGPU GPU cm I m cm /g I I n/ cm 2 s X n/ cm s cm g/cm cm cm barn cm thn/ cm s n/ cm

More information

第86回日本感染症学会総会学術集会後抄録(II)

第86回日本感染症学会総会学術集会後抄録(II) χ μ μ μ μ β β μ μ μ μ β μ μ μ β β β α β β β λ Ι β μ μ β Δ Δ Δ Δ Δ μ μ α φ φ φ α γ φ φ γ φ φ γ γδ φ γδ γ φ φ φ φ φ φ φ φ φ φ φ φ φ α γ γ γ α α α α α γ γ γ γ γ γ γ α γ α γ γ μ μ κ κ α α α β α

More information

基礎から学ぶトラヒック理論 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

基礎から学ぶトラヒック理論 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 初版 1 刷発行時のものです. 基礎から学ぶトラヒック理論 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/085221 このサンプルページの内容は, 初版 1 刷発行時のものです. i +α 3 1 2 4 5 1 2 ii 3 4 5 6 7 8 9 9.3 2014 6 iii 1 1 2 5 2.1 5 2.2 7

More information

カルマン渦列の消滅と再生成のメカニズム

カルマン渦列の消滅と再生成のメカニズム 1822 2013 97-108 97 (Jiro Mizushima) (Hiroshi Akamine) Department of Mechanical Engineering, Doshisha University 1. [1,2]. Taneda[3] Taneda 100 ( d) $50d\sim 100d$ $100d$ Taneda Durgin and Karlsson[4]

More information

, 1.,,,.,., (Lin, 1955).,.,.,.,. f, 2,. main.tex 2011/08/13( )

, 1.,,,.,., (Lin, 1955).,.,.,.,. f, 2,. main.tex 2011/08/13( ) 81 4 2 4.1, 1.,,,.,., (Lin, 1955).,.,.,.,. f, 2,. 82 4.2. ζ t + V (ζ + βy) = 0 (4.2.1), V = 0 (4.2.2). (4.2.1), (3.3.66) R 1 Φ / Z, Γ., F 1 ( 3.2 ). 7,., ( )., (4.2.1) 500 hpa., 500 hpa (4.2.1) 1949,.,

More information

MD $\text{ }$ (Satoshi Yukawa)* (Nobuyasu Ito) Department of Applied Physics, School of Engineering, The University of Tokyo Lennar

MD $\text{ }$ (Satoshi Yukawa)* (Nobuyasu Ito) Department of Applied Physics, School of Engineering, The University of Tokyo Lennar 1413 2005 36-44 36 MD $\text{ }$ (Satoshi Yukawa)* (Nobuyasu Ito) Department of Applied Physics, School of Engineering, The University of Tokyo Lennard-Jones [2] % 1 ( ) *yukawa@ap.t.u-tokyo.ac.jp ( )

More information

5 36 5................................................... 36 5................................................... 36 5.3..............................

5 36 5................................................... 36 5................................................... 36 5.3.............................. 9 8 3............................................. 3.......................................... 4.3............................................ 4 5 3 6 3..................................................

More information

7 9 7..................................... 9 7................................ 3 7.3...................................... 3 A A. ω ν = ω/π E = hω. E

7 9 7..................................... 9 7................................ 3 7.3...................................... 3 A A. ω ν = ω/π E = hω. E B 8.9.4, : : MIT I,II A.P. E.F.,, 993 I,,, 999, 7 I,II, 95 A A........................... A........................... 3.3 A.............................. 4.4....................................... 5 6..............................

More information

D v D F v/d F v D F η v D (3.2) (a) F=0 (b) v=const. D F v Newtonian fluid σ ė σ = ηė (2.2) ė kl σ ij = D ijkl ė kl D ijkl (2.14) ė ij (3.3) µ η visco

D v D F v/d F v D F η v D (3.2) (a) F=0 (b) v=const. D F v Newtonian fluid σ ė σ = ηė (2.2) ė kl σ ij = D ijkl ė kl D ijkl (2.14) ė ij (3.3) µ η visco post glacial rebound 3.1 Viscosity and Newtonian fluid f i = kx i σ ij e kl ideal fluid (1.9) irreversible process e ij u k strain rate tensor (3.1) v i u i / t e ij v F 23 D v D F v/d F v D F η v D (3.2)

More information

Copyrght 7 Mzuho-DL Fnancal Technology Co., Ltd. All rghts reserved.

Copyrght 7 Mzuho-DL Fnancal Technology Co., Ltd. All rghts reserved. 766 Copyrght 7 Mzuho-DL Fnancal Technology Co., Ltd. All rghts reserved. Copyrght 7 Mzuho-DL Fnancal Technology Co., Ltd. All rghts reserved. 3 Copyrght 7 Mzuho-DL Fnancal Technology Co., Ltd. All rghts

More information

,.,.,,. [15],.,.,,., 2003 3 2006 2 3. 2003 3 2004 2 2004 3 2005 2, 1., 2005 3 2006 2, 1., 1,., 1,,., 1. i

,.,.,,. [15],.,.,,., 2003 3 2006 2 3. 2003 3 2004 2 2004 3 2005 2, 1., 2005 3 2006 2, 1., 1,., 1,,., 1. i 200520866 ( ) 19 1 ,.,.,,. [15],.,.,,., 2003 3 2006 2 3. 2003 3 2004 2 2004 3 2005 2, 1., 2005 3 2006 2, 1., 1,., 1,,., 1. i 1 1 1.1..................................... 1 1.2...................................

More information

Fig. 3 Flow diagram of image processing. Black rectangle in the photo indicates the processing area (128 x 32 pixels).

Fig. 3 Flow diagram of image processing. Black rectangle in the photo indicates the processing area (128 x 32 pixels). Fig. 1 The scheme of glottal area as a function of time Fig. 3 Flow diagram of image processing. Black rectangle in the photo indicates the processing area (128 x 32 pixels). Fig, 4 Parametric representation

More information

SEISMIC HAZARD ESTIMATION BASED ON ACTIVE FAULT DATA AND HISTORICAL EARTHQUAKE DATA By Hiroyuki KAMEDA and Toshihiko OKUMURA A method is presented for using historical earthquake data and active fault

More information

75 unit: mm Fig. Structure of model three-phase stacked transformer cores (a) Alternate-lap joint (b) Step-lap joint 3 4)

75 unit: mm Fig. Structure of model three-phase stacked transformer cores (a) Alternate-lap joint (b) Step-lap joint 3 4) 3 * 35 (3), 7 Analysis of Local Magnetic Properties and Acoustic Noise in Three-Phase Stacked Transformer Core Model Masayoshi Ishida Kenichi Sadahiro Seiji Okabe 3.7 T 5 Hz..4 3 Synopsis: Methods of local

More information

4 4. A p X A 1 X X A 1 A 4.3 X p X p X S(X) = E ((X p) ) X = X E(X) = E(X) p p 4.3p < p < 1 X X p f(i) = P (X = i) = p(1 p) i 1, i = 1,,... 1 + r + r

4 4. A p X A 1 X X A 1 A 4.3 X p X p X S(X) = E ((X p) ) X = X E(X) = E(X) p p 4.3p < p < 1 X X p f(i) = P (X = i) = p(1 p) i 1, i = 1,,... 1 + r + r 4 1 4 4.1 X P (X = 1) =.4, P (X = ) =.3, P (X = 1) =., P (X = ) =.1 E(X) = 1.4 +.3 + 1. +.1 = 4. X Y = X P (X = ) = P (X = 1) = P (X = ) = P (X = 1) = P (X = ) =. Y P (Y = ) = P (X = ) =., P (Y = 1) =

More information

No pp The Relationship between Southeast Asian Summer Monsoon and Upper Atmospheric Field over Eurasia Takeshi MORI and Shuji YAMAKAWA

No pp The Relationship between Southeast Asian Summer Monsoon and Upper Atmospheric Field over Eurasia Takeshi MORI and Shuji YAMAKAWA No.42 2007 pp.159 166 The Relationship between Southeast Asian Summer Monsoon and Upper Atmospheric Field over Eurasia Takeshi MORI and Shuji YAMAKAWA Received September 30, 2006 Using Southeast Asian

More information

Temperature Rise in a Birefringent Substrate by RF Discharge Plasma Koichi Takaki, Member, Kunioh Sayama, Student Member, Atsushi Takahashi, Student M

Temperature Rise in a Birefringent Substrate by RF Discharge Plasma Koichi Takaki, Member, Kunioh Sayama, Student Member, Atsushi Takahashi, Student M Temperature Rise in a Birefringent Substrate by RF Discharge Plasma Koichi Takaki, Member, Kunioh Sayama, Student Member, Atsushi Takahashi, Student Member, Tamiya Fujiwara, Member (Iwate University),

More information

September 9, 2002 ( ) [1] K. Hukushima and Y. Iba, cond-mat/ [2] H. Takayama and K. Hukushima, cond-mat/020

September 9, 2002 ( ) [1] K. Hukushima and Y. Iba, cond-mat/ [2] H. Takayama and K. Hukushima, cond-mat/020 mailto:hukusima@issp.u-tokyo.ac.jp September 9, 2002 ( ) [1] and Y. Iba, cond-mat/0207123. [2] H. Takayama and, cond-mat/0205276. Typeset by FoilTEX Today s Contents Against Temperature Chaos in Spin Glasses

More information

第62巻 第1号 平成24年4月/石こうを用いた木材ペレット

第62巻 第1号 平成24年4月/石こうを用いた木材ペレット Bulletin of Japan Association for Fire Science and Engineering Vol. 62. No. 1 (2012) Development of Two-Dimensional Simple Simulation Model and Evaluation of Discharge Ability for Water Discharge of Firefighting

More information

untitled

untitled CFD JAXA CFD CFD Navier-Stokes -1- -2-1 CFD CFD Navier-Stokes 1. 2. 2,500,000 CFD Copyright Boeing CFD Boeing B777 HP -3- -4-2 CFD European Transonic Wind tunnel (-163 ) JAXA 2mx2m CFD (Computational Fluid

More information

Effect of Radiation on a Spray Jet Flame Ryoichi KUROSE and Satoru KOMORI Engineering Research Laboratory, Central Research Institute of Electric Powe

Effect of Radiation on a Spray Jet Flame Ryoichi KUROSE and Satoru KOMORI Engineering Research Laboratory, Central Research Institute of Electric Powe Effect of Radiation on a Spray Jet Flame Ryoichi KUROSE and Satoru KOMORI Engineering Research Laboratory, Central Research Institute of Electric Power Industry (CRIEPI), 2-6 - 1 Nagasaka, Yokosuka-shi,

More information

非線形長波モデルと流体粒子法による津波シミュレータの開発 I_ m ρ v p h g a b a 2h b r ab a b Fang W r ab h 5 Wendland 1995 q= r ab /h a d W r ab h

非線形長波モデルと流体粒子法による津波シミュレータの開発 I_ m ρ v p h g a b a 2h b r ab a b Fang W r ab h 5 Wendland 1995 q= r ab /h a d W r ab h 土木学会論文集 B2( 海岸工学 ) Vol. 70, No. 2, 2014, I_016-I_020 非線形長波モデルと流体粒子法による津波シミュレータの開発 Development of a Tsunami Simulator Integrating the Smoothed-Particle Hydrodynamics Method and the Nonlinear Shallow Water

More information

(a) (b) (c) (d) 1: (a) (b) (c) (d) (a) (b) (c) 2: (a) (b) (c) 1(b) [1 10] 1 degree k n(k) walk path 4

(a) (b) (c) (d) 1: (a) (b) (c) (d) (a) (b) (c) 2: (a) (b) (c) 1(b) [1 10] 1 degree k n(k) walk path 4 1 vertex edge 1(a) 1(b) 1(c) 1(d) 2 (a) (b) (c) (d) 1: (a) (b) (c) (d) 1 2 6 1 2 6 1 2 6 3 5 3 5 3 5 4 4 (a) (b) (c) 2: (a) (b) (c) 1(b) [1 10] 1 degree k n(k) walk path 4 1: Zachary [11] [12] [13] World-Wide

More information

A Higher Weissenberg Number Analysis of Die-swell Flow of Viscoelastic Fluids Using a Decoupled Finite Element Method Iwata, Shuichi * 1/Aragaki, Tsut

A Higher Weissenberg Number Analysis of Die-swell Flow of Viscoelastic Fluids Using a Decoupled Finite Element Method Iwata, Shuichi * 1/Aragaki, Tsut A Higher Weissenberg Number Analysis of Die-swell Flow of Viscoelastic Fluids Using a Decoupled Finite Element Method Iwata, Shuichi * 1/Aragaki, Tsutomu * 1/Mori, Hideki * 1 Ishikawa, Satoshi * 1/Shin,

More information

KENZOU Karman) x

KENZOU Karman) x KENZO 8 8 31 8 1 3 4 5 6 Karman) 7 3 8 x 8 1 1.1.............................. 3 1............................................. 5 1.3................................... 5 1.4 /.........................

More information

untitled

untitled Amazon.co.jp 2008.09.02 START Amazon.co.jp Amazon.co.jp Amazon.co.jp Amazon Internet retailers are extremely hesitant about releasing specific sales data 1( ) ranking 500,000 100,000 Jan.1 Mar.1 Jun.1

More information

z z x = y = /x lim y = + x + lim y = x (x a ) a (x a+) lim z z f(z) = A, lim z z g(z) = B () lim z z {f(z) ± g(z)} = A ± B (2) lim {f(z) g(z)} = AB z

z z x = y = /x lim y = + x + lim y = x (x a ) a (x a+) lim z z f(z) = A, lim z z g(z) = B () lim z z {f(z) ± g(z)} = A ± B (2) lim {f(z) g(z)} = AB z Tips KENZOU 28 6 29 sin 2 x + cos 2 x = cos 2 z + sin 2 z = OK... z < z z < R w = f(z) z z w w f(z) w lim z z f(z) = w x x 2 2 f(x) x = a lim f(x) = lim f(x) x a+ x a z z x = y = /x lim y = + x + lim y

More information

Web Two-phase Flow Analyses Using Interface Volume Tracking Tomoaki Kunugi Kyoto University 1) 2) 3)

Web Two-phase Flow Analyses Using Interface Volume Tracking Tomoaki Kunugi Kyoto University   1) 2) 3) Web 11 3 2003 8 Two-phase Flow Analyses Using Interface Volume Tracking Tomoaki Kunugi Kyoto University E-mail: kunugi@nucleng.kyoto-u.ac.jp 1) 2) 3) Lagrangian 4) MAC(Marker and Cell) 5) (VOF:Volume of

More information

(interval estimation) 3 (confidence coefficient) µ σ/sqrt(n) 4 P ( (X - µ) / (σ sqrt N < a) = α a α X α µ a σ sqrt N X µ a σ sqrt N 2

(interval estimation) 3 (confidence coefficient) µ σ/sqrt(n) 4 P ( (X - µ) / (σ sqrt N < a) = α a α X α µ a σ sqrt N X µ a σ sqrt N 2 7 2 1 (interval estimation) 3 (confidence coefficient) µ σ/sqrt(n) 4 P ( (X - µ) / (σ sqrt N < a) = α a α X α µ a σ sqrt N X µ a σ sqrt N 2 (confidence interval) 5 X a σ sqrt N µ X a σ sqrt N - 6 P ( X

More information

TM

TM NALTR-1390 TR-1390 ISSN 0452-2982 UDC 533.6.013.1 533.6.013.4 533.6.69.048 NAL TECHNICAL REPORT OF NATIONAL AEROSPACE LABORATORY TR-1390 e N 1999 11 NATIONAL AEROSPACE LABORATORY ... 1 e N... 2 Orr-Sommerfeld...

More information

teionkogaku43_527

teionkogaku43_527 特集 : 振動流によるエネルギー変換 熱輸送現象と応用技術 * Oscillatory Flow in a Thermoacoustic Sound-wave Generator - Flow around the Resonance Tube Outlet - Masayasu HATAZAWA * Synopsis: This research describes the oscillatory

More information

168 13 Maxwell ( H ds = C S rot H = j + D j + D ) ds (13.5) (13.6) Maxwell Ampère-Maxwell (3) Gauss S B 0 B ds = 0 (13.7) S div B = 0 (13.8) (4) Farad

168 13 Maxwell ( H ds = C S rot H = j + D j + D ) ds (13.5) (13.6) Maxwell Ampère-Maxwell (3) Gauss S B 0 B ds = 0 (13.7) S div B = 0 (13.8) (4) Farad 13 Maxwell Maxwell Ampère Maxwell 13.1 Maxwell Maxwell E D H B ε 0 µ 0 (1) Gauss D = ε 0 E (13.1) B = µ 0 H. (13.2) S D = εe S S D ds = ρ(r)dr (13.3) S V div D = ρ (13.4) ρ S V Coulomb (2) Ampère C H =

More information

L A TEX ver L A TEX LATEX 1.1 L A TEX L A TEX tex 1.1 1) latex mkdir latex 2) latex sample1 sample2 mkdir latex/sample1 mkdir latex/sampl

L A TEX ver L A TEX LATEX 1.1 L A TEX L A TEX tex 1.1 1) latex mkdir latex 2) latex sample1 sample2 mkdir latex/sample1 mkdir latex/sampl L A TEX ver.2004.11.18 1 L A TEX LATEX 1.1 L A TEX L A TEX tex 1.1 1) latex mkdir latex 2) latex sample1 sample2 mkdir latex/sample1 mkdir latex/sample2 3) /staff/kaede work/www/math/takase sample1.tex

More information

E F 06 00- H0 A.F. Beardon Iterations of rational functions. Springer. Q Q Q Q 6 45 8 45 H3/4 URL: http://www.math.titech.ac.jp/ kawahira/courses/5s-k

E F 06 00- H0 A.F. Beardon Iterations of rational functions. Springer. Q Q Q Q 6 45 8 45 H3/4 URL: http://www.math.titech.ac.jp/ kawahira/courses/5s-k E F 06 00- H0 : 06 4 5 Version :. Kawahira, Tomoki http://www.math.titech.ac.jp/~kawahira/courses/6s-tokuron.html pdf 4 E F E F Q E 4 5 4 Beltrami 4 9 4 6 Beltrami 5 0 Beltrami 5 7 Beltrami 3 5 4 (5 3

More information

* Meso- -scale Features of the Tokai Heavy Rainfall in September 2000 Shin-ichi SUZUKI Disaster Prevention Research Group, National R

* Meso- -scale Features of the Tokai Heavy Rainfall in September 2000 Shin-ichi SUZUKI Disaster Prevention Research Group, National R 38 2002 7 2000 9 * Meso- -scale Features of the Tokai Heavy Rainfall in September 2000 Shin-ichi SUZUKI Disaster Prevention Research Group, National Research Institute for Earth Science and Disaster Prevention,

More information

5.. z = f(x, y) y y = b f x x g(x) f(x, b) g x ( ) A = lim h g(a + h) g(a) h g(x) a A = g (a) = f x (a, b)............................................

5.. z = f(x, y) y y = b f x x g(x) f(x, b) g x ( ) A = lim h g(a + h) g(a) h g(x) a A = g (a) = f x (a, b)............................................ 5 partial differentiation (total) differentiation 5. z = f(x, y) (a, b) A = lim h f(a + h, b) f(a, b) h........................................................... ( ) f(x, y) (a, b) x A (a, b) x (a, b)

More information

IPSJ SIG Technical Report NetMAS NetMAS NetMAS One-dimensional Pedestrian Model for Fast Evacuation Simulator Shunsuke Soeda, 1 Tomohisa Yam

IPSJ SIG Technical Report NetMAS NetMAS NetMAS One-dimensional Pedestrian Model for Fast Evacuation Simulator Shunsuke Soeda, 1 Tomohisa Yam 1 1 1 1 1 NetMAS NetMAS NetMAS One-dimensional Model for Fast Evacuation Simulator Shunsuke Soeda, 1 Tomohisa Yamashita, 1 Masaki Onishi, 1 Ikushi Yoda 1 and Itsuki Noda 1 We propose the one-dimentional

More information

( ) a, b c a 2 + b 2 = c 2. 2 1 2 2 : 2 2 = p q, p, q 2q 2 = p 2. p 2 p 2 2 2 q 2 p, q (QED)

( ) a, b c a 2 + b 2 = c 2. 2 1 2 2 : 2 2 = p q, p, q 2q 2 = p 2. p 2 p 2 2 2 q 2 p, q (QED) rational number p, p, (q ) q ratio 3.14 = 3 + 1 10 + 4 100 ( ) a, b c a 2 + b 2 = c 2. 2 1 2 2 : 2 2 = p q, p, q 2q 2 = p 2. p 2 p 2 2 2 q 2 p, q (QED) ( a) ( b) a > b > 0 a < nb n A A B B A A, B B A =

More information

z.prn(Gray)

z.prn(Gray) 1. 90 2 1 1 2 Friedman[1983] Friedman ( ) Dockner[1992] closed-loop Theorem 2 Theorem 4 Dockner ( ) 31 40 2010 Kinoshita, Suzuki and Kaiser [2002] () 1) 2) () VAR 32 () Mueller[1986], Mueller ed. [1990]

More information

Natural Convection Heat Transfer in a Horizontal Porous Enclosure with High Porosity Yasuaki SHIINA*4, Kota ISHIKAWA and Makoto HISHIDA Nuclear Applie

Natural Convection Heat Transfer in a Horizontal Porous Enclosure with High Porosity Yasuaki SHIINA*4, Kota ISHIKAWA and Makoto HISHIDA Nuclear Applie Natural Convection Heat Transfer in a Horizontal Porous Enclosure with High Porosity Yasuaki SHIINA*4, Kota ISHIKAWA and Makoto HISHIDA Nuclear Applied Heat Technology Division, Japan Atomic Energy Agency,

More information

™}flg.book

™}flg.book No.4 3 8 23 Measurement of Regional Fluxes of Heat, Water Vapor and CO 2 at the TERC Meteorological Tower * ** Ayumi KOTANI * and Michiaki SUGITA ** 29.5 m Sugita et al. 997 TERC 29.5 m DAT- 3 Data Design

More information

I.2 z x, y i z = x + iy. x, y z (real part), (imaginary part), x = Re(z), y = Im(z). () i. (2) 2 z = x + iy, z 2 = x 2 + iy 2,, z ± z 2 = (x ± x 2 ) +

I.2 z x, y i z = x + iy. x, y z (real part), (imaginary part), x = Re(z), y = Im(z). () i. (2) 2 z = x + iy, z 2 = x 2 + iy 2,, z ± z 2 = (x ± x 2 ) + I..... z 2 x, y z = x + iy (i ). 2 (x, y). 2.,,.,,. (), ( 2 ),,. II ( ).. z, w = f(z). z f(z), w. z = x + iy, f(z) 2 x, y. f(z) u(x, y), v(x, y), w = f(x + iy) = u(x, y) + iv(x, y).,. 2. z z, w w. D, D.

More information

Table 1. Reluctance equalization design. Fig. 2. Voltage vector of LSynRM. Fig. 4. Analytical model. Table 2. Specifications of analytical models. Fig

Table 1. Reluctance equalization design. Fig. 2. Voltage vector of LSynRM. Fig. 4. Analytical model. Table 2. Specifications of analytical models. Fig Mover Design and Performance Analysis of Linear Synchronous Reluctance Motor with Multi-flux Barrier Masayuki Sanada, Member, Mitsutoshi Asano, Student Member, Shigeo Morimoto, Member, Yoji Takeda, Member

More information