Kullback-Leibler

Size: px
Start display at page:

Download "Kullback-Leibler"

Transcription

1 Kullback-Leibler Saov : Ver Kullback-Leibler Kullback-Leibler Kullback-Leibler max-plus Laplace KL Kullback-Leibler Poisso Kullback-Leibler URL Ver Ver Ψβ = log r q e βi i Legedre Ver Boltzma e βuei. 8 3 Ver Ver.0.9. Stirlig Ver Pearso. 9 2 Ver Ver Poisso Kullback-Leibler Ver.0.22a:. 9 4 Ver : Stirlig. allowdisplaybreaks Ver : Mcmilla Ver.0.24a73 : 0.

2 2 2 Boltzma Boltzma Saov Saov Saov Saov Saov : Kullback-Leibler : Jese Kullback-Leibler L Pithagoria theorem : Cramér Cramér Cramér Saov Cramér Ψβ = log r e β i Legedre :? : Massieu Réyi Tsallis Tsallis Tsallis Csiszár f-divergece

3 3 9 : Mcmilla 7 0. Mcmilla : Stirlig Stirlig.. Kullback-Leibler Boltzma exp ν β νf ν k.,. 2. 3, 4.. [] Csiszar, Imre. A simple proof of Saov s theorem. Bull Braz Math Soc, New Series 374, , [2] Csiszár, Imre. Axiomatic characterizatios of iformatio measures. Etropy, 2008, 0, [3] Cover, M. Thomas ad Thomas, Joy A. Elemets of Iformatio Theory. Secod Editio, Joh Wiley & Sos, Ic., 2006, xxiii+748 pages. Google, Kullback-Leibler 2 2, Kullback-Leibler. Kullback-Leibler Kullback-Leibler., Kullback-Leibler. Saov., Boltzma, Saov. Boltzma e βe i. 2.

4 4. Kullback-Leibler [4] Dembo, Amir ad Zeitoui, Ofer. Large Deviatios Techiques ad Applicatios. Stochastic Modellig ad Applied Probability formerly: Applicatios of Mathematics, 38, Secod Editio, Spriger, 998, 396 pages. Google [5] Ellis, Richard, S. The theory of large deviatios ad applicatios to statistical mechaics. Lecture otes for École de Physique Les Houches, August 5 8, 2008, 23 pages. [6]. R Woderful R. 206/9/8, [7] Saov, I. N. O the probability of large deviatios of radom variables. Eglish traslatio of Matematicheskii Sborik, 4284:, pp. 44. Istitute of Statistics Mimeograph Series No. 92, March, pdf [8] Suyari, Hiroki. Mathematical structure derived from the q-multiomial coefficiet i Tsallis statistics. arxiv:cod-mat/ [9] Suyari, Hiroki ad Scarfoe, Atoio Maria. α-divergece derived as the geeralized rate fuctio i Tsallis statistics., vol. 4, o. 38, IT204-6, pp , [0]. I, II., 2008/2, [] Tim va Erve ad Peter Harremoës. Réyi divergece ad Kullback-Leibler divergece. arxiv: [2] Ramo va Hadel. Lecture 3: Saov s theorem. Stochastic Aalytic Semiar Priceto Uiversity, Blog Article, 0 October [3] Vasicek, Oldrich Alfoso. A coditioal law of large umbers. A. Probab., Volume 8, Number 980, Kullback-Leibler Stirlig Kullback-Leibler.

5 .. 5 Stirlig Stirlig., x = + y = + y/! = Γ + = e x x dx = e e y + y/ dy 0, loge y + y/ = y + log + y/ = y + y/ y 2 /2 + O / = y 2 /2 + O /, 3, e y + y/ dy Stirlig : e y2 /2 dy = 2π.! = e 2π + o, log! = log + 2 log + log 2π + o.. 0, r =. i. q = q,..., q r., i k i k i. i k i /., i. k i /,. 2 Boltzma. q = q,..., q r, k /,..., k r /,. i k i, r k i =! k! k r! qk q k r r, 0. p i 0, r p i =. i k i / p i, p i. 3 e y + y/ y < 0, y > 0. Lebesgue,.

6 6. Kullback-Leibler.2 p i., k i log k i = p i + Olog = p i + O,. logk i / = log p i + Olog / 4. Stirlig r k i = log! = log + Olog = k i log k i + Olog, log k i! = k i log k i k i + Olog k i = k i log k i k i + Olog, log q k i i = k i log. k i. :! log k! k r! qk q k k r i r = log k i log + Olog = p i log p i log + Olog = p i log p i + Olog Kullback-Leibler.2 Dp q = p i log p i :! log k! k r! qk q k r r = Dp q + Olog. k i / p i. Dp q Kullback-Leibler Kullback-Leibler divergece. Kullback-Leibler Sp q = Dp q = 4 Taylor log + x = x x 2 /2 + x 3 /3 x 4 /4 +. p i log p i

7 .4. Kullback-Leibler 7. p i. : p i = exp Dp q + Olog. Dp q > 0, Olog Dp q, exp Dp q..4 Kullback-Leibler Kullback-Leibler Dp q = r p i logp i / fx = x log x, Dp q = r fp i/, Dp q p = p,..., p r fx = x log x. f x = log x +, f x = /x > 0 fx. fx. fx f + f x = x x =. pi pi Dp q = f = 0, p i = i =,..., r. fx, Dp q p. Kullback-Leibler 0, 0 p i., p i, Dp q > 0, p i 0., k i /.. Kullback-Leibler p i. Kullback- Leibler. Kullback-Leibler, Kullback-Leibler., p i, Kullback-Leibler,. Kullback-Leibler., Kullback-Leibler. Kullback-Leibler, p i...

8 8. Kullback-Leibler. B A., A B, B A..,,...5 r = 2, q = q, q 2 = q.., p = p, p 2 = p, Kullback-Leibler : Dp q = p log p q + p log p q. p = q 0, p q. Kullback- Leibler q p. p exp Dp q + Olog., p, Dp q p 0... a.?, q. 0 a < q, a., 0 a < q, a, q. q < a.,, a 0. a p. Kullback-Leibler. p a Dp q p = a., p = a. q < a, a, a. : lim log { Dq q = 0 0 a q, q k q k = if Dp q = k p a k/ a Da q q < a., q k q k = exp if Dp q + o. k p a k/ a a. Dp q.

9 .6. max-plus Laplace 9.6 max-plus Laplace a, b a, b max{a, b}, a, b a + b semirig, semifield max-plus. max-plus tropical mathematics.,.., max 0, +, 0. log., : lim logea + e b = max{a, b}, lim logea e b = a + b... a b, b a 0, e b a, logea + e b = log e a + e b a = a + log + e b a a.. : lim log expa i + Olog = max{a,..., a r }. expa i + Olog / a i., expa i + Olog = exp max{a,..., a r } + o Laplace.. : β exp fx + Olog dx = exp if fx + o α x β α.. fx α < x = x 0 < β, f x 0 > 0, β e fx gx dx = e fx0 2π gx 0 + o. f x 0 α Laplace.

10 0. Kullback-Leibler.7 KL,. 0, r =, a, b i r b i = a,. lim N Na log p i = b i a = Nb i Na Na! Nb! Nb r! qnb q Nb r r = p i log p i. Kullback-Leibler. /Na Na! lim N Nb! Nb r! qnb qr Nbr = p /q p pr /q r pr... N Na log Na! Nb! Nb r! qnb q Nb r r = Na Nb i log k log k + Nb i log Na k= k= = Na log k Nb i Na Na log k Na + Nb i log k= = Na Na k= 0 log k Na log x dx = [x log x x] 0 pi 0 k= Na Nb i k= log x dx + log k Na + p i log p i log [x log x x] p i 0 + p i log = p i log p i. 2 Na logna r Nb i logna = 0.. : N Na p i = b i /a /Na p /q p pr /q r pr..8 Kullback-Leibler

11 .8. Kullback-Leibler, p i > 0, r = r p i =, k i r k i =.! k! k r! qk q k r r, k i = p i + ε i, p i = + x i /, ε i = o 5,.!, k i! Stirlig! = e 2π + O/, k i! = k k i i e k i 2πki + O/! k! k r! qk q kr r = e 2π + O/. k k e k 2πk k k r r e k r 2πkr e e k i r k i =. = k k r k i = k i /! k! k r! qk q kr r = k k / kr / q q r kr + O/ 2π r k / k r /.. Kullback-Leibler 6. k i = p i + ε i, p i = + x i, ε i = o 7. r x i = 0, r k i = r = r p i =, r ε i = 0, k i = ki / log + x i + ε i qi = + o, k i = + x i + ε i, ki = + x i + ε i log + x i + ε i qi q i = + x i + ε i = x i ε i + x2 i 2 + o, r x i + ε i = 0,! k! k r! qk q k r r = x i qi + ε i + 2 xi + ε 2 i + o qi x 2 i exp 2 q i + o. 2π r q q r 5 ε i /2 ε i = O ε i /2.

12 2. Kullback-Leibler dk i = dx i, x 2 i exp! 2 q k! k r! qk qr kr i dk dk r = dx dx r + o. 2π r q q r r k i =, r x i = 0.. KL Kullback-Leibler,, k i = p i + o = p i + o o. k i = p i + o = p i + o ki ki / pi + o log = p i + o log log = o! log k! k r! qk qr kr = Dp q Kullback-Leibler. = p i log p i + o p i log p i + o = Dp q + o. KL Leibler k i = p i Kullback- k k / kr / kr q q r /. k i = p i + o, Kullback-Leibler /.. 2 Kullback-Leibler. Kullback-Leibler Dp q p i = 0. Dp q Taylor 2.. r x i = 0 Dp q p i = + x i /, x i Dp q = x 2 i + x i log + x i qi

13 .8. Kullback-Leibler 3 = = r x i = 0, + xi x i qi xi + x2 i + o. 2 Dp q = 2 x2 i 2q 2 i x 2 i + o. + o p i Kullback-Leibler Taylor 3. Pearso 2 i i 2 i = k i 2 Pearso 2. k i = + x i + o, k i 2 = x 2 i + o., Pearso 2 x i r x2 i /. exp /2 r x2 i /.,, Pearso 2 2. r r x i = 0 r, 2 r. 2. Z,..., Z s. Z i fz i E[fZ i ] = R fz i e z2 i /2 2π dz i. Y = s Z2 i s. :, E[fY ] = s E[fY ] = cost. f R s z 2 i 0 fy e y/2 y s/2 dy. Γs/22s/2 e s z2 i /2 dz dz s

14 4. Kullback-Leibler = cost. 0 fr 2 e r2 /2 r s dr = cost. 0 fye y/2 y s/2 dy. 2 r 2 = s z2 i, r. s r s., cost.. 3 y = r 2. cost.. A = [a ij ] s, A = [b ij ]. X,..., X s s exp s 2 i,j= b ijx i x j det2πa., 2 Y = s b ij X i X j i,j= s., s 2 s. 2. Y s.. A U = [u ij ] D = diagα,..., α s A = UDU = UDU T. A α i D = diag α,..., α s, C = U D, A = CC T. A = C T C Y = s b ij X i X j = X T A X = C X T C X. i,j= X X i i., Z = [Z i ] Z = C X, Y = Z T Z = s Zi 2. Z i, Y s 2. Z i. Z i E[ZZ T ], X i E[XX T ] = A = CC T E[ZZ T ] = E[C XC X T ] = C E[XX T ]C T = C CC T C T = E..

15 .9. Poisso Kullback-Leibler 5.9 Poisso Kullback-Leibler [6] p.80 Poisso λ > 0. K λ Poisso, k = 0,, 2,... K = k λ λk P K = k = e k!. P K = k = e λ k=0 k=0 λ k k! = e λ e λ =. Poisso. 0 < q <!/k! k! q k q k q = λ/, k k + λ λ k = k! λ λ k k! A, 0/ / k / A = λ/ k., q = λ Poisso. Poisso P K = k k. Poisso E[K] E[K 2 ] E[K] 2 : E[K] = kp K = k = e λ k=0 E[KK ] = e λ k=2 k=0 k λk k! = e λ k= λ k k 2! = e λ λ 2 e λ = λ 2 E[K 2 ] E[K] 2 = E[K] + λ 2 λ 2 = E[K] = λ. Poisso E[e tk : E[e tk ] = e λ k=0 tk λk e k! = e λ e λet = e λet. λ k k! = e λ λe λ = λ, Poisso λ 8.,, K λ λ Poisso, K λ λ/ λ 8 X, Y λ X, λ Y Poisso, X + Y λ X + λ Y Poisso.

16 6. Kullback-Leibler λ., K i,λi λ i Poisso, s K i,λi λ i 2 λ i λ i s 2. O i = K i,λi, E i = λ i, s O i E i 2 E i, Pearso. Poisso Poisso Stirlig. fx R. K λ λ Poisso, X λ = K λ λ/ λ. E[fX λ ] = e λ = = = k=0 f x Z λ / λ x Z λ / λ x Z λ / λ k λ λ λ k k! = x Z λ / λ λ x fx λλ+ e λ λ + λ x! λ λ+ λ x e λ + O/λ fx λ + λ x λ+ λ x e λ λ x 2πλ + λ x fx + x λ+ λ x e λ x + O/λ λ 2π + x/ λ λ /2 fx e x2 + O/ λ 2π + x/ λ fx e x2 /2 2π dx λ. λ 3 Stirlig. 5 λ + λ x log + x + λ x = λ + x λ x λ x2 λ = λ x + x2 2 x2 + λ x + O. Poisso λ λ = x2 2 + O λ 2λ + O λ + λ x λ > 0, r =.! k! k r! qk q k r r =! r q k i i k i!

17 .9. Poisso Kullback-Leibler 7., k i r k i =., λ i =,! r q k i i k i! =! e r e q q i i k i =! k i! e r e λ λk i i i k i! λ i = Poisso., Poisso r k i =. Poisso KL Poisso Kullback-Leibler. λ Poisso Stirlig, λ λk e k! = e λ λ k k k k k e k 2πk + O/k = k λ + O/k e. λ 2πk. k k log e k λ = k log k λ λ + k λ. Kullback-Leibler., k = p, λ = q k log k λ + k λ = p log p q p q. Kullback-Leibler. p logp/q p = q, p q p = q. Poisso k logk λ + k λ k = λ Taylor k log k λ + k λ = k λ 2 + k λ 3 k λ λ 2 3 λ λ 3., Taylor k = λ + λ x, λ. k = λ + λ x k log k λ + k λ x2 2 λ., k = λ + λ x, k/λ = + x/ λ, dk = λ dx k λ λk k e k! dk = k λ + O/k e dk e x2 dx λ λ 2πk 2π. Poisso, Poisso KL Taylor. k logk/λ + k λ k = λ Taylor k λ 2 /λ O = = k, E = = λ k λ 2 λ = 2 = O E2 E. Poisso, E, O E 2 /E..

18 8. Kullback-Leibler Poisso KL Poisso Kullback-Leibler, Poisso Kullback-Leibler. Poisso r e λ λk i r ki i i ki = e k i λ i + O/k i. k i! 2πki, k i = p i, λ i = r ki ki log e k i λ i = k i log k i + k i λ i λ i λ i = p i log p i p i. r p i = r r ki ki log e k i λ i λ i λ i = p i log p i. Kullback-Leibler. Kullback-Leibler. Poisso r k i =. Poisso, > 0, r =, λ i =, r k i =,! k! k r! qk q k r r =! e r e λ λk i i i k i! = r 2π + O/ k i /λ i k i e k i λ i 2πki + O/k i. Stirlig.. k i = p i,! k! k r! qk q kr r = + O/ 2π r r p i r pi pi.,! log k! k r! qk q k r r = p i log p i + Olog. Kullback-Leibler Dp q = r p i logp i /. Poisso.! k! k r! qk q k r r = 2π + O/ r k i /λ i k i e k i λ i 2πki + O/k i,

19 9 logk i /λ i k i e k i λ i = k i logk i /λ i + k i λ i = k i λ i 2 + k i λ i 3 2 λ i 6 λ 2 i, k i = λ i + λ i x i = + x i, x i = k i λ i λi = k i qi, dk i = dx i! k! k r! qk qr kr dk dk r exp r 2 x2 i dx dx r. 2π r q r Poisso., Poisso. Poisso r k i =. 2 Boltzma Kullback-Leibler, Boltzma. 2. q = q,..., q r. i i k i / p i, p = p,..., p r. p = exp Dp q + Olog. : p = p,..., p r s f ν,i p i c ν ν =, 2,..., s., R r,,...,, f ν,,..., f ν,r ν =,..., s. p,?, i E i E i p i U U,?

20 20 2. Boltzma, i, E i, E i p i U U,? 2 s =. s >. 2.2 Boltzma, r p i = Kullback-Leibler Dp q = r p i logp i / p = p,..., p r. Lagrage. Kullback- Leibler p. L = p i log p s i + λ p i + β ν f ν,i p i c ν q i ν=. λ, β ν. p i L 0 0 = L λ = p i,. 3,, 0 = L β ν = f ν,i p i c ν ν =,..., s, 2 0 = L p i = log p i + λ + Z := e λ = p i = exp s β ν f ν,i i =,..., r 3 ν= λ s β ν f ν,i ν= e s ν= β νf ν,i, p i = Z e s ν= β νf ν,i 4. Z. p i Z = e λ β ν. β ν 4 2. exp s ν= β νf ν,i Boltzma. Boltzma p i. p i., p = p,..., p r..

21 s =, f,i = E i, c = U, β = β, p i = Z e βe i, Z = e βe i, log Z β = Z E i e βe i = U. Boltzma. Sp q = Dp q = r p i logp i / : logp i / = s ν= β νf ν,i log Z, r p i =, r f ν,ip i = c ν s Sp q = β ν c ν + log Z. ν= s =, f,i = E i, c = U, β = β Sp q = βu + log Z. F F = β log Z, Sp q = βu F, Boltzma, qx. px / Sp q = Dp q = px log px qx dx. px : f ν xpx dx = c ν ν =,..., s., Dp q px : px = s Z e ν= β νf ν x qx, Z = e s ν= β νf ν x qx dx, log Z = f ν xe s ν= β νf ν x qx dx = c ν. β ν Z... 9 Boltzma.

22 22 2. Boltzma : 0 < θ <, β = log θ log θ, k = 0,,..., p k = θ k θ k = e βk q k k Z, q k = k 2, Z = 2 θ : θ i 0, θ r > 0, r θ i =, β i = log θ i log θ r, k + + k r = : p k,...,k r = q k,...,k r = r! k! k r! θk θr kr = e β ik i q k,...,k r, Z! k! k r! r, Z = r θr /2σ 2 x 2 +µ/σ 2 x px = e x µ2 = e /2σ2, Z = e µ2 /2σ 2 2πσ 2π Z 2. µ = 0, σ = 2.4. px µ σ 2, px dx =, R x px dx = µ, x 2 px dx = σ 2 + µ 2, Sp = px. R R R px log px dx Gamma : x > 0 px = e x/τ x α τ α Γα = e x/τ+α log x Z, Z = τ α Γα. Gamma px px dx =, R x px dx = c, 0 0 Spx] = 0 log x px dx = c 2 px log px dx px.. Beta : x > 0 x α px = Bα, β + x = eα log x α+β log+x, Z = Bα, β. α+β Z

23 t / : t ρt dt = +/2 + t2 dt, c = π Γ/2 B/2, /2 = c Γ + /2. px dx = ρ x d x, β = + /2 px = Z Beta : + x 2 0 < x < px = xα x β Bα, β Z +/2 = e β log+x2 = eα log x+β log x Z, Z = B/2, /2., Z = Bα, β. Poisso : p k = e λ λ k k! = e log λk q k, q k = e Z k!, Z = eλ s =, f x = x 2, c =, qx = 0., x 2 x 2 + +x 2 / x x 2 =, x. px = Z e βx2, Z = R e βx2 dx = πβ /2, log Z β = 2β =. β = /2, Z = 2π, px = e x2 /2 / 2π.. R 2. : lim S fx µ dx = R fx e x2 /2 2π dx. S { x,..., x R x x 2 = }, µ, fx x x,..., x..,. 0 qx = qx.,. Maxwell-Boltzma.

24 24 3. Saov 3 Saov Saov. Stirlig. [2].. 3. Saov {, 2,..., r} P : P = { p = p,..., p r R r p,..., p r 0, p + + p r = }. P r. r = 3 P. q = q,..., q r P. X, X 2,... {, 2,..., r}, q = q,..., q r. q = q,..., q r. A #A, A P A. A B P B A. i =,..., r X,..., X i k i P #{ k =, 2,..., X k = i } = k i for each i =,..., r =! k! k r! qk q k r r. k,..., k r k i = 0,,...,, k + + k r =. k,..., k r k /,..., k r / P P : { k P =,..., k } r k i = 0,,...,, k + + k r =. P + r. #P + r. X,..., X P P = k /,, k r /. P P. p, q P 2 Dp q : Dp q = p i log p i. p i 0 0 log 0 = 0, log 0 =. Dp q Kullback-Leibler Kullback-Leibler. 3. Saov. 2 : 2 lim if, lim sup 9.

25 3.2. Saov 25 A P lim if 2 A P 3 lim sup log P P A if p A Dp q. log P P A if p A Dp q. 3 P A A lim log P P A = if Dp q. p A Kullback-Leibler Dp q if r = 2, q = q, q 2 = q, p = p, p 2 = p, Dp q = p log p q + p log p q. p = q 0, p q. 0 a < b, A = a, b = a b. P P A = q k q k k lim log a<k/<b a<k/<b q k q k = if k Dp q = a<p<b. Saov. Db q b < q, Dq q = 0 a q b, Da q q < a 3.2 Saov Stirlig k, l l! k! kl k. 3 A., A.

26 26 3. Saov. l k l k. l! k! = k + k + 2 l kl k. l! k! = l + l + 2 k = k l k. k k l Saov. Stirlig p P + r e Dp q P P = p e Dp q.. p = p,..., p r = k /,..., k r / P, Dp q = k i log p i + k i log, e Dp q = qk q k r r, P P p k = p = p k r r, : + r! k!... k r! pk p kr r.! k! k r! qk q k r r.... l i = 0,,...,, l + + l r =., p i = k i /! l!... l r! pl p lr r! k!... k r! pk p kr r. l i / p i = k i /., 3.3, = l! k! lr! k r! kk l kr kr lr k l k kr lr kr k k l kr kr lr =.., = l + +l r = + r.! l!... l r! pl p l r r + r! k!... k r! pk p k r r

27 3.3. Saov f f0 = 0, f! = ff2 f, f0! =. f. k, l,, l k, l k fl! fk! fl! fk! fkl k. = fk + fk + 2 fl fkl k l! k! = fl + fl + 2 fk = fk l k. fk k l k i Z 0 p i = fk i /f, l i Z 0, f! fl! fl r! pl p l r r f! fl! k r! pk p k r r. = fl! fk! fl r! fk r! fk k l fk r kr lr fk l k fk r lr kr fk k l fk r kr lr =. f. 3.3 Saov 3... A {, 2,..., r} P r. = P = P Q r P. A P p P A. P P A = p P A lim Dp q = if Dp q p A P P = p P P = p 3.4. log P P A Dp q r log + + r e Dp q.

28 28 3. Saov.,, lim if log P P A if p A Dp q.. 2. A {, 2,..., r} P. P P A = P P = p e Dp q + r e if p A Dp q. p P A p P A 3.4. log P P A if Dp q + r log + p A.,, lim sup log P P A if p A Dp q A B, B C, A C. B A C if p B Dp q if p A Dp q if p C Dp q. C B Dp q p, if p C Dp q = if p B Dp q. if p B Dp q = if p A Dp q = if p C Dp q., Stirlig.. : p i 0, p + + p r =! k! k r! pk p kr r k i Z 0, k + + k r =.., k i k + +k r=,. 2 : k i Z 0, k + + k r =, p i = k i /,! l! l r! pl p l r r! k! k r! pk p kr r = p + + p r r =! k! k r! pk p k r r l i Z 0, l + + l r =

29 3.3. Saov 29. k, l : l! k! kl k k, l Z 0.,, p i = k i / = l! k! lr! k k kkr r k r! k l kr lr k l k k l r k r r k k l k k r l r r =. 2. Saov. 3.4 Kullback-Leibler. k i Z 0, k + + k r =, p i = k i /. 2 l i = l + +l r =! l! l r! pl p l r r + r! k! p r! pk p k r r. + r +! r k! k r! pk p k r r. Z 0, q + + q r =, p k p k r r q k q k r r q k + r q kr r p k p kr r! k! k r! qk q kr k i = p i, Kullback-Leibler r qk qr kr. p k p kr r, Dp q = p i log p i : log qk q k r r p k p kr r = log q + r e Dp q p r p qr p r pr = Dp q.! k! k r! qk q kr r e Dp q Saov 3..

30 30 4. Saov 4 Saov 3. P {, 2,..., r} p = p,..., p r, q = q,..., q r P., i k i, i k i /. P = k /,..., k r / P E = E,..., E r R r, E = = E a < E a+ E r b < E r b+ = = E r q, q r > 0. E i i 5. β R pβ = p β,..., p r β P Zβ p i β = e βe i Zβ, Zβ = e βe i,. Uβ = E β Uβ = E β = E i p i β = log Zβ β. β, e βe i Boltzma, pβ, Zβ, Uβ. log Zβ β. 2 log Zβ = Z βzβ Z β 2 β Zβ 2, a i = e βe i 0, a, a r > 0 E < E r Z βzβ Z β 2 = i,j E 2 i a i a j i,j E i a i E j a j, = Ei 2 + Ej 2 a i a j 2E i E j a i a j = E i E j 2 a i a j > i,j i,j 2 log Zβ > 0 β., Uβ = log Zβ β 4. P, P. 5 i. i,j

31 β. Uβ. p0 = q U0 = E i. β Uβ = i E ie βe i i e βe i qi = e βe e βe i E ie βe i E q i i e βe i E e βe a E i e βe a = E. β Uβ = i E ie βe i i e βe i qi = e βer e βe r i E ie βer Ei q i i eβe r E i e βer r i=r b+ E i e βe r r i=r b+ = E r., E r U E β U = Uβ. 4.2 p = p,..., p r P, r E ip i Uβ, pβ.,, r E ip i Uβ, a > 0 : β 0, Uβ a β 0, Uβ E i p i Uβ. E i p i Uβ + a. a > 0. {, 2,..., r} P A A = { { p P Uβ a r E ip i Uβ} β 0, { p P Uβ r E ip i Uβ + a} β 0. P A P P B P A = P P A B P P A B P pβ Saov 3.., ε > 0, P B : B = { p P p pβ < ε }.

32 32 4. Saov Euclid. B pβ ε., pβ P P B P A. Kullback-Leibler Dp q P C DC q = if p P Dp q. Saov, P C C P P C = exp DC q + o. P A, B, A B A, B, A B. B A B = A B. P P B P A = P P B P P A = exp DB q DA q + o. 0. p A p = pβ Dp q, B = A B pβ, DB q > DA q = Dpβ q, P P B P A 0. Dp q p, A P, p A Dp q p = pβ, p = pβ. p A Dp q p = pβ.. pβ E i p i β = Uβ, pβ A. 6 Dpβ q = = p i β log p iβ = p i β log e βe i Zβ p i β βe i log Zβ = βuβ log Zβ. % p A Dp q. p A Dp q Dpβ q. p A., A, β 0 r E ip i Uβ, β 0 r E ip i Uβ, β β E i p i βuβ. # 6 Sp q = Dp q Sp q = βuβ + log Zβ..

33 , β > 0 Uβ < r E i, β < 0 Uβ > r E i. A a > 0. Kullback-Leibler Dp q : Dp q = p i log p i = pi p i log p i β p i β = p i log p i p i β + = Dp pβ + p i log e βe i Zβ = Dp pβ + = Dp pβ β E i p i log Zβ. p i log p iβ p i βe i log Zβ, # Kullback-Leibler Dpβ q % Kullback-Leibler 0, Dp q Dp pβ βuβ log Zβ = Dp pβ + Dpβ q Dpβ q. p A Dp q p = pβ.. 4. #. #. β Boltzma. β > 0 # = E i p i Uβ. [0] 9-2- p.39., r E ip i Uβ, #.. 4., U0 r E i. β > 0 Uβ mi{e,..., E r }, β < 0 Uβ max{e,..., E r }. β =, β =. β, β =, β = 0. β.. β,.. r, i E i. E i < 0 E i. i. U 0 = r E i

34 34 4. Saov. U 0. U > U 0.. U,. U 0 U., i p i? U 0, U U. i p i, U β p i β. U > U 0 β < 0.,,., U < U 0,, U., U 0, U, i U p i β. U < U 0 β > 0,.,,. # ,. q = q,..., q r P. X, X 2,... q {, 2,..., r}. X, X 2,..., X i k i, P = k /,..., k r /. P P. E i R 4.. E < U < E r, β R, pβ = p β,..., p r β P, Zβ : p i β = e βe i Zβ, Zβ = e βe i, log Zβ = β E i p i β = U.

35 pβ. 0 < a, A U P A U = { { p P U a r E ip i U } β 0, { p P U r E ip i U + a} β 0. r E ip i β = U pβ A U. ε > 0, pβ A U ε B ε pβ., P P B ε pβ P A U = P P B ε pβ P P A U. P pβ θ /2.. {0,,..., r} X /2 : r P X = i = i = 0,,..., r. i 2 r X, X 2,... X. X, X 2,..., X i k i, P = k 0 /, k /,..., k r /, P {0,,..., r}.,, P. E i = i., Zβ = e βe i = i=0 i=0 r i e β 2 i r i = e β + r 2 2 r, p i β = e βe i Zβ = r e βi i e β + = r r e β i r i i e β + e β +.,, p i β =, r θ i θ r i, θ = e β i e β +. Z β = re β e β + r 2 r Uβ = β Zβ = Z β Zβ = re β e β + = rθ

36 36 4. Saov θ i. /2. /2. r i i/r.. i i/r. 7 : i/r = i=0 i r p i θ. p i = k i /? p = p 0, p,..., p r θ, 4.2. pβ θ, 4.2, i = ip i = i=0 E i p i Uβ = rθ i=0 p = p 0, p,..., p r P.. θ θ.. /2 r, r. r θ 8, θ E i : = e β 0E i q 0,i Z 0, Z 0 = e β 0E i,0. q 0,i 0, r q 0,i =, E,..., E r R E E r, q, q r > 0., E i pβ : p i β = e β 0+βE i q 0,i Z 0 Zβ, Z 0 Zβ = Z 0 e βe i = e β 0+βE i q 0,i , θ / θ /2, 0,.

37 37 5 : Kullback-Leibler Cover-Thomas [3].., Kullback-Leibler. 5. : Jese fx E[fX] E[ ] : : fx, gx α, β, E[αfX + βgx] = αe[fx] + βe[gx]. 2 : fx gx E[fX] E[gX]. 3 : E[] =., α E[α] = α. E[ ]. p i 0, r p i =, E[fX] = r fx ip i. ρx 0, b ρx dx =, E[fX] = b fxρx dx a a. Jese : fx E[fX] fe[x]. fx E[fX] fe[x].. fx.. fx, µ = E[X]. fx X = µ ax µ + fµ,, fx ax µ + fµ E[fX] E[aX µ + fµ] = ae[x] µ + fµ = fe[x]. 2, , fx, X µ = E[fX] fx = µ,. 9 E[fX] = r fx ip i Jese r,.

38 38 5. : Kullback-Leibler 5.2 [3], p.3, Theorem 2.7. Log sum iequality. 0 a i, b i, a i log a i A log A b i B, A = a i, B = b i. a i /b i. 0 log 0 = 0, a loga/0 =.. a i > 0, b i > 0.. fx = x log x, f x = log x +, f x = /x fx x > 0. Jese. = b i /B. B a i log a i b i = b i a i log a i = f B b i b i a i f = f b i ai b i b i a i B b i = f A = A B B log A B. fx, a i /b i. p i, Dp q = p i log p i log = 0 Kullback-Leibler., {, 2,..., r} {, 2,..., r} = A A s, { A,..., A s } P = P,..., P s, Q j = Q,..., Q s P j = i A j p i, Q j = i A j, Dp q = s p i log p i i A j j= s j= P i log P j Q j = DP Q., Kullback-Leibler.

39 5.3. Kullback-Leibler L Kullback-Leibler L {, 2,..., r} p = p,..., p r, q = q,..., q r L p q L p q L = p i. p pa = i A p i A {, 2,..., r}, p q L = 2pA qa, A = { i {, 2,..., r} pi }. # p q L = i + i Ap p i = pa qa + qa c pa c i A c = pa qa + qa pa = 2pA qa.. KL L : Dp q 2 p q 2 L.. r = 2. 0 < a <, 0 < b < a log a b + a log a b 2a b2. fb : fb = a log a b + a log a b 2a b2. f b = a b + a 4b a = b a b b b 4. b a /4, /b b 4 0. fb b a. fb b < a, b > a. fp = 0 fb 0.. A #, {, 2,..., r} {A, A c } P = a, a, Q = b, b a = pa, b = qa. Kullback-Leibler 5.2 Dp q DP Q 2a b 2 = 2pA qb 2 = 2 p q 2 L. 2 r = 2, #.

40 40 6. : Cramér 5.4 Pithagoria theorem P = { p = p,..., p r R r 0 p + + p r = }, P {, 2,..., r}. P r. [3], p.367, Theorem.6.. Pythagoria theorem E P, q P E. p = p,..., p r E Dp q E p : Dp q = mi p E Dp q. Dp q Dp p + Dp q p E. Kullback-Leibler, Dp q Dp q p p. Pythegoria theorem. p p Kullback-Leibler p. t R. pt = p t,..., p r t = tp + tp, p i t = tp i + tp i, ft = Dpt q = tp i + tp i log tp i + tp i f t = = p i p i log tp i + tp i + p i p i p i p i log tp i + tp i. 2 r p i = r p i =. p0 = p E, p = p E, E pt E 0 t. p Dp q E p, f f 0 = = p i log p i p i p i log p i = p i log p i p i. p i log p i log p i pi p i p i p i log p i = Dp q Dp p Dp q. 6 : Cramér. formulatio Cramér.

41 6.. Cramér 4 6. Cramér H, U 0 = E[H]. H 20 : Zβ = E[e βh ].. Uβ : Uβ = E[He βh ] Zβ = log Zβ. β H, H 2 H, Zβ, 2 log Zβ = β β Uβ = Z βzβ Z β 2, Zβ 2 Z βzβ Z β 2 = 2 E[H H 2 2 e βh +H 2 ] 0, log Zβ, Uβ., U0 = U 0 = E[H], β 0 Uβ U 0, β 0 Uβ U 0. log Zβ Legedre Su Du : Su = if βu + log Zβ, β R Du = Su = sup βu log Zβ β R u R. Su u, Su. 0u log Z0 = 0 Su 0, Du 0 u R. Zβ, βu + log Zβ = u Uβ β, Uβ = u β = βu, Su = βuu + log Zβu, SUβ = βuβ + log Zβ. β = βu. Su, Du = Su Kullback-Leibler. SU0 = 0, DU0 = 0 20,, H Mt = E[e th ], t = β, Zβ.

42 42 6. : Cramér, Su u = U0 = E[H] 0, Du 0. Su Du u U0 = E[H], u U0 = E[H]. Uβ, u U0 = E[H] βu 0, u U0 = E[H] βu 0. : Su = { ifβ 0 βu + log Zβ u U0 = E[H], if β 0 βu + log Zβ u U0 = E[H]. # Du. u H U0 = E[H] β. 6. Cramér., H, H 2,..., H. : F R lim sup log P 2 G R lim if log P H k F k= H k G k= sup Su = if Du. u F u F sup Su = if Du. u G u G 3 A R, A G F A, sup u G Su = sup u F Su lim log P H k A = sup Su = if Du. u A u A k=, H + + H / A Su Kullback-Leibler Du A. 6.2 Cramér 6.2 Cramér. 6.. u H U0 = E[H], log P H k u Su u U0 = E[H], k= log P H k u Su u U0 = E[H]. k=, u U0 = E[H] Su, u U0 = E[H] Su.

43 6.2. Cramér 43 2 δ > 0 lim if log P H k u δ, u + δ Su. k=. 2..., u U0 = E[H]. H + + H u 0 H + +H u, β 0 P H k u = E[ H + +H u] k= E [ H + +H ue βh + +H u ] E [ e βh + +H u ] = e βu Zβ = e βu+log Zβ. u U0 = E[H], β 0 log P H k u βu + log Zβ. 6. # log P k= k= H k u if βu + log Zβ = Su. β 0, u U0 = E[H],. H + + H u 0 H + +H u, β 0 P H k u = E[ H + +H u] k= E [ H + +H ue βh + +H u ] E [ e βh + +H u ] = e βu Zβ = e βu+log Zβ. u U0 = E[H], β 0 log P H k u βu + log Zβ. 6. # log P k= k= H k u if βu + log Zβ = Su. β 0

44 44 6. : Cramér H R µ. µ β µ β dx = e βx µdx Zβ,. E β [ ], P β. H E β [H] = E[He βh ] = Uβ Zβ. u = Uβ, δ > 0. Su, Su = βu + log Zβ. δ ε > 0. lim P β H k u ε, u + ε =. k=, : P β H k u ε, u + ε = E[ H + +H u ε,u+ε e βh + +H ] Zβ k= Zβ E[ H + +H u ε,u+ε e βu+ β ε ] = e βu+log Zβ β δ P H k u ε, u + ε k= e βu+log Zβ β δ P H k u δ, u + δ. k= P H k u δ, u + δ e βu+log Zβ β ε + o k=. / : lim if log P H k u δ, u + δ βu + log Zβ β ε = Su β ε. k= ε > 0, lim if log P H k u δ, u + δ Su. 2. k=

45 6.2. Cramér F R, F + = { u F u U0 = E[H] }, F = { u F u U0 = E[H] }. R, F u F + u +. Su u U0 = E[H], u U0 = E[H] sup Su = Su +, u F + sup Su = Su, u F sup Su = max{su +, Su }. u F 6.2, log P H k F + k= log P H k u + Su +, log P H k F log P H k u Su, k= k= P H k F e Su + + e Su 2e sup u F Su. k= k= lim sup log P H k F k= sup Su. u F. 2. G R. ε > 0, u G Sv sup Su ε u G. G, δ > 0 v δ, v + δ G., lim if log P H k G lim if log P H k v δ, v + δ k= lim if log P k= k= Sv sup Su ε. u G H k G k= sup Su. u G A R, A G, G F. A F. G A F sup Su lim if u G log P H k G lim if log P H k A k=

46 46 6. : Cramér lim sup sup u G Su sup u A log P H k A k= Su sup Su. u F lim sup sup u G Su = sup u F Su lim log P H k A. k= log P H k F k= = sup Su. u A sup Su, u F 6.3 q = q,..., q r {,..., r} : 0, q + + q r =. H {,..., r} Hi = E i R. Zβ = E[e βh ] = e βe i. pβ = p β,..., p r β p i β = e βe i Zβ, Uβ = E β [H] = E i p i β = Zβ E i e βe i. SUβ = βuβ + log Zβ = βuβ log Zβ = p i β βe i log Zβ = p i β log p iβ = Spβ q., log Zβ Legedre Su u = Uβ. 6.4 H α > 0, τ > 0 E[fH] = Γατ α 0 fxe x/τ x α dx

47 β > /τ Zβ = E[e βh ] = Uβ = + τβα Γατ α Γατ α 0 0 e +τβx/τ x α dx = + τβ, α + τβα Γα + τ α+ = τα Γατ α + τβ α+ + τβ > 0. e +τβx/τ x α dx = 2 : Uβ = u > 0 0 e cx x s dx = Γs c s s, c > 0. SUβ = βuβ + log Zβ = = α α + τβ ταβ + τβ α log + τβ. + τβ = τα u, β = α u τ α log + τβ, Su = α u τ α log τα u = α α log α u τ α log u τ. Su u = U0 = τα 0. H, H 2,... H α, τ, 22, H + + H α, τ 2. Uβ Uβ = / β log Zβ. 22 H + + H H Zβ = + τβ α. α, τ. H + + H α, τ.. H, K, α, β, τ E[fH + K] = = = ΓαΓβτ α+β ΓαΓβτ α+β ΓαΓβτ α+β = ΓαΓβτ α+β Bα, β = ΓαΓβτ α+β = Γα + βτ α+β fx + ye x+y/τ x α y β dy dx 0 fte t/τ x α t x β dt dx x y fte t/τ x α t x β dx dy 0 fte t/τ fte t/τ t α+β dt fte t/τ t α+β dt 0 t α u α t β u β t du dy 2 y = t x y t, 4 x = tu x u. H + K α + β, τ..

48 48 6. : Cramér, [ ] E f H k = k= 0 a < b P a < H k < b = k= Γατ α Γατ α b a 0 f e y/τ y α dy = 2 y = τx. Cramér, lim log b/τ α e x x α dx = sup Su = Γα a/τ a<u<b y e y/τ y α dy. b/τ α e x x α dx. Γα a/τ Sb b/τ < α, 0 a/τ α b/τ, Sa α < a/τ. Stirlig log Γα = α log + α α log α + o, A = a/τ, B = b/τ: B lim log e x x α dx A = sup α log x x = a/τ<x<b/τ α log B B α log α α α log A A B < α, A α B, α < A. e x x α = exp α log x x + o Laplace. 6.5 Saov Cramér., Cramér. R r,. X R r, β = β,..., β r R r Massieu Zβ = E[e β,x ], Ψβ = log Zβ. Ψβ β R r. a = a,..., a r R r a = r a i / β i, X a = a, X 2 aψβ = E[X2 ae β,x ] E[e β,x ] E[X a e β,x ] 2 Zβ 2 = E[X a Y a 2 e β,x+y ] 2Zβ 2 0.

49 6.5. Saov Cramér 49 Y X X. X a 2 aψβ = 0. p R r Sp Ψβ Legedre : Sp = if β Rr β, p + Ψβ. β, p + Ψβ β i 0 p i = Ψβ = log Zβ = E[X ie β,x ] β i β i Zβ =: p i β. X i X i i. pβ = p β,..., p r β. β βp = β p,..., β r p... Spβ = β, pβ + Ψβ, Sp = βp, p + Ψβp. X, X 2,... R r, X, A R r. lim log P X k A = sup Sp p A k= Cramér. Saov Cramér. {, 2,..., r} P R r : P = { p = p,..., p r R r p,..., p r 0, p + + p r = }. e i R r i 0. e i P. q = q,..., q r R r, X e i. Cramér Saov. Sp =. p i log p i = Sp q Zβ = e β,ei = e β i, Ψβ = log Zβ. Ψβ Legedre Sp q., p i = p i β = Ψβ = log Zβ = e βi β i β i Zβ.

50 50 6. : Cramér, Ψβ = log Zβ = p i log Zβ = p i β i + log log p i = β, p p i log p i., Sp, Sp = β, p + Ψβ = p i log p i = Sp q. Cramér Saov. 6.6 Ψβ = log r e β i Legedre {, 2,..., r} P R r : P = { p = p,..., p r R r p,..., p r 0, p + + p r = }., q = q,..., q r P > 0 i =,..., r. q P,. Zβ Massieu Ψβ pβ = p β,..., p r β P : Zβ = e β i, Ψβ = log Zβ, p i β = Ψβ = e βi β i Zβ β = β,..., β r R r.. Ψβ. e =,..., R r. Zβ + λe = e λ Zβ, Ψβ + λe = Ψβ λ, pβ + λe = pβ. pβ β e. p = p,..., p r P, β R r p i = e β i λ λ R, p = pβ : e β i = e λ p i, Zβ = e β i = e λ p i = e λ, p i β = e β i Zβ = p i. pβ P. p = p,..., p r R r β R r fβ fβ = β, p + Ψβ

51 6.6. Ψβ = log r e β i Legedre 5. fβ, fβ, fβ 0. fβ β i fβ = β i β i p i + β i Ψβ = p i p i β, fβ p P. fβ if β R r fβ =., Ψβ Legedre Sp Sp = if β Rr β, p + Ψβ, Sp P. p P, p = pβp βp R r βp e, Sp = βp, p + Ψβp. β = βp p i = e β i λ β i = log p i λ, Zβ = e λ, Ψβ = λ Sp = log p i λ p i + λ = p i log p i = Sp q. Ψβ Legedre Sp q. Sp. Sp Legedre F β = sup β, p + Sp p P Ψβ. gp gp = β, p + Sp. gp p. gp P. Lagrage p λ L L = gp λ p i = β, p + Sp λ p i. L λ = p i,

52 52 7. :? L p i = β i log p i λ = β i log p i λ., r p i = gp e λ = e β i = Zβ,., Ψβ = log Zβ = λ = p i = e λ β i = e β i Zβ, p i λ = Sp Legedre F β Ψβ.. log Zβ = λ = β i log p i p i β i log p i = β, p + Sp = F β q = q,..., q r. R r Ψβ P Sp : Ψβ = log e β i, Sp = p i log p i. Legedre. Sp = if β Rr β, p + Ψβ, Ψβ = sup β, p + Sp. p P P Dp Dp = p i log p i, Dp Ψβ, Dp = sup β R r β, p Ψβ, Ψβ = sup β, p Dp p P. 7 :?.., :, Cramér : : 7.3.

53 , Cramér 6. H λ λ, H λ R µ λ : E[fH λ ] = fx µ λ dx. λ V, H λ. Zβ, λ Ψβ, λ Massieu : R Zβ, λ = E[e βh λ ], Ψβ, λ = log Zβ, λ. R µ β,λ dx = e βx µ λ dx Zβ, λ P β, β = E β [ ]. Ψβ, λ = log Zβ, λ λ Ψβ, λ = λψβ + η λ β, η λ β = o, η λβ = o, η λβ = o. H λ β = E[H λe βh λ ] Zβ, λ = β Ψβ, λ = λψ β + o Hλ λ β uβ = ψ β = uβ + o uβ λ., µ β,λ H λ, Z = Zβ.λ, 0 H λ H λ β 2 = Hλ 2 β H λ β 2 = Z ββz Z β 2 β Z 2 2 = Ψβ, λ = λψ β + o β. Ψβ, λ β. ψβ. Hλ λ µ β,λ = ψ β + o = O 0 λ. λ λ λ, µ β,λ H λ /λ., µ β,λ H λ /λ λ

54 54 7. :? uβ = ψ β, λ, 2 ψ β/λ. Ψβ, λ β, H λ β = Ψ β β, λ β. ψβ, uβ = ψ β. β 0, u = uβ = ψ β u0,. U = Uβ, λ = H λ β, su = βu + ψβ SU, λ = βu + Ψβ, λ, λ U = λu + o, Ψβ, λ = λψβ + o, SU, λ = λβu + ψβ + o = λsu + oλ λ., µ λ dx = q λ x dx,, p β,λ x = e βx q λ x Zβ, λ µ β,λ dx = e βx q λ x Zβ, λ dx = p β,λx dx, SU, λ : SUβ, λ, λ = βx + log Zβ, λp β,λ x dx R e βx = log p β,λ x dx = Zβ, λ R R p β,λ x log pβ,λ x dx. q λ x SU, λ, su λ. P H λ /λ u λ. Hλ P λ u = E[ Hλ λu] E [ Hλ λue ] βh λ λu E[e βh λ λu ] = e λβu Zβ, λ = e λβu+ψβ,λ. Hλ λu H λ λu, 0. Hλ λu Hλ λue βh λ λu β 0, 2 Hλ λue βh λ λu e βh λ λu. Ψβ, λ = λψβ + o log P Hλ λ u = λβu + ψβ + o = λsu + o.

55 λ λ lim sup λ λ P Hλ λ u su.. 0 < ε δ. µ β,µ H λ /λ λ u = uβ, Hλ P β u ε, u + ε = e o λ. λ, β 0, P β Hλ λ u ε, u + ε = E [ ] Hλ λu λε,λu+λε e βh λ Zβ, λ Zβ, λ E [ Hλ λu λε,λu+λε e λβu+λβε] = e λβu+λβε Ψβ,λ Hλ P u ε, u + ε λ = e λβu+λβε λψβ+o Hλ P u ε, u + ε λ e λsu βε+o Hλ P u δ, u + δ. λ λ Hλ P u δ, u + δ e λsu βε+o+o = e λsu βε+oλ. λ /λ λ lim if λ λ P Hλ u δ, u + δ su βε. λ ε > 0, lim if λ λ P Hλ λ u δ, u + δ su., 6 Cramér., 6, : lim λ λ P Hλ λ u = su. H λ /λ u = uβ λ, su.,.?

56 56 7. :? 7.2 [0], pp ,,.,..,. H N,V V N,. U 0 N, V = E[H N,V ]. = N/V V, U 0 N, V = V u 0 + ov. U 0 N, V =, u 0 =. V P H N,V /V u 0 ε ε > 0, H N,V /V u 0. U U 0 N, V u u 0, U u.. SU, N, V H N,V U : SU, N, V = log P H N,V U U U 0 N, V. SU, N, V U. U V P H N,V U [0], p. 05 δ u : u = U V, = N V.. [0], p SU, N, V U. SU, N, V V : ηu,, V, SU, N, V = V su, + ηu,, V, u = U V, = N V ηu,, V = ov, η u u,, V = ov V. lim V SU, N, V = lim V V, U = V u, / U = V / u, V log P H N,V U = su, S U U, N, V = V V s uu, + η u u,, V = s u u, + o.

57 s u u, u. su,. su, u. βu, 0 βu, = s u u, = S U U, N, V + o. 7. λ = V. [0], pp , P H N,V U E lim V P H N,V U. : log P H N,V U E P H N,V U = e βu,e = βu, E + o V.., 0 < θ < θ, log P H N,V U E P H N,V U = SU E, N, V SU, N, V = E S U U θe, N, V = E s u u θev, + o = E s u u, + o = βu, E + o. V. 2, 3, 4 s u u,. Boltzma..,.. U, E, U E. U E V P H N,V U E. E P H N,V U E., E V Boltzma e βu,e.,.?. 2.4 Maxwell-Boltzma.,,...

58 58 7. :? , H, H k, H res, H tot. thermal reservoir, heat bath. V. N. H, H res V HV tot, P H = E i ad H tot V = H + H res V,. U = P H = E i P H res V U E i. i, i E i. H E i : P H = E i =. 2 i,. Boltzma. V : S res U, V := log P H res V U = V s res u + ov, u = U V. S res U, V, u = U/V, s res u C. ov u ov., U = V u / U = /V / u,, E θ 0 < θ <, log P H res V, βu, U E = S res U E, V = S res U, V E Sres U θe, V U = S res U, V E V s res u θe + ov V u V P H res V = S res U, V E sres u + o. u βu = sres u u U E = P H res V U e βue+o V.,,2, P H = E i ad H tot V U = P H res V U e βue i+o.

59 59 P H tot V U = i P H = E i ad H tot V U = P H res V U i e βue i+o.,, P H = E i H tot V U = P H = E i ad H tot V U P H tot U P H = E i HV tot U = e βue i+o j q je βue j+o e βuei j q je βue j V., U, E i : lim P H = E i HV tot U = e βue i V j q je. βue j βu. e βue i Boltzma H, H 2,..., V = =, 2, 3,..., H tot = H + H H, H = H, H res = H H, Saov Cramér,.., Boltzma e βue i. 8 : 8. Massieu 8.. X : i X i M X t M X t = e tx i. X = E, t = β Zβ = e βe i.. K X t = log M X t

60 60 8. : X cumulat geeratig fuctio. F β = log Zβ β. β Fβ = log Zβ Boltzma. Fβ Massieu. 8.2 Réyi 8.2 Réyi. 2 p = p,..., p r, q = q,..., q r, Réyi S β p q S β p q = β log pi β = β log. β β r β β S βp q = pβ i q β i logp i / r pβ i q β i, β =, β β S β p q = β=. p i log p i = Sp q S p q := lim β S β p q = Sp q. p β i q β i Réyi. = Réyi Réyi. Réyi Zβ; p, q = pi q i β = e βe i, E i = log p i F β : p, q Massieu Fβ; p, q F β; p, q = β log Zβ; p, q, Fβ; p, q = log Zβ; p, q Boltzma : β S β p q = βf β; p, q = Fβ; p, q = log Zβ; p, q.

61 8.3. Tsallis 6 Réyi divergece Réyi []. β S β p q = log Zβ; p, q β : 2 r i,j= log Zβ; p, q = E i E j 2 e βe i+e j q j 0 β 2Zβ 2 p i = i =,..., r., β S β p q = log Zβ; p, q β = log Z; p, q = log = 0, β S β p q = log Zβ; p, q β = Sp q,. β S β p q β Sp q. 8.3 Tsallis 8.3 Tsallis. p = p,..., p r, q = q,..., q r, Zβ; p, q : Zβ; p, q = e βe i = pi q i β = p β i q β i, E i = log p i. E i 2 p q i. pβ = p β,..., p r β p i β = e βe i Zβ; p, q = pβ i q β i Zβ; p, q, β = p i 0 p i = p i., Réyi S β p q S β p q = log Zβ; p, q β = β log p β i q β i, Sp q Sp q = β log Zβ; p, q = β= β Zβ; p, q = β=. 2 Z; p, q =. x q : p i log p i D x,q fx = fx fqx qx. q q D x,q fx fx/ x.

62 62 8. : log Zβ; p, q Zβ; p, q β q 23, Tsallis 24 q q α : Z; p, q Zα; p, q T α p q = D β,α β= Zβ; p, q = α = r pα i q α i α α α, Tsallis. T α p q = p i / p i / α, α x x α lim α α = α α α= x α = x log x.,. Tsallis x log x x x α / α. Tsallis Réyi :. T β p q = Zβ; p, q β = exp βs βp q. β Réyi Tsallis S β p q = log Zβ; p, q β = log + βt βp q β. Tsallis Réyi x log x = log + x.,, Réyi, Tsallis Zβ; p, q. Tsallis Réyi. Tsallis T β p q Réyi S β p q Z β p q = p β i q β i T β p q = Z βp q β, S β p q = log Z βp q. β. β > β < Z β p q, Z β p q. e β x = + β x /β, l β x = xβ β Tsallis. Réyi, Massieu, Tsallis.

63 8.3. Tsallis 63, Z β p q /β = e β T β p q = exp S β p q. Tsallis Réyi e β x expx., T β p q = l β Zβ p q /β, S β p q = log Z β p q /β p i, 0, r p i = r = =, β > 0., Réyi, Tsallis Sp q =. l β x, Tsallis p i log p i S β p q = β log p β i q β i, r T β p q = pβ i q β i β l β x = xβ β T β p q = pi p i l β. Sp q, S β p q, T β p q 0. fx = x log x, f x = log x +, f x = /x fx, f = 0, f =, fx x. Sp q = f pi pi = 0. Tsallis gx = xl β x, g x = l β x + x β, g x = βx β 2 β >, gx, g = 0, g =, gx x. T β p q = g pi pi = 0. 8.

64 64 8. : Réyi β >, S β p q 0 p β i q β i = pi β. hx = x β, h x = βx β, h x = ββ x β 2 β >, hx, h =, h = β hx + βx. pi β pi + β =. Jese ν =, 2 R ν = {, 2,..., r ν } p ν = p ν,,..., p ν,rν, p ν = p ν,,..., p ν,rν, Réyi Sp ν q ν = r ν p ν,i log p ν,i q ν,i, S β p ν q ν = log Z βp ν q ν, Z β p ν q ν = β r ν p β ν,i q β ν,i. R R 2 = { i, j i R, j R 2 } i, j p,i p 2,j, i, j q,i q 2,j. Réyi : Sp, p 2 q, q 2 = i,j p,i p 2,j log p,ip 2,j q,i q 2,j, S β p, p 2 q, q 2 = log Z βp, p 2 q, q 2, Z β p, p 2 q, q 2 = β i,j : p,i p 2,j β q,i q 2,j β. Sp, p 2 q, q 2 = Sp q 2 + Sp 2 q 2, S β p, p 2 q, q 2 = S β p q 2 + S β p 2 q 2. Z β p, p 2 q, q 2 = Z β p q Z β p 2 q 2. : Sp, p 2 q, q 2 = i,j p,i p 2,j log p,i q,i i,j p,i p 2,j log p 2,j q 2,j = i p,i log p,i q,i j p 2,j log p 2,j q 2,j = Sp q + Sp 2 q 2,

65 8.5. Tsallis 65 Z β p, p 2 q, q 2 = i,j = i p,i p 2,j β q,i q 2,j β = i,j p β,i q β,i j p β,i q β,i p β 2,j q β 2,j p β 2,j q β 2,j = Z β p q Z β p 2 q 2. Tsallis T β p ν q ν = Z βp ν q ν, T β p, p 2 q, q 2 = Z βp, p 2 q, q 2 β β, T β p, p 2 q, q 2 = T β p q + T β p 2 q 2 + βt β p q T β p 2 q 2. : T β p, p 2 q, q 2 T β p q ] T β p 2 q 2 = Z βp q Z β p 2 q 2 Z β p q Z β p 2 q 2 β = Z βp q Z β p 2 q 2 Z β p q Z β p 2 q 2 + β = Z βp q Z β p 2 q 2 β = β T β p q T β p 2 q 2. q x q = q x / q x + y q = x q + y q + q x q y q. Tsallis 25 [8]. Tsallis. 8.5 Tsallis Suyari [8] Tsallis. Tsallis 26.. h β h = β, h + = β. h = β e h x l h x e h x = + hx /h, l h x = xh h 25 Tsallis = Tsallis. 26.

66 66 8. :., h 0 β., 8.3 Tsallis T β p q 27 : pi p i l h = h = T β p q = p i pi r pβ i q β i β pi p i l h. h p i = β = r pβ i q β i β p β i q β i p i = T β p q.. a; k =! k k r q k q kr r k = k,..., k r, k i 0, k + + k r =, : log a; k = log ν ν= k i log ν i = νi. l h a h ; k : l h a h ; k = l h ν ν= k i ν i = νi l h., l h x = x h /h /h /h, l h a h ; k = k i h ν h νi = k i ν h q h i νi h. h h ν= ν i = h > 0 β >, k i / k i = p i + O = p i + O/. l h a h ; k. h > 0, ν= ν i = ν= ν h = h+ h + + Oh = β β + Oβ. k i = p i + O, k i ν i = ν h i = p i h+ h + + Oh = β β pβ i + Oβ. 27 Tsallis., Tsallis T β p q Sp q = r p i logp i / h = β.

67 8.6. Tsallis 2 67 l h a h ; k = β β r pβ i q β i β + O β = β β T βp q + O β. 28.! log a; k = log k! k r! qk q k r r = Sp q + Olog. 8.6 Tsallis 2 Suyari-Scarfoe [9] a h ; k. [9] q 8.6 h = β h = q, h + = β = 2 q. e h x l h x e h x = + hx /h > 0 x >, l h x = xh > x > 0 h h h Tsallis T β p q = r pβ i q β i β = h p h+ i q h i = pi p i l h. a; k =! k k r q k q k r r k = k,..., k r, k i 0, k + + k r =, : log a; k = ν= log ν ν= ki ν i = ν i = log ν i + k i log q i l h a h ; k 29 : ki l h a h ; k = l h ν l h ν i + kh+ i h + l hq i. : l h a h ; k = ν h h ν= ki ν i = νi h + kh+ i h + q h i. 28 Tsallis Saov., h = β a h ; k ,..

68 68 8. : h > 0 β >, k i / k i = p i + O = p i + O/. l h a h ; k. h > 0, ν h = h+ h + + Oh = β β + Oβ. ν= k i = p i + O, q h i k i ν i = ν h i = p i h+ h + + Oh = β β pβ i + Oβ, k h+ i h + = p i h+ h + + Oh = β β pβ i + Oβ. = q β i.,, l h a; k = β h β β β pβ i q β i + O β = β β T βp q + O β..! log a; k = log k! k r! qk qr kr = Sp q + Olog. 8.7 Csiszár f-divergece, Csiszár [2]. fx 0 < x <, f = 0. {, 2,..., r} p = p,..., p r, q = q,..., q r, q p f-divergece D f p q D f p q = f pi. fx = x log x, f-divergece Kullback-Leibler divergece pi Dp q = p i log. fx = xl h x = x xh h, f-divergece p i / β p i / D f p q = = β = xβ x β, h = β p β i q β i p i = β r pβ i q β i β = T β p q Tsallis divergece Tsallis. f-divergece.

69 69 {, 2,..., r} A, p, q A pa = p i, qa = i A i A. A,..., A s {, 2,..., r}, {A, A 2,..., A s } P = P,..., P s, Q = Q,..., Q r P j = pa j, Q j = qa j. 5.2 Kullback-Leibler Dp q DP Q.. f-divergece D f p q D f p q fx Jese : D f p q = s pi f q j= i i A j s Q j f i Aj j= = p i Q j s Q j j= = pi qi f Q j i A j Pj s f j= Q j Q j = D f P Q. s =, A = {, 2,..., r} P = Q =, f = 0 D f P Q = 0 D f p q 0. Kullback-Leibler f-divergece. 9 : lim sup lim if ±,.,.,. 9. a, a 2,.... a, a +, a +2,... sup k a k sup a k = a, a +, a +2,... α. k

70 70 9. : α 30 : sup a k = mi{ α R { } a k α k }. k sup k a k., sup k a k ± 3. a limit superior, : lim sup a = lim sup k limit iferior : a k. if a k = max{ α R { } a k α k }, k lim if a = lim if a k. k sup if : lim if a lim sup a. a, sup k a k if k a k 0, lim if a = lim sup a = lim a. lim sup a lim if a a. 9.. : lim sup =, lim sup lim sup lim if =, =, + 2 =, lim if lim if =, + 2 = a. a B, C B a C

71 7!. : lim B lim if a lim sup a lim C. a. B C, a., a, a. Saov 3. 0 Mcmilla Mcmilla A A A : A = { a a 2... a l a, a 2,..., a l A, l = 0,, 2,... }. a = a a 2 a l l la = l. A. r, b 2. S, T r, b : S = {s,..., s r }, T = {t,..., t b }. w,..., w r T, C : S T Cs i s im = w i w im. C S b. C : S T, C. 0. Mcmilla. C S b. S s i Cs i = w i l i,. b l i

72 72 0. Mcmilla. a = r b l i. a. l l,..., l r,. a = i,...,i = l b l i + +l i = N k b k. N k l i + + l i = k s = s i s i. w = Cs = w i w i b k, w b k. C : S T, s b k. k= l l l a = N k b k b k b k = l. k=. a. k= k= a = l / = e / logl e 0 = 0.2 p i, 0, r p i = r =. Kullback-Leibler 0 Gibbs : Dp q = p i log p i 0. fx = x log x Jese : pi p i Dp q = f f = f = 0. a i 0, t a i = a, = a i /a a i = a p i log pi a i = : pi p i log = Dp q log a 0. a a i 0, t a i = p i log a i p i log p i. log b b >.

73 C S = {s,..., s r } b,, w i = Cs i l i. Mcmilla b l i, a i = b l i b, p i l i p i log b p i. S p i. S p i b., S p i, S p i. S a i 0, r a i, l i = log b a i s i. b = 2 s i l i bit. l i = log b a i s i b., b Kullback-Leibler q a D b p a = pi p i log b = a i p i log b a i p i log b p i 0 a i b i l i = log a i 32,. Kullback-Leibler. Kullback-Leibler Dp a p a. 32 Mcmilla, r a i.

Kullback-Leibler

Kullback-Leibler Kullback-Leibler Saov 206 6 6 http://www.math.tohoku.ac.jp/~kuroki/latex/206066kullbackleibler.pdf 0 3 Kullback-Leibler 4........................... 4.2........... 5.3 Kullback-Leibler.............. 5.4

More information

Kullback-Leibler

Kullback-Leibler Kullback-Leibler 206 6 6 http://www.math.tohoku.ac.jp/~kuroki/latex/206066kullbackleibler.pdf 0 2 Kullback-Leibler 3. q i.......................... 3.2........... 3.3 Kullback-Leibler.............. 4.4

More information

Kullback-Leibler

Kullback-Leibler Kullback-Leible Sanov 206 6 6 http://www.math.tohoku.ac.jp/~kuoki/latex/206066kullbackleible.pdf 0 2 Kullback-Leible 3........................... 3.2........... 4.3 Kullback-Leible.............. 4.4 Kullback-Leible......................

More information

(2 X Poisso P (λ ϕ X (t = E[e itx ] = k= itk λk e k! e λ = (e it λ k e λ = e eitλ e λ = e λ(eit 1. k! k= 6.7 X N(, 1 ϕ X (t = e 1 2 t2 : Cauchy ϕ X (t

(2 X Poisso P (λ ϕ X (t = E[e itx ] = k= itk λk e k! e λ = (e it λ k e λ = e eitλ e λ = e λ(eit 1. k! k= 6.7 X N(, 1 ϕ X (t = e 1 2 t2 : Cauchy ϕ X (t 6 6.1 6.1 (1 Z ( X = e Z, Y = Im Z ( Z = X + iy, i = 1 (2 Z E[ e Z ] < E[ Im Z ] < Z E[Z] = E[e Z] + ie[im Z] 6.2 Z E[Z] E[ Z ] : E[ Z ] < e Z Z, Im Z Z E[Z] α = E[Z], Z = Z Z 1 {Z } E[Z] = α = α [ α ]

More information

n ξ n,i, i = 1,, n S n ξ n,i n 0 R 1,.. σ 1 σ i .10.14.15 0 1 0 1 1 3.14 3.18 3.19 3.14 3.14,. ii 1 1 1.1..................................... 1 1............................... 3 1.3.........................

More information

Part () () Γ Part ,

Part () () Γ Part , Contents a 6 6 6 6 6 6 6 7 7. 8.. 8.. 8.3. 8 Part. 9. 9.. 9.. 3. 3.. 3.. 3 4. 5 4.. 5 4.. 9 4.3. 3 Part. 6 5. () 6 5.. () 7 5.. 9 5.3. Γ 3 6. 3 6.. 3 6.. 3 6.3. 33 Part 3. 34 7. 34 7.. 34 7.. 34 8. 35

More information

..3. Ω, Ω F, P Ω, F, P ). ) F a) A, A,..., A i,... F A i F. b) A F A c F c) Ω F. ) A F A P A),. a) 0 P A) b) P Ω) c) [ ] A, A,..., A i,... F i j A i A

..3. Ω, Ω F, P Ω, F, P ). ) F a) A, A,..., A i,... F A i F. b) A F A c F c) Ω F. ) A F A P A),. a) 0 P A) b) P Ω) c) [ ] A, A,..., A i,... F i j A i A .. Laplace ). A... i),. ω i i ). {ω,..., ω } Ω,. ii) Ω. Ω. A ) r, A P A) P A) r... ).. Ω {,, 3, 4, 5, 6}. i i 6). A {, 4, 6} P A) P A) 3 6. ).. i, j i, j) ) Ω {i, j) i 6, j 6}., 36. A. A {i, j) i j }.

More information

meiji_resume_1.PDF

meiji_resume_1.PDF β β β (q 1,q,..., q n ; p 1, p,..., p n ) H(q 1,q,..., q n ; p 1, p,..., p n ) Hψ = εψ ε k = k +1/ ε k = k(k 1) (x, y, z; p x, p y, p z ) (r; p r ), (θ; p θ ), (ϕ; p ϕ ) ε k = 1/ k p i dq i E total = E

More information

TOP URL 1

TOP URL   1 TOP URL http://amonphys.web.fc.com/ 3.............................. 3.............................. 4.3 4................... 5.4........................ 6.5........................ 8.6...........................7

More information

X G P G (X) G BG [X, BG] S 2 2 2 S 2 2 S 2 = { (x 1, x 2, x 3 ) R 3 x 2 1 + x 2 2 + x 2 3 = 1 } R 3 S 2 S 2 v x S 2 x x v(x) T x S 2 T x S 2 S 2 x T x S 2 = { ξ R 3 x ξ } R 3 T x S 2 S 2 x x T x S 2

More information

(Basic of Proability Theory). (Probability Spacees ad Radom Variables , (Expectatios, Meas) (Weak Law

(Basic of Proability Theory). (Probability Spacees ad Radom Variables , (Expectatios, Meas) (Weak Law I (Radom Walks ad Percolatios) 3 4 7 ( -2 ) (Preface),.,,,...,,.,,,,.,.,,.,,. (,.) (Basic of Proability Theory). (Probability Spacees ad Radom Variables...............2, (Expectatios, Meas).............................

More information

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x [ ] IC. f(x) = e x () f(x) f (x) () lim f(x) lim f(x) x + x (3) lim f(x) lim f(x) x + x (4) y = f(x) ( ) ( s46). < a < () a () lim a log xdx a log xdx ( ) n (3) lim log k log n n n k=.3 z = log(x + y ),

More information

A B P (A B) = P (A)P (B) (3) A B A B P (B A) A B A B P (A B) = P (B A)P (A) (4) P (B A) = P (A B) P (A) (5) P (A B) P (B A) P (A B) A B P

A B P (A B) = P (A)P (B) (3) A B A B P (B A) A B A B P (A B) = P (B A)P (A) (4) P (B A) = P (A B) P (A) (5) P (A B) P (B A) P (A B) A B P 1 1.1 (population) (sample) (event) (trial) Ω () 1 1 Ω 1.2 P 1. A A P (A) 0 1 0 P (A) 1 (1) 2. P 1 P 0 1 6 1 1 6 0 3. A B P (A B) = P (A) + P (B) (2) A B A B A 1 B 2 A B 1 2 1 2 1 1 2 2 3 1.3 A B P (A

More information

.3. (x, x = (, u = = 4 (, x x = 4 x, x 0 x = 0 x = 4 x.4. ( z + z = 8 z, z 0 (z, z = (0, 8, (,, (8, 0 3 (0, 8, (,, (8, 0 z = z 4 z (g f(x = g(

.3. (x, x = (, u = = 4 (, x x = 4 x, x 0 x = 0 x = 4 x.4. ( z + z = 8 z, z 0 (z, z = (0, 8, (,, (8, 0 3 (0, 8, (,, (8, 0 z = z 4 z (g f(x = g( 06 5.. ( y = x x y 5 y 5 = (x y = x + ( y = x + y = x y.. ( Y = C + I = 50 + 0.5Y + 50 r r = 00 0.5Y ( L = M Y r = 00 r = 0.5Y 50 (3 00 0.5Y = 0.5Y 50 Y = 50, r = 5 .3. (x, x = (, u = = 4 (, x x = 4 x,

More information

1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ =

1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ = 1 1.1 ( ). z = + bi,, b R 0, b 0 2 + b 2 0 z = + bi = ( ) 2 + b 2 2 + b + b 2 2 + b i 2 r = 2 + b 2 θ cos θ = 2 + b 2, sin θ = b 2 + b 2 2π z = r(cos θ + i sin θ) 1.2 (, ). 1. < 2. > 3. ±,, 1.3 ( ). A

More information

(Basics of Proability Theory). (Probability Spacees ad Radom Variables,, (Ω, F, P ),, X,. (Ω, F, P ) (probability space) Ω ( ω Ω ) F ( 2 Ω ) Ω σ (σ-fi

(Basics of Proability Theory). (Probability Spacees ad Radom Variables,, (Ω, F, P ),, X,. (Ω, F, P ) (probability space) Ω ( ω Ω ) F ( 2 Ω ) Ω σ (σ-fi I (Basics of Probability Theory ad Radom Walks) 25 4 5 ( 4 ) (Preface),.,,,.,,,...,,.,.,,.,,. (,.) (Basics of Proability Theory). (Probability Spacees ad Radom Variables...............2, (Expectatios,

More information

2016 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 1 16 2 1 () X O 3 (O1) X O, O (O2) O O (O3) O O O X (X, O) O X X (O1), (O2), (O3) (O2) (O3) n (O2) U 1,..., U n O U k O k=1 (O3) U λ O( λ Λ) λ Λ U λ O 0 X 0 (O2) n =

More information

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5.

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5. A 1. Boltzmann Planck u(ν, T )dν = 8πh ν 3 c 3 kt 1 dν h 6.63 10 34 J s Planck k 1.38 10 23 J K 1 Boltzmann u(ν, T ) T ν e hν c = 3 10 8 m s 1 2. Planck λ = c/ν Rayleigh-Jeans u(ν, T )dν = 8πν2 kt dν c

More information

201711grade1ouyou.pdf

201711grade1ouyou.pdf 2017 11 26 1 2 52 3 12 13 22 23 32 33 42 3 5 3 4 90 5 6 A 1 2 Web Web 3 4 1 2... 5 6 7 7 44 8 9 1 2 3 1 p p >2 2 A 1 2 0.6 0.4 0.52... (a) 0.6 0.4...... B 1 2 0.8-0.2 0.52..... (b) 0.6 0.52.... 1 A B 2

More information

simx simxdx, cosxdx, sixdx 6.3 px m m + pxfxdx = pxf x p xf xdx = pxf x p xf x + p xf xdx 7.4 a m.5 fx simxdx 8 fx fx simxdx = πb m 9 a fxdx = πa a =

simx simxdx, cosxdx, sixdx 6.3 px m m + pxfxdx = pxf x p xf xdx = pxf x p xf x + p xf xdx 7.4 a m.5 fx simxdx 8 fx fx simxdx = πb m 9 a fxdx = πa a = II 6 ishimori@phys.titech.ac.jp 6.. 5.4.. f Rx = f Lx = fx fx + lim = lim x x + x x f c = f x + x < c < x x x + lim x x fx fx x x = lim x x f c = f x x < c < x cosmx cosxdx = {cosm x + cosm + x} dx = [

More information

Stirlingの公式

Stirlingの公式 Stirlig 26 5 http://www.math.tohoku.ac.jp/~kuroki/latex/265stirligformula.pdf 3 4 2 5 2. Stirlig.............................. 6 2.2............. 7 2.3 Fourier.......... 8 2.4 2.... 9 2.5..............

More information

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y [ ] 7 0.1 2 2 + y = t sin t IC ( 9) ( s090101) 0.2 y = d2 y 2, y = x 3 y + y 2 = 0 (2) y + 2y 3y = e 2x 0.3 1 ( y ) = f x C u = y x ( 15) ( s150102) [ ] y/x du x = Cexp f(u) u (2) x y = xey/x ( 16) ( s160101)

More information

July 28, H H 0 H int = H H 0 H int = H int (x)d 3 x Schrödinger Picture Ψ(t) S =e iht Ψ H O S Heisenberg Picture Ψ H O H (t) =e iht O S e i

July 28, H H 0 H int = H H 0 H int = H int (x)d 3 x Schrödinger Picture Ψ(t) S =e iht Ψ H O S Heisenberg Picture Ψ H O H (t) =e iht O S e i July 8, 4. H H H int H H H int H int (x)d 3 x Schrödinger Picture Ψ(t) S e iht Ψ H O S Heisenberg Picture Ψ H O H (t) e iht O S e iht Interaction Picture Ψ(t) D e iht Ψ(t) S O D (t) e iht O S e ih t (Dirac

More information

6.1 (P (P (P (P (P (P (, P (, P.

6.1 (P (P (P (P (P (P (, P (, P. (011 30 7 0 ( ( 3 ( 010 1 (P.3 1 1.1 (P.4.................. 1 1. (P.4............... 1 (P.15.1 (P.16................. (P.0............3 (P.18 3.4 (P.3............... 4 3 (P.9 4 3.1 (P.30........... 4 3.

More information

(Basics of Proability Theory). (Probability Spacees ad Radom Variables,, (Ω, F, P ),, X,. (Ω, F, P ) (probability space) Ω ( ω Ω ) F ( 2 Ω ) Ω σ (σ-fi

(Basics of Proability Theory). (Probability Spacees ad Radom Variables,, (Ω, F, P ),, X,. (Ω, F, P ) (probability space) Ω ( ω Ω ) F ( 2 Ω ) Ω σ (σ-fi II (Basics of Probability Theory ad Radom Walks) (Preface),.,,,.,,,...,,.,.,,.,,. (Basics of Proability Theory). (Probability Spacees ad Radom Variables...............2, (Expectatios, Meas).............................

More information

2 1 1 (1) 1 (2) (3) Lax : (4) Bäcklund : (5) (6) 1.1 d 2 q n dt 2 = e q n 1 q n e q n q n+1 (1.1) 1 m q n n ( ) r n = q n q n 1 r ϕ(r) ϕ (r)

2 1 1 (1) 1 (2) (3) Lax : (4) Bäcklund : (5) (6) 1.1 d 2 q n dt 2 = e q n 1 q n e q n q n+1 (1.1) 1 m q n n ( ) r n = q n q n 1 r ϕ(r) ϕ (r) ( ( (3 Lax : (4 Bäcklud : (5 (6 d q = e q q e q q + ( m q ( r = q q r ϕ(r ϕ (r 0 5 0 q q q + 5 3 4 5 m d q = ϕ (r + ϕ (r + ( Hooke ϕ(r = κr (κ > 0 ( d q = κ(q q + κ(q + q = κ(q + + q q (3 ϕ(r = a b e br

More information

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d S I.. http://ayapin.film.s.dendai.ac.jp/~matuda /TeX/lecture.html PDF PS.................................... 3.3.................... 9.4................5.............. 3 5. Laplace................. 5....

More information

: , 2.0, 3.0, 2.0, (%) ( 2.

: , 2.0, 3.0, 2.0, (%) ( 2. 2017 1 2 1.1...................................... 2 1.2......................................... 4 1.3........................................... 10 1.4................................. 14 1.5..........................................

More information

t = h x z z = h z = t (x, z) (v x (x, z, t), v z (x, z, t)) ρ v x x + v z z = 0 (1) 2-2. (v x, v z ) φ(x, z, t) v x = φ x, v z

t = h x z z = h z = t (x, z) (v x (x, z, t), v z (x, z, t)) ρ v x x + v z z = 0 (1) 2-2. (v x, v z ) φ(x, z, t) v x = φ x, v z I 1 m 2 l k 2 x = 0 x 1 x 1 2 x 2 g x x 2 x 1 m k m 1-1. L x 1, x 2, ẋ 1, ẋ 2 ẋ 1 x = 0 1-2. 2 Q = x 1 + x 2 2 q = x 2 x 1 l L Q, q, Q, q M = 2m µ = m 2 1-3. Q q 1-4. 2 x 2 = h 1 x 1 t = 0 2 1 t x 1 (t)

More information

6.1 (P (P (P (P (P (P (, P (, P.101

6.1 (P (P (P (P (P (P (, P (, P.101 (008 0 3 7 ( ( ( 00 1 (P.3 1 1.1 (P.3.................. 1 1. (P.4............... 1 (P.15.1 (P.15................. (P.18............3 (P.17......... 3.4 (P................ 4 3 (P.7 4 3.1 ( P.7...........

More information

2019 1 5 0 3 1 4 1.1.................... 4 1.1.1......................... 4 1.1.2........................ 5 1.1.3................... 5 1.1.4........................ 6 1.1.5......................... 6 1.2..........................

More information

入試の軌跡

入試の軌跡 4 y O x 4 Typed by L A TEX ε ) ) ) 6 4 ) 4 75 ) http://kumamoto.s.xrea.com/plan/.. PDF) Ctrl +L) Ctrl +) Ctrl + Ctrl + ) ) Alt + ) Alt + ) ESC. http://kumamoto.s.xrea.com/nyusi/kumadai kiseki ri i.pdf

More information

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2 II No.1 [n/] [1]H n x) H n x) = 1) r n! r!n r)! x)n r r= []H n x) n,, H n x) = 1) n H n x) [3] H n x) = 1) n dn x e dx n e x [4] H n+1 x) = xh n x) nh n 1 x) ) d dx x H n x) = H n+1 x) d dx H nx) = nh

More information

x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y)

x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y) x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 1 1977 x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y) ( x 2 y + xy 2 x 2 2xy y 2) = 15 (x y) (x + y) (xy

More information

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,. 9 α ν β Ξ ξ Γ γ o δ Π π ε ρ ζ Σ σ η τ Θ θ Υ υ ι Φ φ κ χ Λ λ Ψ ψ µ Ω ω Def, Prop, Th, Lem, Note, Remark, Ex,, Proof, R, N, Q, C [a, b {x R : a x b} : a, b {x R : a < x < b} : [a, b {x R : a x < b} : a,

More information

B [ 0.1 ] x > 0 x 6= 1 f(x) µ 1 1 xn 1 + sin sin x 1 x 1 f(x) := lim. n x n (1) lim inf f(x) (2) lim sup f(x) x 1 0 x 1 0 (

B [ 0.1 ] x > 0 x 6= 1 f(x) µ 1 1 xn 1 + sin sin x 1 x 1 f(x) := lim. n x n (1) lim inf f(x) (2) lim sup f(x) x 1 0 x 1 0 ( . 28 4 14 [.1 ] x > x 6= 1 f(x) µ 1 1 xn 1 + sin + 2 + sin x 1 x 1 f(x) := lim. 1 + x n (1) lim inf f(x) (2) lim sup f(x) x 1 x 1 (3) lim inf x 1+ f(x) (4) lim sup f(x) x 1+ [.2 ] [, 1] Ω æ x (1) (2) nx(1

More information

30

30 3 ............................................2 2...........................................2....................................2.2...................................2.3..............................

More information

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4 1. k λ ν ω T v p v g k = π λ ω = πν = π T v p = λν = ω k v g = dω dk 1) ) 3) 4). p = hk = h λ 5) E = hν = hω 6) h = h π 7) h =6.6618 1 34 J sec) hc=197.3 MeV fm = 197.3 kev pm= 197.3 ev nm = 1.97 1 3 ev

More information

( ) ( 40 )+( 60 ) Schrödinger 3. (a) (b) (c) yoshioka/education-09.html pdf 1

( ) ( 40 )+( 60 ) Schrödinger 3. (a) (b) (c)   yoshioka/education-09.html pdf 1 2009 1 ( ) ( 40 )+( 60 ) 1 1. 2. Schrödinger 3. (a) (b) (c) http://goofy.phys.nara-wu.ac.jp/ yoshioka/education-09.html pdf 1 1. ( photon) ν λ = c ν (c = 3.0 108 /m : ) ɛ = hν (1) p = hν/c = h/λ (2) h

More information

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10%

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10% 1 2006.4.17. A 3-312 tel: 092-726-4774, e-mail: hara@math.kyushu-u.ac.jp, http://www.math.kyushu-u.ac.jp/ hara/lectures/lectures-j.html Office hours: B A I ɛ-δ ɛ-δ 1. 2. A 1. 1. 2. 3. 4. 5. 2. ɛ-δ 1. ɛ-n

More information

II ( ) (7/31) II ( [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Re

II ( ) (7/31) II (  [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Re II 29 7 29-7-27 ( ) (7/31) II (http://www.damp.tottori-u.ac.jp/~ooshida/edu/fluid/) [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Reynolds [ (4.6), (45.8)] [ p.186] Navier Stokes I Euler Navier

More information

I A A441 : April 15, 2013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida )

I A A441 : April 15, 2013 Version : 1.1 I   Kawahira, Tomoki TA (Shigehiro, Yoshida ) I013 00-1 : April 15, 013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida) http://www.math.nagoya-u.ac.jp/~kawahira/courses/13s-tenbou.html pdf * 4 15 4 5 13 e πi = 1 5 0 5 7 3 4 6 3 6 10 6 17

More information

st.dvi

st.dvi 9 3 5................................... 5............................. 5....................................... 5.................................. 7.........................................................................

More information

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) II 214-1 : October 2, 214 Version : 1.1 Kawahira, Tomoki TA (Kondo, Hirotaka ) http://www.math.nagoya-u.ac.jp/~kawahira/courses/14w-biseki.html pdf 1 2 1 9 1 16 1 23 1 3 11 6 11 13 11 2 11 27 12 4 12 11

More information

III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F

III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F F 1 F 2 F, (3) F λ F λ F λ F. 3., A λ λ A λ. B λ λ

More information

Untitled

Untitled II 14 14-7-8 8/4 II (http://www.damp.tottori-u.ac.jp/~ooshida/edu/fluid/) [ (3.4)] Navier Stokes [ 6/ ] Navier Stokes 3 [ ] Reynolds [ (4.6), (45.8)] [ p.186] Navier Stokes I 1 balance law t (ρv i )+ j

More information

熊本県数学問題正解

熊本県数学問題正解 00 y O x Typed by L A TEX ε ( ) (00 ) 5 4 4 ( ) http://www.ocn.ne.jp/ oboetene/plan/. ( ) (009 ) ( ).. http://www.ocn.ne.jp/ oboetene/plan/eng.html 8 i i..................................... ( )0... (

More information

211 kotaro@math.titech.ac.jp 1 R *1 n n R n *2 R n = {(x 1,..., x n ) x 1,..., x n R}. R R 2 R 3 R n R n R n D D R n *3 ) (x 1,..., x n ) f(x 1,..., x n ) f D *4 n 2 n = 1 ( ) 1 f D R n f : D R 1.1. (x,

More information

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google I4 - : April, 4 Version :. Kwhir, Tomoki TA (Kondo, Hirotk) Google http://www.mth.ngoy-u.c.jp/~kwhir/courses/4s-biseki.html pdf 4 4 4 4 8 e 5 5 9 etc. 5 6 6 6 9 n etc. 6 6 6 3 6 3 7 7 etc 7 4 7 7 8 5 59

More information

18 ( ) I II III A B C(100 ) 1, 2, 3, 5 I II A B (100 ) 1, 2, 3 I II A B (80 ) 6 8 I II III A B C(80 ) 1 n (1 + x) n (1) n C 1 + n C

18 ( ) I II III A B C(100 ) 1, 2, 3, 5 I II A B (100 ) 1, 2, 3 I II A B (80 ) 6 8 I II III A B C(80 ) 1 n (1 + x) n (1) n C 1 + n C 8 ( ) 8 5 4 I II III A B C( ),,, 5 I II A B ( ),, I II A B (8 ) 6 8 I II III A B C(8 ) n ( + x) n () n C + n C + + n C n = 7 n () 7 9 C : y = x x A(, 6) () A C () C P AP Q () () () 4 A(,, ) B(,, ) C(,,

More information

量子力学 問題

量子力学 問題 3 : 203 : 0. H = 0 0 2 6 0 () = 6, 2 = 2, 3 = 3 3 H 6 2 3 ϵ,2,3 (2) ψ = (, 2, 3 ) ψ Hψ H (3) P i = i i P P 2 = P 2 P 3 = P 3 P = O, P 2 i = P i (4) P + P 2 + P 3 = E 3 (5) i ϵ ip i H 0 0 (6) R = 0 0 [H,

More information

³ÎΨÏÀ

³ÎΨÏÀ 2017 12 12 Makoto Nakashima 2017 12 12 1 / 22 2.1. C, D π- C, D. A 1, A 2 C A 1 A 2 C A 3, A 4 D A 1 A 2 D Makoto Nakashima 2017 12 12 2 / 22 . (,, L p - ). Makoto Nakashima 2017 12 12 3 / 22 . (,, L p

More information

,,,17,,, ( ),, E Q [S T F t ] < S t, t [, T ],,,,,,,,

,,,17,,, ( ),, E Q [S T F t ] < S t, t [, T ],,,,,,,, 14 5 1 ,,,17,,,194 1 4 ( ),, E Q [S T F t ] < S t, t [, T ],,,,,,,, 1 4 1.1........................................ 4 5.1........................................ 5.........................................

More information

Z: Q: R: C: sin 6 5 ζ a, b

Z: Q: R: C: sin 6 5 ζ a, b Z: Q: R: C: 3 3 7 4 sin 6 5 ζ 9 6 6............................... 6............................... 6.3......................... 4 7 6 8 8 9 3 33 a, b a bc c b a a b 5 3 5 3 5 5 3 a a a a p > p p p, 3,

More information

5 5.1 E 1, E 2 N 1, N 2 E tot N tot E tot = E 1 + E 2, N tot = N 1 + N 2 S 1 (E 1, N 1 ), S 2 (E 2, N 2 ) E 1, E 2 S tot = S 1 + S 2 2 S 1 E 1 = S 2 E

5 5.1 E 1, E 2 N 1, N 2 E tot N tot E tot = E 1 + E 2, N tot = N 1 + N 2 S 1 (E 1, N 1 ), S 2 (E 2, N 2 ) E 1, E 2 S tot = S 1 + S 2 2 S 1 E 1 = S 2 E 5 5.1 E 1, E 2 N 1, N 2 E tot N tot E tot = E 1 + E 2, N tot = N 1 + N 2 S 1 (E 1, N 1 ), S 2 (E 2, N 2 ) E 1, E 2 S tot = S 1 + S 2 2 S 1 E 1 = S 2 E 2, S 1 N 1 = S 2 N 2 2 (chemical potential) µ S N

More information

( )

( ) 7..-8..8.......................................................................... 4.................................... 3...................................... 3..3.................................. 4.3....................................

More information

y π π O π x 9 s94.5 y dy dx. y = x + 3 y = x logx + 9 s9.6 z z x, z y. z = xy + y 3 z = sinx y 9 s x dx π x cos xdx 9 s93.8 a, fx = e x ax,. a =

y π π O π x 9 s94.5 y dy dx. y = x + 3 y = x logx + 9 s9.6 z z x, z y. z = xy + y 3 z = sinx y 9 s x dx π x cos xdx 9 s93.8 a, fx = e x ax,. a = [ ] 9 IC. dx = 3x 4y dt dy dt = x y u xt = expλt u yt λ u u t = u u u + u = xt yt 6 3. u = x, y, z = x + y + z u u 9 s9 grad u ux, y, z = c c : grad u = u x i + u y j + u k i, j, k z x, y, z grad u v =

More information

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α 18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α 2 ), ϕ(t) = B 1 cos(ω 1 t + α 1 ) + B 2 cos(ω 2 t

More information

B ver B

B ver B B ver. 2017.02.24 B Contents 1 11 1.1....................... 11 1.1.1............. 11 1.1.2.......................... 12 1.2............................. 14 1.2.1................ 14 1.2.2.......................

More information

TOP URL 1

TOP URL   1 TOP URL http://amonphys.web.fc.com/ 1 19 3 19.1................... 3 19.............................. 4 19.3............................... 6 19.4.............................. 8 19.5.............................

More information

Z: Q: R: C:

Z: Q: R: C: 0 Z: Q: R: C: 3 4 4 4................................ 4 4.................................. 7 5 3 5...................... 3 5......................... 40 5.3 snz) z)........................... 4 6 46 x

More information

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt S I. x yx y y, y,. F x, y, y, y,, y n http://ayapin.film.s.dendai.ac.jp/~matuda n /TeX/lecture.html PDF PS yx.................................... 3.3.................... 9.4................5..............

More information

20 9 19 1 3 11 1 3 111 3 112 1 4 12 6 121 6 122 7 13 7 131 8 132 10 133 10 134 12 14 13 141 13 142 13 143 15 144 16 145 17 15 19 151 1 19 152 20 2 21 21 21 211 21 212 1 23 213 1 23 214 25 215 31 22 33

More information

v v = v 1 v 2 v 3 (1) R = (R ij ) (2) R (R 1 ) ij = R ji (3) 3 R ij R ik = δ jk (4) i=1 δ ij Kronecker δ ij = { 1 (i = j) 0 (i

v v = v 1 v 2 v 3 (1) R = (R ij ) (2) R (R 1 ) ij = R ji (3) 3 R ij R ik = δ jk (4) i=1 δ ij Kronecker δ ij = { 1 (i = j) 0 (i 1. 1 1.1 1.1.1 1.1.1.1 v v = v 1 v 2 v 3 (1) R = (R ij ) (2) R (R 1 ) ij = R ji (3) R ij R ik = δ jk (4) δ ij Kronecker δ ij = { 1 (i = j) 0 (i j) (5) 1 1.1. v1.1 2011/04/10 1. 1 2 v i = R ij v j (6) [

More information

量子力学A

量子力学A c 1 1 1.1....................................... 1 1............................................ 4 1.3.............................. 6 10.1.................................. 10......................................

More information

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2 2005 9/8-11 2 2.2 ( 2-5) γ ( ) γ cos θ 2πr πρhr 2 g h = 2γ cos θ ρgr (2.1) γ = ρgrh (2.2) 2 cos θ θ cos θ = 1 (2.2) γ = 1 ρgrh (2.) 2 2. p p ρgh p ( ) p p = p ρgh (2.) h p p = 2γ r 1 1 (Berry,1975) 2-6

More information

( ) ) ) ) 5) 1 J = σe 2 6) ) 9) 1955 Statistical-Mechanical Theory of Irreversible Processes )

( ) ) ) ) 5) 1 J = σe 2 6) ) 9) 1955 Statistical-Mechanical Theory of Irreversible Processes ) ( 3 7 4 ) 2 2 ) 8 2 954 2) 955 3) 5) J = σe 2 6) 955 7) 9) 955 Statistical-Mechanical Theory of Irreversible Processes 957 ) 3 4 2 A B H (t) = Ae iωt B(t) = B(ω)e iωt B(ω) = [ Φ R (ω) Φ R () ] iω Φ R (t)

More information

n Y 1 (x),..., Y n (x) 1 W (Y 1 (x),..., Y n (x)) 0 W (Y 1 (x),..., Y n (x)) = Y 1 (x)... Y n (x) Y 1(x)... Y n(x) (x)... Y n (n 1) (x) Y (n 1)

n Y 1 (x),..., Y n (x) 1 W (Y 1 (x),..., Y n (x)) 0 W (Y 1 (x),..., Y n (x)) = Y 1 (x)... Y n (x) Y 1(x)... Y n(x) (x)... Y n (n 1) (x) Y (n 1) D d dx 1 1.1 n d n y a 0 dx n + a d n 1 y 1 dx n 1 +... + a dy n 1 dx + a ny = f(x)...(1) dk y dx k = y (k) a 0 y (n) + a 1 y (n 1) +... + a n 1 y + a n y = f(x)...(2) (2) (2) f(x) 0 a 0 y (n) + a 1 y

More information

25 7 18 1 1 1.1 v.s............................. 1 1.1.1.................................. 1 1.1.2................................. 1 1.1.3.................................. 3 1.2................... 3

More information

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0 1 1 1.1 1.) T D = T = D = kn 1. 1.4) F W = F = W/ = kn/ = 15 kn 1. 1.9) R = W 1 + W = 6 + 5 = 11 N. 1.9) W b W 1 a = a = W /W 1 )b = 5/6) = 5 cm 1.4 AB AC P 1, P x, y x, y y x 1.4.) P sin 6 + P 1 sin 45

More information

20 6 4 1 4 1.1 1.................................... 4 1.1.1.................................... 4 1.1.2 1................................ 5 1.2................................... 7 1.2.1....................................

More information

b3e2003.dvi

b3e2003.dvi 15 II 5 5.1 (1) p, q p = (x + 2y, xy, 1), q = (x 2 + 3y 2, xyz, ) (i) p rotq (ii) p gradq D (2) a, b rot(a b) div [11, p.75] (3) (i) f f grad f = 1 2 grad( f 2) (ii) f f gradf 1 2 grad ( f 2) rotf 5.2

More information

‚åŁÎ“·„´Šš‡ðŠp‡¢‡½‹âfi`fiI…A…‰…S…−…Y…•‡ÌMarkovŸA“½fiI›ð’Í

‚åŁÎ“·„´Šš‡ðŠp‡¢‡½‹âfi`fiI…A…‰…S…−…Y…•‡ÌMarkovŸA“½fiI›ð’Í Markov 2009 10 2 Markov 2009 10 2 1 / 25 1 (GA) 2 GA 3 4 Markov 2009 10 2 2 / 25 (GA) (GA) L ( 1) I := {0, 1} L f : I (0, ) M( 2) S := I M GA (GA) f (i) i I Markov 2009 10 2 3 / 25 (GA) ρ(i, j), i, j I

More information

21 2 26 i 1 1 1.1............................ 1 1.2............................ 3 2 9 2.1................... 9 2.2.......... 9 2.3................... 11 2.4....................... 12 3 15 3.1..........

More information

x (x, ) x y (, y) iy x y z = x + iy (x, y) (r, θ) r = x + y, θ = tan ( y ), π < θ π x r = z, θ = arg z z = x + iy = r cos θ + ir sin θ = r(cos θ + i s

x (x, ) x y (, y) iy x y z = x + iy (x, y) (r, θ) r = x + y, θ = tan ( y ), π < θ π x r = z, θ = arg z z = x + iy = r cos θ + ir sin θ = r(cos θ + i s ... x, y z = x + iy x z y z x = Rez, y = Imz z = x + iy x iy z z () z + z = (z + z )() z z = (z z )(3) z z = ( z z )(4)z z = z z = x + y z = x + iy ()Rez = (z + z), Imz = (z z) i () z z z + z z + z.. z

More information

d ϕ i) t d )t0 d ϕi) ϕ i) t x j t d ) ϕ t0 t α dx j d ) ϕ i) t dx t0 j x j d ϕ i) ) t x j dx t0 j f i x j ξ j dx i + ξ i x j dx j f i ξ i x j dx j d )

d ϕ i) t d )t0 d ϕi) ϕ i) t x j t d ) ϕ t0 t α dx j d ) ϕ i) t dx t0 j x j d ϕ i) ) t x j dx t0 j f i x j ξ j dx i + ξ i x j dx j f i ξ i x j dx j d ) 23 M R M ϕ : R M M ϕt, x) ϕ t x) ϕ s ϕ t ϕ s+t, ϕ 0 id M M ϕ t M ξ ξ ϕ t d ϕ tx) ξϕ t x)) U, x 1,...,x n )) ϕ t x) ϕ 1) t x),...,ϕ n) t x)), ξx) ξ i x) d ϕi) t x) ξ i ϕ t x)) M f ϕ t f)x) f ϕ t )x) fϕ

More information

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 初版 1 刷発行時のものです. 微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. ttp://www.morikita.co.jp/books/mid/00571 このサンプルページの内容は, 初版 1 刷発行時のものです. i ii 014 10 iii [note] 1 3 iv 4 5 3 6 4 x 0 sin x x 1 5 6 z = f(x, y) 1 y = f(x)

More information

IA hara@math.kyushu-u.ac.jp Last updated: January,......................................................................................................................................................................................

More information

2 G(k) e ikx = (ik) n x n n! n=0 (k ) ( ) X n = ( i) n n k n G(k) k=0 F (k) ln G(k) = ln e ikx n κ n F (k) = F (k) (ik) n n= n! κ n κ n = ( i) n n k n

2 G(k) e ikx = (ik) n x n n! n=0 (k ) ( ) X n = ( i) n n k n G(k) k=0 F (k) ln G(k) = ln e ikx n κ n F (k) = F (k) (ik) n n= n! κ n κ n = ( i) n n k n . X {x, x 2, x 3,... x n } X X {, 2, 3, 4, 5, 6} X x i P i. 0 P i 2. n P i = 3. P (i ω) = i ω P i P 3 {x, x 2, x 3,... x n } ω P i = 6 X f(x) f(x) X n n f(x i )P i n x n i P i X n 2 G(k) e ikx = (ik) n

More information

1 a b = max{a, b}, a b = mi{a, b} a 1 a 2 a a 1 a = max{a 1,... a }, a 1 a = mi{a 1,... a }. A sup A, if A A A A A sup A sup A = + A if A = ± y = arct

1 a b = max{a, b}, a b = mi{a, b} a 1 a 2 a a 1 a = max{a 1,... a }, a 1 a = mi{a 1,... a }. A sup A, if A A A A A sup A sup A = + A if A = ± y = arct 27 6 2 1 2 2 5 3 8 4 13 5 16 6 19 7 23 8 27 N Z = {, ±1, ±2,... }, R =, R + = [, + ), R = [, ], C =. a b = max{a, b}, a b = mi{a, b}, a a, a a. f : X R [a < f < b] = {x X; a < f(x) < b}. X [f] = [f ],

More information

D = [a, b] [c, d] D ij P ij (ξ ij, η ij ) f S(f,, {P ij }) S(f,, {P ij }) = = k m i=1 j=1 m n f(ξ ij, η ij )(x i x i 1 )(y j y j 1 ) = i=1 j

D = [a, b] [c, d] D ij P ij (ξ ij, η ij ) f S(f,, {P ij }) S(f,, {P ij }) = = k m i=1 j=1 m n f(ξ ij, η ij )(x i x i 1 )(y j y j 1 ) = i=1 j 6 6.. [, b] [, d] ij P ij ξ ij, η ij f Sf,, {P ij } Sf,, {P ij } k m i j m fξ ij, η ij i i j j i j i m i j k i i j j m i i j j k i i j j kb d {P ij } lim Sf,, {P ij} kb d f, k [, b] [, d] f, d kb d 6..

More information

2 2 L 5 2. L L L L k.....

2 2 L 5 2. L L L L k..... L 528 206 2 9 2 2 L 5 2. L........................... 5 2.2 L................................... 7 2............................... 9. L..................2 L k........................ 2 4 I 5 4. I...................................

More information

1 1 sin cos P (primary) S (secondly) 2 P S A sin(ω2πt + α) A ω 1 ω α V T m T m 1 100Hz m 2 36km 500Hz. 36km 1

1 1 sin cos P (primary) S (secondly) 2 P S A sin(ω2πt + α) A ω 1 ω α V T m T m 1 100Hz m 2 36km 500Hz. 36km 1 sin cos P (primary) S (secondly) 2 P S A sin(ω2πt + α) A ω ω α 3 3 2 2V 3 33+.6T m T 5 34m Hz. 34 3.4m 2 36km 5Hz. 36km m 34 m 5 34 + m 5 33 5 =.66m 34m 34 x =.66 55Hz, 35 5 =.7 485.7Hz 2 V 5Hz.5V.5V V

More information

untitled

untitled 2 : n =1, 2,, 10000 0.5125 0.51 0.5075 0.505 0.5025 0.5 0.4975 0.495 0 2000 4000 6000 8000 10000 2 weak law of large numbers 1. X 1,X 2,,X n 2. µ = E(X i ),i=1, 2,,n 3. σi 2 = V (X i ) σ 2,i=1, 2,,n ɛ>0

More information

master.dvi

master.dvi 4 Maxwell- Boltzmann N 1 4.1 T R R 5 R (Heat Reservor) S E R 20 E 4.2 E E R E t = E + E R E R Ω R (E R ) S R (E R ) Ω R (E R ) = exp[s R (E R )/k] E, E E, E E t E E t E exps R (E t E) exp S R (E t E )

More information

( )/2 hara/lectures/lectures-j.html 2, {H} {T } S = {H, T } {(H, H), (H, T )} {(H, T ), (T, T )} {(H, H), (T, T )} {1

( )/2   hara/lectures/lectures-j.html 2, {H} {T } S = {H, T } {(H, H), (H, T )} {(H, T ), (T, T )} {(H, H), (T, T )} {1 ( )/2 http://www2.math.kyushu-u.ac.jp/ hara/lectures/lectures-j.html 1 2011 ( )/2 2 2011 4 1 2 1.1 1 2 1 2 3 4 5 1.1.1 sample space S S = {H, T } H T T H S = {(H, H), (H, T ), (T, H), (T, T )} (T, H) S

More information

.5 z = a + b + c n.6 = a sin t y = b cos t dy d a e e b e + e c e e e + e 3 s36 3 a + y = a, b > b 3 s363.7 y = + 3 y = + 3 s364.8 cos a 3 s365.9 y =,

.5 z = a + b + c n.6 = a sin t y = b cos t dy d a e e b e + e c e e e + e 3 s36 3 a + y = a, b > b 3 s363.7 y = + 3 y = + 3 s364.8 cos a 3 s365.9 y =, [ ] IC. r, θ r, θ π, y y = 3 3 = r cos θ r sin θ D D = {, y ; y }, y D r, θ ep y yddy D D 9 s96. d y dt + 3dy + y = cos t dt t = y = e π + e π +. t = π y =.9 s6.3 d y d + dy d + y = y =, dy d = 3 a, b

More information

: ( )

: ( ) : 7 3...........................................................................................3............................................. 3.4............................ 4.5.............................

More information

80 4 r ˆρ i (r, t) δ(r x i (t)) (4.1) x i (t) ρ i ˆρ i t = 0 i r 0 t(> 0) j r 0 + r < δ(r 0 x i (0))δ(r 0 + r x j (t)) > (4.2) r r 0 G i j (r, t) dr 0

80 4 r ˆρ i (r, t) δ(r x i (t)) (4.1) x i (t) ρ i ˆρ i t = 0 i r 0 t(> 0) j r 0 + r < δ(r 0 x i (0))δ(r 0 + r x j (t)) > (4.2) r r 0 G i j (r, t) dr 0 79 4 4.1 4.1.1 x i (t) x j (t) O O r 0 + r r r 0 x i (0) r 0 x i (0) 4.1 L. van. Hove 1954 space-time correlation function V N 4.1 ρ 0 = N/V i t 80 4 r ˆρ i (r, t) δ(r x i (t)) (4.1) x i (t) ρ i ˆρ i t

More information

1 filename=mathformula tex 1 ax 2 + bx + c = 0, x = b ± b 2 4ac, (1.1) 2a x 1 + x 2 = b a, x 1x 2 = c a, (1.2) ax 2 + 2b x + c = 0, x = b ± b 2

1 filename=mathformula tex 1 ax 2 + bx + c = 0, x = b ± b 2 4ac, (1.1) 2a x 1 + x 2 = b a, x 1x 2 = c a, (1.2) ax 2 + 2b x + c = 0, x = b ± b 2 filename=mathformula58.tex ax + bx + c =, x = b ± b 4ac, (.) a x + x = b a, x x = c a, (.) ax + b x + c =, x = b ± b ac. a (.3). sin(a ± B) = sin A cos B ± cos A sin B, (.) cos(a ± B) = cos A cos B sin

More information

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi) 0. A A = 4 IC () det A () A () x + y + z = x y z X Y Z = A x y z ( 5) ( s5590) 0. a + b + c b c () a a + b + c c a b a + b + c 0 a b c () a 0 c b b c 0 a c b a 0 0. A A = 7 5 4 5 0 ( 5) ( s5590) () A ()

More information

DVIOUT

DVIOUT A. A. A-- [ ] f(x) x = f 00 (x) f 0 () =0 f 00 () > 0= f(x) x = f 00 () < 0= f(x) x = A--2 [ ] f(x) D f 00 (x) > 0= y = f(x) f 00 (x) < 0= y = f(x) P (, f()) f 00 () =0 A--3 [ ] y = f(x) [, b] x = f (y)

More information

newmain.dvi

newmain.dvi 数論 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/008142 このサンプルページの内容は, 第 2 版 1 刷発行当時のものです. Daniel DUVERNEY: THÉORIE DES NOMBRES c Dunod, Paris, 1998, This book is published

More information

K E N Z U 2012 7 16 HP M. 1 1 4 1.1 3.......................... 4 1.2................................... 4 1.2.1..................................... 4 1.2.2.................................... 5................................

More information

n (1.6) i j=1 1 n a ij x j = b i (1.7) (1.7) (1.4) (1.5) (1.4) (1.7) u, v, w ε x, ε y, ε x, γ yz, γ zx, γ xy (1.8) ε x = u x ε y = v y ε z = w z γ yz

n (1.6) i j=1 1 n a ij x j = b i (1.7) (1.7) (1.4) (1.5) (1.4) (1.7) u, v, w ε x, ε y, ε x, γ yz, γ zx, γ xy (1.8) ε x = u x ε y = v y ε z = w z γ yz 1 2 (a 1, a 2, a n ) (b 1, b 2, b n ) A (1.1) A = a 1 b 1 + a 2 b 2 + + a n b n (1.1) n A = a i b i (1.2) i=1 n i 1 n i=1 a i b i n i=1 A = a i b i (1.3) (1.3) (1.3) (1.1) (ummation convention) a 11 x

More information

数学Ⅱ演習(足助・09夏)

数学Ⅱ演習(足助・09夏) II I 9/4/4 9/4/2 z C z z z z, z 2 z, w C zw z w 3 z, w C z + w z + w 4 t R t C t t t t t z z z 2 z C re z z + z z z, im z 2 2 3 z C e z + z + 2 z2 + 3! z3 + z!, I 4 x R e x cos x + sin x 2 z, w C e z+w

More information

V 0 = + r pv (H) + qv (T ) = + r ps (H) + qs (T ) = S 0 X n+ (T ) = n S n+ (T ) + ( + r)(x n n S n ) = ( + r)x n + n (d r)s n = ( + r)v n + V n+(h) V

V 0 = + r pv (H) + qv (T ) = + r ps (H) + qs (T ) = S 0 X n+ (T ) = n S n+ (T ) + ( + r)(x n n S n ) = ( + r)x n + n (d r)s n = ( + r)v n + V n+(h) V I (..2) (0 < d < + r < u) X 0, X X = 0 S + ( + r)(x 0 0 S 0 ) () X 0 = 0, P (X 0) =, P (X > 0) > 0 0 H, T () X 0 = 0, X (H) = 0 us 0 ( + r) 0 S 0 = 0 S 0 (u r) X (T ) = 0 ds 0 ( + r) 0 S 0 = 0 S 0 (d r)

More information

SFGÇÃÉXÉyÉNÉgÉãå`.pdf

SFGÇÃÉXÉyÉNÉgÉãå`.pdf SFG 1 SFG SFG I SFG (ω) χ SFG (ω). SFG χ χ SFG (ω) = χ NR e iϕ +. ω ω + iγ SFG φ = ±π/, χ φ = ±π 3 χ SFG χ SFG = χ NR + χ (ω ω ) + Γ + χ NR χ (ω ω ) (ω ω ) + Γ cosϕ χ NR χ Γ (ω ω ) + Γ sinϕ. 3 (θ) 180

More information

( ; ) C. H. Scholz, The Mechanics of Earthquakes and Faulting : - ( ) σ = σ t sin 2π(r a) λ dσ d(r a) =

( ; ) C. H. Scholz, The Mechanics of Earthquakes and Faulting : - ( ) σ = σ t sin 2π(r a) λ dσ d(r a) = 1 9 8 1 1 1 ; 1 11 16 C. H. Scholz, The Mechanics of Earthquakes and Faulting 1. 1.1 1.1.1 : - σ = σ t sin πr a λ dσ dr a = E a = π λ σ πr a t cos λ 1 r a/λ 1 cos 1 E: σ t = Eλ πa a λ E/π γ : λ/ 3 γ =

More information

(1) (2) (3) (4) 1

(1) (2) (3) (4) 1 8 3 4 3.................................... 3........................ 6.3 B [, ].......................... 8.4........................... 9........................................... 9.................................

More information