Copyright cfl 24 by Yuichi ISHIMOTO

Size: px
Start display at page:

Download "Copyright cfl 24 by Yuichi ISHIMOTO"

Transcription

1 JAIST Reposi Title 時間情報と周波数情報を用いた雑音環境における基本 周波数推定に関する研究 Author(s) 石本, 祐一 Citation Issue Date 24-3 Type Thesis or Dissertation Text version author URL Rights Description Supervisor: 赤木正人, 情報科学研究科, 博士 Japan Advanced Institute of Science and

2 Copyright cfl 24 by Yuichi ISHIMOTO

3

4 3 ( ) ( ) - 3 (1) - -

5 3dB (2) - (3) -

6 : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : ( ) : : : : : : : : : : ( ) : : : : : : : : : : ( ) : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 4 i

7 : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 82 ii

8 5.2.6 : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : A : : : : 94 A.1 : : : : : 94 A.2 YIN : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 96 B : : : 98 B.1 : : 98 B.2 STRAIGHT-TEMPO : : : : : : : : : : : : : : : : : : : : : : iii

9 1 1

10 ( ) 1.2 [1,2] [3, 4] ( ) ( ) [5,6,7] 2

11 1.1: ( [1]) 1.2: 3

12 Amplitude Amplitude Time [ms] Time [ms] 1.3: : ( ) /aoi/ ( ) /aoi/ 12 Amplitude [db] Frequency [Hz] 1.4: /a/ 4

13 [8, 9, 1] [11] Bregman [12] [13,14] 1.2 [15, 16, 17] Hz Hz

14 1.5 2 [18] 2 2 ( ) 1/2 ( ) 3. Electroglottograph(EGG) 3 6

15 5 [Hz] [Hz] 1.5: ( [18]) 1.3 [19, 2, 21] 1. ( ) 2. ( ) 1.4 7

16 1.6: (Gold and Rabiner[22]) Gold and Rabiner [22] Geοckinli and Yavuz [23] 8

17 Autocorrelation functions Pooled autocorrelation function 1.7: (Meddis[35]) [24] (AMDF) [25] [26] AMDF [27] (YIN)[28] LPC [29] LPC Markel LPC (SIFT) [3] LPC 1.7 [31] 9

18 1.1: ( ) [22] [36] [23] [37] [24] [38] [39] [4] [41] [42] [43] [44] [26] AMDF [27] LPC [29] SIFT [3] [31] [35] [32] [33] (AMDF) [25] [45] [46] (YIN) [28] [34] [47] [48] [32,33,34] [49] [5] comb filter comb filter comb filtering [51] [52] - Unoki and Akagi comb filtering [14] Unoki 1

19 4 ms [53,54] [55] [56,57] [7] [58, 59, 6, 61] Kawahara (STRAIGHT-TEMPO) [62] [63] [64] STRAIGHT-TEMPO ffl (AC)[26] 11

20 1.2: ( ) [65] [5] [66] [67] [14] [68] [51] [69] [7] [71] [72] [73] (SHS) [52] [74] [75] [53][54] [56] [57] [55] [7] [58] [59] [76] [6] [61] [77] STRAIGHT-TEMPO [62] [63] [64] ffl (YIN)[28] YIN ffl (CEP)[55] ffl (STRAIGHT-TEMPO)[62] STRAIGHT-TEMPO 12

21 4 ( ) - 4 Electroglottograph(EGG) EGG 2 EGG EGG 1 2 EGG - 1 EGG 13

22 Speech wave 1 Amplitude EGG 1 Amplitude Time [ms] 1.8: : ( ) ( )EGG EGG [63] 14 3 ( 84 ) EGG 1.8 EGG 16 khz - / e(n) e(n) =F (n) F e (n) (1.1) F (n) F e (n) 1 N v X μe = 1 N v N v 2 2 n je(n)j (1.2) Gross error : N v je(n)j :2 F (n) N e Gross error = N e N v 1 [%] (1.3) 14

23 1.3: EGG [Hz] AC YIN CEP TEMPO AC YIN CEP TEMPO ±2% Fine error : je(n)j < :2 F (n) N c Fine error = 1 XN c je(n)j 1 [%] (1.4) N c F (n) ±2% Gross error Fine error 2 EGG (Hz) (%) ( 1) EGG 1.3 STRAIGHT-TEMPO 2.8 Hz 2.9 Hz YIN 4.5 Hz STRAIGHT-TEMPO 4.9 Hz 6.1 Hz 4 STRAIGHT-TEMPO - ( 2) n 15

24 15 1 Gross error [%] 5 AC YIN CEP STRAIGHT -TEMPO 1.9: Gross error Fine error [%] AC YIN CEP STRAIGHT -TEMPO 1.1: Fine error 16

25 EGG Gross error 1.9 EGG STRAIGHT- TEMPO Fine error 1.1 ±2% STRAIGHT-TEMPO 4 STRAIGHT-TEMPO - 1 STRAIGHT- TEMPO STRAIGHT-TEMPO 2 EGG STRAIGHT-TEMPO STRAIGHT-TEMPO EGG STRAIGHT-TEMPO 2 : : 1 3dB 2 (Signal to Noise Ratio; SNR) 1 db Gross error Fine error 17

26 EGG STRAIGHT-TEMPO Gross error Fine error - Gross error 1.11 File error 1.12 STRAIGHT-TEMPO Gross error Gross error Gross error Fine error STRAIGHT-TEMPO ±2% Fine error - Gross error 1.13 File error 1.14 STRAIGHT-TEMPO 1. 18

27 AC YIN CEP STRAIGHT -TEMPO 35 Gross error [%] SNR [db] : Gross error AC YIN CEP STRAIGHT-TEMPO 3.5 Fine error [%] SNR [db] : Fine error 19

28 6 5 AC YIN CEP STRAIGHT-TEMPO 4 Gross error [%] SNR [db] : Gross error AC YIN CEP STRAIGHT-TEMPO 3.5 Fine error [%] SNR [db] : Fine error 2

29 (STRAIGHT-TEMPO) 2. (, ) 1.4 ( )

30 1.15: ( [78]) [79] 1.16 [3, 33] 2 22

31 1.16: ( [4]) 23

32 ( phase locking ) 5 khz [33,8]

33 1 Amplitude Frequency [Hz] Time [ms] 1.17: [81] 1 Amplitude Frequency [Hz] Time [ms] 1.18: [82] 25

34 ( ) ( )

35 1.4 ( )

36 [83, 84, 85] 28

37 ( )

38 [16, 17] 1.2 ffl ffl 1.6 3

39 ( ) ( ) /

40 4 3 ( ) ( )

41 1.19: 33

42 2 34

43 ffl ffl

44 ( ) Unoki and Akagi comb filtering [14] Q - - Unoki 36

45 Amplitude 1-1 Amplitude Time [ms] 3 F [Hz] Time [ms] 1 Amplitude Time [ms] 4 Frequency [Hz] Correlation coefficient Time [ms] 1 Amplitude Time [ms] 4 3 F [Hz] Time [ms] 2.1: 37

46 - Unoki ( ) ( ) - Q 2 - Q ( ) ( ) ( ) 2 Dempster 38

47 ( ) 39

48 ( ) (STRAIGHT-TEMPO)[62] STRAIGHT-TEMPO

49 3 4 41

50 3 42

51 Q 2 - Q 43

52 time [ms] frequency [Hz] time [ms] τ [ms] frequency [Hz] time [ms] ζ [Hz] τ [ms] ζ [Hz] τ [ms] : 44

53 ( ) 2 Dempster [86,87] Dempster x(t) h k (t) y k (t) y k (t) =x(t) Λ h k (t); (3.1) k Λ ~y k (t) ~y k (t) = F 1 [2Y k (!)U(!)] ; (3.2) U(!) = 8 >< >: 1;!> 1=2;! = ;!< (3.3) Y k (!) y k (t) F 1 [ ] s k (t) k (t) (3.4) (3.5) s k (t) = j~y k (t)j; (3.4) 45

54 Amplitude Frequency [Hz] 3.2: Q k arg ~y k(t): (3.5) - Q 2 (3.6) [88] gt(t) =At N 1 exp( 2ßb f ERB(f c )t)cos(2ßf c t); (t >) (3.6) N b f f c ERB(f c ) Equivalent Rectangular Bandwidth[89] Q [9] h k (t) = p 1 t gt ; (3.7) a a a = 1 (2=K)(k 1) 1 ; (3.8) 46

55 Amplitude Frequency [Hz] 3.3: ( 1, 1,2,...,4 ) N =4;f c =6Hz,b f =1; 1» k» K +1;K=64 (3.1) 6 6 Hz 33 Q 3.2 h k (t) h k (t) = At N 1 exp( 2ßb f t)cos(2ßf k t); (t >) (3.9) f k = 6 + 5(k 1) Hz; (3.1) N =4;b f = 2 Hz,1» k» Hz 4 2 khz 2 khz

56 s k (t) Q - Q (FFT) (3.9) FFT 3.4 Q /a/( 3.4 ) ms t k fi a k;t (fi) a k;t (fi) = t+w X t i=t μs k (i)μs k (i + fi); (3.11) μs k (t) = C[s k (t)] (3.12) 48

57 2 Amplitude Channel # Amplitude Time [ms] 3.4: - /a/ : ( ) /a/ ( ) Q - ( ) 49

58 2 Amplitude Channel # Time [ms] Amplitude Channel # 3.5: - /a/ : ( ) /a/ ( ) - ( ) 8 ms 5

59 Cx [ ] C L C L x 3.6: w t 35 ms μs k (t) s k (t) [24] C[ ] 3.6 ( ) a t (fi) = 1 N X p N p k=1 a k;t (fi) (3.13) N p Q (N p = 33) Q Meddis [31] Gold and Rabiner [22] - t f b f;t ( ) Xw e b f;t ( ) = ~s j (t)~s j+ (t) (3.14) j=w f w f ;w e 51

60 ( ) b t;f ( ) X b t ( ) = 1 N h b f;t ( ) (3.15) N h N h a t (fi);b t ( ) ( ) fi a t (fi) - b t ( ) a t (fi) - b t ( ) fi f t a t (fi) b t ( ) b t ( ) ~ b t (fi) a t (fi) ~ b t (fi) a t (fi) ~ b t (fi) a t (fi).9 ~ b t (fi).9 a t (fi) =1:; ~ b t (fi) =:1 fi Bayes a t (fi) ~ b t (fi) =1: :1 = :1 a t (fi) =1: fi a t (fi) ~ b t (fi) a t (fi) ~ b t (fi) a t (fi)=.9 fi.9 1: a t (fi) =:1 fi fi 52

61 Amplitude F [Hz] τ ζ time [ms] 3.7: a t (fi);b t ( ): ( a t (fi) - b t ( ) - ) 53

62 Amplitude F [Hz] τ ζ time [ms] 3.8: a t (fi);b t ( ): ( a t (fi) - b t ( ) - ) 54

63 a t (fi) ~ b t (fi) Bayes Dempster & Shafer [86] Dempster & Shafer Bayes (p(a)+p( A)=1) μ a t (fi) m 1 (A fi )(A fi fi ) 1 a t (fi) ( ) m 1 (A fi ; Afi μ ) m 2 (A fi )= ~ b t (fi); m 2 (A fi ; A μ fi )=1 ~ b t (fi) Dempster X m 1 (A 1i )m 2 (A 2j ) A 1i A 2j =A k m(a k )= X 1 m 1 (A 1i )m 2 (A 2j ) A 1i A 2j =ffi (3.16) c t (fi) = a t (fi) ~ b t (fi)+(1 a t (fi)) ~ b t (fi)+a t (fi)(1 ~ b t (fi)) = 1 (1 a t (fi))(1 ~ b t (fi)) (3.17) [87, 91] c t (fi) t ( ) 3.6 ffl ffl 55

64 (3.17) EGG [63] 14 5 ( 14 ) 16 khz : 1 khz : 1kHz 2 SNR 1 db / Gross error : ±2% Gross error EGG STRAIGHT-TEMPO[62] (3.17) c t (fi) (3.13) a t (fi) (3.15) b t ( ) Gross error 3.9 Gross error

65 7 6 Proposed (both) Proposed (periodicity only) Proposed (harmonicity only) 5 Gross error [%] SNR [db] 5 3.9: Gross error 35 3 Proposed (both) Proposed (periodicity only) Proposed (harmonicity only) 25 Gross error [%] SNR [db] 5 3.1: 1 khz Gross error 57

66 a t (fi) Gross error b t ( ) SNR Gross error 1 khz Gross error Gross error (AC)[26] (CEP)[55] Gross error 3.11 Gross error 3.12 SNR 1 db SNR 5 db Gross error Gross error 58

67 25 2 Proposed (both) AC CEP Gross error [%] SNR [db] : 7 6 Proposed (both) AC CEP : 1 khz 59

68 3.13: (3.17) ( )

69 4 x Correlation coeffcient 3.14: : ±2% ( ) ±2% ( ) 4 x Correlation coeffcient 3.15: 1 khz : ±2% ( ) ±2% ( ) 61

70 ±2% ±2% 3.14( ) ±2% 3.14( ) ±2% 3.15( ) ±2% 3.15( ) 3.14( ) ( ) ( ) ( ) ±2%.5 ±2% Dempster 62

71

72 4 64

73 4.1 3 ffl ffl s(t) n(t) x(t) x(t) = s(t)+n(t) = X l a l e j(l! (t)t+ l) + X m b m e j(!mt+ m) (4.1)! (t) = 2ß=T (t) (4.2) T (t) s(t) T (t) T =2ß=! (4.3) 65

74 x(t) 2D + - ˆ s (t) D -D FFT IFFT D=T Fundamental period -2D 4.1: (4.1) x(t) ±T ±2T c(t) = 1 8 f4x(t) x(t T ) x(t + T ) x(t 2T ) x(t +2T )g (4.4) = X m b m e j(!mt+ m) d(! m ) (4.5) d(! m )= cos 2! m ß + cos 4! m ß!! (4.6) c(t) C(! m ) n(t) N(! m ) (4.5) C(! m )=N(! m ) d(! m ) (4.7) C(! m ) N(! m ) d(! m ) N(! m ) N(! m )=C(! m )=d(! m ) (4.8) N(! m ) s(t) =x(t) n(t) (4.9) 1=T! m =! (4.6) d(! m ) = 66

75 (4.8) N(! m ) ^N(! m )= 8 >< >: C(! m )=d(! m ); d(! m ) " C(! m ); d(! m ) <" (4.1) ^n(t) ^s(t) =x(t) ^n(t) (4.11) ^s(t) (4.1) " 4.2 " " 4.3 SNR SNR

76 ε=.1 ε=.3 Gain [db] Gain [db] ε= Frequency [Hz] ε= Frequency [Hz] 4.2: 68

77 EGG [63] 7 5 EGG STRAIGHT-TEMPO[62] SNR 1dB (" = :1 1:.1 ) F (n) Hz ffl F (n)±5 Hz ffl F (n)±5 Hz F (n)±5 Hz F (n)±5 Hz (STRAIGHT-TEMPO) ±2% Gross error 4.3 F (n)± 5Hz ".1 ".3.4 Gross error 4.4 F (n)± 5 Hz 69

78 Gross error [%] Gross error [%] Gross error [%] Gross error [%] Gross error [%] Clean SNR 1 db SNR 5 db SNR 3 db SNR db ε 4.3: " ( F (n)±5 Hz ) " Gross error ".7 Gross error ".8 1. Gross error 5Hz 5 Hz Gross error " " ffl "=.3.4 7

79 Gross error [%] Gross error [%] Gross error [%] Gross error [%] Gross error [%] 1 5 Clean SNR 1 db SNR 5 db SNR 3 db SNR db ε 4.4: " ( F (n)±5 Hz ) ffl "= ffl.5 ± 2% ( ) ffl.5 ± 2% ( ) 71

80 4.3.1 ffl "=.3.4 ffl "=.8 1. ".3.4 Gross error.8 1. ffl.5 " =:3 ffl.5 " =: (4.3) (4.3) T (t) et s (t) = T T (t) T s (4.12) T T (t) T s e T s (t) T s 4.5 (4.12) 72

81 Amplitude Amplitude F [Hz] Time [ms] F [Hz] Time [ms] 4.5: : ( ) ( ) " " kHz SNR 1 db ±2% Gross error " ( ) 4.6( ) 73

82 Gross error [%] Gross error [%] ε: variable ε=.3 ε=.8 ε: variable ε=.3 ε=.8 White noise Band noise (< 1 khz) SNR [db] 4.6: " : ( ) ( ) ".3.8 " =:8 " =:3 Gross error " " =:8 " Gross error " " 74

83

84 5 76

85 5.1 ( ) ( ) EGG [63] 14 3 ( 84 ) EGG 16 khz 4 : : 1 3dB : 77

86 : [81] 48 khz 16 khz SNR 1 db Gross error : ±2% Fine error : ±2% Gross error Fine error ( ) ffl (AC)[26] ffl (YIN)[28] ffl (CEP)[55] ffl (STRAIGHT-TEMPO)[62] 4 78

87 5.2.2 Gross error 5.1 Fine error Gross error SNR 5dB Gross error STRAIGHT-TEMPO Gross error Gross error 5.2 STRAIGHT-TEMPO SNR Fine error Fine error Fine error ±2% Gross error 5.3 Fine error 5.4 SNR 5.3 Gross error Gross error SNR 1 db Gross error SNR 3 db Gross error 79

88 Proposed AC YIN CEP STRAIGHT-TEMPO Gross error [%] SNR [db] 5 5.1: Gross error Proposed AC YIN CEP STRAIGHT-TEMPO Fine error [%] SNR [db] 5 5.2: Fine error 8

89 6 5 Proposed AC YIN CEP STRAIGHT -TEMPO 4 Gross error [%] SNR [db] 5 5.3: Gross error Proposed AC YIN CEP STRAIGHT-TEMPO Fine error [%] SNR [db] 5 5.4: Fine error 81

90 5.4 fine error Gross error 5.5 Fine error YIN STRAIGHT- TEMPO - STRAIGHT-TEMPO Gross error SNR 1 db Gross error 5.6 Fine error STRAIGHT-TEMPO Gross error 5.7 Fine error Gross error SNR - 82

91 9 8 7 Proposed AC YIN CEP STRAIGHT-TEMPO 6 Gross error [%] SNR [db] 5 5.5: Gross error Proposed AC YIN CEP STRAIGHT-TEMPO Fine error [%] SNR [db] 5 5.6: Fine error 83

92 6 5 Proposed AC YIN CEP STRAIGHT -TEMPO 4 Gross error [%] SNR [db] 5 5.7: Gross error Proposed AC YIN CEP STRAIGHT-TEMPO Fine error [%] SNR [db] 5 5.8: Fine error 84

93 5.8 Fine error Fine error Gross error STRAIGHT-TEMPO Gross error STRAIGHT-TEMPO Fine error Fine error Fine error SNR 5 db Gross error ( ) STRAIGHT-TEMPO Gross error Gross error Fine error Gross error 85

94 5.1: Gross error YIN TEMPO SNR db Gross error: ( 2%), (2 3%), (3 4%), (4% ) Fine error YIN TEMPO (SNR db) Fine error : (.5 pt.), (.5 1. pt.), ( pt.), (1.5 pt. ) 86

95 Gross error - SNR Fine error Gross error - Gross error Fine error Fine error 87

96 5.3-88

97 6 89

98 6.1 ffl - ( ) ffl ( ) ffl ( ) 1 9

99

100 A B

101 3. ( ) khz 3 Hz - 93

102 A A [26] A.1 94

103 U n A.1: ( [26] ) N w ( )T n (ms) T n =15:+(n 1)f41:=(N w 1) + :5g; (1» n» N w ) (1) x n 1 n (1) R n (k) R n (k) = L n k 1 X i= x n (i)x n (i + k)=(l n k) (2) L n k min (n)» k» k max (n) R n (k) k k n k min (n), k max (n) 2 k min (n) =:15 L n (n 1)=(N w 1) (3) k n V n k max (n) =L n =2 (4) V n = R n (k n )=R n () (5) 1 Nw =1 T 1 =35: ms Nw =2 T 1 =25: ms,t 2 =45: ms Nw =3 T 1 =21: ms, T 2 =36: ms,t 3 =51: ms Nw 4 Tn 15 ms 2 kmin(n) Nw = ms Nw > ms kmax(n) n = Nw 28.6ms 95

104 Difference function d Cumulative mean normalized difference function d' Parabolic interpolation Search for a minimum of d' Best local estimate A.2: YIN k n U n U n = V n + g nj = 8 >< >: XN w j=1 g nj V j (6) 1; (r nj» :1) (:25 r nj )=:15; (:1 <r nj» :25) ; (:25 <r nj ) r nj = jk j =k n 1j (8) U n n n max k nmax N w (7) A.2 YIN de Cheveigné and Kawahara (YIN) [28] [34, 92] A.2 x(t) T T x(t) x(t + T )= (9) (difference function) d t (fi) = WX j=1 fx(j) x(j + fi)g 2 (1) d t (fi) 96

105 A.3: Cumulative mean normalized difference function (de Cheveigné, Kawahara[28]) fi (1) T d t (T )= fi d t () (cumulative mean normalized difference function) d t(fi) d t (fi) = 8 >< >: 1; fi = d t (fi)= 2 fix 4 (1=fi) j=1 3 (11) d t (j) 5 ; otherwise A.3 d t(fi) d t(fi) d t(fi) [t T max =2;t+ T max =2] d t(fi) T max 97

106 B B.1 LPC Noll [54] x(t) g(t) h(t) x(t) = Z t g(t fi)h(fi)dfi (12) X(!) = G(!)H(!) (13) X(!);G(!);H(!) x(t);g(t);h(t) log jx(!)j =logjg(!)j +logjh(!)j (14) c(fi) c(fi) =F 1 [log jx(!)j] =F 1 [log jg(!)j]+f 1 [log jh(!)j] (15) F 1 (15) 1 98

107 log X(ω) 2 1 T Frequency (Hz) F [ 1 log X(ω) 2 ] Quefrency (seconds) T B.1: : ( ) ( ) (Noll[54]) B.1 Noll [55] B.2 Noll log jx(!)j 99

108 x(t) log X(ω) B.2: (, [55]) B.2 STRAIGHT-TEMPO Kawahara STRAIGHT (STRAIGHT-TEMPO) [62] B.3 x(t)!(t) H[x(t)]!(t) = dffi(t) (16) dt ffi(t) = arg[x(t)+jh[x(t)]] (17) ffi(t) c Gabor w(t; c ) 2 2 h(t; c ) 1

109 B.3: STRAIGHT-TEMPO (Kawahara [62]) a b c F frequency B.4: w s (t; c ) x(t) wavelet h(t; c ) = max Λ w s (t; c ) = w(t; c ) Λ h(t; c ) (18) w(t; c ) = e 2 c t2 4ß 2 e j ct (19) ( fi fi fi ; 1 fi fi ct 2ß B.4!(t; ) ( ) ( ) c B.5 11 fi fi) fi fi fi (2)

110 F F B.5: (Kawahara [62]) C/N (carrier to noise ratio) C/N C/N o ~ff 2 (t) ~ff 2 (t) = c a c a = c b = Z 1 1 Z 1 1 ψ ψ! 2 + c b 2!(t; ) 1 dg( ) o d 1 2 o dg( ) fi fi! 2 fi fi d fi o = o fi fi! 2 fi fi d fi o = o! 2 (21) (22) (23) μff C/N=1=μff 12

111 μff 2 (t; ) = Z Tw T w jw(fi; )j~ff 2 (t fi; )dfi (24) T w jw(fi; )j 13

112 NTT NTT (CREST) 14

113 [1],,,,,,", 199. [2],,,",1981. [3],,, 198. [4],,,,,",199. [5] H. Singer, S. Sagayama, Pitch dependent phone modeling for HMM based speech recognition," Proc. ICASSP92, vol.1,pp ,1992. [6],,, F," 1, pp ,1998. [7],,,,", SP22-13,22. [8] H. Dudley, Remaking speech," J. Acoust. Soc. Amer,vol. 11,pp , [9] M. R. Schroeder, Vocoders: Analysis and synthesis of speech," Proc. of IEEE, vol. 54,no. 5,pp ,1966. [1],,", vol. 37, no. 5, pp ,

114 [11] H. Kawahara, I. Masuda-Katsuse, A. de Cheveigné, Restructuring speech representations using a pitch-adaptive time-frequency smoothing and an instantaneous-frequency-based F extraction: Possible role of a repetitive structure in sounds," Speech Communication 27, pp ,1999. [12] A. S. Bregman, Auditory Scene Analysis: The Perceptual Organization of Sound, MIT Press, Cambridge, MA, 199. [13] T. Nakatani,T. Kawabata,H. G. Okuno, A computational model of sound stream segregation with multi-agent paradigm," Proc. ICASSP95, vol.4,pp ,1995. [14] M. Unoki,M. Akagi, Signal extraction from noisy signal based on auditory scene analysis," Proc. ICSLP98, vol.4, pp ,1998. [15] L. R. Rabiner,M. J. Cheng,A. E. Rosenberg,C. A. McGonegal, A comparative performance study of several pitch detection algorithms," IEEE Trans. Acoust., Speech & Signal Process., vol. 24, no. 5,1976. [16],,", [17], ", 56 2, pp , 2. [18],,,,", vol. 14. no. 2,pp ,1958. [19] W. Hess, Pitch determination of speech signals, Springer-Verlag, Berlin, [2] W. J. Hess, Pitch and voicing determination, In: Furui, S., Sondhi, M.M. (Eds.), Advances in speech signal processing. Marcel Dekker,New York,1992. [21] D. J. Hermes, D.J., Pitch analysis, In: Cooke, M., Beet, S., Crawford, M. (Eds.), Visual representations of speech signals., John Wiley & Sons, Chichester,

115 [22] B. Gold, L. Rabiner, Parallel processing techniques for estimating pitch periods of speech in the time domain," J. Acoust. Soc. Am., vol. 46, no. 2, pp ,1969. [23] N. C. Geοckinli,D. Yavuz, Algorithm for pitch extraction using zero-crossing interval sequence," IEEE Trans. Acoust., Speech & Signal Process., vol. 25, no. 6, [24] M. M. Sondhi, New methods of pitch extraction," IEEE Trans. Audio, Electroacoust., AU-16,no. 2,pp ,1968. [25] M. J. Ross, H. L. Shaffer, A. Cohen, R. Freudberg, H. J. Manley, Average magnitude difference function pitch extraction," IEEE Trans. Acoust., Speech, Signal Process. ASSP-22,pp ,1974. [26],,,,", vol.j8-a, no.9, pp ,1997. [27] T. Shimamura,H. Kobayashi, Weighted autocorrelation for pitch extraction of noisy speech," IEEE Trans. on Speech and Audio Processing,vol.9,No.7, pp ,21. [28] A. de Cheveigné,H. Kawahara, Yin,a fundamental frequency estimator for speech and music," J. Acoust. Soc. Am.,111(4),pp ,22. [29] B. S. Atal,S. L. Hanauer, Speech analysis and synthesis by linear prediction of the speech wave," J. Acoust. Soc. Am., vol. 5,no. 2, pp ,1971. [3] J. D. Markel, The SIFT algorithm for fundamental frequency estimation," IEEE Trans. Audio vol. AU-2, pp ,1972. [31] R. Meddis,M. J. Hewitt, Virtual pitch and phase sensitivity of a computer model of the auditory periphery. I:pitchidentification," J. Acoust. Soc. Am., vol. 89,no. 6,pp ,

116 [32] P. Cariani,M. Tramo,B. Delgutte, Neural representation of pitch through temporal autocorrelation," Proc. of Audio Engineering Society Meeting, Preprint #4583 (L-3),Sep [33] B. C. Moore, An introduction to the psychology of hearing (4th ed.), Academic press, London,1997. [34] A. de Cheveigné, Separation of concurrent harmonic sounds: Fundamental frequency estimation and a time-domain cancellation model of auditory processing," J. Acoust. Soc. Am., vol. 93,no. 6, pp ,1993. [35] R. Meddis, A physiological model of auditory selective attention," In Advances in Speech, Hearing and Language Processing, ed. W. A. Aintworth, vol. 3,part B, pp ,1996. [36] D. M. Howard, Peak-picking fundamental period estimation for hearing prostheses," J. Acoust. Soc. Am.,vol. 86, no. 3,pp ,1989. [37] F. Gaillard, F. Berthommier, G. Feng, J. L. Schwartz, A modified zerocrossing method for pitch detection in presence of interfering sources," Proc. of Eurospeech97, vol. 1, pp ,1997. [38] J. J. Dobnowski,R. W. Schafer, L. R. Rabiner, Real-time digital hardware pitch detector," IEEE Trans. Acoust., Speech & Signal Process., vol. 24,no. 1, pp. 2 8,1976. [39] M. Karjalainen,T. Tolonen, Multi-pitch and periodicity analysis model for sound separation and auditory scene analysis," Proc. of ICASSP99, vol. 2, pp ,1999. [4] J. di Martino, Y. Laprie, An efficient F determination algorithm based on the implicit calculation of the autocorrelation of the temporal excitation signal," Proc. of Eurospeech99, vol. 6, pp ,

117 [41] T. Tolonen,M. Karjalainen, A computationally efficient multipitch analysis model," IEEE Trans. Speech,Audio Process.,vol. 8,no. 6,pp ,Nov. 2. [42] K. Kasi, S. A. Zahorian, Yet another algorithm for pitch tracking," Proc. of ICASSP22, vol. 1, pp ,22. [43] S. Koval, V. Bekasova, M. Khitrov, A. Raev, Pitch detection reliability assessment for forensic applications," Proc. of Eurospeech97,vol. 1, pp ,1997. [44] Y. R. Wang,I. J. Wong,T. C. Tsao, A statistical pitch detection algorithm," Proc. of ICASSP22, vol. 1, pp ,22. [45] D. Chazan, Y. Stettiner, D. Malah, Optimal multi-pitch estimation using the EM algorithm for co-channel speech separation," Proc. of ICASSP93, vol. II, pp ,1993. [46] W. Zhang, G. Xu, Y. Wang, Pitch estimation based on circular AMDF," Proc. of ICASSP22, vol. 1, pp ,22. [47] A. de Cheveigue, Cancellation model of pitch perception," J. Acoust. Soc. Am.,vol. 13,no. 3,pp ,March [48] A. de Cheveigue, H. Kawahara, Multiple period estimation and pitch perception model," Speech Communication,vol. 27,pp ,1999. [49] L. Cohen, Time-frequency analysis, Prentice Hall PTR, New Jersey, [5],,,,", vol. J8-A, no. 3, pp , [51] K. Nishi, S. Ando, An optimal comb filter for time-varying harmonics extraction," IEICE Trans. Fundamentals, Vol.E81-A, NO.8, pp ,

118 [52] D. J. Hermes, Measurement of pitch by subharmonic summation," J. Acoust. Soc. Am.,vol. 83,no. 1,pp ,1988. [53] A. M. Noll, Short-time spectrum and cepstrum" techniques for vocal-pitch detection," J. Acoust. Soc. Am.,vol. 36, no. 2,pp ,1964. [54] A. M. Noll, Cepstrum pitch determination," J. Acoust. Soc. Am., vol. 41, no. 2, pp ,1966. [55],,,",SP94-95,1995. [56] A. M. Noll, Clipstrum pitch determination," J. Acoust. Soc. Am.,vol. 44, no. 6, pp ,1968. [57],,,", vol. J82-A, no. 7, pp , [58] F. J. Charpentier, Pitch detection using the short-term phase spectrum," Proc. of ICASSP86, vol. 1, pp ,1986. [59] L. Qiu, H. Yang, S. N. Koh, Fundamental frequency determination based on instantaneous frequency estimation," Signal Processing 44, pp , [6] T. Abe, T. Kobayashi, S. Imai, Robust pitch estimation with harmonics enhancement in noisy environments based on instantaneous frequency," Proc. ICSLP96, Vol.2,pp ,1996. [61] T. Abe,T. Kobayashi,S. Imai, The IF spectrogram: A new spectral representaion," Proc. ASVA97, pp ,1997. [62] H. Kawahara, H. Katayose, A. de Cheveigné, R. D. Patterson, Fixed point analysis of frequency to instantaneous frequency mapping for accurate estimation of F and periodicity," Proc. Eurospeech99, pp ,

119 [63],,,,,,,", vol. J83-D-II,no. 11, pp ,2. [64] T. Nakatani, T. Irino, Robust fundamental frequency estimation against background noise and spectral distortion," Proc. ICSLP22,pp , 22. [65] M. Lahat, R. J. Niederjohn, D. A. Krubsack, A spectral autocorrelation method for measurement of the fundamental frequency of noise-corrupted speech," IEEE Trans. Acoust., Speech & Signal Process., vol. 35, no. 6, pp ,1987. [66] D. Chazan, M. Tzur (Zibulski), R. Hoory, G. Cohen, Efficient periodicity extraction based on sine-wave representation and its application to pitch determination of speech signals," Proc. of Eurospeech21, pp , 21. [67],,,,", vol. J83-D-II, no. 11, pp ,2. [68],,,,", vol. J81-D-II,no. 9,pp ,1998. [69],,,", vol. 5, p. 263,1978. [7] E. Geoffrois, The multi-lag-window method for robust extended-range F determination," Proc. of ICSLP96, vol. 4,pp ,1996. [71] D. J. Liu,C. T. Lin, Fundamental frequency estimation based on the joint time-frequency analysis of harmonic spectral structure," IEEE Trans. Speech, Audio Process., vol. 9, no. 6,pp ,

120 [72] R. C. Maher, Fundamental frequency estimation of musical signals using a two-way mismatch procedure," J. Acoust. Soc. Am., vol. 95, no. 4, pp ,1994. [73] H. S. Pang, S. J. Baek, K. M. Sung, Improved fundamental frequency estimation using parametric cubic convolution," IEICE Trans. Fundamentals, vol. E83-A,no. 12,pp ,2. [74],,,", vol. 51,no. 7,pp ,1995. [75],,,", vol. J8-A,no. 11,pp ,1997. [76] J. D. Brown, M. S. Puckette, A high resolution fundamental frequency determination based on phase changes of the Fourier transform," J. Acoust. Soc. Am.,vol. 94, no. 2, pp ,MIT Press, Cambridge,MA,1993. [77] T. Tanaka,T. Kobayashi,D. Arifianto,T. Masuko, Fundamental frequency estimation based on instantaneous frequency amplitude spectrum," Proc. of ICASSP22, vol. 1, pp ,22. [78],,", [79],,,,, 3,", [8],,,", vol.57,no.12,pp ,21. [81], DAT,", vol.47,no.12,pp ,1991. [82] S. Nakamura, K. Hiyane, F. Asano, T. Endo, Sound scene data collection in real acoustical environments," J. Acoust. Soc. Japan (E), vol. 2, no. 3, pp ,

121 [83] S. F. Boll, Suppression of acoustic noise in speech using spectral subtraction," IEEE Trans. Acoust., Speech, Signal Process. ASSP-27, no. 2, pp ,1979. [84] K. K. Paliwal, A. Basu, A speech enhancement method based on kalman filtering," Proc. of ICASSP87, pp ,1987. [85] D. C. Popescu, I. Zelijković Kalman filtering of colored noise for speech enhancement," Proc. of ICASSP98, pp ,1998. [86] G. Shafer, A mathematical theory of evidence, Princeton University Press, [87], Dempster&Shafer,", Vol. 66, No. 9, pp. 9 93,1983. [88] R. D. Patterson,J. Holdsworth, A functional model of neural activity patterns and auditory images, In: Ainsworth, W.A., Evans, E.F., Hackney, C.M. (Eds.), Advances in speech, Hearing and language processing. Vol.3, JAI Press, London, [89] B. R. Glasberg, B. C. J. Moore, Derivation of auditory filter shapes from notched-noise data," Hearing Research 47, pp ,199. [9] M. Unoki,M. Akagi, A method of signal extraction from noisy signal based on auditory scene analysis," Speech Communication 27,pp ,1999. [91],, ",, vol. J77-A,no. 5, pp ,1994. [92] A. de Cheveigné, Concurrent vowel identification III: A neural model of harmonic interference cancellation," J. Acoust. Soc. Am.,vol. 11,no. 5,pp ,

122 1. Y. Ishimoto, K. Ishizuka, K. Aikawa, M. Akagi, Fundamental frequency estimation for noisy speech using entropy-weighted periodic and harmonic features," IEICE Trans. Inf. & Syst., Vol. E87-D,No. 1, pp , Y. Ishimoto, M. Unoki, M. Akagi, Fundamental frequency estimation for noisy speech based on instantaneous amplitude and frequency," Speech Communication. (, ) 1. Y. Ishimoto,M. Akagi, A fundamental frequency estimation method for noisy speech," Proc. WESTPRAC VII,Vol. 1, pp ,2. 2. Y. Ishimoto, M. Unoki, M. Akagi, A fundamental frequency estimation method for noisy speech based on periodicity and harmonicity," ICASSP21, SPEECH-SF3.1, Y. Ishimoto, M. Unoki, M. Akagi, A fundamental frequency estimation method for noisy speech based on instantaneous amplitude and frequency, "A workshop on consistent and reliable acoustic cues for sound analysis (CRAC), Y. Ishimoto, M. Unoki, M. Akagi, A Fundamental Frequency Estimation Method for Noisy Speech Based on Instantaneous Amplitude and Frequency," Proc. Eurospeech21, Vol. 4, pp ,

123 1.,,,", SP99-169,2. 2.,,," 12,pp ,2. 3.,,,," 12, p.452,2. 4.,,,," 12, pp ,2. 5.,,,,",H-2-81,2. 6.,,,,",pp ,21. 7.,,,," 13, pp ,21. 8.,,,," 13, pp ,21. 9.,,,,,", SP22-52,22. 1.,,,, F," 14, pp , ,, 115

124 ," 15, pp ,

2013 M

2013 M 2013 M0110453 2013 : M0110453 20 1 1 1.1............................ 1 1.2.............................. 4 2 5 2.1................................. 6 2.2................................. 8 2.3.................................

More information

27 5) STRAIGHT ) STRAIGHT 8) 3 STRAIGHT ),6),2) 7) 7),9) 5) 2. 2. STRAIGHT 5),7) 2.. spline 2..2 6) ms 2..3 4) STRAIGHT (db) ERB N(Effective Rectangul

27 5) STRAIGHT ) STRAIGHT 8) 3 STRAIGHT ),6),2) 7) 7),9) 5) 2. 2. STRAIGHT 5),7) 2.. spline 2..2 6) ms 2..3 4) STRAIGHT (db) ERB N(Effective Rectangul 2 2 4 3 STRAIGHT 3 5 2 Perceptual study on design reuse of voice identity and singing style based on singing voice morphing HIDEKI KAWAHARA, TAICHI IKOMA, MASANORI MORISE, TORU TAKAHASHI, KEN ICHI TOYODA

More information

IPSJ SIG Technical Report Vol.2014-MUS-104 No /8/27 F0 1,a) 1,b) 1,c) 2,d) (F0) F0 F0 Graphical User Interface (GUI) F0 1. [1] CD MIDI [2] [3,

IPSJ SIG Technical Report Vol.2014-MUS-104 No /8/27 F0 1,a) 1,b) 1,c) 2,d) (F0) F0 F0 Graphical User Interface (GUI) F0 1. [1] CD MIDI [2] [3, F,a),b),c) 2,d) (F) F F Graphical User Interface (GUI) F. [] CD MIDI [2] [3, 4] [5] 2 a) ikemiya@kuis.kyoto-u.ac.jp b) itoyama@kuis.kyoto-u.ac.jp c) yoshii@kuis.kyoto-u.ac.jp d) okuno@aoni.waseda.jp TANDEM-STRAIGHT

More information

Copyright c 2000 by Yoshihide Tomiyama

Copyright c 2000 by Yoshihide Tomiyama JAIST Reposi https://dspace.j Title 有限要素法による 3 次元声道伝達特性の推定に関する研 究 Author(s) 冨山, 慶一 Citation Issue Date 2000-03 Type Thesis or Dissertation Text version author URL http://hdl.handle.net/10119/1365 Rights

More information

ds2.dvi

ds2.dvi 1 Fourier 2 : Fourier s(t) Fourier S(!) = s(t) = 1 s(t)e j!t dt (1) S(!)e j!t d! (2) 1 1 s(t) S(!) S(!) =S Λ (!) Λ js T (!)j 2 P (!) = lim T!1 T S T (!) = T=2 T=2 (3) s(t)e j!t dt (4) T P (!) Fourier P

More information

IPSJ SIG Technical Report 1, Instrument Separation in Reverberant Environments Using Crystal Microphone Arrays Nobutaka ITO, 1, 2 Yu KITANO, 1

IPSJ SIG Technical Report 1, Instrument Separation in Reverberant Environments Using Crystal Microphone Arrays Nobutaka ITO, 1, 2 Yu KITANO, 1 1, 2 1 1 1 Instrument Separation in Reverberant Environments Using Crystal Microphone Arrays Nobutaka ITO, 1, 2 Yu KITANO, 1 Nobutaka ONO 1 and Shigeki SAGAYAMA 1 This paper deals with instrument separation

More information

H(ω) = ( G H (ω)g(ω) ) 1 G H (ω) (6) 2 H 11 (ω) H 1N (ω) H(ω)= (2) H M1 (ω) H MN (ω) [ X(ω)= X 1 (ω) X 2 (ω) X N (ω) ] T (3)

H(ω) = ( G H (ω)g(ω) ) 1 G H (ω) (6) 2 H 11 (ω) H 1N (ω) H(ω)= (2) H M1 (ω) H MN (ω) [ X(ω)= X 1 (ω) X 2 (ω) X N (ω) ] T (3) 72 12 2016 pp. 777 782 777 * 43.60.Pt; 43.38.Md; 43.60.Sx 1. 1 2 [1 8] Flexible acoustic interface based on 3D sound reproduction. Yosuke Tatekura (Shizuoka University, Hamamatsu, 432 8561) 2. 2.1 3 M

More information

10_08.dvi

10_08.dvi 476 67 10 2011 pp. 476 481 * 43.72.+q 1. MOS Mean Opinion Score ITU-T P.835 [1] [2] [3] Subjective and objective quality evaluation of noisereduced speech. Takeshi Yamada, Shoji Makino and Nobuhiko Kitawaki

More information

h(n) x(n) s(n) S (ω) = H(ω)X(ω) (5 1) H(ω) H(ω) = F[h(n)] (5 2) F X(ω) x(n) X(ω) = F[x(n)] (5 3) S (ω) s(n) S (ω) = F[s(n)] (5

h(n) x(n) s(n) S (ω) = H(ω)X(ω) (5 1) H(ω) H(ω) = F[h(n)] (5 2) F X(ω) x(n) X(ω) = F[x(n)] (5 3) S (ω) s(n) S (ω) = F[s(n)] (5 1 -- 5 5 2011 2 1940 N. Wiener FFT 5-1 5-2 Norbert Wiener 1894 1912 MIT c 2011 1/(12) 1 -- 5 -- 5 5--1 2008 3 h(n) x(n) s(n) S (ω) = H(ω)X(ω) (5 1) H(ω) H(ω) = F[h(n)] (5 2) F X(ω) x(n) X(ω) = F[x(n)]

More information

Copyright 2008 by Tomoyoshi Yamazaki

Copyright 2008 by Tomoyoshi Yamazaki JAIST Reposi https://dspace.j Title 工程管理から知識創造へ - クリニカルパスによる医療 のナレッジ マネジメント - Author(s) 山﨑, 友義 Citation Issue Date 2008-03 Type Thesis or Dissertation Text version author URL http://hdl.handle.net/10119/4260

More information

950080 Copyright ' 2001 by Manabu Masuoka i

950080 Copyright ' 2001 by Manabu Masuoka i JAIST Reposi https://dspace.j Title 何 が 日 産 を 蝕 んだのか? 日 産 に 見 る 経 営 資 源 配 分 問 題 Author(s) 増 岡, 学 Citation Issue Date 2001-03 Type Thesis or Dissertation Text version author URL http://hdl.handle.net/10119/725

More information

pp d 2 * Hz Hz 3 10 db Wind-induced noise, Noise reduction, Microphone array, Beamforming 1

pp d 2 * Hz Hz 3 10 db Wind-induced noise, Noise reduction, Microphone array, Beamforming 1 72 12 2016 pp. 739 748 739 43.60.+d 2 * 1 2 2 3 2 125 Hz 0.3 0.8 2 125 Hz 3 10 db Wind-induced noise, Noise reduction, Microphone array, Beamforming 1. 1.1 PSS [1] [2 4] 2 Wind-induced noise reduction

More information

11 22 33 12 23 1 2 3, 1 2, U2 3 U 1 U b 1 (o t ) b 2 (o t ) b 3 (o t ), 3 b (o t ) MULTI-SPEAKER SPEECH DATABASE Training Speech Analysis Mel-Cepstrum, logf0 /context1/ /context2/... Context Dependent

More information

JAIST Reposi Title KJ 法における作法の研究 Author(s) 三村, 修 Citation Issue Date Type Thesis or Dissertation Text version author URL http

JAIST Reposi   Title KJ 法における作法の研究 Author(s) 三村, 修 Citation Issue Date Type Thesis or Dissertation Text version author URL http JAIST Reposi https://dspace.j Title KJ 法における作法の研究 Author(s) 三村, 修 Citation Issue Date 2005-03 Type Thesis or Dissertation Text version author URL http://hdl.handle.net/10119/537 Rights Description Supervisor:

More information

2 DS SS (SS+DS) Fig. 2 Separation algorithm for motorcycle sound by combining DS and SS (SS+DS). 3. [3] DS SS 2 SS+DS 1 1 B SS SS 4. NMF 4. 1 (NMF) Y

2 DS SS (SS+DS) Fig. 2 Separation algorithm for motorcycle sound by combining DS and SS (SS+DS). 3. [3] DS SS 2 SS+DS 1 1 B SS SS 4. NMF 4. 1 (NMF) Y a) Separation of Motorcycle Sound by Near Field Microphone Array and Nonnegative Matrix Factorization Chisaki YOSHINAGA, Nonmember, Yosuke TATEKURA a), Member, Kazuaki HAMADA, and Tetsuya KIMURA, Nonmembers

More information

impulse_response.dvi

impulse_response.dvi 5 Time Time Level Level Frequency Frequency Fig. 5.1: [1] 2004. [2] P. A. Nelson, S. J. Elliott, Active Noise Control, Academic Press, 1992. [3] M. R. Schroeder, Integrated-impulse method measuring sound

More information

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202E646F63>

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202E646F63> 通信方式第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/072662 このサンプルページの内容は, 第 2 版発行当時のものです. i 2 2 2 2012 5 ii,.,,,,,,.,.,,,,,.,,.,,..,,,,.,,.,.,,.,,.. 1990 5 iii 1 1

More information

1) Lieberman, P.: Some Acoustic Measures of the Fundamental Periodicity of Normal and Pathologic Larynges. J.A.S.A., 35 : 344, 1963. 2) Koike, Y.: Vowel Amplitude Modulations in Patients with Laryngeal

More information

7) 8) 9),10) 11) 18) 11),16) 18) 19) 20) Vocaloid 6) Vocaloid 1 VocaListener1 2 VocaListener1 3 VocaListener VocaListener1 VocaListener1 Voca

7) 8) 9),10) 11) 18) 11),16) 18) 19) 20) Vocaloid 6) Vocaloid 1 VocaListener1 2 VocaListener1 3 VocaListener VocaListener1 VocaListener1 Voca VocaListener2: 1 1 VocaListener2 VocaListener VocaListener2 VocaListener2 VocaListener VocaListener2 VocaListener2: A Singing Synthesis System Mimicking Voice Timbre Changes in Addition to Pitch and Dynamics

More information

2_05.dvi

2_05.dvi 74 68 2 2012 pp. 74 85 43.60. c * 1, 2 1 2, 3 1 2 1 4 BM CSS CSS CSM BM CSM CSS CSS CSM Blind source separation, Sparseness, Binary mas, Musical noise, Cepstral smoothing, Separated speech signals 1. BSS

More information

a) Extraction of Similarities and Differences in Human Behavior Using Singular Value Decomposition Kenichi MISHIMA, Sayaka KANATA, Hiroaki NAKANISHI a

a) Extraction of Similarities and Differences in Human Behavior Using Singular Value Decomposition Kenichi MISHIMA, Sayaka KANATA, Hiroaki NAKANISHI a a) Extraction of Similarities and Differences in Human Behavior Using Singular Value Decomposition Kenichi MISHIMA, Sayaka KANATA, Hiroaki NAKANISHI a), Tetsuo SAWARAGI, and Yukio HORIGUCHI 1. Johansson

More information

Optical Flow t t + δt 1 Motion Field 3 3 1) 2) 3) Lucas-Kanade 4) 1 t (x, y) I(x, y, t)

Optical Flow t t + δt 1 Motion Field 3 3 1) 2) 3) Lucas-Kanade 4) 1 t (x, y) I(x, y, t) http://wwwieice-hbkborg/ 2 2 4 2 -- 2 4 2010 9 3 3 4-1 Lucas-Kanade 4-2 Mean Shift 3 4-3 2 c 2013 1/(18) http://wwwieice-hbkborg/ 2 2 4 2 -- 2 -- 4 4--1 2010 9 4--1--1 Optical Flow t t + δt 1 Motion Field

More information

IPSJ SIG Technical Report Vol.2015-MUS-107 No /5/23 HARK-Binaural Raspberry Pi 2 1,a) ( ) HARK 2 HARK-Binaural A/D Raspberry Pi 2 1.

IPSJ SIG Technical Report Vol.2015-MUS-107 No /5/23 HARK-Binaural Raspberry Pi 2 1,a) ( ) HARK 2 HARK-Binaural A/D Raspberry Pi 2 1. HARK-Binaural Raspberry Pi 2 1,a) 1 1 1 2 3 () HARK 2 HARK-Binaural A/D Raspberry Pi 2 1. [1,2] [2 5] () HARK (Honda Research Institute Japan audition for robots with Kyoto University) *1 GUI ( 1) Python

More information

PreFEst Predominant- F0 Estimation Method EM Expectation-Maximization [20] CD 10 2. D m(t) D b (t) t F0 F i(t) (i =m, b) A i(t) D m(t) ={F m(t),a m(t)

PreFEst Predominant- F0 Estimation Method EM Expectation-Maximization [20] CD 10 2. D m(t) D b (t) t F0 F i(t) (i =m, b) A i(t) D m(t) ={F m(t),a m(t) F0 Estimation of Melody and Bass Lines in Musical Audio Signals Masataka GOTO CD EM Expectation-Maximization CD EM 1. 1 [1] [5] [4], [5] 2 CD compact disc Electrotechnical Laboratory, Tukuba-shi, 305 8568

More information

YANGsaf [] 3. πn, (n Z) Z [16 18] 3.1 Flanagan [19] A.1 TANDEM-STRAIGHT [1] 1/ [0] A. TANDEM-STRAIGHT [] 3. [3,6] F0 [14] F0 [10] [10] 3.3 [] Vol.017-

YANGsaf [] 3. πn, (n Z) Z [16 18] 3.1 Flanagan [19] A.1 TANDEM-STRAIGHT [1] 1/ [0] A. TANDEM-STRAIGHT [] 3. [3,6] F0 [14] F0 [10] [10] 3.3 [] Vol.017- Vol.017-MUS-114 No.6 017//7 1,a),b) 3,c) 4,d) YANGsaf [1] (1) () (3) YANGsaf [, 3] FFT bin STRAIGHT TANDEM Revisiting aperiodicity estimation based on instantaneous frequency and group delay Kawahara Hideki

More information

Vol. 48 No. 3 Mar Evaluation of Music-noise Assimilation Playback for Portable Audio Players Akifumi Inoue, Shohei Bise, Satoshi Ichimura and

Vol. 48 No. 3 Mar Evaluation of Music-noise Assimilation Playback for Portable Audio Players Akifumi Inoue, Shohei Bise, Satoshi Ichimura and Vol. 48 No. 3 Mar. 2007 1 Evaluation of Music-noise Assimilation Playback for Portable Audio Players Akifumi Inoue, Shohei Bise, Satoshi Ichimura and Yutaka Matsushita Though the population of portable

More information

4. C i k = 2 k-means C 1 i, C 2 i 5. C i x i p [ f(θ i ; x) = (2π) p 2 Vi 1 2 exp (x µ ] i) t V 1 i (x µ i ) 2 BIC BIC = 2 log L( ˆθ i ; x i C i ) + q

4. C i k = 2 k-means C 1 i, C 2 i 5. C i x i p [ f(θ i ; x) = (2π) p 2 Vi 1 2 exp (x µ ] i) t V 1 i (x µ i ) 2 BIC BIC = 2 log L( ˆθ i ; x i C i ) + q x-means 1 2 2 x-means, x-means k-means Bayesian Information Criterion BIC Watershed x-means Moving Object Extraction Using the Number of Clusters Determined by X-means Clustering Naoki Kubo, 1 Kousuke

More information

IPSJ SIG Technical Report Vol.2017-MUS-115 No /6/17 1,a) 1 1 WORLD F0 Vocaloid F0 ipad 1. Vocaloid [1] UTAU *1 Vocaloid Vocaloid F0 VocaListene

IPSJ SIG Technical Report Vol.2017-MUS-115 No /6/17 1,a) 1 1 WORLD F0 Vocaloid F0 ipad 1. Vocaloid [1] UTAU *1 Vocaloid Vocaloid F0 VocaListene 1,a) 1 1 WORLD F0 Vocaloid F0 ipad 1. Vocaloid [1] UTAU *1 Vocaloid Vocaloid F0 VocaListener [2], [3] Vocaloid *2 VocaListener Vocaloid 1 University of Yamanashi a) g16tk018@yamanashi.ac.jp *1 http://utau2008.web.fc2.com/

More information

untitled

untitled 18 1 2,000,000 2,000,000 2007 2 2 2008 3 31 (1) 6 JCOSSAR 2007pp.57-642007.6. LCC (1) (2) 2 10mm 1020 14 12 10 8 6 4 40,50,60 2 0 1998 27.5 1995 1960 40 1) 2) 3) LCC LCC LCC 1 1) Vol.42No.5pp.29-322004.5.

More information

UWB a) Accuracy of Relative Distance Measurement with Ultra Wideband System Yuichiro SHIMIZU a) and Yukitoshi SANADA (Ultra Wideband; UWB) UWB GHz DLL

UWB a) Accuracy of Relative Distance Measurement with Ultra Wideband System Yuichiro SHIMIZU a) and Yukitoshi SANADA (Ultra Wideband; UWB) UWB GHz DLL UWB a) Accuracy of Relative Distance Measurement with Ultra Wideband System Yuichiro SHIMIZU a) and Yukitoshi SANADA (Ultra Wideband; UWB) UWB GHz DLL UWB (DLL) UWB DLL 1. UWB FCC (Federal Communications

More information

IPSJ SIG Technical Report Vol.2012-MUS-96 No /8/10 MIDI Modeling Performance Indeterminacies for Polyphonic Midi Score Following and

IPSJ SIG Technical Report Vol.2012-MUS-96 No /8/10 MIDI Modeling Performance Indeterminacies for Polyphonic Midi Score Following and MIDI 1 2 3 2 1 Modeling Performance Indeterminacies for Polyphonic Midi Score Following and Its Application to Automatic Accompaniment Nakamura Eita 1 Yamamoto Ryuichi 2 Saito Yasuyuki 3 Sako Shinji 2

More information

No. 3 Oct The person to the left of the stool carried the traffic-cone towards the trash-can. α α β α α β α α β α Track2 Track3 Track1 Track0 1

No. 3 Oct The person to the left of the stool carried the traffic-cone towards the trash-can. α α β α α β α α β α Track2 Track3 Track1 Track0 1 ACL2013 TACL 1 ACL2013 Grounded Language Learning from Video Described with Sentences (Yu and Siskind 2013) TACL Transactions of the Association for Computational Linguistics What Makes Writing Great?

More information

2.2 (a) = 1, M = 9, p i 1 = p i = p i+1 = 0 (b) = 1, M = 9, p i 1 = 0, p i = 1, p i+1 = 1 1: M 2 M 2 w i [j] w i [j] = 1 j= w i w i = (w i [ ],, w i [

2.2 (a) = 1, M = 9, p i 1 = p i = p i+1 = 0 (b) = 1, M = 9, p i 1 = 0, p i = 1, p i+1 = 1 1: M 2 M 2 w i [j] w i [j] = 1 j= w i w i = (w i [ ],, w i [ RI-002 Encoding-oriented video generation algorithm based on control with high temporal resolution Yukihiro BANDOH, Seishi TAKAMURA, Atsushi SHIMIZU 1 1T / CMOS [1] 4K (4096 2160 /) 900 Hz 50Hz,60Hz 240Hz

More information

CDMA (high-compaciton multicarrier codedivision multiple access: HC/MC-CDMA),., HC/MC-CDMA,., 32.,, 64. HC/MC-CDMA, HC-MCM, i

CDMA (high-compaciton multicarrier codedivision multiple access: HC/MC-CDMA),., HC/MC-CDMA,., 32.,, 64. HC/MC-CDMA, HC-MCM, i 24 Investigation on HC/MC-CDMA Signals with Non-Uniform Frequency Intervals 1130401 2013 3 1 CDMA (high-compaciton multicarrier codedivision multiple access: HC/MC-CDMA),., HC/MC-CDMA,., 32.,, 64. HC/MC-CDMA,

More information

IPSJ-SLP

IPSJ-SLP F0 MFCC 1 2 3 1 1 1 1 MFCCF0 1 86.7% 90.2% A System for Automatic Discrimination between Singing and Speaking Voices on the Basis of Peak Interval of Spectral Change, F0, and MFCC Shimpei Aso, 1 Takeshi

More information

2007-Kanai-paper.dvi

2007-Kanai-paper.dvi 19 Estimation of Sound Source Zone using The Arrival Time Interval 1080351 2008 3 7 S/N 2 2 2 i Abstract Estimation of Sound Source Zone using The Arrival Time Interval Koichiro Kanai The microphone array

More information

untitled

untitled 1 SS 2 2 (DS) 3 2.1 DS................................ 3 2.2 DS................................ 4 2.3.................................. 4 2.4 (channel papacity)............................ 6 2.5........................................

More information

thesis.dvi

thesis.dvi 26 27 2 2 : : : : A-D Abstract In this study, the author measured breath sounds at multiple points simultaneously with two or more stethoscopes, and analyzed frequency of the measured breath sounds. First,

More information

2006 3

2006 3 JAIST Reposi https://dspace.j Title 質問の曖昧性を考慮した質問応答システムに関する研 究 Author(s) 松本, 匡史 Citation Issue Date 2006-03 Type Thesis or Dissertation Text version author URL http://hdl.handle.net/10119/1986 Rights Description

More information

AI

AI JAIST Reposi https://dspace.j Title プレイヤの意図や価値観を学習し行動選択するチーム プレイ AI の構成 Author(s) 吉谷, 慧 Citation Issue Date 2013-03 Type Thesis or Dissertation Text version author URL http://hdl.handle.net/10119/11300

More information

2014 3

2014 3 1 3 113 : 1 Copyright c 1 by Kobayashi Keisuke Desktop Music (DTM) DAW (Digital Audio Workstation) YAMAHA Vocaloid DTM MIDI (Musical Instruments Digital Interface) Lee (Non-negative Matrix Factorization;

More information

318 T. SICE Vol.52 No.6 June 2016 (a) (b) (c) (a) (c) ) 11) (1) (2) 1 5) 6) 7), 8) 5) 20 11) (1

318 T. SICE Vol.52 No.6 June 2016 (a) (b) (c) (a) (c) ) 11) (1) (2) 1 5) 6) 7), 8) 5) 20 11) (1 Vol.52, No.6, 317/329 2016 Mathematical Model and Analysis on Human s Handwork and Their Application to Brush Motion and Junkatsu of Japanese Calligraphy Tadamichi Mawatari and Kensuke Tsuchiya There is

More information

(1970) 17) V. Kucera: A Contribution to Matrix Ouadratic Equations, IEEE Trans. on Automatic Control, AC- 17-3, 344/347 (1972) 18) V. Kucera: On Nonnegative Definite Solutions to Matrix Ouadratic Equations,

More information

258 5) GPS 1 GPS 6) GPS DP 7) 8) 10) GPS GPS 2 3 4 5 2. 2.1 3 1) GPS Global Positioning System

258 5) GPS 1 GPS 6) GPS DP 7) 8) 10) GPS GPS 2 3 4 5 2. 2.1 3 1) GPS Global Positioning System Vol. 52 No. 1 257 268 (Jan. 2011) 1 2, 1 1 measurement. In this paper, a dynamic road map making system is proposed. The proposition system uses probe-cars which has an in-vehicle camera and a GPS receiver.

More information

yoo_graduation_thesis.dvi

yoo_graduation_thesis.dvi 200 3 A Graduation Thesis of College of Engineering, Chubu University Keypoint Matching of Range Data from Features of Shape and Appearance Yohsuke Murai 1 1 2 2.5D 3 2.1 : : : : : : : : : : : : : : :

More information

x T = (x 1,, x M ) x T x M K C 1,, C K 22 x w y 1: 2 2

x T = (x 1,, x M ) x T x M K C 1,, C K 22 x w y 1: 2 2 Takio Kurita Neurosceince Research Institute, National Institute of Advanced Indastrial Science and Technology takio-kurita@aistgojp (Support Vector Machine, SVM) 1 (Support Vector Machine, SVM) ( ) 2

More information

2.R R R R Pan-Tompkins(PT) [8] R 2 SQRS[9] PT Q R WQRS[10] Quad Level Vector(QLV)[11] QRS R Continuous Wavelet Transform(CWT)[12] Mexican hat 4

2.R R R R Pan-Tompkins(PT) [8] R 2 SQRS[9] PT Q R WQRS[10] Quad Level Vector(QLV)[11] QRS R Continuous Wavelet Transform(CWT)[12] Mexican hat 4 G-002 R Database and R-Wave Detecting System for Utilizing ECG Data Takeshi Nagatomo Ikuko Shimizu Takeshi Ikeda Akio Sashima Koichi Kurumatani R R MIT-BIH R 90% 1. R R [1] 2 24 16 Tokyo University of

More information

(MIRU2008) HOG Histograms of Oriented Gradients (HOG)

(MIRU2008) HOG Histograms of Oriented Gradients (HOG) (MIRU2008) 2008 7 HOG - - E-mail: katsu0920@me.cs.scitec.kobe-u.ac.jp, {takigu,ariki}@kobe-u.ac.jp Histograms of Oriented Gradients (HOG) HOG Shape Contexts HOG 5.5 Histograms of Oriented Gradients D Human

More information

1 Kinect for Windows M = [X Y Z] T M = [X Y Z ] T f (u,v) w 3.2 [11] [7] u = f X +u Z 0 δ u (X,Y,Z ) (5) v = f Y Z +v 0 δ v (X,Y,Z ) (6) w = Z +

1 Kinect for Windows M = [X Y Z] T M = [X Y Z ] T f (u,v) w 3.2 [11] [7] u = f X +u Z 0 δ u (X,Y,Z ) (5) v = f Y Z +v 0 δ v (X,Y,Z ) (6) w = Z + 3 3D 1,a) 1 1 Kinect (X, Y) 3D 3D 1. 2010 Microsoft Kinect for Windows SDK( (Kinect) SDK ) 3D [1], [2] [3] [4] [5] [10] 30fps [10] 3 Kinect 3 Kinect Kinect for Windows SDK 3 Microsoft 3 Kinect for Windows

More information

Trapezoidal Rule θ = 1/ x n x n 1 t = 1 [f(t n 1, x n 1 ) + f(t n, x n )] (6) 1. dx dt = f(t, x), x(t 0) = x 0 (7) t [t 0, t 1 ] f t [t 0, t 1 ], x x

Trapezoidal Rule θ = 1/ x n x n 1 t = 1 [f(t n 1, x n 1 ) + f(t n, x n )] (6) 1. dx dt = f(t, x), x(t 0) = x 0 (7) t [t 0, t 1 ] f t [t 0, t 1 ], x x University of Hyogo 8 8 1 d x(t) =f(t, x(t)), dt (1) x(t 0 ) =x 0 () t n = t 0 + n t x x n n x n x 0 x i i = 0,..., n 1 x n x(t) 1 1.1 1 1 1 0 θ 1 θ x n x n 1 t = θf(t n 1, x n 1 ) + (1 θ)f(t n, x n )

More information

Design of highly accurate formulas for numerical integration in weighted Hardy spaces with the aid of potential theory 1 Ken ichiro Tanaka 1 Ω R m F I = F (t) dt (1.1) Ω m m 1 m = 1 1 Newton-Cotes Gauss

More information

1 Fig. 1 Extraction of motion,.,,, 4,,, 3., 1, 2. 2.,. CHLAC,. 2.1,. (256 ).,., CHLAC. CHLAC, HLAC. 2.3 (HLAC ) r,.,. HLAC. N. 2 HLAC Fig. 2

1 Fig. 1 Extraction of motion,.,,, 4,,, 3., 1, 2. 2.,. CHLAC,. 2.1,. (256 ).,., CHLAC. CHLAC, HLAC. 2.3 (HLAC ) r,.,. HLAC. N. 2 HLAC Fig. 2 CHLAC 1 2 3 3,. (CHLAC), 1).,.,, CHLAC,.,. Suspicious Behavior Detection based on CHLAC Method Hideaki Imanishi, 1 Toyohiro Hayashi, 2 Shuichi Enokida 3 and Toshiaki Ejima 3 We have proposed a method for

More information

2007/8 Vol. J90 D No. 8 Stauffer [7] 2 2 I 1 I 2 2 (I 1(x),I 2(x)) 2 [13] I 2 = CI 1 (C >0) (I 1,I 2) (I 1,I 2) Field Monitoring Server

2007/8 Vol. J90 D No. 8 Stauffer [7] 2 2 I 1 I 2 2 (I 1(x),I 2(x)) 2 [13] I 2 = CI 1 (C >0) (I 1,I 2) (I 1,I 2) Field Monitoring Server a) Change Detection Using Joint Intensity Histogram Yasuyo KITA a) 2 (0 255) (I 1 (x),i 2 (x)) I 2 = CI 1 (C>0) (I 1,I 2 ) (I 1,I 2 ) 2 1. [1] 2 [2] [3] [5] [6] [8] Intelligent Systems Research Institute,

More information

Duplicate Near Duplicate Intact Partial Copy Original Image Near Partial Copy Near Partial Copy with a background (a) (b) 2 1 [6] SIFT SIFT SIF

Duplicate Near Duplicate Intact Partial Copy Original Image Near Partial Copy Near Partial Copy with a background (a) (b) 2 1 [6] SIFT SIFT SIF Partial Copy Detection of Line Drawings from a Large-Scale Database Weihan Sun, Koichi Kise Graduate School of Engineering, Osaka Prefecture University E-mail: sunweihan@m.cs.osakafu-u.ac.jp, kise@cs.osakafu-u.ac.jp

More information

2015 3

2015 3 JAIST Reposi https://dspace.j Title ターン制ストラテジーゲームにおける候補手の抽象化 によるゲーム木探索の効率化 Author(s) 村山, 公志朗 Citation Issue Date 2015-03 Type Thesis or Dissertation Text version author URL http://hdl.handle.net/10119/12652

More information

Input image Initialize variables Loop for period of oscillation Update height map Make shade image Change property of image Output image Change time L

Input image Initialize variables Loop for period of oscillation Update height map Make shade image Change property of image Output image Change time L 1,a) 1,b) 1/f β Generation Method of Animation from Pictures with Natural Flicker Abstract: Some methods to create animation automatically from one picture have been proposed. There is a method that gives

More information

音楽とOR(片寄)

音楽とOR(片寄) Directability 1957 1. 1950 Meyer [1] 1970 Higgins [2] 1980 Deutsch [3] 1980 [4] Lerdahl Jackendoff Generative Theory of Tonal Music (GTTM)[5] Narmour Impication - Realization Model (IRM) [6] 1950 1957

More information

情報通信工学2-ocw.dvi

情報通信工学2-ocw.dvi 4 4.1 (Amplitude Modulation) (VSB: 4.1.1 ( ) (AM) m(t) f c s(t) = (1 + m(t)) c(t) =A c (1 + m(t)) cos(2ßf c t + ffi c ) =

More information

082_rev2_utf8.pdf

082_rev2_utf8.pdf 3 1. 2. 3. 4. 5. 1 3 3 3 2008 3 2008 2008 3 2008 2008, 1 5 Lo and MacKinlay (1990a) de Jong and Nijman (1997) Cohen et al. (1983) Lo and MacKinlay (1990a b) Cohen et al. (1983) de Jong and Nijman (1997)

More information

IPSJ SIG Technical Report Vol.2017-MUS-116 No /8/24 MachineDancing: 1,a) 1,b) 3 MachineDancing MachineDancing MachineDancing 1 MachineDan

IPSJ SIG Technical Report Vol.2017-MUS-116 No /8/24 MachineDancing: 1,a) 1,b) 3 MachineDancing MachineDancing MachineDancing 1 MachineDan MachineDancing: 1,a) 1,b) 3 MachineDancing 2 1. 3 MachineDancing MachineDancing 1 MachineDancing MachineDancing [1] 1 305 0058 1-1-1 a) s.fukayama@aist.go.jp b) m.goto@aist.go.jp 1 MachineDancing 3 CG

More information

IPSJ SIG Technical Report Vol.2013-GN-87 No /3/ Research of a surround-sound field adjustmen system based on loudspeakers arrangement Ak

IPSJ SIG Technical Report Vol.2013-GN-87 No /3/ Research of a surround-sound field adjustmen system based on loudspeakers arrangement Ak 1 1 3 Research of a surround-sound field adjustmen system based on loudspeakers arrangement Akiyama Daichi 1 Kanai Hideaki 1 Abstract: In this paper, we propose a presentation method that does not depend

More information

The Japanese Journal of Psychology 2004, Vol. 75, No. 5, 397-406 Effects of fundamental frequency and speech rate on impression formation Teruhisa Uchida and Naoko Nakaune (Research Division, The National

More information

Hz

Hz ( ) 2006 1 3 3 3 4 10 Hz 1 1 1.1.................................... 1 1.2.................................... 1 2 2 2.1.................................... 2 2.2.................................... 3

More information

ver.1 / c /(13)

ver.1 / c /(13) 1 -- 11 1 c 2010 1/(13) 1 -- 11 -- 1 1--1 1--1--1 2009 3 t R x R n 1 ẋ = f(t, x) f = ( f 1,, f n ) f x(t) = ϕ(x 0, t) x(0) = x 0 n f f t 1--1--2 2009 3 q = (q 1,..., q m ), p = (p 1,..., p m ) x = (q,

More information

(a) (b) (c) Canny (d) 1 ( x α, y α ) 3 (x α, y α ) (a) A 2 + B 2 + C 2 + D 2 + E 2 + F 2 = 1 (3) u ξ α u (A, B, C, D, E, F ) (4) ξ α (x 2 α, 2x α y α,

(a) (b) (c) Canny (d) 1 ( x α, y α ) 3 (x α, y α ) (a) A 2 + B 2 + C 2 + D 2 + E 2 + F 2 = 1 (3) u ξ α u (A, B, C, D, E, F ) (4) ξ α (x 2 α, 2x α y α, [II] Optimization Computation for 3-D Understanding of Images [II]: Ellipse Fitting 1. (1) 2. (2) (edge detection) (edge) (zero-crossing) Canny (Canny operator) (3) 1(a) [I] [II] [III] [IV ] E-mail sugaya@iim.ics.tut.ac.jp

More information

2008 : 80725872 1 2 2 3 2.1.......................................... 3 2.2....................................... 3 2.3......................................... 4 2.4 ()..................................

More information

力 出力 ÝÒ 源分離 f å 2 š ž 伸縮率 f g å ² f œå 1 ( F0) audio-to-audio 3 2 RNMF [2] DTW audio-to-audio [3] [4] MIDI 2.2 [5 10] Dannenberg [5] Verc

力 出力 ÝÒ 源分離 f å 2 š ž 伸縮率 f g å ² f œå 1 ( F0) audio-to-audio 3 2 RNMF [2] DTW audio-to-audio [3] [4] MIDI 2.2 [5 10] Dannenberg [5] Verc 1,a) 1,b) 1,c) 1,d) 2,e) (MIDI ) audio-to-audio (RNMF) (DTW) DTW 1., (MIDI ) MIDI CD 2 1 1 MIDI CGM (Consumer Generated Music) Web Songrium [1] 2007 7 120 Web 1 2 / AIP a) wada@sap.ist.i.kyoto-u.ac.jp

More information

CWContinuous Wave CW 1.1.2 XCT(Computed Tomography) MRI Magnetic Resonance Imaging)PET(Positron Emission Tomography) XCT 2

CWContinuous Wave CW 1.1.2 XCT(Computed Tomography) MRI Magnetic Resonance Imaging)PET(Positron Emission Tomography) XCT 2 1.1 1.1.1 RadarRadio Detection and Ranging 1960 1 10 1 CWContinuous Wave CW 1.1.2 XCT(Computed Tomography) MRI Magnetic Resonance Imaging)PET(Positron Emission Tomography) XCT 2 3 XCTMRI XCTMRI XCT /10

More information

[1] SBS [2] SBS Random Forests[3] Random Forests ii

[1] SBS [2] SBS Random Forests[3] Random Forests ii Random Forests 2013 3 A Graduation Thesis of College of Engineering, Chubu University Proposal of an efficient feature selection using the contribution rate of Random Forests Katsuya Shimazaki [1] SBS

More information

xx/xx Vol. Jxx A No. xx 1 Fig. 1 PAL(Panoramic Annular Lens) PAL(Panoramic Annular Lens) PAL (2) PAL PAL 2 PAL 3 2 PAL 1 PAL 3 PAL PAL 2. 1 PAL

xx/xx Vol. Jxx A No. xx 1 Fig. 1 PAL(Panoramic Annular Lens) PAL(Panoramic Annular Lens) PAL (2) PAL PAL 2 PAL 3 2 PAL 1 PAL 3 PAL PAL 2. 1 PAL PAL On the Precision of 3D Measurement by Stereo PAL Images Hiroyuki HASE,HirofumiKAWAI,FrankEKPAR, Masaaki YONEDA,andJien KATO PAL 3 PAL Panoramic Annular Lens 1985 Greguss PAL 1 PAL PAL 2 3 2 PAL DP

More information

& Vol.5 No (Oct. 2015) TV 1,2,a) , Augmented TV TV AR Augmented Reality 3DCG TV Estimation of TV Screen Position and Ro

& Vol.5 No (Oct. 2015) TV 1,2,a) , Augmented TV TV AR Augmented Reality 3DCG TV Estimation of TV Screen Position and Ro TV 1,2,a) 1 2 2015 1 26, 2015 5 21 Augmented TV TV AR Augmented Reality 3DCG TV Estimation of TV Screen Position and Rotation Using Mobile Device Hiroyuki Kawakita 1,2,a) Toshio Nakagawa 1 Makoto Sato

More information

動画コンテンツ 動画 1 動画 2 動画 3 生成中の映像 入力音楽 選択された素片 テンポによる伸縮 音楽的構造 A B B B B B A C C : 4) 6) Web Web 2 2 c 2009 Information Processing S

動画コンテンツ 動画 1 動画 2 動画 3 生成中の映像 入力音楽 選択された素片 テンポによる伸縮 音楽的構造 A B B B B B A C C : 4) 6) Web Web 2 2 c 2009 Information Processing S 1 2 2 1 Web An Automatic Music Video Creation System by Reusing Dance Video Content Sora Murofushi, 1 Tomoyasu Nakano, 2 Masataka Goto 2 and Shigeo Morishima 1 This paper presents a system that automatically

More information

Web

Web JAIST Reposi https://dspace.j Title Web での文章入力時における情報補完 Author(s) 中村, 和正 Citation Issue Date 2007-03 Type Thesis or Dissertation Text version author URL http://hdl.handle.net/10119/3589 Rights Description

More information

Kobe University Repository : Kernel タイトル Title 著者 Author(s) 掲載誌 巻号 ページ Citation 刊行日 Issue date 資源タイプ Resource Type 版区分 Resource Version 権利 Rights DOI

Kobe University Repository : Kernel タイトル Title 著者 Author(s) 掲載誌 巻号 ページ Citation 刊行日 Issue date 資源タイプ Resource Type 版区分 Resource Version 権利 Rights DOI Kobe University Repository : Kernel タイトル Title 著者 Author(s) 掲載誌 巻号 ページ Citation 刊行日 Issue date 資源タイプ Resource Type 版区分 Resource Version 権利 Rights DOI 平均に対する平滑化ブートストラップ法におけるバンド幅の選択に関する一考察 (A Study about

More information

2005 1

2005 1 2005 1 1 1 2 2 2.1....................................... 2 2.2................................... 5 2.3 VSWR................................. 6 2.4 VSWR 2............................ 7 2.5.......................................

More information

THE INSTITUTE OF ELECTRONICS, INFORMATION AND COMMUNICATION ENGINEERS TECHNICAL REPORT OF IEICE. TV A310

THE INSTITUTE OF ELECTRONICS, INFORMATION AND COMMUNICATION ENGINEERS TECHNICAL REPORT OF IEICE. TV A310 THE INSTITUTE OF ELECTRONICS, INFORMATION AND COMMUNICATION ENGINEERS TECHNICAL REPORT OF IEICE. TV 367 0035 1011 A310 E-mail kawamura@suou.waseda.jp Total Variation Total Variation Total Variation Abstract

More information

IPSJ SIG Technical Report Vol.2012-MUS-94 No.3 Vol.2012-SLP-90 No /2/ DTM 200 GUIN-Resonator: A system synthesizing voice with the styl

IPSJ SIG Technical Report Vol.2012-MUS-94 No.3 Vol.2012-SLP-90 No /2/ DTM 200 GUIN-Resonator: A system synthesizing voice with the styl 1 1 2 1 DTM 200 GUIN-Resonator: A system synthesizing voice with the style of Amami folk songs Daisuke Suguru, 1 Takashi Baba, 1 Masanori Morise 2 and Haruhiro Katayose 1 The recent spread of Karaoke and

More information

Kalman ( ) 1) (Kalman filter) ( ) t y 0,, y t x ˆx 3) 10) t x Y [y 0,, y ] ) x ( > ) ˆx (prediction) ) x ( ) ˆx (filtering) )

Kalman ( ) 1) (Kalman filter) ( ) t y 0,, y t x ˆx 3) 10) t x Y [y 0,, y ] ) x ( > ) ˆx (prediction) ) x ( ) ˆx (filtering) ) 1 -- 5 6 2009 3 R.E. Kalman ( ) H 6-1 6-2 6-3 H Rudolf Emil Kalman IBM IEEE Medal of Honor(1974) (1985) c 2011 1/(23) 1 -- 5 -- 6 6--1 2009 3 Kalman ( ) 1) (Kalman filter) ( ) t y 0,, y t x ˆx 3) 10) t

More information

JAIST Reposi Title 既存曲に合わせて口す さまれる即興歌唱を利用した 音楽創作支援手法に関する研究 Author(s) 柳, 卓知 Citation Issue Date Type Thesis or Dissertation Te

JAIST Reposi   Title 既存曲に合わせて口す さまれる即興歌唱を利用した 音楽創作支援手法に関する研究 Author(s) 柳, 卓知 Citation Issue Date Type Thesis or Dissertation Te JAIST Reposi https://dspace.j Title 既存曲に合わせて口す さまれる即興歌唱を利用した 音楽創作支援手法に関する研究 Author(s) 柳, 卓知 Citation Issue Date 2017-03 Type Thesis or Dissertation Text version author URL http://hdl.handle.net/10119/14119

More information

¥ì¥·¥Ô¤Î¸À¸ì½èÍý¤Î¸½¾õ

¥ì¥·¥Ô¤Î¸À¸ì½èÍý¤Î¸½¾õ 2013 8 18 Table of Contents = + 1. 2. 3. 4. 5. etc. 1. ( + + ( )) 2. :,,,,,, (MUC 1 ) 3. 4. (subj: person, i-obj: org. ) 1 Message Understanding Conference ( ) UGC 2 ( ) : : 2 User-Generated Content [

More information

untitled

untitled c 645 2 1. GM 1959 Lindsey [1] 1960 Howard [2] Howard 1 25 (Markov Decision Process) 3 3 2 3 +1=25 9 Bellman [3] 1 Bellman 1 k 980 8576 27 1 015 0055 84 4 1977 D Esopo and Lefkowitz [4] 1 (SI) Cover and

More information

Fig. 3 Flow diagram of image processing. Black rectangle in the photo indicates the processing area (128 x 32 pixels).

Fig. 3 Flow diagram of image processing. Black rectangle in the photo indicates the processing area (128 x 32 pixels). Fig. 1 The scheme of glottal area as a function of time Fig. 3 Flow diagram of image processing. Black rectangle in the photo indicates the processing area (128 x 32 pixels). Fig, 4 Parametric representation

More information

Fig. 2 Signal plane divided into cell of DWT Fig. 1 Schematic diagram for the monitoring system

Fig. 2 Signal plane divided into cell of DWT Fig. 1 Schematic diagram for the monitoring system Study of Health Monitoring of Vehicle Structure by Using Feature Extraction based on Discrete Wavelet Transform Akihisa TABATA *4, Yoshio AOKI, Kazutaka ANDO and Masataka KATO Department of Precision Machinery

More information

Titleエジプトにおける 私 的 土 地 所 有 権 の 確 立 Author(s) 加 藤, 博 Citation Issue 1983-12-14 Date Type Thesis or Dissertation Text Version publisher URL http://hdl.handle.net/10086/18306 Right Hitotsubashi University

More information

ばらつき抑制のための確率最適制御

ばらつき抑制のための確率最適制御 ( ) http://wwwhayanuemnagoya-uacjp/ fujimoto/ 2011 3 9 11 ( ) 2011/03/09-11 1 / 46 Outline 1 2 3 4 5 ( ) 2011/03/09-11 2 / 46 Outline 1 2 3 4 5 ( ) 2011/03/09-11 3 / 46 (1/2) r + Controller - u Plant y

More information

鉄鋼協会プレゼン

鉄鋼協会プレゼン NN :~:, 8 Nov., Adaptive H Control for Linear Slider with Friction Compensation positioning mechanism moving table stand manipulator Point to Point Control [G] Continuous Path Control ground Fig. Positoining

More information

n ξ n,i, i = 1,, n S n ξ n,i n 0 R 1,.. σ 1 σ i .10.14.15 0 1 0 1 1 3.14 3.18 3.19 3.14 3.14,. ii 1 1 1.1..................................... 1 1............................... 3 1.3.........................

More information

(a) 1 (b) 3. Gilbert Pernicka[2] Treibitz Schechner[3] Narasimhan [4] Kim [5] Nayar [6] [7][8][9] 2. X X X [10] [11] L L t L s L = L t + L s

(a) 1 (b) 3. Gilbert Pernicka[2] Treibitz Schechner[3] Narasimhan [4] Kim [5] Nayar [6] [7][8][9] 2. X X X [10] [11] L L t L s L = L t + L s 1 1 1, Extraction of Transmitted Light using Parallel High-frequency Illumination Kenichiro Tanaka 1 Yasuhiro Mukaigawa 1 Yasushi Yagi 1 Abstract: We propose a new sharpening method of transmitted scene

More information

カルマンフィルターによるベータ推定( )

カルマンフィルターによるベータ推定( ) β TOPIX 1 22 β β smoothness priors (the Capital Asset Pricing Model, CAPM) CAPM 1 β β β β smoothness priors :,,. E-mail: koiti@ism.ac.jp., 104 1 TOPIX β Z i = β i Z m + α i (1) Z i Z m α i α i β i (the

More information

Title 同 期 電 動 機 の 同 期 化 現 象 に 関 する 研 究 Author(s) 武 田, 郁 夫, タケダ, イクオ Citation Issue Date 1975-03 URL http://hdl.handle.net/10213/1497 Rights Type Thesis or Dissertation Text Version author Additional 北

More information

75 unit: mm Fig. Structure of model three-phase stacked transformer cores (a) Alternate-lap joint (b) Step-lap joint 3 4)

75 unit: mm Fig. Structure of model three-phase stacked transformer cores (a) Alternate-lap joint (b) Step-lap joint 3 4) 3 * 35 (3), 7 Analysis of Local Magnetic Properties and Acoustic Noise in Three-Phase Stacked Transformer Core Model Masayoshi Ishida Kenichi Sadahiro Seiji Okabe 3.7 T 5 Hz..4 3 Synopsis: Methods of local

More information

Title 海岸コンクリート構造物の凍害に関する研究 Author(s) 鮎田, 耕一, アユタ, コウイチ Citation Issue Date 1984-03 URL http://hdl.handle.net/10213/1535 Rights Type Thesis or Dissertation Text Version author Additional 北海道大学, 工学博士, 乙第

More information

3 3) 6) 1) MPEG-7 2) MPEG-7 (A) (B) 2 9) Zils 10) (1) (2) 2.1 2

3 3) 6) 1) MPEG-7 2) MPEG-7 (A) (B) 2 9) Zils 10) (1) (2) 2.1 2 yoshii@kuis.kyoto-u.ac.jp m.goto@aist.go.jp okuno@i.kyoto-u.ac.jp 48% 82% Identification of Hihat Cymbals for Musical Audio Signals Using the Single Template Adaptation Method KAZUYOSHI YOSHII,MASATAKA

More information

5b_08.dvi

5b_08.dvi , Circularly Polarized Patch Antennas Combining Different Shaped Linealy Polarized Elements Takanori NORO,, Yasuhiro KAZAMA, Masaharu TAKAHASHI, and Koichi ITO 1. GPS LAN 10% [1] Graduate School of Science

More information

[1] 1.1 x(t) t x(t + n ) = x(t) (n = 1,, 3, ) { x(t) : : 1 [ /, /] 1 x(t) = a + a 1 cos πt + a cos 4πt + + a n cos nπt + + b 1 sin πt + b sin 4πt = a

[1] 1.1 x(t) t x(t + n ) = x(t) (n = 1,, 3, ) { x(t) : : 1 [ /, /] 1 x(t) = a + a 1 cos πt + a cos 4πt + + a n cos nπt + + b 1 sin πt + b sin 4πt = a 13/7/1 II ( / A: ) (1) 1 [] (, ) ( ) ( ) ( ) etc. etc. 1. 1 [1] 1.1 x(t) t x(t + n ) = x(t) (n = 1,, 3, ) { x(t) : : 1 [ /, /] 1 x(t) = a + a 1 cos πt + a cos 4πt + + a n cos nπt + + b 1 sin πt + b sin

More information

1., 1 COOKPAD 2, Web.,,,,,,.,, [1]., 5.,, [2].,,.,.,, 5, [3].,,,.,, [4], 33,.,,.,,.. 2.,, 3.., 4., 5., ,. 1.,,., 2.,. 1,,

1., 1 COOKPAD 2, Web.,,,,,,.,, [1]., 5.,, [2].,,.,.,, 5, [3].,,,.,, [4], 33,.,,.,,.. 2.,, 3.., 4., 5., ,. 1.,,., 2.,. 1,, THE INSTITUTE OF ELECTRONICS, INFORMATION AND COMMUNICATION ENGINEERS TECHNICAL REPORT OF IEICE.,, 464 8601 470 0393 101 464 8601 E-mail: matsunagah@murase.m.is.nagoya-u.ac.jp, {ide,murase,hirayama}@is.nagoya-u.ac.jp,

More information

TRON 050028 2002 2 Copyright C 2002 by KURATA Keiicchi

TRON 050028 2002 2 Copyright C 2002 by KURATA Keiicchi JAIST Reposi https://dspace.j Title TRONプロジェクトの 標 準 化 における 成 功 失 敗 要 因 Author(s) 倉 田, 啓 一 Citation Issue Date 2002-03 Type Thesis or Dissertation Text version author URL http://hdl.handle.net/10119/355

More information

JFE.dvi

JFE.dvi ,, Department of Civil Engineering, Chuo University Kasuga 1-13-27, Bunkyo-ku, Tokyo 112 8551, JAPAN E-mail : atsu1005@kc.chuo-u.ac.jp E-mail : kawa@civil.chuo-u.ac.jp SATO KOGYO CO., LTD. 12-20, Nihonbashi-Honcho

More information

2 Fig D human model. 1 Fig. 1 The flow of proposed method )9)10) 2.2 3)4)7) 5)11)12)13)14) TOF 1 3 TOF 3 2 c 2011 Information

2 Fig D human model. 1 Fig. 1 The flow of proposed method )9)10) 2.2 3)4)7) 5)11)12)13)14) TOF 1 3 TOF 3 2 c 2011 Information 1 1 2 TOF 2 (D-HOG HOG) Recall D-HOG 0.07 HOG 0.16 Pose Estimation by Regression Analysis with Depth Information Yoshiki Agata 1 and Hironobu Fujiyoshi 1 A method for estimating the pose of a human from

More information

(255) Vol. 19 No. 4 July (completion) tcsh bash UNIX Emacs/Mule 2 ( ) [2] [9] [11] 2 (speech completion) 3 ( ) [7] 2 ( 7.1 )

(255) Vol. 19 No. 4 July (completion) tcsh bash UNIX Emacs/Mule 2 ( ) [2] [9] [11] 2 (speech completion) 3 ( ) [7] 2 ( 7.1 ) 10 (254) () 1 Speech Completion: Introducing New Modality into Speech Input Interface Masataka Goto, Katunobu Itou, Tomoyosi Akiba, Satoru Hayamizu, [ ], National Institute of Advanced Industrial Science

More information