::::::::::::::::::::::::::::::: Si/SiO 2 ::::::::::::::::::: Si/SiO 2 ::::::::::::::::::::::::: Si/SiO 2 :::::::::::::

Size: px
Start display at page:

Download "::::::::::::::::::::::::::::::: Si/SiO 2 ::::::::::::::::::: Si/SiO 2 ::::::::::::::::::::::::: Si/SiO 2 :::::::::::::"

Transcription

1 Si/SiO 2 1p ο 78p

2 ::::::::::::::::::::::::::::::: Si/SiO 2 ::::::::::::::::::: Si/SiO 2 ::::::::::::::::::::::::: Si/SiO 2 ::::::::::::::::::::: Si/SiO 2 : : : : : ::::::::::::::::::::::::::::::: ::::::::::::::::::::::::::::::: :::::::::::::::::::::::::::::::::::: ::::::::::::::::::::::::::::::: ::::::::::::::::::::::::::: book-keeping :::::::::::::::::::::::::: Ewald ::::::::::::::::::::::::::: :::::::::::::::::::::: :::::::::::::::::::::::::: Born-Oppenheimer :::::::::::::::::::::: :::::::::::::::::: ::::::::::::::::::::: : : : VASP ::::::::::::::::: ::::::::::::::::::: :::::::::::::::::::::::::::::::: :::::::::::::::::::::::::::::::: ::::::::::::::::::::::::::::: :::::::::::::::::::::::::::::::::::: ::::::::::: :::::::::::::::::::::::::::::: 33 1

3 3.3.1 ::::::::::::::::::::::: :::::::::::::::::::::::::::::::::::: :::::::::::::::::::::::::::::::::::: :::::::::::::::::::::::::::::::::: ::::::::::::::::::::::::::: :::::::::::::::::::::::::::::::::: SiO 2 ::::::::::::::::::::::::::::: Si :::::::::::::::::::::::::::: SiO 2 ::::::::::::::::::::::::::: c-si/c-sio 2 :::::::::::::::::::::::::: :::::::::::::::::::::::::::::::::::: ::::::::::::::::: ::::::::::::::::::::::::::::::: ::::::::::::::::::::::::::: Ewald :::::::::::::::: :::::::::::::::::::::::::: ::::::::::::::::::::::::::: ,, ::::::::::::::::::::::: :::::::::::::::::::::::::::::::::::: ::::::::::::::::::::::::: ::::::::::::::::::::::::::::: ::::::::::::::::::::::::::::: c-si/c-sio 2 :::::::::::::::::::::: :::::::::::::::::::::: a-sio 2 /c-si ::::::::::::::::::::::::::

4 1.1 A schematic illustlation of MOS-DRAM and various types of silicon dioxide films.([1]) ::::::::::::::::::::::::::::: A schematic illustlation of Si/SiO 2 interface.([1]) ::::::::::::: A schematic illustlation of pseudotridymite Si/SiO 2 interface.([2]) :::: Intermediate-oxidation states at Si/SiO 2 (100) interface, identified by their Si 2p core-label shifts([5]). :::::::::::::::::::::::: Periodic boundary condition :::::::::::::::::::::::: book-keeping method for MD calculation ::::::::::::::::: Ewald sum ::::::::::::::::::::::::::::::::: rectangle approximated band :::::::::::::::::::::::: Binding energies as a function of volume. ::::::::::::::::: Binding energies as a function of volume in Ref.[25]. : : : : : : : : : : : ff-quartz structure obtained by DFT caluculation : : : : : : : : : : : : : fi-quartz structure obtained by DFT caluculation : : : : : : : : : : : : : ff-cristobalite structure obtained by DFT caluculation : : : : : : : : : : : Ideal fi-cristobalite structure obtained by DFT caluculation :::::::: Ideal-fi-tridymite structure obtained by DFT caluculation. : : : : : : : : : Stishovite structure obtained by DFT caluculation. :::::::::::: I 1 O structure obtained by DFT caluculation. :::::::::::::::: V 1 O structure obtained by DFT caluculation. :::::::::::::::: c-si/c-sio 2 interface structure obtailned by my DFT calculation. Left panel is Q model. Center panel is C model. Right panel is T model. :::: Floachart of GA. :::::::::::::::::::::::::::::: ff-quartz structre before annealing(upper panel) and after annealing(lower panel). ::::::::::::::::::::::::::::::::::: ff-cristobalite structre before annealing(left panel) and after annealing(right panel). ::::::::::::::::::::::::::::::::::: 62 3

5 6.3 Q model strucure before annealing(upper panel) and after annealing(lower panel). ::::::::::::::::::::::::::::::::::: C model structre before annealing(left panel) and after annealing(right panel). ::::::::::::::::::::::::::::::::::: T model structre before annealing(left panel) and after annealing(right panel). ::::::::::::::::::::::::::::::::::: Amorphous SiO 2 structure ::::::::::::::::::::::::: pair correlation function of amorphous SiO 2 :::::::::::::::: Si-O-Si bond angle distribution in amorphous SiO 2 obtained by my MD calculation. ::::::::::::::::::::::::::::::::: Si-O-Si bond angle distribution of amorphous SiO 2 by experimental data (curve 2 is silica glass). :::::::::::::::::::::::::: Structure of a-sio 2 /c-si and suboxide atoms at interface. From left panel, suboxide 1 + atoms, suboxide 2 + atoms, suboxide 3 + atoms and all atoms : 72 4

6 2.1 Calculation Conditions ::::::::::::::::::::::::::: Calculations for equation of states ::::::::::::::::::::: Calculation conditions of DFT calculations. ::::::::::::::: Structural prameters for ff-quartz obtained by our DFT calculation. : : : Structural prameters for fi-quartz obtained by our DFT calculation. : : : Structural prameters for ff-cristobalite obtained by our DFT calculation. : Structural prameters for ideal-fi-cristobalite obtained by our DFT calculation. ::::::::::::::::::::::::::::::::::: Structural prameters for ideal-fi-tridymite obtained by our DFT calculation. :::::::::::::::::::::::::::::::::::: Structural prameters for stishovite obtained by our DFT calculation. : : : Defect formation energies of an oxygen interstitials in silicon crystal obtained by my DFT calculation. (I N O means silicon crystal in which N oxygen atoms are added around one Si atom. ). :::::::::::::::: Defect formation energies for oxygen vacancies in ff-quartz obtained by my DFT calculation (V N O means ff-quartz in which N oxygen atoms are removed around one Si atom.). :::::::::::::::::::::: Interface enegies obtained by my DFTcalculation. Reference states are silicon crystal and suitably strained SiO 2 crystal. Energies are in ev. : : : body potential parameters :::::::::::::::::::::::: body potential parameters :::::::::::::::::::::::: body potential parameters :::::::::::::::::::::::: Structural prameters for ff-quartz obtained by our MD calculation. :::: Structural prameters for fi-quartz obtained by our MD calculation. :::: Structural prameters for ff-cristobalite obtained by our DFT calculation. : Structural prameters for ideal-fi-cristobalite obtained by our DFT calculation. ::::::::::::::::::::::::::::::::::: 63 5

7 6.8 Defect formation energies of an oxygen interstitials in silicon crystal by my MD calculation. (I N O means silicon crystal in which N oxygen atoms are added around one Si atom. ). ::::::::::::::::::::: Defect formation energies for oxygen vacancies in ff-quartz obtained by my MD calculation (V N O means ff-quartz in which N oxygen atoms are removed around one Si atom.). :::::::::::::::::::::: Interface enegies obtained by my MD calculation. Reference states are silicon crystal and suitably strained SiO 2 crystal. Energies are in ev. : : : O coordination number of Si atom in amorphous SiO 2 structure. : : : : : Si coordination number of O atom in amorphous SiO 2 structure. : : : : : Density of amorphous SiO 2. ::::::::::::::::::::::: 70-6

8 Si/SiO 2 Si, (SiO 2 ),., Si,,,,, (Fig. 1.1 ), Si Si/SiO 2. Fig. 1.1: A schematic illustlation of MOS-DRAM and various types of silicon dioxide films.([1]),, (CVD).,. 7

9 ,,,, Si/SiO 2 CVD. Si/SiO 2,,,,., 10nm,, Volmer-Weber VW Capillary-induced growth stress VW Si/SiO Si SiO 2. Si, a- SiO 2, c-si., Fig. 1.2 SiO 2 Si SiO x. a-sio 2 Si/SiO 2,, Si-Si, Si/SiO 2 Si,, Si., Si/SiO 2 SiO 2., Si 1, SiO 2, SiO 2,. A. Ourmazd et al.[2] (HR-TEM) Si/SiO 2 (001), Fig.1.3 8

10 Fig. 1.2: A schematic illustlation of Si/SiO 2 interface.([1]) Si., Si/SiO 2 (001) T. Fig. 1.3: A schematic illustlation of pseudotridymite Si/SiO 2 interface.([2]) Y. Iida et al.[3], Si/SiO 2 (001), X CTR,., Si/SiO 2 (001) C. Kageshima and Shiraishi[4] Si(100),., Si/SiO 2 (001) Q. 9

11 1.1.3 Si/SiO Si/SiO 2 SiO 2. Si-O x Si 4 x (x=1,2,3,4)( Si x+ ). Fig. 1.4 Himpsel et al.[5] Si/SiO 2 (100) Si2p. Si/SiO 2 (100) Si 1+,Si 2+,Si 3+,Si 4+. Fig. 1.4: Intermediate-oxidation states at Si/SiO 2 (100) interface, identified by their Si 2p core-label shifts([5]). Si SiO 2, 10

12 [6][7], [7]. Si sp3. SiO 2 Si O, O, 50% sp3, 50%., Si/SiO 2 Si,,. Capron et al.[8] Si/SiO 2. [9] Si/SiO 2 Si/SiO 2. R. Beczko et al.[10] T, Q, C. T.Yamasakiel al.[11] T, Q, C, SiO 2. A. Bongiorno and A. Pasquarello[7] Si/SiO 2,. Kageshima and Shiraishi[4] Si(001),., 10,. Si/SiO 2. J. Tersoff[12] Keating, a-si/c-sio 2 (001),. T. Watanebe and I. Ohdomari SW Si/SiO 2 MO [13], Si(001). T. Umeno et al.[14] Tersoff Si/SiO 2., Si/SiO 2. 11

13 1.2 c-si/a-sio 2.,,, c-si/a-sio 2., c-si/a-sio 2, Si/SiO 2., Si/SiO ,,. 2,. 3,. 4,. 5,. 6,. 7 12

14 2 13

15 2.1,,. 2.2,,,.. (1) (2) (book-keeping ) (3) (4) Verlet, t (5) (6) (2) ,.., L 1 (unit cell), (image unit) ( 2.1),,, book-keeping,. 14

16 boundary boundary boundary unit cell boundary image cell Fig. 2.1: Periodic boundary condition r c, r c,., r c, r c R c (>r c ). book-keeping R c, N up. T K v T ave. 3 ( ), v T max ' 3vT ave, ( )N up t r c = v T N t, r max c r c N up, R c (= r c + r c ) r c Ewald,. Ewald., 15

17 r c Rc r c Fig. 2.2: book-keeping method for MD calculation,., Fig. 2.3(a) i Fig. 2.3(b) Fig. 2.3(c) i ( ), Fig. 2.3(c) , i, i. 2,,. 3 i, i.,. Φ = e2 Φ 1 = 1 2 Φ 2 = 1 4ß 2 Ω 4ß" (Φ 1 +Φ 2 +Φ 3 ) (2.1) X X i j q i q j X X 0X R erfc (ff jr ij + Rj) 0 X q i q j exp g! 4ff 2 i j 0 ψ g2 X 4ß = exp Ω g jr ij + Rj ψ g2 4ff 2! (2.2) cos (g r ij ) 1 g 2 (2.3) 16

18 Fig. 2.3: Ewald sum 17

19 2( X 2 ( X 4 z i cos (g r i )) + i i z i sin (g r i ) ) g 2 (2.4) Φ 3 = p ff X z 2 ß i (2.5) i, Φ, Φ 1 Fig. 2.3(b), Φ 2 Fig. 2.3(c), Φ 3 Fig. 2.3(c). q i i, r i i, r ij i j, R, ff, g, Ω., (2.2) 0 i=j R = 0, (2.3)(2.4) 0 g = 0.,. F 1;i = 1 4ß" = e2 4ß" q i (2.6) X j 0 X q j (r ij + R) jr ij + Rj R e 2 8 < : 2ff p ß exp ff 2 jr ij + Rj 2 + erfc ff jr ij Rj = ; jr i j + Rj 2 (2.7) F 2;i = 2 (2.8) i = e2 4ß 4ß" q i Ω = e2 X j 0 X q j 0X g 4ß 4ß" q i exp Ω g 28 < X 4 : g g 2 j! exp ψ g2 sin (g r 4ff 2 ij ) g (2.9) g 2! 4ff 2 ψ g2 9 = z j cos (g r i ) ; sin (g r i) 8 < X : j 9 = z j sin (g r i ) ; cos (g r i) 3 5 (2.10) ff, ff, Φ 1, Φ 2,,., L, ff = 5 L. 18

20 2.2.4 MD.,. ES+ [15]., E es. E es = X i E i (q i )+ 1 2 X i6=j V ij (r ij ; q i ;q j ) (2.11) E i i, Taler. E i (q i )=E i (0) + χ 0 i q i J 0 i q 2 i (2.12), χ i J i atomic hardness., V ij,. ZZ ρi (r 1 ; q i ) ρ j (r 2 ; q j ) V ij (r ij ; q i ;q j )= dr 1 dr 2 (2.13) r 12, ρ i (r; q i ) q i i. ρ i (r; q i ). ρ i (r;q i )=Z i effi (r r i )+(q i Z i ) ef i (r r i ) (2.14) Z i,f i. (2.14) (2.13), (2.11),. E es = E 0 + X i q i χ i X i;j q i q j V ij (2.15) f i Slater 1s, f i (r r i )= ο3 i ß exp ( 2ο i jr r i j).. E 0, χ i, V ij. E 0 = X i E i (0) X i6=j Z i Z j (2.16)

21 ψ! [f i jf j ] [ijf j ] [jjf i ]+ 1 r i j χ i = χ 0 i + X j, [ρ a jρ b ] [ajρ b ]. [ρ a jρ b ]= (2.17) Z j ([jjf i ] [f i jf j ]) (2.18) V ij = J 0 i ffi ij +[f i jf j ] (2.19) ZZ ρa (r 1 ) ρ b (r 2 ), f R i, (2.18) (2.19). χ i = χ 0 i + X j dr 1 dr 2 (2.20) r 12 Z [ajρ b ]= dr ρ b (r) (2.21) jr r a j 8 < X Z j : R» jjf R i V ij = J 0 i ffi ij +» f 0 i jfr j X» f 0 i jfr j R f i (r i R) 9 = ; (2.22) (2.23), P i q i =0 = χ i i L = E es μ X i X j X j q i (2.24) V ij q j μ =0 (2.25) V ij q j = μ χ i (2.26). μ = χ P i + j V ij q μ = μ 0 P i q i = 0. q i i., P i q i =0 (exact penalty method)[16] 20

22 , ffi = E tot (q 1 q n )+W ψ X i q i! 2 (2.27). E tot, W. Lagrange, MD.,. ffie tot (q 1 q n ) ffiq i +2Wq i (2.28) 2.3 (FPMD) (Density Functional Theory : DFT).,,,., Car-Parrinello,, [17] Born-Oppenheimer, Born-Oppenheimer ( )., Born-Oppenhaimer.,,. 21

23 ρ (r), E tot [ρ]. E tot [ρ] = Z V (r) ρ (r) dr 3 + T [ρ] + e2 2 ZZ ρ (r0) ρ (r) r 0 r dr 03 dr 3 + E xc [ρ] (2.29) 2 ρ, 3, 4. E tot [ρ] ρ (r), Kohn-Sham. " ψ! # μh 2 r 2 + V ef f (r) ψ i (r) =E i ψ i (r) (2.30) 2m V ef f (r) =V (r) +V H (r) +μ xc (r) (2.31) V H (r) = Z e2 ρ (r 0 ) jr 0 rj dr0 (2.32) μ xc (r) = ffie xc [ρ] ffiρ (2.33) Kohn-Sham Schrödinger,. Kohn-Sham,., ρ. ρ (r) = Xocc i jψ i (r)j 2 (2.34),., (LDA), ffl xc, E xc [ρ (r)] = Z ffl xc (r) ρ (r) dr 3 (2.35) μ xc (r) = ffl xc (r) +ρ (r) ffiffl xc ffiρ (2.36) 22

24 ., (GGA), f xc (ρ; rρ), E x c [ρ (r)] = Z f xc (ρ; rρ) dr 3 (2.37) μ xc (r) (2.38) kohn-sham,., screen,... j k + G >= Ω 1 2 exp [i (k + G)] (2.39), Ω, G, k Brillouin.,. Ω 1 Z exp [ig r] dr 3 = ffi G;0 (2.40),. hffi j ψi =, (2.39), (2.40), (2.41) hk + G j k + G 0 i = Z ffi Λ (r) ψ (r) dr 3 (2.41) Z Ω 1 Λ 2 exp [i (k + G)] Ω 1 2 exp [i (k + G)] dr 3 Z = Ω 1 exp [ i (k + G)] exp [i (k + G)] dr 3 Z = Ω 1 exp [i (G 0 G)] dr 3 = ffi G 0 G ;0 = ffi G;G 0 (2.42) 23

25 ., kohn-sham. (2.39), (2.40) = * k + G fi ψ! fi fi μh 2 fi + fififi fi r 2 k + G 0 2m " Λ Z Ω 1 2 exp [i (k + G) r] = Ω 1 Z = Ω 1 Z = Ω 1 ψ μh 2 exp [ i (k + G) r] exp [ i (k + G) r] 2m = Ω 1 ψ μh 2 = = = ψ μh 2 2m ψ μh 2 2m ψ μh 2 2m! 2m!! " ψ μh 2 2m ψ μh 2 2m ψ μh 2 ( 2m! r 2 #! r 2 # D k + G j μh E 2 r 2 j k + G 0 2m Ω 1 2 exp [i (k + G 0 ) r] dr 3 exp [i (k + G 0 ) r] dr 3!) ni 2 j k + G 0 j 2o exp [i (k + G 0 ) r] dr 3 Z j k + G 0 j 2 exp [ i (k + G) r]exp[i (k + G 0 ) r] dr 3 Z j k + G 0 j 2 exp [i (G 0 G) r] dr 3 j k + G 0 j 2 ffi G 0 G ;0!! j k + G 0 j 2 ffi G;G 0 j k + G j 2 ffi G;G 0 (2.43). (2.31 V (r), V PS (r). a V L a (r) ( ) P l P + l V NL a;l (r)p l ( P l a l, )., V L (r) V NL (r). V (r) =V L (r) +V NL (r) (2.44) V P L (r) = R Pt a V L a (r R t a) t a a, R ), u (r)( R, u (r + R) =u (r)) G, u (r) = X u (G) exp [ig r] (2.45) G 24

26 , u (G) =Ω 1 Z u (r)exp[ ig r] dr 3 (2.46), V L (r). X V L (r) = V L (G) exp (ig r) (2.47) G Z V L (G) = Ω 1 V L (r) exp ( ig r)dr (2.48) = Ω 1 X R = Ω 1 X R = Ω 1 c V L a (G) = Z X t a X Z t a X Z t a V L a (r R t a)exp( ig r)dr (2.49) V L a (r R t a)exp( ig (r R t a ))dr (2.50) V L a (G)exp( ig r) (2.51) V L a (r)exp ( ig r) dr (2.52), Ω c., V L (r) < k+gj jk + G 0 >, E Dk + G j V L (r) j k + G 0 (2.53) = = * fi fi k + Gfi X Z G Ω 1 2 exp [i (k + G) r] = Ω 1 Z = X V L (G) exp [ig r] exp [ i (k + G) r] X G 00 G 00 V L (G 00 )Ω 1 X = V L (G 00 ) ffi G 0 +G 00 G G X 00 = V L (G 00 ) ffi G 00 ; G G 0 G 00 = V (G G 0 ) Z fi + fi fi fi k + G0 Λ X V L (G 00 )exp[ig 00 r]ω 1 2 exp [i (k + G 0 ) r] dr 3 G 00 V L (G 00 ) exp [ig 00 r]exp[i (k + G 0 ) r] dr 3 exp [i (G 0 + G 00 G) r] dr 3 ;0., Kohn-Sham. hk + G jhjk + G 0 i (2.55) 25 (2.54)

27 =! ψ μh 2 j k + G 0 j 2 ffi 2m G;G + V 0 L (G G 0 ) +V NL (k + G; k + G 0 )+V H (G G 0 )+μ xc (G G 0 ) (2.56), V H, V H (G) = 8ßρ (G) jgj 2 (2.57). n E k n C n k+g, ψ kn (r). ψ kn (r) = X G C k+g n jk + G > (2.58) E kn, 2.,. ρ (r) = = Xocc n B:Z: X k jψ kn (r)j 2 Xocc B:Z: X X X n k C k+g n C k+g n 0Ω 1 exp [i (G G 0 r)] (2.59) G G 0,.,, ρ new =(1 ff) ρ in + ffρ out,., N , Kohn-Sham,N 3.,, NlogN., Car-Parrrinello. Car-Parrrinello,,.,fψ i g Lagrange. ~E tot = E tot X ij ij (hψ i jψ j i ffi ij ) (2.60) 26

28 ~ E tot ψ i Λ tot ψ i Λ ψ i ψ i =[H ] ψ i (2.61) ( = hψ i jhjψ i i) [H ] ψ i 2 ( ) Car-Parrrinello. μ,. μ ψ i = [H ] ψ i (2.62) [H ] ψ i 1 ( ).. μ ψ _ i = [H ] ψ i (2.63) [H ] ψ i.. ψ Etot ~ ψi Λ = [H ] ψ i =0 ψ i. Hψ i = ψ i, Kohn- Sham VASP VASP(Vienna Ab-initio Simulation Package)[18].. ff quartz. K Monkhorst-Pack ,., Murnaghan-Fitting,. Table. 2.1 PAW,,,. PW91 Perdew Wang GGA. Table.?? Table. 2.1 ff quartz [25]. LDA GGA. GGA LDA, LDA,GGA. LDA-PAW, LDA-high, LDA-mid, LDA-low, 27

29 LDA- PAW Table 2.1: Calculation Conditions LDAhigh LDAmid LDAlow GGA- PAW GGAhigh GGAmid GGAlow PAW E cutof f [ev] xc type LDA LDA LDA LDA PW91 PW91 PW91 PW91 Table 2.2: Calculations for equation of states exp. LDA-PAW LDA-high LDA-mid LDA-low E[eV] a[å] c[å] B[GPa] GGA-PAW GGA-high GGA-mid GGA-low other theory E[eV] a[å] c[å]

30 ., LDA-PAW 1000eV., Si-O LDA-high. 2.4, ( ),,,,,,,. 2,,. 1, [19]. 2., ,. 2,,,,, ,.. Linear Crossover Linear Crossover χ (1;t) i 1 t i, χ (2;t) i 2 t (1;t) i, 0:5 χ i + χ (2;t) i, 1:5χ (1;t) i 0:5χ (2;t) i, 0:5χ (1;t) i +1:5χ (2;t) i 29

31 . A Native Crossover 2,,. 1 3 (1;t) Parent1: χ 1 ;χ (1;t) 2 ;χ (1;t) 3 ;χ (1;t) 4 ; ;χ (1;t) n (2;t) Parent2: χ 1 ;χ (2;t) 2 ;χ (2;t) 3 ;χ (2;t) 4 ; ;χ (2;t) n (1;t) Offspring1 : χ 1 ;χ (1;t) 2 ;χ (1;t) 3 ;χ (2;t) 4 ; ;χ (2;t) n Offspring2 : χ (2;t) 1 ;χ (2;t) 2 ;χ (2;t) 3 ;χ (1;t) 4 ; ;χ (1;t) n. Blend Crossover Blend Crossover (BLX-ff) μ i 0, i χ (1;t+1) i χ (1;t+1) i =(1 fl i )χ (1;t) i., fl i =(1+2ff) μ i ff. + fl i χ (1;t) i (2.64) Random Mutation, r i 0 1, i y (1;t+1) i i χ (U ) i i χ (L) i, y (1;t+1) (U ) i = r i χ i y (1;t+1) i χ (L) i (2.65) = χ (1;t) i +(r i 0:5) i (2.66) 30

32 . i i. Normally Distributed Mutation N (0;ff), i y (1;t+1) i y t+1 i = χ 1;t i + N (0;ff) (2.67). ff. 31

33 3 32

34 3.1,.,,.,. 3.2 Tersoff [20] Brenner [21], E self E ion, f q.. Ω = X i ffi ij = E rep ij E self i E cov ij X i6=j ffi ij (3.1) + E ion ij (3.2) E self i = E 0 + χ i q i J iq 2 i (3.3) E rep ij = f c (r ij )(q i ) A ij exp( 1;ij r ij ) (3.4) E cov ij = f c (r ij ) g cov (q i ) B ij b ij exp( 2;ij r ij ) (3.5) E ion ij = q iq j r ij (3.6) r ij i, j,q i i, χ i, J i i, f c i,j, A ij, B ij i, j,, 1;ij, 2;ij i,j,, b ij i, j. g cov,. 3.3 [22], i ( LDOS) n i (E), Fermi E F, E band;i E band;i = Z E F 1 En i (E)dE (3.7) 33

35 Fig. 3.1: rectangle approximated band., W, N 0, E c,, (LDOS ) N 0 =W, E band;i = Z E F " E N 0 E 2 W 2 +Ec W de N = 0 2 W # E F W 2 +Ec (3.8). N, Z E» F N 0 N = W 2 +Ec W de = E N E F 0 (3.9) W W 2 +Ec., (3.8), (3.9),. E band;i = W 2 N (N N 0 ) N 0 + NE c (3.10), i1 p μ p;i1, i,j H ij, μ p;i1 = = Z +1 X 1 i1;i2; ;ip E p n(e)de H i1;i2 H i2;i3 H ip;i1 (3.11)., 2 W 2 2 ( ), 2 H ij = H ji = h, W 2 = μ 2;i μ 0;i = 1 X H ij H Z ih 2 ji = (3.12) N 0 N 0 j 34

36 . Z i i., E bond;ij = E band;i Z i = 1 2 N (N N 0 ) W + N E c (3.13) N 0 Z i Z i. E c s, E rep, E cov, E rep = N E c Z i = N Z i A X j S ij = ANs (3.14) E cov = 1 2 (A ), N (N N 0 ) W (3.15) N 0 Z i E rep = N E c Z i = Ns / N (3.16) E cov / Z 1 2 i (3.17) E cov / N (N N 0 ) (3.18). (3.17) Abell-Tersoff [20][23],, (3.4) g rep (3.5) g cov g rep (q i ) = N i (3.19) g cov (q i ) = N i (N i N 0;i ) (3.20) N i = N neutral;i q i (3.21). N 0;i i,n neutral;i i.,,,, Φ = X ffi ij = E rep ij i E self i E cov ij X i6=j ffi ij (3.22) + E ion ij (3.23) E self i = E 0 i + χq i Jq2 i (3.24) 35

37 E rep ij = f c (r ij ) ψ1 + Qrij! E cov ij = f c (r ij ) f q (q i ) b ij X A exp ( A r ij ) (3.25) m=1;3 B m exp ( Bm r ij ) (3.26) E q iq ion j ij = (3.27) r ij b ij = ij = f c (r ij ) = 1+ ij ffi (3.28) f c (r ik ) nc + d (h cos 2o ijk ) X k6=i;j exp 8 >< >: 1 2» n o fi ff r ij R e ij (r ik R eik ) 1 r ij» R 1 h1 +cos ß(rij R 1 ) R 2 R 1 i R1 <r ij <R 2 (3.29) 0 r ij R 2 (3.30) f q (q i ) = N i (q i )(N 0 i N i (q i )) N i (0) (N 0 i N i (0)) (3.31) N i (q i ) = N neutral i q i (3.32) r ij i; j, q i i. f q, N i i, N 0 i., Si sp3, N 0 Si =8;Nneutral Si =4, O 2s 2p,2p, N 0 O =6;Nneutral O =4. χ, J, i, A; B m ; A ; Bm ;Q;R 1 ;R 2 ;R e i; j, a; c; d; h; ff; fi i; j; k. 3.4, Tersoff. 36

38 4 37

39 4.1.,,. VASP(Vienna Ab-initio Simulation Package)[18] LSDA. Vanderbilt [24], RMM-DIIS,., 520eV K Monkhorst- Pack Table 4.1: Calculation conditions of DFT calculations. speices number of Si atoms number of O atoms K point mesh by MP ff-quartz fi-quartz ff-cristobalite ideal-fi-cristobalite ideal-fi-tridymite stishovite I 1 O I 2 O I 3 O I 1 I I 2 I I 3 I

40 4.3 alpha-quartz. ff-quartz (4.1). x y 2 Si + y 2 SiO 2 (ffq) =Si x O y (4.1) E 4.2. E = x y E Si + y E SiO 2 (ffq) E SixOy (4.2) SiO 2,, c-si/c-sio SiO 2 Fig. 4.1 SiO 2. ideal-ficristobalite ideal-fi-tridymite. [25] Fig. 4.2, stishovite alpha-quartz beta-quartz alpha-cristobalite ideal-beta-cristobalite ideal-beta-tridymite stishovite energy[ev] volume[angstrom 3 /molecular unit] Fig. 4.1: Binding energies as a function of volume. 39

41 Fig. 4.2: Binding energies as a function of volume in Ref.[25]. 40

42 DFT Fig. 4.3 ff-quartz, Fig. 4.4 fi-quartz, Fig. 4.5 ff-cristobalite, Fig. 4.6 ideal-fi-cristobalite, Fig. 4.7 ideal-fi-tridymite, Fig. 4.8 stishovite. Table. 4.2 ff-quartz, Table. 4.3 fi-quartz, Table. 4.4 ff-cristobalite, Table. 4.5 ideal-fi-cristobalite, Table. 4.6 ideal-fi-tridymite, Table. 4.7 stishovite. ideal-ficristobalite ideal-fi-tridymite. idealfi-cristobalite ideal-fi-tridymite,,.,.,,lda, LDA. ff-quartz ff-cristobalite,2 Si-O. Fig. 4.3: ff-quartz structure obtained by DFT caluculation Si Table. 4.8 Si DFT., I N O Si Si N O Si. Fig. 4.9 DFT I 1. O 41

43 Table 4.2: Structural prameters for ff-quartz obtained by our DFT calculation. Expt. a this work (LDA) other calc. Λb 6 a axis (Å) c axis (Å) d SiO1 (Å) d SiO2 (Å) SiOSi (degree) K (GPa) E (ev/sio 2 ) a Ref. [26], b Ref. [25] Fig. 4.4: fi-quartz structure obtained by DFT caluculation Table 4.3: Structural prameters for fi-quartz obtained by our DFT calculation. Expt. a this work (LDA) other calc. Λb 6 a axis (Å) c axis (Å) d SiO (Å) SiOSi (degree) E (ev/sio 2 ) a Ref. [27], b Ref. [25] 42

44 Fig. 4.5: ff-cristobalite structure obtained by DFT caluculation Table 4.4: Structural prameters for ff-cristobalite obtained by our DFT calculation. Expt. a this work (LDA) other calc. Λb 6 a axis (Å) c axis (Å) d SiO1 (Å) d SiO2 (Å) SiOSi (degree) K (GPa) E (ev/sio 2 ) a Ref. [28], b Ref. [25] 6 Table 4.5: Structural prameters for ideal-fi-cristobalite obtained by our DFT calculation. this work (LDA) a axis (Å) d SiO (Å) SiOSi (degree) E (ev/sio 2 )

45 Fig. 4.6: Ideal fi-cristobalite structure obtained by DFT caluculation Fig. 4.7: Ideal-fi-tridymite structure obtained by DFT caluculation. 44

46 6 Table 4.6: Structural prameters for ideal-fi-tridymite obtained by our DFT calculation. this work (LDA) a axis (Å) c axis (Å) d SiO1 (Å) d SiO2 (Å) SiOSi (degree) E (ev/sio 2 ) Fig. 4.8: Stishovite structure obtained by DFT caluculation. Table 4.7: Structural prameters for stishovite obtained by our DFT calculation. Expt. this work (LDA) other calc. Λc 6 a axis (Å) a c axis (Å) a d SiO1 (Å) a d SiO2 (Å) a SiOSi (degree) a K (GPa) b 2.82 E (ev/sio 2 ) b a Ref. [29], b Ref. [30], Ref. [31], Ref. [32], c Ref. [25] 45

47 Fig. 4.9: I 1 O structure obtained by DFT caluculation. Table 4.8: Defect formation energies of an oxygen interstitials in silicon crystal obtained by my DFT calculation. (I N O means silicon crystal in which N oxygen atoms are added around one Si atom. ). Defect Formation Energy (ev) species this work (LDA) I 1 O 1.59 I 2 O 3.03 I 3 O

48 4.4.3 SiO 2 Table. 4.9 ff-quartz DFT., V N O Si N O ff-quartz. Fig DFT V 1 O ( Si-Si O ). Fig. 4.10: V 1 O structure obtained by DFT caluculation. Table 4.9: Defect formation energies for oxygen vacancies in ff-quartz obtained by my DFT calculation (V N O means ff-quartz in which N oxygen atoms are removed around one Si atom.). Defect Formation Energy (ev) species this work (LDA) V 1 O 0.95 V 2 O 2.08 V 3 O

49 4.4.4 c-si/c-sio 2 c-si/c-sio 2, LDA Si (5.39),. Fig Fig. 4.11: c-si/c-sio 2 interface structure obtailned by my DFT calculation. Left panel is Q model. Center panel is C model. Right panel is T model. Si, c-sio 2.,, Si, DFT SiO 2 SiO 2., c-si c-sio 2., Si-O, Si-Si, [7],[10] E interf = E tot N SiSi ffl SiSi N SiO ffl SiO (4.3). E interf, E tot, N SiSi, N SiO Si-Si,Si-O, ffl SiSi Si DFT Si-Si, ffl SiO DFT SiO 2 SiO 2 DFT Si-O., SiO 2, SiO 2,. Table c-si/c-sio

50 Table 4.10: Interface enegies obtained by my DFTcalculation. Reference states are silicon crystal and suitably strained SiO 2 crystal. Energies are in ev. speices this work (LDA) other calc. (GGA) a Q model C model T model a Reference[10] 49

51 5 50

52 5.1,.,,.,.,,,., c-si/a-sio 2,, Si/SiO , c-si/a-sio 2 a-sio 2 Si/SiO 2,, Si-Si, Si/SiO 2 Si,, Si, SiO 2, SiO 2, c-si/c-sio 2, Si, Si., Si-O SiO 2,. ff-quartz, fi-quartz, ff-cristobalite, ideal-fi-cristobalite, ideal-fi-tridymite.,, DFT, 80%, 85%, 90%, 95%, 98%, 99%, 101%, 102%, 105%, 110%, 115%, 120% DFT...,.,,., Si O 4, O Si 2 SiO 2. Si-O Si-O (Si-O, 2 ), Si-Si O Si (Si-O, 3 ) Si-Si O Si (Si-O, 6 ), Si-Si O bcc Si (Si-O, 8 )., O-Si Si-O (O-Si, 1 ), O-O Si O (O-Si, 3 ), O-O Si O (O-Si, 4 )., DFT, 80%, 85%, 90%, 95%, 98%, 99%, 101%, 102%, 105%, 110%, 115%, 120% 51

53 DFT,,.,1, Si-O2, Si-O-O3, O-Si-Si3. ff-quartz O, Si O +, c-si/c-sio 2, Q model, C model, T model. DFT,, MD CG, CG,. DFT,., Si-O-O3, O-Si-Si3, O-O-O3 3. O-O O 2, O, O. O-O2, O-O-O3. stishovite, Si O Si2 1, ff-quartz O, O, Si, Si O, O. suboxide, ideal-fi-cristobalite O Si +,Si 2+,Si 3+,., LDA, Si ff-quartz. Si ff-quartz. 5.3,,, f. f = E fit + F fit + P fit (5.1) E fit = F fit = P fit = vu u t P i W E DFT EMD E;i N vu u t P i W F;i max X i E;i 2 F DF T;i;1 FMD;i;1 F N P mn=xx;yy;zz jp DF T;i;mn P M D;i;mn j W P;i 3 P 52 2 ; ; F DF T;i;ni F MD;i;ni F 2 (5.2) (5.3) (5.4)

54 E fit, W E;i i, E MD;i i Si ff-quartz, E DF T;i i Si ff-quartz DFT, E;i i. F fit, W F;i i, F M D;i;j i j, F DF T;i;j i j DFT, n i i, F. P fit, W P;i i, P M D;i;mn i mn, P DF T;i;mn DFT i mn, F. DFT MD. DFT MD, DFT MD. DFT MD. 1, try&error., Si x O y i 4.3 ff-quartz E;i = x y EDF 2 T;Si + y E 2 DF T;SiO 2 (ffq), E;i = E DF T. F, 1.0eV=Å,, DFT 0.1eV=Å.,,. 5.4 Fig

55 Fig. 5.1: Floachart of GA. 54

56 5.4.1 Ewald Ewald,. Φ s1;ij = 1 2 Φ s2;ij = 1 2 0X R 4ß Ω erfc (ff jr ij + Rj) 0X g jr ij + Rj exp ψ g2 4ff 2! (5.5) cos (g r ij ) 1 g 2 (5.6) Φ s3 = ff p ß (5.7) (5.8) Ewald,. F s1;ij = 0 X R F s2;ij = 4ß Ω 8 < e 2 p : 2ff exp ff 2 jr ij + 2 Rj + ß (r ij + R) jr ij + Rj 0X g exp ψ g2 4ff 2! erfc ff jr ij + Rj 2 9 = ; jr i j + Rj 2 (5.9) sin (g r ij ) g g 2 (5.10) Ewald, ,,., Tersoff [20], Brenner [21],,, SiO 2 A ij, B ij. 55

57 5.4.3 tot (q 1 q n ) +2Wq i i, E cov;s;ij = 1 2 f c (r ij ) b ij X m=1;3 B m exp ( Bm r ij ) tot (q 1 q n i +2Wq i (5.13).,. i Si, i cov (q 1 q n q (q i q (q i i = X q (q i i E cov;s;ij (5.14) = q i 8 = 1 q i 4 (5.15) (5.16). Ewald (q 1 q n ) X = e2 q j (Φ s1;ij +Φ s2;ij i 4ß" j + e2 4ß" X j 56 q j (Φ s1;ji +Φ s2;ji )+ e2 4ß" 2q iφ s3 (5.17)

58 self (q 1 q n i = χ i + J i q i tot (q 1 q n i +2Wq i (5.19) i i i +2Wq i (5.20).,,,,,,. Ewald ,,.,.,..,,,.. Blend Crossover (BLX-ff)., ff =0:5. Random Mutation (2.66). 57

59 6 58

60 Table Table 6.1: 1-body potential parameters parameter Si O χ J Table Si-Si Tersoff3 Table 6.2: 2-body potential parameters parameter Si-Si Si-O O-O A B B B ; ; ; ffi Si Q Re R R Re SiSi Si, Re SiO SiO 2 59

61 . R 1;SiO,R 1;OO SiO 2, O 2. Table Table 6.3: 3-body potential parameters Si-Si-Si Si-Si-O Si-O-Si Si-O-O O-Si-Si O-Si-O O-O-Si O-O-O p c d h LDA,, CG, [GPa]. Table. 6.4 ff-quartz, Table. 6.5 fi-quartz, Table. 6.6 ff-cristobalite, Table. 6.7 ideal-fi-cristobalite,. Si-O 1.57Å, LDA. 2.,,., ff-quartz 3. ideal-fi-cristobalite., ff-quartz ff-cristobalite 500K 10psec,. 324 ff-quartz Fig. 6.1, 192 ff-cristobalite Fig

62 Fig. 6.1: panel). ff-quartz structre before annealing(upper panel) and after annealing(lower 61

63 Fig. 6.2: ff-cristobalite structre before annealing(left panel) and after annealing(right panel). Table 6.4: Structural prameters for ff-quartz obtained by our MD calculation. 6 Expt. a this work (LDA) this work (MD) BKS Λb Tsuneyuki Λc a axis (Å) c axis (Å) d SiO1 (Å) d SiO2 (Å) SiOSi (degree) K (GPa) C 11 (GPa) C 33 (GPa) E (ev/sio 2 ) a Ref. [26], b Ref. [33], c Ref. [34] 6 Table 6.5: Structural prameters for fi-quartz obtained by our MD calculation. Expt. a this work (LDA) this work (MD) a axis (Å) c axis (Å) d SiO (Å) SiOSi (degree) E (ev/sio 2 ) b Ref. [27] 62

64 Table 6.6: Structural prameters for ff-cristobalite obtained by our DFT calculation. 6 Expt. a this work (LDA) this work (MD) BKS Λb Tsuneyuki Λc a axis (Å) c axis (Å) d SiO1 (Å) d SiO2 (Å) SiOSi (degree) K (GPa) C 11 (GPa) C 33 (GPa) E (ev/sio 2 ) a Ref. [28], b Ref. [33], c Ref. [34] 6 Table 6.7: Structural prameters for ideal-fi-cristobalite obtained by our DFT calculation. this work (LDA) this work (MD) a axis (Å) d SiO (Å) SiOSi (degree) E (ev/sio 2 )

65 6.4 Table. 6.8 Si MD. (4.2). Si Si-Si O CG. DFT. Table 6.8: Defect formation energies of an oxygen interstitials in silicon crystal by my MD calculation. (I N O means silicon crystal in which N oxygen atoms are added around one Si atom. ). Defect Formation Energy (ev) species this work (LDA) this work (MD) I 1 O I 2 O Table. 6.9 ff-quartz MD. ff-quartz Si O CG. DFT. Table 6.9: Defect formation energies for oxygen vacancies in ff-quartz obtained by my MD calculation (V N O means ff-quartz in which N oxygen atoms are removed around one Si atom.). Defect Formation Energy (ev) species this work (LDA) this work (MD) V 1 O V 2 O c-si/c-sio 2 Table MD c-si/c-sio 2. c-si/c- SiO 2 (4.3). C model, T model DFT, Q model DFT., Q model,c model, T model 500K 10psec,. 64

66 Table 6.10: Interface enegies obtained by my MD calculation. Reference states are silicon crystal and suitably strained SiO 2 crystal. Energies are in ev. speices this work (LDA) this work (MD) other calc. (GGA) a Q model C model T model a Reference[10] 68 Q model Fig. 6.3, 80 C model Fig T model Fig Fig. 6.3: Q model strucure before annealing(upper panel) and after annealing(lower panel). 65

67 Fig. 6.4: C model structre before annealing(left panel) and after annealing(right panel). 66

68 Fig. 6.5: T model structre before annealing(left panel) and after annealing(right panel). 67

69 6.6 SiO kg/m ff-quartz 1psec 10000K, 6000K 0K 1K/fsec. 300K, 0Pa 10psec NPT,. 3. Fig Fig. 6.6: Amorphous SiO 2 structure Table Si O. 4, 70%, 3 25%, 4 95%. Table 6.11: O coordination number of Si atom in amorphous SiO 2 structure. O coord. of Si ratio

70 Table O Si. 2, 83%, 1 14%, 2 95%. Table 6.12: Si coordination number of O atom in amorphous SiO 2 structure. O coord. of Si ratio Fig , 3%., 4.0Å Si O 2 3.5Å., 3.0Å Si-Si., [36]. Pair Correlation Function [barns/å 2 ] this work exp distance [Å] Fig. 6.7: pair correlation function of amorphous SiO 2 Table SiO %, Si-O, ff-quartz, [37]. Table MD Si-O-Si. [37] Table

71 Table 6.13: Density of amorphous SiO 2. Density (kg/m 3 ) exp this work density of a-sio density of ff-qartz a-sio 2 /ff-q Si. 0.1 this work ratio Si-O-Si angle [degree] Fig. 6.8: Si-O-Si bond angle distribution in amorphous SiO 2 obtained by my MD calculation. 6.7 a-sio 2 /c-si xy Si (5.43 2) 144 ff-quartz 1psec 10000K, 6000K 0K 1K/fsec. 2000K, 0Pa 10psec xy, z,xy Si., z, xy 70

72 Fig. 6.9: Si-O-Si bond angle distribution of amorphous SiO 2 by experimental data (curve 2 is silica glass) Si Si, 1000K 20psec a-sio 2 /c-si. Fig Fig suboxide1 +, suboxide2 +, suboxide3 +,., suboxide3 + a-sio 2, suboxide1 + c-si, [38]., suboxide1 + 5, suboxide2 + 2, suboxide3 + 4, suboxide3 +, suboxide2 +, suboxide1 + [38],,., Si 1 a-sio 2, [38]. 71

73 Fig. 6.10: Structure of a-sio 2 /c-si and suboxide atoms at interface. From left panel, suboxide 1 + atoms, suboxide 2 + atoms, suboxide 3 + atoms and all atoms 72

74 7 73

75 ffl Si/SiO 2, Si/SiO 2 Tersoff. ffl Si, SiO 2,Si SiO 2,c-Si/c-SiO 2, DFT,,,. ffl MD, DFT SiO 2, c-si/c-sio 2. ffl MD 3, 2,,. ffl MD SiO 2 DFT,. ffl MD DFT. ffl MD C model, T model DFT. Q-model DFT,. 74

76 [1],, (1993),. [2] A. Ourmazd, D. W. Tayor, J.A. Rentschler, and J. Berk, Phys. Rev. Lett. 59, 213 (1987). [3] Y.Iida, T.Shimura, S.Samata and Y.Matsusita, Surf. Sci. 258, 235(1991). [4] H. Kageshima and K. Shiraishi, Appl. Surf. Sci. 176, 130 (1998). [5] F. J. Himpsel, F. R. McFeely, A. Taleb-Ibrahimi, J. A. Yarmoff and G. Hollinger,Phys. Rev. B 38, 6084(1998). [6] D. R. Hamman Phys. Rev. B 9899, [7] A. Bongiorno and Alfredo Pasquarello, Phys. Rev. B 62, R16326 (2000). [8] N. Capron, A. Lagraa, S. Carniato and G. Boureau, Comp. Mat. Sci. 10, 163(1998). [9], private communication. [10] R. Buczko, S.J. Pennycook, and S.T. Pantelides, Phys. Rev. Lett. 84, 943 (2000). [11] Takahiro Yamasaki, Chioko Kaneta, Toshihiro Uchiyama, Tsuyoshi Uda and Kiyoyuki Terakura, Phys. Rev. B 63, (2001). [12] Yuhai Tu and J. Tersoff, Thin Solid Films 400, 95 (2001). [13] T.Watanabe and I.Ohdomari, Thin Solid Films , 370(1999). [14] Y.Umeno, T.Kitamura, K.Date, M.Hayashi and T.Iwasaki, Comp. Mat. Sci. 25, 447(2002). [15] F. H. Streitz and J. W. Mintmire, Phys. Rev. B 50, (1994) [16] ASNOP,, (1991) [17],, (2002). 75

77 [18] G. Kresse, J. Furthmüller, Phys. Rev. B 54, 11169(1996). [19] Kalyanmoy Deb, Multi-Objective Optimization using Evolutionary Alogorithms, Wiley (2001). [20] J. Tersoff, Phys. Rev., B, (1988)., (1988). [21] D. W. Brenner, O. A. shenderova, J. A. Harrison, S. J. Stuart, B. Ni, S. B. Sinnoot, J. Phys.: Condens. Matter, (2002). [22],, (2002). [23] G.C.Abell, Phys. Rev. B, 31, 6184 (1985). [24] D. Vanderbilt, Phys. Rev. B 41, 7892(1990). [25] F. Liu, S. H. Garofalini, D. King-Smith and D. Vanderbilt, Phys. Rev. B 49, (1994). [26] L. Lavien, C. T. Prewitt, D. J. Weidner, Am. Mineralog.65, 920(1980). [27] A. F. Wright anmd M. S. Lehmann, J. Solid State Chem. 36, 371(1981). [28] J. J. Pluth, V. Smith, J. Appl. Phys. 57, 1045(1985). [29] M. A. SpackMan, R. J. Hill and G. V. Gibbs, Phys. Chem. Minerals 14, 139(1987) [30] L. G. Liu, W A. Bassett and T. Takahashi, J.Geophys. Res. 79, 1160(1974). [31] W A. Bassett and j.d. Barnettm, Phys. Earth Planet. Interors 3, 54(1970). [32] Y. Tsuchida and T. Yagi, Nature 340, 217(1989). [33] G. J. Kramer, N. P. Farragher, B. W. H. van Beest and R. A. van Santen, Phys. Rev. B43, 5068 (1991). [34],, 23, 888 (1988). [35] Norman T. Huff, Ersan Demiralp, Tahir C,agin and William A. Goddard III, J. Non- Cryst. Solids , 133(1999). [36] A. C. Wright, J. Non-Cryst. Solids 179, 84(1994). [37] A. G. Revesz, H.L. Hughes, J. Non-Cryst. Solids 328, 48 (2003). [38], 56, 1412 (1987). 76

78 ,..,.,. 4 GA... 2,..,. 2,,..,,,. Ewald, DFT.., DFT.,,,. 77

79 1ο

1 1.1,,,.. (, ),..,. (Fig. 1.1). Macro theory (e.g. Continuum mechanics) Consideration under the simple concept (e.g. ionic radius, bond valence) Stru

1 1.1,,,.. (, ),..,. (Fig. 1.1). Macro theory (e.g. Continuum mechanics) Consideration under the simple concept (e.g. ionic radius, bond valence) Stru 1. 1-1. 1-. 1-3.. MD -1. -. -3. MD 1 1 1.1,,,.. (, ),..,. (Fig. 1.1). Macro theory (e.g. Continuum mechanics) Consideration under the simple concept (e.g. ionic radius, bond valence) Structural relaxation

More information

chap1_MDpotentials.ppt

chap1_MDpotentials.ppt simplest Morse : simplest (1 Well-chosen functional form is more useful than elaborate fitting strategies!! Phys. Rev. 34, 57 (1929 ( 2 E ij = D e 1" exp("#(r ij " r e 2 r ij = r i " r j r ij =r e E ij

More information

Si SiO 2. Si 1 VASP Si 1,, Si-Si 0.28Å Si Si-Si 0.19Å Si 166 Si Å Si

Si SiO 2. Si 1 VASP Si 1,, Si-Si 0.28Å Si Si-Si 0.19Å Si 166 Si Å Si 8615 2012 3 Si SiO 2. Si 1 VASP Si 1,, Si-Si 0.28Å Si 160 1 2 Si-Si 0.19Å Si 166 Si 4 0.85Å Si 118 2 4 1 3 1.1 SiO 2... 3 1.2 Si... 3 1.3 Cz... 4 1.4 SiO 2... 4 1.5... 5 2 6 2.1... 6 2.2 VASP(Vienna Ab-initio

More information

SiC SiC QMAS(Quantum MAterials Simulator) VASP(Vienna Ab-initio Simulation Package) SiC 3C, 4H, 6H-SiC EV VASP VASP 3C, 4H, 6H-SiC (0001) (11 20) (1 1

SiC SiC QMAS(Quantum MAterials Simulator) VASP(Vienna Ab-initio Simulation Package) SiC 3C, 4H, 6H-SiC EV VASP VASP 3C, 4H, 6H-SiC (0001) (11 20) (1 1 QMAS SiC 7661 24 2 28 SiC SiC QMAS(Quantum MAterials Simulator) VASP(Vienna Ab-initio Simulation Package) SiC 3C, 4H, 6H-SiC EV VASP VASP 3C, 4H, 6H-SiC (0001) (11 20) (1 100) MedeA SiC QMAS - C Si (0001)

More information

スライド 1

スライド 1 Matsuura Laboratory SiC SiC 13 2004 10 21 22 H-SiC ( C-SiC HOY Matsuura Laboratory n E C E D ( E F E T Matsuura Laboratory Matsuura Laboratory DLTS Osaka Electro-Communication University Unoped n 3C-SiC

More information

1 2 LDA Local Density Approximation 2 LDA 1 LDA LDA N N N H = N [ 2 j + V ion (r j ) ] + 1 e 2 2 r j r k j j k (3) V ion V ion (r) = I Z I e 2 r

1 2 LDA Local Density Approximation 2 LDA 1 LDA LDA N N N H = N [ 2 j + V ion (r j ) ] + 1 e 2 2 r j r k j j k (3) V ion V ion (r) = I Z I e 2 r 11 March 2005 1 [ { } ] 3 1/3 2 + V ion (r) + V H (r) 3α 4π ρ σ(r) ϕ iσ (r) = ε iσ ϕ iσ (r) (1) KS Kohn-Sham [ 2 + V ion (r) + V H (r) + V σ xc(r) ] ϕ iσ (r) = ε iσ ϕ iσ (r) (2) 1 2 1 2 2 1 1 2 LDA Local

More information

MAIN.dvi

MAIN.dvi 01UM1301 1 3 1.1 : : : : : : : : : : : : : : : : : : : : : : 3 1.2 : : : : : : : : : : : : : : : : : : : : 4 1.3 : : : : : : : : : : : : : : : : : 6 1.4 : : : : : : : : : : : : : : : 10 1.5 : : : : : :

More information

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H 199 1 1 199 1 1. Vx) m e V cos x π x π Vx) = x < π, x > π V i) x = Vx) V 1 x /)) n n d f dξ ξ d f dξ + n f = H n ξ) ii) H n ξ) = 1) n expξ ) dn dξ n exp ξ )) H n ξ)h m ξ) exp ξ )dξ = π n n!δ n,m x = Vx)

More information

X線-m.dvi

X線-m.dvi X Λ 1 X 1 O Y Z X Z ν X O r Y ' P I('; r) =I e 4 m c 4 1 r sin ' (1.1) I X 1sec 1cm e = 4:8 1 1 e.s.u. m = :1 1 8 g c =3: 1 1 cm/sec X sin '! 1 ß Z ß Z sin 'd! = 1 ß ß 1 sin χ cos! d! = 1+cos χ (1.) e

More information

PowerPoint プレゼンテーション

PowerPoint プレゼンテーション 実空間差分法に基づく 第一原理電子構造 量子輸送特性計算 09/05/15 大阪大学大学院工学研究科小野倫也 Real-space first-principles calculation code The grand-state electronic structure is obtained by solving the Schrödinger (Kohn-Sham) equation 1 2

More information

ssp2_fixed.dvi

ssp2_fixed.dvi 13 12 30 2 1 3 1.1... 3 1.2... 4 1.3 Bravais... 4 1.4 Miller... 4 2 X 5 2.1 Bragg... 5 2.2... 5 2.3... 7 3 Brillouin 13 3.1... 13 3.2 Brillouin... 13 3.3 Brillouin... 14 3.4 Bloch... 16 3.5 Bloch... 17

More information

SPring-8_seminar_

SPring-8_seminar_ X 21 SPring-8 XAFS 2016 (= ) X PC cluster Synchrotron TEM-EELS XAFS / EELS HΨ k = E k Ψ k XANES/ELNES DFT ( + ) () WIEN2k, Elk, OLCAO () CASTEP, QUANTUM ESPRESSO FEFF, GNXAS, etc. Bethe-Salpeter (BSE)

More information

vdw-df vdw-df vdw-df 2

vdw-df vdw-df vdw-df 2 WPI-AIMR ikutaro@wpi-aimr.tohoku.ac.jp 1 vdw-df vdw-df vdw-df 2 (Semi-)local approximation in density-functional theory - Local density approximation (LDA) Good structural and dynamical properties of solids

More information

positron 1930 Dirac 1933 Anderson m 22Na(hl=2.6years), 58Co(hl=71days), 64Cu(hl=12hour) 68Ge(hl=288days) MeV : thermalization m psec 100

positron 1930 Dirac 1933 Anderson m 22Na(hl=2.6years), 58Co(hl=71days), 64Cu(hl=12hour) 68Ge(hl=288days) MeV : thermalization m psec 100 positron 1930 Dirac 1933 Anderson m 22Na(hl=2.6years), 58Co(hl=71days), 64Cu(hl=12hour) 68Ge(hl=288days) 0.5 1.5MeV : thermalization 10 100 m psec 100psec nsec E total = 2mc 2 + E e + + E e Ee+ Ee-c mc

More information

8 (2006 ) X ( ) 1. X X X 2. ( ) ( ) ( 1) X (a) (b) 1: (a) (b)

8 (2006 ) X ( ) 1. X X X 2. ( ) ( ) ( 1) X (a) (b) 1: (a) (b) 8 (2006 ) X ( ) 1. X X X 2. ( ) ( ) ( 1) X (a) (b) 1: (a) (b) X hkl 2θ ω 000 2: ω X 2θ X 3: X 2 X ω X 2θ X θ-2θ X X 2-1. ( ) ( 3) X 2θ ω 4 Si GaAs Si/Si GaAs/GaAs X 2θ : 2 2θ 000 ω 000 ω ω = θ 4: 2θ ω

More information

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT I (008 4 0 de Broglie (de Broglie p λ k h Planck ( 6.63 0 34 Js p = h λ = k ( h π : Dirac k B Boltzmann (.38 0 3 J/K T U = 3 k BT ( = λ m k B T h m = 0.067m 0 m 0 = 9. 0 3 kg GaAs( a T = 300 K 3 fg 07345

More information

42 3 u = (37) MeV/c 2 (3.4) [1] u amu m p m n [1] m H [2] m p = (4) MeV/c 2 = (13) u m n = (4) MeV/c 2 =

42 3 u = (37) MeV/c 2 (3.4) [1] u amu m p m n [1] m H [2] m p = (4) MeV/c 2 = (13) u m n = (4) MeV/c 2 = 3 3.1 3.1.1 kg m s J = kg m 2 s 2 MeV MeV [1] 1MeV=1 6 ev = 1.62 176 462 (63) 1 13 J (3.1) [1] 1MeV/c 2 =1.782 661 731 (7) 1 3 kg (3.2) c =1 MeV (atomic mass unit) 12 C u = 1 12 M(12 C) (3.3) 41 42 3 u

More information

80 4 r ˆρ i (r, t) δ(r x i (t)) (4.1) x i (t) ρ i ˆρ i t = 0 i r 0 t(> 0) j r 0 + r < δ(r 0 x i (0))δ(r 0 + r x j (t)) > (4.2) r r 0 G i j (r, t) dr 0

80 4 r ˆρ i (r, t) δ(r x i (t)) (4.1) x i (t) ρ i ˆρ i t = 0 i r 0 t(> 0) j r 0 + r < δ(r 0 x i (0))δ(r 0 + r x j (t)) > (4.2) r r 0 G i j (r, t) dr 0 79 4 4.1 4.1.1 x i (t) x j (t) O O r 0 + r r r 0 x i (0) r 0 x i (0) 4.1 L. van. Hove 1954 space-time correlation function V N 4.1 ρ 0 = N/V i t 80 4 r ˆρ i (r, t) δ(r x i (t)) (4.1) x i (t) ρ i ˆρ i t

More information

研究室ガイダンス(H28)福山研.pdf

研究室ガイダンス(H28)福山研.pdf 1 2 3 4 5 4 He M. Roger et al., JLTP 112, 45 (1998) A.F. Andreev and I.M. Lifshitz, Sov. Phys. JETP 29, 1107 (1969) Born in 2004 (hcp 4 He) E. Kim and M.H.W. Chan, Nature 427, 225 (2004); Science 305,

More information

TOP URL 1

TOP URL   1 TOP URL http://amonphys.web.fc.com/ 3.............................. 3.............................. 4.3 4................... 5.4........................ 6.5........................ 8.6...........................7

More information

untitled

untitled SPring-8 RFgun JASRI/SPring-8 6..7 Contents.. 3.. 5. 6. 7. 8. . 3 cavity γ E A = er 3 πε γ vb r B = v E c r c A B A ( ) F = e E + v B A A A A B dp e( v B+ E) = = m d dt dt ( γ v) dv e ( ) dt v B E v E

More information

4/15 No.

4/15 No. 4/15 No. 1 4/15 No. 4/15 No. 3 Particle of mass m moving in a potential V(r) V(r) m i ψ t = m ψ(r,t)+v(r)ψ(r,t) ψ(r,t) = ϕ(r)e iωt ψ(r,t) Wave function steady state m ϕ(r)+v(r)ϕ(r) = εϕ(r) Eigenvalue problem

More information

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5.

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5. A 1. Boltzmann Planck u(ν, T )dν = 8πh ν 3 c 3 kt 1 dν h 6.63 10 34 J s Planck k 1.38 10 23 J K 1 Boltzmann u(ν, T ) T ν e hν c = 3 10 8 m s 1 2. Planck λ = c/ν Rayleigh-Jeans u(ν, T )dν = 8πν2 kt dν c

More information

卒業論文

卒業論文 Cu-Ru ...7 1.1....7 1.2....7 1.3....8...9 2.1....9 2.1.1....9 2.1.2....10 2.2.... 11 2.2.1.... 11 2.2.2. ()...12 2.2.3. ()...13 2.2....15...18 3.1. Cu z ...18 3.1.1....18 3.1.2....19 3.1.3....29 3.2.

More information

和佐田P indd

和佐田P indd 2000 B3LYP/6-31G Gaussian 98 03 B3LYP/6-31G* Gaussian STO-3G RHF Gaussian RHF/STO-3G B3LYP RHF 6-31G* STO-3G Schrödinger Schrödinger s p d Schrödinger Schrödinger Hohenberg-Kohn Kohn-Sham Kohn-Sham [1-3]

More information

( ) 1 1.1? ( ) ( ) ( ) 1.1(a) T m ( ) 1.1(a) T g ( ) T g T g 500 74% ( ) T K ( 1.1(b) 15 T g T g 10 13 T g T g T g [ ] A ( ) exp (1.1) T T 0 Vogel-Fulcher T 0 T 0 T K T K Ortho-Terphenil (OTP) SiO 2 (1.1)

More information

. ev=,604k m 3 Debye ɛ 0 kt e λ D = n e n e Ze 4 ln Λ ν ei = 5.6π / ɛ 0 m/ e kt e /3 ν ei v e H + +e H ev Saha x x = 3/ πme kt g i g e n

. ev=,604k m 3 Debye ɛ 0 kt e λ D = n e n e Ze 4 ln Λ ν ei = 5.6π / ɛ 0 m/ e kt e /3 ν ei v e H + +e H ev Saha x x = 3/ πme kt g i g e n 003...............................3 Debye................. 3.4................ 3 3 3 3. Larmor Cyclotron... 3 3................ 4 3.3.......... 4 3.3............ 4 3.3...... 4 3.3.3............ 5 3.4.........

More information

* 1 1 (i) (ii) Brückner-Hartree-Fock (iii) (HF, BCS, HFB) (iv) (TDHF,TDHFB) (RPA) (QRPA) (v) (vi) *

* 1 1 (i) (ii) Brückner-Hartree-Fock (iii) (HF, BCS, HFB) (iv) (TDHF,TDHFB) (RPA) (QRPA) (v) (vi) * * 1 1 (i) (ii) Brückner-Hartree-Fock (iii) (HF, BCS, HFB) (iv) (TDHF,TDHFB) (RPA) (QRPA) (v) (vi) *1 2004 1 1 ( ) ( ) 1.1 140 MeV 1.2 ( ) ( ) 1.3 2.6 10 8 s 7.6 10 17 s? Λ 2.5 10 10 s 6 10 24 s 1.4 ( m

More information

Hanbury-Brown Twiss (ver. 2.0) van Cittert - Zernike mutual coherence

Hanbury-Brown Twiss (ver. 2.0) van Cittert - Zernike mutual coherence Hanbury-Brown Twiss (ver. 2.) 25 4 4 1 2 2 2 2.1 van Cittert - Zernike..................................... 2 2.2 mutual coherence................................. 4 3 Hanbury-Brown Twiss ( ) 5 3.1............................................

More information

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4 1. k λ ν ω T v p v g k = π λ ω = πν = π T v p = λν = ω k v g = dω dk 1) ) 3) 4). p = hk = h λ 5) E = hν = hω 6) h = h π 7) h =6.6618 1 34 J sec) hc=197.3 MeV fm = 197.3 kev pm= 197.3 ev nm = 1.97 1 3 ev

More information

..3. Ω, Ω F, P Ω, F, P ). ) F a) A, A,..., A i,... F A i F. b) A F A c F c) Ω F. ) A F A P A),. a) 0 P A) b) P Ω) c) [ ] A, A,..., A i,... F i j A i A

..3. Ω, Ω F, P Ω, F, P ). ) F a) A, A,..., A i,... F A i F. b) A F A c F c) Ω F. ) A F A P A),. a) 0 P A) b) P Ω) c) [ ] A, A,..., A i,... F i j A i A .. Laplace ). A... i),. ω i i ). {ω,..., ω } Ω,. ii) Ω. Ω. A ) r, A P A) P A) r... ).. Ω {,, 3, 4, 5, 6}. i i 6). A {, 4, 6} P A) P A) 3 6. ).. i, j i, j) ) Ω {i, j) i 6, j 6}., 36. A. A {i, j) i j }.

More information

19 σ = P/A o σ B Maximum tensile strength σ % 0.2% proof stress σ EL Elastic limit Work hardening coefficient failure necking σ PL Proportional

19 σ = P/A o σ B Maximum tensile strength σ % 0.2% proof stress σ EL Elastic limit Work hardening coefficient failure necking σ PL Proportional 19 σ = P/A o σ B Maximum tensile strength σ 0. 0.% 0.% proof stress σ EL Elastic limit Work hardening coefficient failure necking σ PL Proportional limit ε p = 0.% ε e = σ 0. /E plastic strain ε = ε e

More information

.I.v e pmd

.I.v e pmd Structural Design for Curved Panels by Laminated Composite Materials (Identification of Lamination Parameters Using Modal Testing Method ) Tetsuya NARISAWA, Shohei IWATA Abstract - Using a modal testing

More information

4 2 Rutherford 89 Rydberg λ = R ( n 2 ) n 2 n = n +,n +2, n = Lyman n =2 Balmer n =3 Paschen R Rydberg R = cm 896 Zeeman Zeeman Zeeman Lorentz

4 2 Rutherford 89 Rydberg λ = R ( n 2 ) n 2 n = n +,n +2, n = Lyman n =2 Balmer n =3 Paschen R Rydberg R = cm 896 Zeeman Zeeman Zeeman Lorentz 2 Rutherford 2. Rutherford N. Bohr Rutherford 859 Kirchhoff Bunsen 86 Maxwell Maxwell 885 Balmer λ Balmer λ = 364.56 n 2 n 2 4 Lyman, Paschen 3 nm, n =3, 4, 5, 4 2 Rutherford 89 Rydberg λ = R ( n 2 ) n

More information

Frontier Simulation Software for Industrial Science

Frontier Simulation Software for Industrial Science PACS-CS FIRST 2005 2005 2 16 17 2 28 2 17 2 28 3 IT IT H14~H16 CHASE CHASE-3PT Protein Protein-DF ABINIT-MP 17 2 28 4 CMOS Si-CMOS CMOS-LSI CMOS ATP 10nm 17 2 28 5 17 2 28 6 CMOS CMOS-LSI LSI 90nm CMOS

More information

02-量子力学の復習

02-量子力学の復習 4/17 No. 1 4/17 No. 2 4/17 No. 3 Particle of mass m moving in a potential V(r) V(r) m i ψ t = 2 2m 2 ψ(r,t)+v(r)ψ(r,t) ψ(r,t) Wave function ψ(r,t) = ϕ(r)e iωt steady state 2 2m 2 ϕ(r)+v(r)ϕ(r) = εϕ(r)

More information

講義ノート 物性研究 電子版 Vol.3 No.1, (2013 年 T c µ T c Kammerlingh Onnes 77K ρ 5.8µΩcm 4.2K ρ 10 4 µωcm σ 77K ρ 4.2K σ σ = ne 2 τ/m τ 77K

講義ノート 物性研究 電子版 Vol.3 No.1, (2013 年 T c µ T c Kammerlingh Onnes 77K ρ 5.8µΩcm 4.2K ρ 10 4 µωcm σ 77K ρ 4.2K σ σ = ne 2 τ/m τ 77K 2 2 T c µ T c 1 1.1 1911 Kammerlingh Onnes 77K ρ 5.8µΩcm 4.2K ρ 1 4 µωcm σ 77K ρ 4.2K σ σ = ne 2 τ/m τ 77K τ 4.2K σ 58 213 email:takada@issp.u-tokyo.ac.jp 1933 Meissner Ochsenfeld λ = 1 5 cm B = χ B =

More information

最新耐震構造解析 ( 第 3 版 ) サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 3 版 1 刷発行時のものです.

最新耐震構造解析 ( 第 3 版 ) サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 第 3 版 1 刷発行時のものです. 最新耐震構造解析 ( 第 3 版 ) サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/052093 このサンプルページの内容は, 第 3 版 1 刷発行時のものです. i 3 10 3 2000 2007 26 8 2 SI SI 20 1996 2000 SI 15 3 ii 1 56 6

More information

27011559 2018 3 1 3 2 4 2.1........................ 4 2.2.................................. 5 2.3 pseudovasp................................... 7 3 8 3.1 EAM potential.................................

More information

(a) (b) (c) (d) 1: (a) (b) (c) (d) (a) (b) (c) 2: (a) (b) (c) 1(b) [1 10] 1 degree k n(k) walk path 4

(a) (b) (c) (d) 1: (a) (b) (c) (d) (a) (b) (c) 2: (a) (b) (c) 1(b) [1 10] 1 degree k n(k) walk path 4 1 vertex edge 1(a) 1(b) 1(c) 1(d) 2 (a) (b) (c) (d) 1: (a) (b) (c) (d) 1 2 6 1 2 6 1 2 6 3 5 3 5 3 5 4 4 (a) (b) (c) 2: (a) (b) (c) 1(b) [1 10] 1 degree k n(k) walk path 4 1: Zachary [11] [12] [13] World-Wide

More information

C el = 3 2 Nk B (2.14) c el = 3k B C el = 3 2 Nk B

C el = 3 2 Nk B (2.14) c el = 3k B C el = 3 2 Nk B I ino@hiroshima-u.ac.jp 217 11 14 4 4.1 2 2.4 C el = 3 2 Nk B (2.14) c el = 3k B 2 3 3.15 C el = 3 2 Nk B 3.15 39 2 1925 (Wolfgang Pauli) (Pauli exclusion principle) T E = p2 2m p T N 4 Pauli Sommerfeld

More information

July 28, H H 0 H int = H H 0 H int = H int (x)d 3 x Schrödinger Picture Ψ(t) S =e iht Ψ H O S Heisenberg Picture Ψ H O H (t) =e iht O S e i

July 28, H H 0 H int = H H 0 H int = H int (x)d 3 x Schrödinger Picture Ψ(t) S =e iht Ψ H O S Heisenberg Picture Ψ H O H (t) =e iht O S e i July 8, 4. H H H int H H H int H int (x)d 3 x Schrödinger Picture Ψ(t) S e iht Ψ H O S Heisenberg Picture Ψ H O H (t) e iht O S e iht Interaction Picture Ψ(t) D e iht Ψ(t) S O D (t) e iht O S e ih t (Dirac

More information

kawa (Spin-Orbit Tomography: Kawahara and Fujii 21,Kawahara and Fujii 211,Fujii & Kawahara submitted) 2 van Cittert-Zernike Appendix A V 2

kawa (Spin-Orbit Tomography: Kawahara and Fujii 21,Kawahara and Fujii 211,Fujii & Kawahara submitted) 2 van Cittert-Zernike Appendix A V 2 Hanbury-Brown Twiss (ver. 1.) 24 2 1 1 1 2 2 2.1 van Cittert - Zernike..................................... 2 2.2 mutual coherence................................. 3 3 Hanbury-Brown Twiss ( ) 4 3.1............................................

More information

42 1 Fig. 2. Li 2 B 4 O 7 crystals with 3inches and 4inches in diameter. Fig. 4. Transmission curve of Li 2 B 4 O 7 crystal. Fig. 5. Refractive index

42 1 Fig. 2. Li 2 B 4 O 7 crystals with 3inches and 4inches in diameter. Fig. 4. Transmission curve of Li 2 B 4 O 7 crystal. Fig. 5. Refractive index MEMOIRS OF SHONAN INSTITUTE OF TECHNOLOGY Vol. 42, No. 1, 2008 Li 2 B 4 O 7 (LBO) *, ** * ** ** Optical Scatterer and Crystal Growth Technology of LBO Single Crystal For Development with Optical Application

More information

数学Ⅱ演習(足助・09夏)

数学Ⅱ演習(足助・09夏) II I 9/4/4 9/4/2 z C z z z z, z 2 z, w C zw z w 3 z, w C z + w z + w 4 t R t C t t t t t z z z 2 z C re z z + z z z, im z 2 2 3 z C e z + z + 2 z2 + 3! z3 + z!, I 4 x R e x cos x + sin x 2 z, w C e z+w

More information

1: Sheldon L. Glashow (Ouroboros) [1] 1 v(r) u(r, r ) ( e 2 / r r ) H 2 [2] H = ( dr ψ σ + (r) 1 2 ) σ 2m r 2 + v(r) µ ψ σ (r) + 1 dr dr ψ σ + (r)ψ +

1: Sheldon L. Glashow (Ouroboros) [1] 1 v(r) u(r, r ) ( e 2 / r r ) H 2 [2] H = ( dr ψ σ + (r) 1 2 ) σ 2m r 2 + v(r) µ ψ σ (r) + 1 dr dr ψ σ + (r)ψ + 1 1.1 21 11 22 10 33 cm 10 29 cm 60 6 8 10 12 cm 1cm 1 1.2 2 1 1 1: Sheldon L. Glashow (Ouroboros) [1] 1 v(r) u(r, r ) ( e 2 / r r ) H 2 [2] H = ( dr ψ σ + (r) 1 2 ) σ 2m r 2 + v(r) µ ψ σ (r) + 1 dr dr

More information

( ) ( 40 )+( 60 ) Schrödinger 3. (a) (b) (c) yoshioka/education-09.html pdf 1

( ) ( 40 )+( 60 ) Schrödinger 3. (a) (b) (c)   yoshioka/education-09.html pdf 1 2009 1 ( ) ( 40 )+( 60 ) 1 1. 2. Schrödinger 3. (a) (b) (c) http://goofy.phys.nara-wu.ac.jp/ yoshioka/education-09.html pdf 1 1. ( photon) ν λ = c ν (c = 3.0 108 /m : ) ɛ = hν (1) p = hν/c = h/λ (2) h

More information

ohpr.dvi

ohpr.dvi 2003-08-04 1984 VP-1001 CPU, 250 MFLOPS, 128 MB 2004ASCI Purple (LLNL)64 CPU 197, 100 TFLOPS, 50 TB, 4.5 MW PC 2 CPU 16, 4 GFLOPS, 32 GB, 3.2 kw 20028 CPU 640, 40 TFLOPS, 10 TB, 10 MW (ASCI: Accelerated

More information

d (i) (ii) 1 Georges[2] Maier [3] [1] ω = 0 1

d (i) (ii) 1 Georges[2] Maier [3] [1] ω = 0 1 16 5 19 10 d (i) (ii) 1 Georges[2] Maier [3] 2 10 1 [1] ω = 0 1 [4, 5] Dynamical Mean-Field Theory (DMFT) [2] DMFT I CPA [10] CPA CPA Σ(z) z CPA Σ(z) Σ(z) Σ(z) z - CPA Σ(z) DMFT Σ(z) CPA [6] 3 1960 [7]

More information

LCR e ix LC AM m k x m x x > 0 x < 0 F x > 0 x < 0 F = k x (k > 0) k x = x(t)

LCR e ix LC AM m k x m x x > 0 x < 0 F x > 0 x < 0 F = k x (k > 0) k x = x(t) 338 7 7.3 LCR 2.4.3 e ix LC AM 7.3.1 7.3.1.1 m k x m x x > 0 x < 0 F x > 0 x < 0 F = k x k > 0 k 5.3.1.1 x = xt 7.3 339 m 2 x t 2 = k x 2 x t 2 = ω 2 0 x ω0 = k m ω 0 1.4.4.3 2 +α 14.9.3.1 5.3.2.1 2 x

More information

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α 18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α 2 ), ϕ(t) = B 1 cos(ω 1 t + α 1 ) + B 2 cos(ω 2 t

More information

講 座 熱電研究のための第一原理計算入門 第1回 密度汎関数法による第一原理バンド計算 桂 1 はじめに ゆかり 東京大学 2 密度汎関数理論 第一原理 first-principles バンド計算とは 結晶構造 Schrödinger 方程式は 量子力学を司る基本方程式で 以外の経験的パラメータや

講 座 熱電研究のための第一原理計算入門 第1回 密度汎関数法による第一原理バンド計算 桂 1 はじめに ゆかり 東京大学 2 密度汎関数理論 第一原理 first-principles バンド計算とは 結晶構造 Schrödinger 方程式は 量子力学を司る基本方程式で 以外の経験的パラメータや 講 座 熱電研究のための第一原理計算入門 第1回 密度汎関数法による第一原理バンド計算 桂 1 はじめに ゆかり 東京大学 2 密度汎関数理論 第一原理 first-principles バンド計算とは 結晶構造 Schrödinger 方程式は 量子力学を司る基本方程式で 以外の経験的パラメータや任意パラメータを使わず 基 ある 定常状態において電子 i の状態を定義する波動 本的な物理方程式のみを用いて行う電子状態計算であ

More information

Fig. ph Si-O-Na H O Si- Na OH Si-O-Si OH Si-O Si-OH Si-O-Si Si-O Si-O Si-OH Si-OH Si-O-Si H O 6

Fig. ph Si-O-Na H O Si- Na OH Si-O-Si OH Si-O Si-OH Si-O-Si Si-O Si-O Si-OH Si-OH Si-O-Si H O 6 NMR ESR NMR 5 Fig. ph Si-O-Na H O Si- Na OH Si-O-Si OH Si-O Si-OH Si-O-Si Si-O Si-O Si-OH Si-OH Si-O-Si H O 6 Fig. (a) Na O-B -Si Na O-B Si Fig. (b) Na O-CaO-SiO Na O-CaO-B -Si. Na O-. CaO-. Si -. Al O

More information

1. 2 P 2 (x, y) 2 x y (0, 0) R 2 = {(x, y) x, y R} x, y R P = (x, y) O = (0, 0) OP ( ) OP x x, y y ( ) x v = y ( ) x 2 1 v = P = (x, y) y ( x y ) 2 (x

1. 2 P 2 (x, y) 2 x y (0, 0) R 2 = {(x, y) x, y R} x, y R P = (x, y) O = (0, 0) OP ( ) OP x x, y y ( ) x v = y ( ) x 2 1 v = P = (x, y) y ( x y ) 2 (x . P (, (0, 0 R {(,, R}, R P (, O (0, 0 OP OP, v v P (, ( (, (, { R, R} v (, (, (,, z 3 w z R 3,, z R z n R n.,..., n R n n w, t w ( z z Ke Words:. A P 3 0 B P 0 a. A P b B P 3. A π/90 B a + b c π/ 3. +

More information

http://www1.doshisha.ac.jp/ bukka/qc.html 1. 107 2. 116 3. 1 119 4. 2 126 5. 132 6. 136 7. 1 140 8. 146 9. 2 150 10. 153 11. 157 12. π Hückel 159 13. 163 A-1. Laguerre 165 A-2. Hermite 167 A-3. 170 A-4.

More information

CMP Technical Report No. 4 Department of Computational Nanomaterials Design ISIR, Osaka University 2 2................................. 2.2......................... 2 3 3 3................................

More information

50 2 I SI MKSA r q r q F F = 1 qq 4πε 0 r r 2 r r r r (2.2 ε 0 = 1 c 2 µ 0 c = m/s q 2.1 r q' F r = 0 µ 0 = 4π 10 7 N/A 2 k = 1/(4πε 0 qq

50 2 I SI MKSA r q r q F F = 1 qq 4πε 0 r r 2 r r r r (2.2 ε 0 = 1 c 2 µ 0 c = m/s q 2.1 r q' F r = 0 µ 0 = 4π 10 7 N/A 2 k = 1/(4πε 0 qq 49 2 I II 2.1 3 e e = 1.602 10 19 A s (2.1 50 2 I SI MKSA 2.1.1 r q r q F F = 1 qq 4πε 0 r r 2 r r r r (2.2 ε 0 = 1 c 2 µ 0 c = 3 10 8 m/s q 2.1 r q' F r = 0 µ 0 = 4π 10 7 N/A 2 k = 1/(4πε 0 qq F = k r

More information

IA

IA IA 31 4 11 1 1 4 1.1 Planck.............................. 4 1. Bohr.................................... 5 1.3..................................... 6 8.1................................... 8....................................

More information

Xray.dvi

Xray.dvi 1 X 1 X 1 1.1.............................. 1 1.2.................................. 3 1.3........................ 3 2 4 2.1.................................. 6 2.2 n ( )............. 6 3 7 3.1 ( ).....................

More information

30

30 3 ............................................2 2...........................................2....................................2.2...................................2.3..............................

More information

006 11 8 0 3 1 5 1.1..................... 5 1......................... 6 1.3.................... 6 1.4.................. 8 1.5................... 8 1.6................... 10 1.6.1......................

More information

Laves A-B AB 2 MgCu 2 (C14) MgZn 2 (C15) MgNi 2 (C36) Laves VASP ZrCr 2 Laves VASP(Vienna Ab-initio Simulation Package) Laves Energy-Volume Quasi-Harm

Laves A-B AB 2 MgCu 2 (C14) MgZn 2 (C15) MgNi 2 (C36) Laves VASP ZrCr 2 Laves VASP(Vienna Ab-initio Simulation Package) Laves Energy-Volume Quasi-Harm ZrCr 2 Laves 5633 2009 2 Laves A-B AB 2 MgCu 2 (C14) MgZn 2 (C15) MgNi 2 (C36) Laves VASP ZrCr 2 Laves VASP(Vienna Ab-initio Simulation Package) Laves Energy-Volume Quasi-Harmonic Energy-Volume Phonon-DOS

More information

[Ver. 0.2] 1 2 3 4 5 6 7 1 1.1 1.2 1.3 1.4 1.5 1 1.1 1 1.2 1. (elasticity) 2. (plasticity) 3. (strength) 4. 5. (toughness) 6. 1 1.2 1. (elasticity) } 1 1.2 2. (plasticity), 1 1.2 3. (strength) a < b F

More information

Research Reports on Information Science and Electrical Engineering of Kyushu University Vol.11, No.1, March 2006 Numerical Analysis of Scattering Atom

Research Reports on Information Science and Electrical Engineering of Kyushu University Vol.11, No.1, March 2006 Numerical Analysis of Scattering Atom 九州大学学術情報リポジトリ Kyushu University Institutional Repository レーザーアブレーション原子蛍光分光法における放出原子の挙動解析 中村, 大輔九州大学大学院システム情報科学府電子デバイス工学専攻 : 博士後期課程 肥後谷, 崇九州大学大学院システム情報科学府電子デバイス工学専攻 : 修士課程 三洋電機株式会社 高尾, 隆之九州大学大学院システム情報科学研究院電子デバイス工学部門

More information

COGNACのコンセプト \(COarse Grained molecular dynamics program developed by NAgoya Cooperation\)

COGNACのコンセプト \(COarse Grained molecular dynamics program developed by NAgoya Cooperation\) COGNAC (COarse-Grained molecular dynamics program by NAgoya Cooperation) ( ), 0 sec -3 msec -6 sec -9 nsec -12 psec -15 fsec GOURMET SUSHI PASTA COGNAC MUFFIN -15-12 -9-6 -3 0 fm pm nm m mm m United atom

More information

Yuzo Nakamura, Kagoshima Univ., Dept Mech Engr. perfect crystal imperfect crystal point defect vacancy self-interstitial atom substitutional impurity

Yuzo Nakamura, Kagoshima Univ., Dept Mech Engr. perfect crystal imperfect crystal point defect vacancy self-interstitial atom substitutional impurity perfect crystal imperfect crystal point defect vacancy self-interstitial atom substitutional impurity atom interstitial impurity atom line defect dislocation planar defect surface grain boundary interface

More information

量子情報科学−情報科学の物理限界への挑戦- 2018

量子情報科学−情報科学の物理限界への挑戦- 2018 1 http://qi.mp.es.osaka-u.ac.jp/main 2 0 5000 10000 15000 20000 25000 30000 35000 40000 1945 1947 1949 1951 1953 1955 1957 1959 1961 1963 1965 1967 1969 1971 1973 1975 1977 1979 1981 1983 1985 1987 1989

More information

Einstein 1905 Lorentz Maxwell c E p E 2 (pc) 2 = m 2 c 4 (7.1) m E ( ) E p µ =(p 0,p 1,p 2,p 3 )=(p 0, p )= c, p (7.2) x µ =(x 0,x 1,x 2,x

Einstein 1905 Lorentz Maxwell c E p E 2 (pc) 2 = m 2 c 4 (7.1) m E ( ) E p µ =(p 0,p 1,p 2,p 3 )=(p 0, p )= c, p (7.2) x µ =(x 0,x 1,x 2,x 7 7.1 7.1.1 Einstein 1905 Lorentz Maxwell c E p E 2 (pc) 2 = m 2 c 4 (7.1) m E ( ) E p µ =(p 0,p 1,p 2,p 3 )=(p 0, p )= c, p (7.2) x µ =(x 0,x 1,x 2,x 3 )=(x 0, x )=(ct, x ) (7.3) E/c ct K = E mc 2 (7.4)

More information

16 (16) poly-si mJ/cm 2 ELA poly-si super cooled liquid, SCL [3] a-si poly-si [4] solid phase crystalization, SPC [5] mJ/cm 2 SPC SCL (di

16 (16) poly-si mJ/cm 2 ELA poly-si super cooled liquid, SCL [3] a-si poly-si [4] solid phase crystalization, SPC [5] mJ/cm 2 SPC SCL (di (15) 15 ELA により形成された poly-si 結晶成長様式 - グレイン形状と水素の関係 - Crystal Growth Mode of Poly-Si Prepared by ELA -Relationship between the Grain Morphology and ydrogens- Naoya KAWAMOTO (Dept. of Electrical and Electronic

More information

3-2 PET ( : CYRIC ) ( 0 ) (3-1 ) PET PET [min] 11 C 13 N 15 O 18 F 68 Ga [MeV] [mm] [MeV]

3-2 PET ( : CYRIC ) ( 0 ) (3-1 ) PET PET [min] 11 C 13 N 15 O 18 F 68 Ga [MeV] [mm] [MeV] 3 PET 3-1 PET 3-1-1 PET PET 1-1 X CT MRI(Magnetic Resonance Imaging) X CT MRI PET 3-1 PET [1] H1 D2 11 C-doxepin 11 C-raclopride PET H1 D2 3-2 PET 0 0 H1 D2 3-1 PET 3-2 PET ( : CYRIC ) ( 0 ) 3-1-2 (3-1

More information

a L = Ψ éiγ c pa qaa mc ù êë ( - )- úû Ψ 1 Ψ 4 γ a a 0, 1,, 3 {γ a, γ b } η ab æi O ö æo ö β, σ = ço I α = è - ø çèσ O ø γ 0 x iβ γ i x iβα i

a L = Ψ éiγ c pa qaa mc ù êë ( - )- úû Ψ 1 Ψ 4 γ a a 0, 1,, 3 {γ a, γ b } η ab æi O ö æo ö β, σ = ço I α = è - ø çèσ O ø γ 0 x iβ γ i x iβα i 解説 4 matsuo.mamoru jaea.go.jp 4 eizi imr.tohoku.ac.jp 4 maekawa.sadamichi jaea.go.jp i ii iii i Gd Tb Dy g khz Pt ii iii Keywords vierbein 3 dreibein 4 vielbein torsion JST-ERATO 1 017 1. 1..1 a L = Ψ

More information

C 3 C-1 Ru 2 x Fe x CrSi A A, A, A, A, A Ru 2 x Fe x CrSi 1) 0.3 x 1.8 2) Ru 2 x Fe x CrSi/Pb BTK P Z 3 x = 1.7 Pb BTK P = ) S.Mizutani, S.Ishid

C 3 C-1 Ru 2 x Fe x CrSi A A, A, A, A, A Ru 2 x Fe x CrSi 1) 0.3 x 1.8 2) Ru 2 x Fe x CrSi/Pb BTK P Z 3 x = 1.7 Pb BTK P = ) S.Mizutani, S.Ishid C 3 C-1 Ru 2 x Fe x CrSi A A, A, A, A, A Ru 2 x Fe x CrSi 1).3 x 1.8 2) Ru 2 x Fe x CrSi/Pb BTK P Z 3 x = 1.7 Pb BTK P =.52 1) S.Mizutani, S.Ishida, S.Fujii and S.Asano, Mater. Tran. 47(26)25. 2) M.Hiroi,

More information

untitled

untitled Tokyo Institute of Technology high-k/ In.53 Ga.47 As MOS - Defect Analysis of high-k/in.53 G a.47 As MOS Capacitor using capacitance voltage method,,, Darius Zade,,, Parhat Ahmet,,,,,, ~InGaAs high-k ~

More information

1. Precise Determination of BaAl2O4 Cell and Certification of the Formation of Iron Bearing Solid Solution. By Hiroshi UCHIKAWA and Koichi TSUKIYAMA (

1. Precise Determination of BaAl2O4 Cell and Certification of the Formation of Iron Bearing Solid Solution. By Hiroshi UCHIKAWA and Koichi TSUKIYAMA ( 1. Precise Determination of BaAl2O4 Cell and Certification of the Formation of Iron Bearing Solid Solution. By Hiroshi UCHIKAWA and Koichi TSUKIYAMA (Central Research Laboratory, Onoda Cement Co., Ltd.,

More information

ARspec_decomp.dvi

ARspec_decomp.dvi February 8, 0 auto-regresive mode AR ) AR.. t N fx t);x t);x3 t); ;xn t)g Burg AR xt) a m xt m t)+fft) AR M Fina Prediction Error,FPE) FPEM) ^ff M +MN MN ^ff M P f) P f) ff t M a m e ißfm t AR [,,3]. AR

More information

: , 2.0, 3.0, 2.0, (%) ( 2.

: , 2.0, 3.0, 2.0, (%) ( 2. 2017 1 2 1.1...................................... 2 1.2......................................... 4 1.3........................................... 10 1.4................................. 14 1.5..........................................

More information

EGunGPU

EGunGPU Super Computing in Accelerator simulations - Electron Gun simulation using GPGPU - K. Ohmi, KEK-Accel Accelerator Physics seminar 2009.11.19 Super computers in KEK HITACHI SR11000 POWER5 16 24GB 16 134GFlops,

More information

反D中間子と核子のエキゾチックな 束縛状態と散乱状態の解析

反D中間子と核子のエキゾチックな   束縛状態と散乱状態の解析 .... D 1 in collaboration with 1, 2, 1 RCNP 1, KEK 2 . Exotic hadron qqq q q Θ + Λ(1405) etc. uudd s? KN quasi-bound state? . D(B)-N bound state { { D D0 ( cu) B = D ( cd), B = + ( bu) B 0 ( bd) D(B)-N

More information

Report10.dvi

Report10.dvi [76 ] Yuji Chinone - t t t = t t t = fl B = ce () - Δθ u u ΔS /γ /γ observer = fl t t t t = = =fl B = ce - Eq.() t ο t v ο fl ce () c v fl fl - S = r = r fl = v ce S =c t t t ο t S c = ce ce v c = ce v

More information

Part () () Γ Part ,

Part () () Γ Part , Contents a 6 6 6 6 6 6 6 7 7. 8.. 8.. 8.3. 8 Part. 9. 9.. 9.. 3. 3.. 3.. 3 4. 5 4.. 5 4.. 9 4.3. 3 Part. 6 5. () 6 5.. () 7 5.. 9 5.3. Γ 3 6. 3 6.. 3 6.. 3 6.3. 33 Part 3. 34 7. 34 7.. 34 7.. 34 8. 35

More information

( ; ) C. H. Scholz, The Mechanics of Earthquakes and Faulting : - ( ) σ = σ t sin 2π(r a) λ dσ d(r a) =

( ; ) C. H. Scholz, The Mechanics of Earthquakes and Faulting : - ( ) σ = σ t sin 2π(r a) λ dσ d(r a) = 1 9 8 1 1 1 ; 1 11 16 C. H. Scholz, The Mechanics of Earthquakes and Faulting 1. 1.1 1.1.1 : - σ = σ t sin πr a λ dσ dr a = E a = π λ σ πr a t cos λ 1 r a/λ 1 cos 1 E: σ t = Eλ πa a λ E/π γ : λ/ 3 γ =

More information

36 th IChO : - 3 ( ) , G O O D L U C K final 1

36 th IChO : - 3 ( ) , G O O D L U C K final 1 36 th ICh - - 5 - - : - 3 ( ) - 169 - -, - - - - - - - G D L U C K final 1 1 1.01 2 e 4.00 3 Li 6.94 4 Be 9.01 5 B 10.81 6 C 12.01 7 N 14.01 8 16.00 9 F 19.00 10 Ne 20.18 11 Na 22.99 12 Mg 24.31 Periodic

More information

E 1/2 3/ () +3/2 +3/ () +1/2 +1/ / E [1] B (3.2) F E 4.1 y x E = (E x,, ) j y 4.1 E int = (, E y, ) j y = (Hall ef

E 1/2 3/ () +3/2 +3/ () +1/2 +1/ / E [1] B (3.2) F E 4.1 y x E = (E x,, ) j y 4.1 E int = (, E y, ) j y = (Hall ef 4 213 5 8 4.1.1 () f A exp( E/k B ) f E = A [ k B exp E ] = f k B k B = f (2 E /3n). 1 k B /2 σ = e 2 τ(e)d(e) 2E 3nf 3m 2 E de = ne2 τ E m (4.1) E E τ E = τe E = / τ(e)e 3/2 f de E 3/2 f de (4.2) f (3.2)

More information

n ξ n,i, i = 1,, n S n ξ n,i n 0 R 1,.. σ 1 σ i .10.14.15 0 1 0 1 1 3.14 3.18 3.19 3.14 3.14,. ii 1 1 1.1..................................... 1 1............................... 3 1.3.........................

More information

PDF

PDF 1 1 1 1-1 1 1-9 1-3 1-1 13-17 -3 6-4 6 3 3-1 35 3-37 3-3 38 4 4-1 39 4- Fe C TEM 41 4-3 C TEM 44 4-4 Fe TEM 46 4-5 5 4-6 5 5 51 6 5 1 1-1 1991 1,1 multiwall nanotube 1993 singlewall nanotube ( 1,) sp 7.4eV

More information

CRA3689A

CRA3689A AVIC-DRZ90 AVIC-DRZ80 2 3 4 5 66 7 88 9 10 10 10 11 12 13 14 15 1 1 0 OPEN ANGLE REMOTE WIDE SET UP AVIC-DRZ90 SOURCE OFF AV CONTROL MIC 2 16 17 1 2 0 0 1 AVIC-DRZ90 2 3 4 OPEN ANGLE REMOTE SOURCE OFF

More information

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T NHK 204 2 0 203 2 24 ( ) 7 00 7 50 203 2 25 ( ) 7 00 7 50 203 2 26 ( ) 7 00 7 50 203 2 27 ( ) 7 00 7 50 I. ( ν R n 2 ) m 2 n m, R = e 2 8πε 0 hca B =.09737 0 7 m ( ν = ) λ a B = 4πε 0ħ 2 m e e 2 = 5.2977

More information

Γ Ec Γ V BIAS THBV3_0401JA THBV3_0402JAa THBV3_0402JAb 1000 800 600 400 50 % 25 % 200 100 80 60 40 20 10 8 6 4 10 % 2.5 % 0.5 % 0.25 % 2 1.0 0.8 0.6 0.4 0.2 0.1 200 300 400 500 600 700 800 1000 1200 14001600

More information

T05_Nd-Fe-B磁石.indd

T05_Nd-Fe-B磁石.indd Influence of Intergranular Grain Boundary Phases on Coercivity in Nd-Fe-B-based Magnets Takeshi Nishiuchi Teruo Kohashi Isao Kitagawa Akira Sugawara Hiroyuki Yamamoto To determine how to increase the coercivity

More information

t = h x z z = h z = t (x, z) (v x (x, z, t), v z (x, z, t)) ρ v x x + v z z = 0 (1) 2-2. (v x, v z ) φ(x, z, t) v x = φ x, v z

t = h x z z = h z = t (x, z) (v x (x, z, t), v z (x, z, t)) ρ v x x + v z z = 0 (1) 2-2. (v x, v z ) φ(x, z, t) v x = φ x, v z I 1 m 2 l k 2 x = 0 x 1 x 1 2 x 2 g x x 2 x 1 m k m 1-1. L x 1, x 2, ẋ 1, ẋ 2 ẋ 1 x = 0 1-2. 2 Q = x 1 + x 2 2 q = x 2 x 1 l L Q, q, Q, q M = 2m µ = m 2 1-3. Q q 1-4. 2 x 2 = h 1 x 1 t = 0 2 1 t x 1 (t)

More information

数学の基礎訓練I

数学の基礎訓練I I 9 6 13 1 1 1.1............... 1 1................ 1 1.3.................... 1.4............... 1.4.1.............. 1.4................. 3 1.4.3........... 3 1.4.4.. 3 1.5.......... 3 1.5.1..............

More information

Outline I. Introduction: II. Pr 2 Ir 2 O 7 Like-charge attraction III.

Outline I. Introduction: II. Pr 2 Ir 2 O 7 Like-charge attraction III. Masafumi Udagawa Dept. of Physics, Gakushuin University Mar. 8, 16 @ in Gakushuin University Reference M. U., L. D. C. Jaubert, C. Castelnovo and R. Moessner, arxiv:1603.02872 Outline I. Introduction:

More information

1).1-5) - 9 -

1).1-5) - 9 - - 8 - 1).1-5) - 9 - ε = ε xx 0 0 0 ε xx 0 0 0 ε xx (.1 ) z z 1 z ε = ε xx ε x y 0 - ε x y ε xx 0 0 0 ε zz (. ) 3 xy ) ε xx, ε zz» ε x y (.3 ) ε ij = ε ij ^ (.4 ) 6) xx, xy ε xx = ε xx + i ε xx ε xy = ε

More information

( )

( ) 7..-8..8.......................................................................... 4.................................... 3...................................... 3..3.................................. 4.3....................................

More information

X X 1. 1 X 2 X 195 3, 4 Ungár modified Williamson-Hall/Warren-Averbach 5-7 modified modified Rietveld Convolutional Multiple Whole Profile CMWP 8 CMWP

X X 1. 1 X 2 X 195 3, 4 Ungár modified Williamson-Hall/Warren-Averbach 5-7 modified modified Rietveld Convolutional Multiple Whole Profile CMWP 8 CMWP X X a a b b c Characterization of dislocation evolution during work hardening of stainless steels by using XRD line-profile analysis Tomoaki KATO a, Shigeo SATO a, Yoichi SAITO b, Hidekazu TODOROKI b and

More information

note4.dvi

note4.dvi 10 016 6 0 4 (quantum wire) 4.1 4.1.1.6.1, 4.1(a) V Q N dep ( ) 4.1(b) w σ E z (d) E z (d) = σ [ ( ) ( )] x w/ x+w/ π+arctan arctan πǫǫ 0 d d (4.1) à ƒq [ƒg w ó R w d V( x) QŽŸŒ³ džq x (a) (b) 4.1 (a)

More information

磁性物理学 - 遷移金属化合物磁性のスピンゆらぎ理論

磁性物理学 - 遷移金属化合物磁性のスピンゆらぎ理論 email: takahash@sci.u-hyogo.ac.jp May 14, 2009 Outline 1. 2. 3. 4. 5. 6. 2 / 262 Today s Lecture: Mode-mode Coupling Theory 100 / 262 Part I Effects of Non-linear Mode-Mode Coupling Effects of Non-linear

More information

128 3 II S 1, S 2 Φ 1, Φ 2 Φ 1 = { B( r) n( r)}ds S 1 Φ 2 = { B( r) n( r)}ds (3.3) S 2 S S 1 +S 2 { B( r) n( r)}ds = 0 (3.4) S 1, S 2 { B( r) n( r)}ds

128 3 II S 1, S 2 Φ 1, Φ 2 Φ 1 = { B( r) n( r)}ds S 1 Φ 2 = { B( r) n( r)}ds (3.3) S 2 S S 1 +S 2 { B( r) n( r)}ds = 0 (3.4) S 1, S 2 { B( r) n( r)}ds 127 3 II 3.1 3.1.1 Φ(t) ϕ em = dφ dt (3.1) B( r) Φ = { B( r) n( r)}ds (3.2) S S n( r) Φ 128 3 II S 1, S 2 Φ 1, Φ 2 Φ 1 = { B( r) n( r)}ds S 1 Φ 2 = { B( r) n( r)}ds (3.3) S 2 S S 1 +S 2 { B( r) n( r)}ds

More information

( ) Note (e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ, µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) 3 * 2) [ ] [ ] [ ] ν e ν µ ν τ e

( ) Note (e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ, µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) 3 * 2) [ ] [ ] [ ] ν e ν µ ν τ e ( ) Note 3 19 12 13 8 8.1 (e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ, µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) 3 * 2) [ ] [ ] [ ] ν e ν µ ν τ e µ τ, e R, µ R, τ R (1a) L ( ) ) * 3) W Z 1/2 ( - )

More information

QMI_10.dvi

QMI_10.dvi 25 3 19 Erwin Schrödinger 1925 3.1 3.1.1 σ τ x u u x t ux, t) u 3.1 t x P ux, t) Q θ P Q Δx x + Δx Q P ux + Δx, t) Q θ P u+δu x u x σ τ P x) Q x+δx) P Q x 3.1: θ P θ Q P Q equation of motion P τ Q τ σδx

More information