Kullback-Leibler

Size: px
Start display at page:

Download "Kullback-Leibler"

Transcription

1 Kullback-Leible Sanov Kullback-Leible Kullback-Leible Kullback-Leible max-plus Laplace KL Massieu Boltzmann Boltzmann URL Ve.0.0 ) Ve.0.26 )..7 Sanov 3. Stiling. 6 8 Ve Ve ). Sanov Gibbs Ve Ve ) Rényi Ve ) Tsallis Ve ). KL KL Sanov..3,. Tsallis...4.

2 2 3 Sanov 8 3. Sanov Sanov Sanov Sanov Gibbs Gibbs Gibbs : Stiling Stiling.. Kullback-Leible ) Boltzmann exp ν β νf ν k)) Gibbs.,. 3, 4.. [] Csisza, Ime. A simple poof of Sanov s theoem. Bull Baz Math Soc, New Seies 374), , [2] Dembo, Ami and Zeitouni, Ofe. Lage Deviations Techniques and Applications. Stochastic Modelling and Applied Pobability fomely: Applications of Mathematics), 38, Second Edition, Spinge, 998, 396 pages. Google ), Kullback-Leible ) 2 2, Kullback-Leible. Kullback-Leible n Kullback-Leible., n Kullback-Leible. Sanov., Boltzmann, Gibbs ) n Sanov ). Boltzmann e βe i.

3 3 [3] Ellis, Richad, S. The theoy of lage deviations and applications to statistical mechanics. Lectue notes fo École de Physique Les Houches, August 5 8, 2008, 23 pages. [4] Sanov, I. N. On the pobability of lage deviations of andom vaiables. English tanslation of Matematicheskii Sbonik, 4284):, pp. 44. Institute of Statistics Mimeogaph Seies No. 92, Mach, pdf [5] Suyai, Hioki. Mathematical stuctue deived fom the q-multinomial coefficient in Tsallis statistics. axiv:cond-mat/ [6]. I, II., 2008/2), [7] Tim van Even and Pete Haemoës. Rényi divegence and Kullback-Leible divegence. axiv: [8] Ramon van Handel. Lectue 3: Sanov s theoem. Stochas Analytic Semina Pinceton Univesity), Blog Aticle, 0 Octobe [9] Vasicek, Oldich Alfonso. A conditional law of lage numbes. Ann. Pobab., Volume 8, Numbe 980), Kullback-Leible Stiling Kullback-Leible ).. 0, i= =. i. q = q,..., q ). n, i k i k i ). i k i /n ) n., ) n i ) n. n k i /n,. 2 Boltzmann.

4 4. Kullback-Leible q = q,..., q ), k /n,..., k /n), n. n i k i, i= k i = n k! k! qk q k, 0 ). p i 0, i= p i =. n i k i /n p i, p i. ).2 n p i. n, k i )) log n k i = np i + Olog n) = np i + O ) n, ). logk i /n) = log p i + Olog n)/n) 2. Stiling i= k i = n log = n log n n + Olog n) = k i log n i= k i + Olog n), log k i! = k i log k i k i + Olog k i ) = k i log k i k i + Olog n), log q k i i = k i log. ) k i. ) : ) log k! k! qk q k k i = n log k ) i n n log + Olog n) i= = n p i log p i log ) + Olog n) = n i= i= i= p i log p i + Olog n)..7 )..3 Kullback-Leible.2 D[p q] = i= p i log p i 2 Taylo log + x) = x x 2 /2 + x 3 /3 x 4 /4 +.

5 .4. Kullback-Leible 5 : ) log k! k! qk q k = nd[p q] + Olog n). k i /n p i. D[p q] Kullback-Leible ) Kullback-Leible divegence. Kullback-Leible S[p q] = D[p q] = i= p i log p i. n p i n. : n p i ) = exp nd[p q] + Olog n)). D[p q] > 0, n Olog n) nd[p q], exp nd[p q])..4 Kullback-Leible Kullback-Leible D[p q] p = p,..., p ) fx) = x logx/q) = xlog x log q) x > 0). f x) = log x log q +, f x) = /x > 0 fx). fx) x = q x. fx) fq) + f q)x q) = x q x = q ). D[p q] = i= p i log p i p i ) = 0, i= p i = i =,..., ). fx), D[p q] p. Kullback-Leible 0, 0 p i., p i, D[p q] > 0, p i n n 0., n k i /n.. Kullback-Leible p i. n Kullback- Leible n. Kullback-Leible, Kullback-Leible., p i

6 6. Kullback-Leible, Kullback-Leible ), ). Kullback-Leible. n, Kullback-Leible. Kullback-Leible, p i.. n.. B A., A B ), B A.., n,...5 = 2, q = q, q 2 = q ).., p = p, p 2 = p, Kullback-Leible : D[p q] = p log p q + p) log p q. p = q 0, p q. Kullback- Leible q p. p n exp nd[p q] + Olog n))., p, D[p q] p n 0.. n. n a.?, n q. 0 a < q, a n., 0 a < q, a, n q. q < a., n, a 0. a p ). Kullback-Leible. p a D[p q] p = a., n p = a. q < a, a, n a.

7 .6. max-plus Laplace 7 : lim n n log ) { n D[q q] = 0 0 a q), q k q) n k = inf D[p q] = k p a k/n a D[a q] q < a )., ) ) n q k q) n k = exp n inf D[p q] + on). k p a k/n a a. n D[p q]..6 max-plus Laplace a, b a, b) max{a, b}, a, b) a + b semiing), semifiled) ) max-plus. max-plus topical mathematics.,..), max 0, +, 0. log., : lim n n logena + e nb ) = max{a, b}, lim n n logena e nb ) = a + b... a b, b a 0, e nb a), n logean + e nb ) = n log e na + e nb a))) = a + n log + e nb a)) a n ).. : lim n n log expna i + Olog n)) = max{a,..., a }. i= expna i + Olog n)) /n n a i., expna i + Olog n)) = expn max{a,..., a } + on)) i= n ).

8 8. Kullback-Leible Laplace.. : β ) ) exp nfx) + Olog n) dx = exp n inf fx) + on) α x β α n ). fx) x = x 0, f x 0 ) > 0, β e nfx) gx) dx = e nfx0) 2π gx 0 ) + o)) nf x 0 ) α n ). Laplace..7 KL n,. 0, i= =, a, b i i= b i = a, p i = b i a = Nb i Na. lim N Na log Na)! Nb )! Nb )! qnb q Nb ) = i= p i log p i. ) Kullback-Leible ). ) /Na) Na)! lim N Nb )! Nb )! qnb q Nb = p /q ) p p /q ) p.. ). N ) Na log Na)! Nb )! Nb )! qnb q Nb = Na ) Nb i log k log k + Nb i log Na k= i= k= i= = Na ) log k Nb i Na Na log k Na + Nb i log k= = Na Na k= 0 log k Na log x dx = [x log x x] 0 i= i= i= pi 0 k= Na Nb i k= log x dx + i= log k Na + p i log i= p i log i= [x log x x] p i 0 + i= p i log = i= i= p i log p i.

9 .8. Massieu 9 2 Na logna) i= Nb i logna) = 0.. : N Na p i = b i /a ) /Na) p /q ) p p /q ) p..8 Massieu. ). X : i X i M X t) M X t) = e tx i i=. X = E, t = β Zβ) = e βe i i=. ). K X t) = log M X t) X cumulant geneating function). F β) = log Zβ) β. β Fβ) = log Zβ) Boltzmann ). Fβ) Massieu..2 Rényi ). 2 p = p,..., p ), q = q,..., q ), Rényi S β [p q] S β [p q] = β log i= pi ) β = β log. β β β β )S i= β[p q]) = pβ i q β i logp i / ) i= pβ i q β i, β =, β β )S β [p q]) = β= i= i= p i log p i = S[p q] p β i q β i

10 0. Kullback-Leible. S [p q] := lim β S β [p q] = S[p q]. Rényi. = Rényi Rényi. Rényi Zβ; p, q) = pi q i= i ) β = e βe i, i= E i = log p i F β : p, q) Massieu Fβ; p, q) F β; p, q) = β log Zβ; p, q), Fβ; p, q) = log Zβ; p, q) Boltzmann ) : β )S β [p q] = βf β; p, q) = Fβ; p, q) = log Zβ; p, q). Rényi divegence Rényi ) [7]. β )S β [p q] = log Zβ; p, q) β : ) 2 i,j= log Zβ; p, q)) = E i E j ) 2 e βe i+e j ) q j 0 β 2Zβ) 2 p i = i =,..., ) )., β )S β [p q] = log Zβ; p, q) β = log Z; p, q) = log = 0, β )S β [p q] = log Zβ; p, q) β = S[p q],. β )S β [p q] β )S[p q]..3 Tsallis ). p = p,..., p ), q = q,..., q ), Zβ; p, q) : Zβ; p, q) = e βe i = i= pi q i= i ) β = i= p β i q β i, E i = log p i. E i 2 p q i. Gibbs pβ) = p β),..., p β)) p i β) = e βe i Zβ; p, q) = pβ i q β i Zβ; p, q)

11 .8. Massieu, β = p i 0) p i = p i )., Rényi S β [p q] S β [p q] = log Zβ; p, q) β = β log i= p β i q β i, S[p q] S[p q] = β log Zβ; p, q) = β= β Zβ; p, q) = β=. 2 Z; p, q) =. x q : i= p i log p i D x,q fx) = fx) fqx) q)x. q q D x,q fx) fx)/ x. log Zβ; p, q) Zβ; p, q) β q 3, Tsallis 4 q q α ): Z; p, q) Zα; p, q) T α [p q] = D β,α β= Zβ; p, q) = α = i= pα i q α i α α α, Tsallis. T α [p q] = p i / ) p i / ) α, α i= x x α lim α α = α α α= x α = x log x.,. Tsallis x log x x x α )/ α). Tsallis Rényi :. T β [p q] = Zβ; p, q) β = exp β)s β[p q]). β Rényi Tsallis S β [p q] = log Zβ; p, q) β = log + β)t β[p q]) β. Tsallis Rényi x log x = log + x )).,, Rényi, Tsallis Zβ; p, q) )Tsallis. )Rényi, Massieu ), )Tsallis.

12 2. Kullback-Leible.4 ). ν =, 2 R ν = {, 2,..., ν } p ν = p ν,,..., p ν,ν ), p ν = p ν,,..., p ν,ν ), Rényi S[p ν q ν ] = ν i= p ν,i log p ν,i q ν,i, S β [p ν q ν ] = log Zβ)[p ν q ν ], Z β [p ν q ν ] = β ν i= p β ν,i q β ν,i. R R 2 = { i, j) i R, j R 2 } i, j) p,i p 2,j, i, j) q,i q 2,j. Rényi : S[p, p 2 q, q 2 ] = i,j p,i p 2,j log p,ip 2,j q,i q 2,j, S β [p, p 2 q, q 2 ] = log Z β[p, p 2 q, q 2 ], Z β [p, p 2 q, q 2 ] = β i,j : p,i p 2,j ) β q,i q 2,j ) β. S[p, p 2 q, q 2 ] = S[p q 2 ] + S[p 2 q 2 ], S β [p, p 2 q, q 2 ] = S β [p q 2 ] + S β [p 2 q 2 ]. Z β [p, p 2 q, q 2 ] = Z β [p q ] Z β [p 2 q 2 ]. : S[p, p 2 q, q 2 ] = i,j p,i p 2,j log p,i q,i i,j p,i p 2,j log p 2,j q 2,j = i p,i log p,i q,i j p 2,j log p 2,j q 2,j = S[p q ] + S[p 2 q 2 ], Z β [p, p 2 q, q 2 ] = i,j = i p,i p 2,j ) β q,i q 2,j ) β = i,j p β,i q β,i j p β,i q β,i p β 2,j q β 2,j p β 2,j q β 2,j = Z β [p q ] Z β [p 2 q 2 ]. Tsallis T β [p ν q ν ] = Z β[p ν q ν ], T β [p, p 2 q, q 2 ] = Z β[p, p 2 q, q 2 ] β β, T β [p, p 2 q, q 2 ] = T β [p q ] + T β [p 2 q 2 ] + β)t β [p q ] T β [p 2 q 2 ]

13 3. : T β [p, p 2 q, q 2 ] T β [p q ] T β [p 2 q 2 ] = Z β[p q ] Z β [p 2 q 2 ] Z β [p q ] ) Z β [p 2 q 2 ] ) β = Z β[p q ] Z β [p 2 q 2 ] Z β [p q ] Z β [p 2 q 2 ] + β = Z β[p q ] )Z β [p 2 q 2 ] ) β = β) T β [p q ] T β [p 2 q 2 ]. q x) q = q x )/ q) x + y) q = x) q + y) q + q ) x) q y) q. Tsallis 5 [5]. n Tsallis. 2 Boltzmann Kullback-Leible, ) Boltzmann. 2. q = q,..., q ). n i i k i /n p i, p = p,..., p ). n p ) = exp nd[p q] + Olog n)) n ). : p = p,..., p ) f ν,i p i = c ν ν =, 2,..., s) ) i=., R,,..., ), f ν,,..., f ν, ) ν =,..., s). p, n?, i E i E i p i U i= 5 Tsallis = Tsallis.

14 4 2. Boltzmann U ), n?, i, E i, E i p i U i= U ), n? 2 s =. s >. 2.2 Boltzmann ) n, i= p i = ) Kullback-Leible K[p q] = i= p i logp i / ) p = p,..., p ). Lagange. Kullback- Leible p.) ) L = p i log p s ) i + λ ) p i + β ν f ν,i p i c ν q i= i i= ν= i=. λ, β ν. p i L 0 0 = L λ = 0 = L β ν = p i, ) i= f ν,i p i c ν ν =,..., s), 2) i= 0 = L p i = log p i + λ + s β ν f ν,i i =,..., ) 3) ν=. 3), ), Z := e λ = p i = exp i= λ ) s β ν f ν,i ν= e s ν= β νf ν,i, p i = Z e s ν= β νf ν,i 4). Z. p i Z = e λ β ν. β ν 4) 2). exp s ν= β νf ν,i ) Boltzmann. Boltzmann p i. p i Gibbs.

15 ), n p = p,..., p ) ). n p i Gibbs. s =, f,i = E i, c = U, β = β, p i = Z e βe i, Z = e βe i, i= log Z β = Z E i e βe i = U. Boltzmann. Gibbs S[p q] = K[p q] = i= p i logp i / ) : logp i / ) = s ν= β νf ν,i log Z, i= p i =, i= f ν,ip i = c ν s S[p q] = β ν c ν + log Z. ν= s =, f,i = E i, c = U, β = β S[p q] = βu + log Z. F F = β log Z, S[p q] = βu F ), Boltzmann, 6. i= 2.3 qx). n px) /n n S[p q] = K[p q] = px) log px) qx) dx. px) : f ν x)px) dx = c ν ν =,..., s)., K[p q] px) : px) = s Z e ν= βνfνx) qx), Z = e s ν= βνfνx) qx) dx, log Z = f ν x)e s ν= βνfνx) qx) dx = c ν. β ν Z... 6 Boltzmann.

16 6 2. Boltzmann : 0 < θ <, β = log θ log θ), k = 0,,..., n ) ) n p k = θ k θ) n k = e βk q k n k Z, q k = k 2, Z = n 2 n θ). n 4.3. : θ i 0, θ > 0, i= θ i =, β i = log θ i log θ, k + + k = n : p k,...,k = q k,...,k = k! k! θk θ k = e i= β ik i q k,...,k, Z k! k!, Z = n n θ n /2σ 2 ) ))x 2 +µ/σ 2 )x px) = e x µ)2 = e /2σ2, Z = e µ2 /2σ 2 ) 2πσ 2π Z 2. µ = 0, σ = 2.4. px) µ σ 2, px) dx =, R x px) dx = µ, x 2 px) dx = σ 2 + µ 2, S[px)] = px). R R R px) log px) dx Gamma : x > 0 px) = e x/τ x α τ α Γα) = e x/τ+α ) log x Z, Z = τ α Γα). Gamma px) px) dx =, R x px) dx = c, 0 0 S[px)] = 0 log x) px) dx = c 2 px) log px) dx px).. Beta : x > 0 x α px) = Bα, β) + x) = eα ) log x α+β) log+x), Z = Bα, β). α+β Z

17 n t / n : ρt) dt = c n + t2 n ) n+)/2 dt, c n = nb/2, n/2) =. px) dx = ρ n x) d n x), β = n + )/2 px) = Z + x 2 ) Z n+)/2 = e β log+x2) n t nπ Γn/2) Γn + )/2), Z = B/2, n/2). Beta : 0 < x < px) = xα x) β Bα, β) = eα ) log x+β ) log x) Z, Z = Bα, β). Poisson : p k = e λ λ k k! = e log λ)k q k, q k = e Z k!, Z = eλ s =, f x) = x 2, c =, qx) = 7., n x 2 x x 2 n)/n x x 2 n = n, n x. px) = Z e βx2, Z = R e βx2 dx = πβ /2, log Z β = 2β =. β = /2, Z = 2π, px) = e x2 /2 / 2π. n. R n 2 n n n. : lim n n S n fx ) µ n dx) = R fx) e x2 /2 2π dx. n S n n n, µ n, fx ) x x,..., x n ). 8.,. 7 qx) = qx).,. 8 Maxwell-Boltzmann.

18 8 3. Sanov 3 Sanov Sanov. Stiling. [8].. 3. Sanov {, 2,..., } P : P = { p = p,..., p ) R p,..., p 0, p + + p = }. P. = 3 P. q = q,..., q ) P. X, X 2,... {, 2,..., }, q = q,..., q ). q = q,..., q ). A #A, A P A). A B P B A).) i =,..., X,..., X n i k i P ) #{ k =, 2,..., n X k = i } = k i fo each i =,..., = k! k! qk q k. k,..., k ) k i = 0,,..., n, k + + k = n. k,..., k ) k /n,..., k /n) P n P : { k P n = n,..., k ) } k i = 0,,..., n, k + + k = n. n P n n + ). #P n n + ).) X,..., X n P n P n = k /n,, k /n). P n P n. p, q) P 2 D[p q] : D[p q] = i= p i log p i. p i 0 0 log 0 = 0, log 0 =. D[p q] Kullback-Leible. 3. Sanov). : ) A P lim inf n n log P P n A) inf p A D[p q].

19 3.2. Sanov 9 2) A P 9 lim sup n n log P P n A) inf p A D[p q]. 3) P A A lim n n log P P n A) = inf D[p q]. p A n Kullback-Leible D[p q] inf. 3.2 ). = 2, q = q, q 2 = q, p = p, p 2 = p, D[p q] = p log p q + p) log p q. p = q 0, p q. 0 a < b, A = a, b). P P n A) = ) n q k q) n k k lim n n log a<k/n<b a<k/n<b ) n q k q) n k = inf k D[p q] = a<p<b. Sanov. D[b q] b < q), D[q q] = 0 a q b), D[a q] q < a) 3.2 Sanov Stiling k, l. l k l k. l! k! kl k. l! k! = k + )k + 2) l kl k. l! k! = l + )l + 2) k = k l k. k k l 9 A., A.

20 20 3. Sanov Sanov. Stiling p P n n + ) e nd[p q] P P n = p) e nd[p q].. p = p,..., p ) = k /n,..., k /n) P n, nd[p q] = k i log p i + i= k i log, i= e nd[p q] = qk q k, P P p k n = p) = p k, : n + ) k!... k! pk p k. k! k! qk q k. )..) ). l i = 0,,..., n, l + + l = n., p i = k i /n l!... l! pl p l k!... k! pk p k ). l i /n) p i = k i /n)., 3.3, ) ) = l! k! l! k! kk l k k l k l k k l k k k l k k l =. )., = l + +l =n n + ). l!... l! pl p l n + ) k!... k! pk p k fn) f0) = 0 n, fn)! = f)f2) fn), f0)! =. f. k, l, fl)! fk)! fk)l k.

21 3.3. Sanov 2, l k, l k fl)! fk)! = fk + )fk + 2) fl) fk)l k l! k! = fl + )fl + 2) fk) = fk) l k. fk) k l k i Z 0 p i = fk i )/fn), l i Z 0, fn)! fl )! fl )! pl p l fn)! fl )! k )! pk p k. ) ) = fl )! fk )! fl )! fk )! fk ) k l fk ) k l fk ) l k fk ) l k fk ) k l fk ) k l =. fn). 3.3 Sanov 3.. ). A {, 2,..., } P ). n= P n = P Q P. A P p n P n A. P P n A) = p P n A lim D[p n q] = inf D[p q] n p A P P n = p) P P n = p n ) 3.4. n log P P n A) D[p n q] logn + ) n., n, lim inf n n log P P n A) inf p A D[p q]. n + ) e nd[p n q]. ). 2). A {, 2,..., } P. P P n A) = P P n = p) e nd[p q] n + ) e n inf p A D[p q]. p P n A p P n A

22 22 3. Sanov 3.4. n log P P n A) inf D[p q] + logn + ) p A n., n, lim sup n n log P P n A) inf p A D[p q]. 2). 3). A B, B C, A C. B A C inf p B D[p q] inf p A D[p q] inf p C D[p q]. C B D[p q] p, inf p C D[p q] = inf p B D[p q]. inf p B D[p q] = inf p A D[p q] = inf p C D[p q]. ),2) 3) Stiling.. ) : p i 0, p + + p = k! k! pk p k k i Z 0, k + + k = n).., k i k + +k =n,. 2) : k i Z 0, k + + k = n, p i = k i /n, l! l! pl p l k! k! pk p k = p + + p ) = k! k! pk p k l i Z 0, l + + l = n). k, l ) : l! k! kl k k, l Z 0 ).,, p i = k i /n ) ) = l! k! l! k k kk k l k k! k l k l k l k k k l k k l =.

23 23 2. Sanov. 3.4 Kullback-Leible. k i Z 0, k + + k = n, p i = k i /n. 2) l i = l + +l =n l! l! pl p l n + ) k! p! pk p k. n + ) ) n + ) k! k! pk p k. Z 0, q + + q =, p k p k q k q k q k n + ) q k p k p k k! k! qk q k k i = np i, Kullback-Leible qk q k. p k p k, D[p q] = i= p i log p i : log qk q k p k p k = log n + ) e nd[p q] q p ) p q p ) p ) n = nd[p q]. k! k! qk q k e nd[p q] n Sanov 3.). 4 Sanov Gibbs 3. P {, 2,..., } p = p,..., p ), q = q,..., q ) P. n, i k i, i k i /n. P n = k /n,..., k /n) P.

24 24 4. Sanov Gibbs 4. E = E,..., E ) R, E = = E a < E a+ E b < E b+ = = E q, q > 0 ). E i i 0. β R pβ) = p β),..., p β)) P Zβ) p i β) = e βe i Zβ), Zβ) = e βe i,. Uβ) = E β i= Uβ) = E β = i= E i p i β) = log Zβ) β. β, e βe i Boltzmann, pβ) Gibbs, Zβ), Uβ). log Zβ) β. ) 2 log Zβ) = Z β)zβ) Z β) 2 β Zβ) 2, a i = e βe i 0, a, a > 0 E < E Z β)zβ) Z β) 2 = i,j E 2 i a i a j i,j E i a i E j a j, = Ei 2 + Ej 2 )a i a j 2E i E j a i a j = E i E j ) 2 a i a j > i,j i,j ) 2 log Zβ) > 0 β., Uβ) = log Zβ) β β. Uβ). p0) = q U0) = E i. i= i,j β Uβ) = i E ie βe i i e βe i qi E a e βe i= e βe a i= = E. 0 i.

25 4.2. Gibbs 25 β Uβ) = i E ie βe i i e βe i qi E e βe i= b+ e βe i= b+ = E., E U E β U = Uβ). 4.2 Gibbs p = p,..., p ) P, i= E ip i Uβ), n Gibbs pβ).,, i= E ip i Uβ), a > 0 : β 0, Uβ) a E i p i Uβ). β 0, Uβ) i= E i p i Uβ) + a. i= a > 0. {, 2,..., } P A { { p P Uβ) a i= E ip i Uβ)} β 0), A = { p P Uβ) i= E ip i Uβ) + a} β 0). P n A P P n B P n A) = P P n A B) P P n A) B P) n Gibbs pβ) Sanov 3.)., ε > 0, P B : B = { p P p pβ) < ε }. Euclid. B pβ) ε., n Gibbs pβ) P P n B P n A) n ) ). Kullback-Leible D[p q] P C D[C q] = inf p P D[p q]. Sanov, P C C P P n C) = exp nd[c q] + on)).

26 26 4. Sanov Gibbs P A, B, A B A, B, A B. B A B = A B. P P n B P n A) = exp nd[b q] D[A q]) + on)). n 0 ). p A p = pβ) D[p q], B = A B pβ), D[B q] > D[A q] = D[pβ) q], n P P n B P n A) 0. D[p q] p, A P, p A D[p q] p = pβ), p = pβ). p A D[p q] p = pβ) ).. Gibbs pβ) E i p i β) = Uβ) i=, pβ) A. D[pβ) q] = = i= p i β) log p iβ) = i= p i β) log e βe i Zβ) p i β) βe i log Zβ)) = βuβ) log Zβ). i= p A D[p q]. p A D[p q] D[pβ) q]. p A., A, β 0 i= E ip i Uβ), β 0 i= E ip i Uβ), β β E i p i βuβ). #) i=. 4., β > 0 Uβ) < i= E i, β < 0 Uβ) > i= E i. A a > 0. Kullback-Leible D[p q] : D[p q] = i= p i log p i = i= pi p i log p i β) ) p i β) = = D[p pβ)] + p i log e βe i Zβ) = D[p pβ)] + i= = D[p pβ)] β E i p i log Zβ). i= p i log p i p i β) + i= i= i= p i βe i log Zβ)) p i log p iβ) S[p q] = D[p q] S[p q] = βuβ) + log Zβ)..

27 4.2. Gibbs 27, Kullback-Leible 0 #), D[p q] D[p pβ)] βuβ) log Zβ) D[p pβ)] + D[pβ) q] D[pβ) q]. p A D[p q] p = pβ). ). 4. #) ). #). β Boltzmann. β > 0 #) ) = E i p i Uβ) i=. [6] 9-2- p.39). Gibbs, i= E ip i Uβ), #).. 4., U0) i= E i. β > 0 Uβ) min{e,..., E }, β < 0 Uβ) max{e,..., E }. β = ), β =. β, β =, β = 0. β.. β,.., i E i. E i < 0 E i.) i. U 0 = i= E i. U 0. U > U 0. n ). U, n. U 0 U., n i p i n )? U 0, U U ). i p i, U β Gibbs p i β).

28 28 4. Sanov Gibbs U > U 0 β < 0.,,., U < U 0,, U., U 0, U, i U Gibbs p i β). U < U 0 β > 0,.,,. Gibbs #) Gibbs. 4.2, ). q = q,..., q ) P. X, X 2,... q {, 2,..., }. X, X 2,..., X n i k i, P n = k /n,..., k /n). P n P. E i R 4.. E < U < E, β R, pβ) = p β),..., p β)) P, Zβ) : p i β) = e βe i Zβ), Zβ) = e βe i, i= log Zβ) = β i= E i p i β) = U. pβ) Gibbs. 0 < a, A U P A U = { { p P U a i= E ip i U } β 0), { p P U i= E ip i U + a} β 0). i= E ip i β) = U pβ) A U. ε > 0, pβ) A U ε B ε pβ))., n P P n B ε pβ)) P n A U ) = P P n B ε pβ))) P P n A U ). P n n Gibbs pβ) ) θ /2 Gibbs. Gibbs.

29 4.3. Gibbs 29 {0,,..., } X /2 : ) P X = i) = i = 0,,..., ). i 2 X, X 2,... X. X, X 2,..., X n i k i, P n = k 0 /n, k /n,..., k /n), P n {0,,..., }., n, P n. E i = i Gibbs., Zβ) = e βe i = i=0, Gibbs i=0 i ) e β 2 ) i ) i = e β + ) 2 2 p i β) = e βe i Zβ) = ) e βi i e β + ) = ) e β ) i ) i i e β + e β +.,, p i β) =, )θ i θ) i, θ = e β i e β +. Z β) = e β e β + ) 2 Uβ) = β Zβ) = Z β) Zβ) = e β e β + = θ θ i. /2. /2. i i/ n. n. i i/ n. 2 : i/ ) = i=0 i p i θ. ) p i = k i /n? p = p 0, p,..., p ) θ, ), θ /2 n 0..

30 30 4. Sanov Gibbs Gibbs pβ) θ ), 4.2, i ) = ip i = i=0 E i p i Uβ) = θ i=0 p = p 0, p,..., p ) P n n. ). θ θ.. /2,. θ 3, θ E i Gibbs : = e β 0E i q 0,i Z 0, Z 0 = e β 0E i,0. q 0,i 0, i= q 0,i =, E,..., E R E E, q, q > 0., E i Gibbs pβ) Gibbs : i= p i β) = e β 0+β)E i q 0,i Z 0 Zβ), Z 0 Zβ) = Z 0 e βe i = i= e β 0+β)E i q 0,i. i= θ /2, n 0,.

Kullback-Leibler

Kullback-Leibler Kullback-Leibler 206 6 6 http://www.math.tohoku.ac.jp/~kuroki/latex/206066kullbackleibler.pdf 0 2 Kullback-Leibler 3. q i.......................... 3.2........... 3.3 Kullback-Leibler.............. 4.4

More information

Kullback-Leibler

Kullback-Leibler Kullback-Leibler Saov 206 6 6 http://www.math.tohoku.ac.jp/~kuroki/latex/206066kullbackleibler.pdf 0 3 Kullback-Leibler 4........................... 4.2........... 5.3 Kullback-Leibler.............. 5.4

More information

Kullback-Leibler

Kullback-Leibler Kullback-Leibler Saov 206 6 6 http://www.math.tohoku.ac.jp/~kuroki/latex/206066kullbackleibler.pdf : http://www.math.tohoku.ac.jp/~kuroki/latex/206066kullbackleibler/ Ver.0. 0. 0 3 Kullback-Leibler 4...........................

More information

1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ =

1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ = 1 1.1 ( ). z = + bi,, b R 0, b 0 2 + b 2 0 z = + bi = ( ) 2 + b 2 2 + b + b 2 2 + b i 2 r = 2 + b 2 θ cos θ = 2 + b 2, sin θ = b 2 + b 2 2π z = r(cos θ + i sin θ) 1.2 (, ). 1. < 2. > 3. ±,, 1.3 ( ). A

More information

newmain.dvi

newmain.dvi 数論 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/008142 このサンプルページの内容は, 第 2 版 1 刷発行当時のものです. Daniel DUVERNEY: THÉORIE DES NOMBRES c Dunod, Paris, 1998, This book is published

More information

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 第 2 版 1 刷発行時のものです. 医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/009192 このサンプルページの内容は, 第 2 版 1 刷発行時のものです. i 2 t 1. 2. 3 2 3. 6 4. 7 5. n 2 ν 6. 2 7. 2003 ii 2 2013 10 iii 1987

More information

数学概論I

数学概論I {a n } M >0 s.t. a n 5 M for n =1, 2,... lim n a n = α ε =1 N s.t. a n α < 1 for n > N. n > N a n 5 a n α + α < 1+ α. M := max{ a 1,..., a N, 1+ α } a n 5 M ( n) 1 α α 1+ α t a 1 a N+1 a N+2 a 2 1 a n

More information

meiji_resume_1.PDF

meiji_resume_1.PDF β β β (q 1,q,..., q n ; p 1, p,..., p n ) H(q 1,q,..., q n ; p 1, p,..., p n ) Hψ = εψ ε k = k +1/ ε k = k(k 1) (x, y, z; p x, p y, p z ) (r; p r ), (θ; p θ ), (ϕ; p ϕ ) ε k = 1/ k p i dq i E total = E

More information

B [ 0.1 ] x > 0 x 6= 1 f(x) µ 1 1 xn 1 + sin sin x 1 x 1 f(x) := lim. n x n (1) lim inf f(x) (2) lim sup f(x) x 1 0 x 1 0 (

B [ 0.1 ] x > 0 x 6= 1 f(x) µ 1 1 xn 1 + sin sin x 1 x 1 f(x) := lim. n x n (1) lim inf f(x) (2) lim sup f(x) x 1 0 x 1 0 ( . 28 4 14 [.1 ] x > x 6= 1 f(x) µ 1 1 xn 1 + sin + 2 + sin x 1 x 1 f(x) := lim. 1 + x n (1) lim inf f(x) (2) lim sup f(x) x 1 x 1 (3) lim inf x 1+ f(x) (4) lim sup f(x) x 1+ [.2 ] [, 1] Ω æ x (1) (2) nx(1

More information

1 1.1 / Fik Γ= D n x / Newton Γ= µ vx y / Fouie Q = κ T x 1. fx, tdx t x x + dx f t = D f x 1 fx, t = 1 exp x 4πDt 4Dt lim fx, t =δx 3 t + dxfx, t = 1

1 1.1 / Fik Γ= D n x / Newton Γ= µ vx y / Fouie Q = κ T x 1. fx, tdx t x x + dx f t = D f x 1 fx, t = 1 exp x 4πDt 4Dt lim fx, t =δx 3 t + dxfx, t = 1 1 1.1......... 1............. 1.3... 1.4......... 1.5.............. 1.6................ Bownian Motion.1.......... Einstein.............. 3.3 Einstein........ 3.4..... 3.5 Langevin Eq.... 3.6................

More information

all.dvi

all.dvi 72 9 Hooke,,,. Hooke. 9.1 Hooke 1 Hooke. 1, 1 Hooke. σ, ε, Young. σ ε (9.1), Young. τ γ G τ Gγ (9.2) X 1, X 2. Poisson, Poisson ν. ν ε 22 (9.) ε 11 F F X 2 X 1 9.1: Poisson 9.1. Hooke 7 Young Poisson G

More information

Part () () Γ Part ,

Part () () Γ Part , Contents a 6 6 6 6 6 6 6 7 7. 8.. 8.. 8.3. 8 Part. 9. 9.. 9.. 3. 3.. 3.. 3 4. 5 4.. 5 4.. 9 4.3. 3 Part. 6 5. () 6 5.. () 7 5.. 9 5.3. Γ 3 6. 3 6.. 3 6.. 3 6.3. 33 Part 3. 34 7. 34 7.. 34 7.. 34 8. 35

More information

f(x) = f(x ) + α(x)(x x ) α(x) x = x. x = f (y), x = f (y ) y = f f (y) = f f (y ) + α(f (y))(f (y) f (y )) f (y) = f (y ) + α(f (y)) (y y ) ( (2) ) f

f(x) = f(x ) + α(x)(x x ) α(x) x = x. x = f (y), x = f (y ) y = f f (y) = f f (y ) + α(f (y))(f (y) f (y )) f (y) = f (y ) + α(f (y)) (y y ) ( (2) ) f 22 A 3,4 No.3 () (2) (3) (4), (5) (6) (7) (8) () n x = (x,, x n ), = (,, n ), x = ( (x i i ) 2 ) /2 f(x) R n f(x) = f() + i α i (x ) i + o( x ) α,, α n g(x) = o( x )) lim x g(x) x = y = f() + i α i(x )

More information

201711grade1ouyou.pdf

201711grade1ouyou.pdf 2017 11 26 1 2 52 3 12 13 22 23 32 33 42 3 5 3 4 90 5 6 A 1 2 Web Web 3 4 1 2... 5 6 7 7 44 8 9 1 2 3 1 p p >2 2 A 1 2 0.6 0.4 0.52... (a) 0.6 0.4...... B 1 2 0.8-0.2 0.52..... (b) 0.6 0.52.... 1 A B 2

More information

v v = v 1 v 2 v 3 (1) R = (R ij ) (2) R (R 1 ) ij = R ji (3) 3 R ij R ik = δ jk (4) i=1 δ ij Kronecker δ ij = { 1 (i = j) 0 (i

v v = v 1 v 2 v 3 (1) R = (R ij ) (2) R (R 1 ) ij = R ji (3) 3 R ij R ik = δ jk (4) i=1 δ ij Kronecker δ ij = { 1 (i = j) 0 (i 1. 1 1.1 1.1.1 1.1.1.1 v v = v 1 v 2 v 3 (1) R = (R ij ) (2) R (R 1 ) ij = R ji (3) R ij R ik = δ jk (4) δ ij Kronecker δ ij = { 1 (i = j) 0 (i j) (5) 1 1.1. v1.1 2011/04/10 1. 1 2 v i = R ij v j (6) [

More information

TOP URL 1

TOP URL   1 TOP URL http://amonphys.web.fc.com/ 3.............................. 3.............................. 4.3 4................... 5.4........................ 6.5........................ 8.6...........................7

More information

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5.

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5. A 1. Boltzmann Planck u(ν, T )dν = 8πh ν 3 c 3 kt 1 dν h 6.63 10 34 J s Planck k 1.38 10 23 J K 1 Boltzmann u(ν, T ) T ν e hν c = 3 10 8 m s 1 2. Planck λ = c/ν Rayleigh-Jeans u(ν, T )dν = 8πν2 kt dν c

More information

O x y z O ( O ) O (O ) 3 x y z O O x v t = t = 0 ( 1 ) O t = 0 c t r = ct P (x, y, z) r 2 = x 2 + y 2 + z 2 (t, x, y, z) (ct) 2 x 2 y 2 z 2 = 0

O x y z O ( O ) O (O ) 3 x y z O O x v t = t = 0 ( 1 ) O t = 0 c t r = ct P (x, y, z) r 2 = x 2 + y 2 + z 2 (t, x, y, z) (ct) 2 x 2 y 2 z 2 = 0 9 O y O ( O ) O (O ) 3 y O O v t = t = 0 ( ) O t = 0 t r = t P (, y, ) r = + y + (t,, y, ) (t) y = 0 () ( )O O t (t ) y = 0 () (t) y = (t ) y = 0 (3) O O v O O v O O O y y O O v P(, y,, t) t (, y,, t )

More information

July 28, H H 0 H int = H H 0 H int = H int (x)d 3 x Schrödinger Picture Ψ(t) S =e iht Ψ H O S Heisenberg Picture Ψ H O H (t) =e iht O S e i

July 28, H H 0 H int = H H 0 H int = H int (x)d 3 x Schrödinger Picture Ψ(t) S =e iht Ψ H O S Heisenberg Picture Ψ H O H (t) =e iht O S e i July 8, 4. H H H int H H H int H int (x)d 3 x Schrödinger Picture Ψ(t) S e iht Ψ H O S Heisenberg Picture Ψ H O H (t) e iht O S e iht Interaction Picture Ψ(t) D e iht Ψ(t) S O D (t) e iht O S e ih t (Dirac

More information

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google I4 - : April, 4 Version :. Kwhir, Tomoki TA (Kondo, Hirotk) Google http://www.mth.ngoy-u.c.jp/~kwhir/courses/4s-biseki.html pdf 4 4 4 4 8 e 5 5 9 etc. 5 6 6 6 9 n etc. 6 6 6 3 6 3 7 7 etc 7 4 7 7 8 5 59

More information

TOP URL 1

TOP URL   1 TOP URL http://amonphys.web.fc.com/ 1 19 3 19.1................... 3 19.............................. 4 19.3............................... 6 19.4.............................. 8 19.5.............................

More information

n (1.6) i j=1 1 n a ij x j = b i (1.7) (1.7) (1.4) (1.5) (1.4) (1.7) u, v, w ε x, ε y, ε x, γ yz, γ zx, γ xy (1.8) ε x = u x ε y = v y ε z = w z γ yz

n (1.6) i j=1 1 n a ij x j = b i (1.7) (1.7) (1.4) (1.5) (1.4) (1.7) u, v, w ε x, ε y, ε x, γ yz, γ zx, γ xy (1.8) ε x = u x ε y = v y ε z = w z γ yz 1 2 (a 1, a 2, a n ) (b 1, b 2, b n ) A (1.1) A = a 1 b 1 + a 2 b 2 + + a n b n (1.1) n A = a i b i (1.2) i=1 n i 1 n i=1 a i b i n i=1 A = a i b i (1.3) (1.3) (1.3) (1.1) (ummation convention) a 11 x

More information

x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y)

x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y) x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 1 1977 x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y) ( x 2 y + xy 2 x 2 2xy y 2) = 15 (x y) (x + y) (xy

More information

I A A441 : April 15, 2013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida )

I A A441 : April 15, 2013 Version : 1.1 I   Kawahira, Tomoki TA (Shigehiro, Yoshida ) I013 00-1 : April 15, 013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida) http://www.math.nagoya-u.ac.jp/~kawahira/courses/13s-tenbou.html pdf * 4 15 4 5 13 e πi = 1 5 0 5 7 3 4 6 3 6 10 6 17

More information

II ( ) (7/31) II ( [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Re

II ( ) (7/31) II (  [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Re II 29 7 29-7-27 ( ) (7/31) II (http://www.damp.tottori-u.ac.jp/~ooshida/edu/fluid/) [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Reynolds [ (4.6), (45.8)] [ p.186] Navier Stokes I Euler Navier

More information

III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F

III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F F 1 F 2 F, (3) F λ F λ F λ F. 3., A λ λ A λ. B λ λ

More information

Z: Q: R: C: sin 6 5 ζ a, b

Z: Q: R: C: sin 6 5 ζ a, b Z: Q: R: C: 3 3 7 4 sin 6 5 ζ 9 6 6............................... 6............................... 6.3......................... 4 7 6 8 8 9 3 33 a, b a bc c b a a b 5 3 5 3 5 5 3 a a a a p > p p p, 3,

More information

n ξ n,i, i = 1,, n S n ξ n,i n 0 R 1,.. σ 1 σ i .10.14.15 0 1 0 1 1 3.14 3.18 3.19 3.14 3.14,. ii 1 1 1.1..................................... 1 1............................... 3 1.3.........................

More information

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,. 9 α ν β Ξ ξ Γ γ o δ Π π ε ρ ζ Σ σ η τ Θ θ Υ υ ι Φ φ κ χ Λ λ Ψ ψ µ Ω ω Def, Prop, Th, Lem, Note, Remark, Ex,, Proof, R, N, Q, C [a, b {x R : a x b} : a, b {x R : a < x < b} : [a, b {x R : a x < b} : a,

More information

30

30 3 ............................................2 2...........................................2....................................2.2...................................2.3..............................

More information

1 Introduction 1 (1) (2) (3) () {f n (x)} n=1 [a, b] K > 0 n, x f n (x) K < ( ) x [a, b] lim f n (x) f(x) (1) f(x)? (2) () f(x)? b lim a f n (x)dx = b

1 Introduction 1 (1) (2) (3) () {f n (x)} n=1 [a, b] K > 0 n, x f n (x) K < ( ) x [a, b] lim f n (x) f(x) (1) f(x)? (2) () f(x)? b lim a f n (x)dx = b 1 Introduction 2 2.1 2.2 2.3 3 3.1 3.2 σ- 4 4.1 4.2 5 5.1 5.2 5.3 6 7 8. Fubini,,. 1 1 Introduction 1 (1) (2) (3) () {f n (x)} n=1 [a, b] K > 0 n, x f n (x) K < ( ) x [a, b] lim f n (x) f(x) (1) f(x)?

More information

20 9 19 1 3 11 1 3 111 3 112 1 4 12 6 121 6 122 7 13 7 131 8 132 10 133 10 134 12 14 13 141 13 142 13 143 15 144 16 145 17 15 19 151 1 19 152 20 2 21 21 21 211 21 212 1 23 213 1 23 214 25 215 31 22 33

More information

ルベーグ積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

ルベーグ積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 初版 1 刷発行時のものです. ルベーグ積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/005431 このサンプルページの内容は, 初版 1 刷発行時のものです. Lebesgue 1 2 4 4 1 2 5 6 λ a

More information

z f(z) f(z) x, y, u, v, r, θ r > 0 z = x + iy, f = u + iv C γ D f(z) f(z) D f(z) f(z) z, Rm z, z 1.1 z = x + iy = re iθ = r (cos θ + i sin θ) z = x iy

z f(z) f(z) x, y, u, v, r, θ r > 0 z = x + iy, f = u + iv C γ D f(z) f(z) D f(z) f(z) z, Rm z, z 1.1 z = x + iy = re iθ = r (cos θ + i sin θ) z = x iy f f x, y, u, v, r, θ r > = x + iy, f = u + iv C γ D f f D f f, Rm,. = x + iy = re iθ = r cos θ + i sin θ = x iy = re iθ = r cos θ i sin θ x = + = Re, y = = Im i r = = = x + y θ = arg = arctan y x e i =

More information

QMII_10.dvi

QMII_10.dvi 65 1 1.1 1.1.1 1.1 H H () = E (), (1.1) H ν () = E ν () ν (). (1.) () () = δ, (1.3) μ () ν () = δ(μ ν). (1.4) E E ν () E () H 1.1: H α(t) = c (t) () + dνc ν (t) ν (), (1.5) H () () + dν ν () ν () = 1 (1.6)

More information

untitled

untitled 18 1 2,000,000 2,000,000 2007 2 2 2008 3 31 (1) 6 JCOSSAR 2007pp.57-642007.6. LCC (1) (2) 2 10mm 1020 14 12 10 8 6 4 40,50,60 2 0 1998 27.5 1995 1960 40 1) 2) 3) LCC LCC LCC 1 1) Vol.42No.5pp.29-322004.5.

More information

5 5.1 E 1, E 2 N 1, N 2 E tot N tot E tot = E 1 + E 2, N tot = N 1 + N 2 S 1 (E 1, N 1 ), S 2 (E 2, N 2 ) E 1, E 2 S tot = S 1 + S 2 2 S 1 E 1 = S 2 E

5 5.1 E 1, E 2 N 1, N 2 E tot N tot E tot = E 1 + E 2, N tot = N 1 + N 2 S 1 (E 1, N 1 ), S 2 (E 2, N 2 ) E 1, E 2 S tot = S 1 + S 2 2 S 1 E 1 = S 2 E 5 5.1 E 1, E 2 N 1, N 2 E tot N tot E tot = E 1 + E 2, N tot = N 1 + N 2 S 1 (E 1, N 1 ), S 2 (E 2, N 2 ) E 1, E 2 S tot = S 1 + S 2 2 S 1 E 1 = S 2 E 2, S 1 N 1 = S 2 N 2 2 (chemical potential) µ S N

More information

2 G(k) e ikx = (ik) n x n n! n=0 (k ) ( ) X n = ( i) n n k n G(k) k=0 F (k) ln G(k) = ln e ikx n κ n F (k) = F (k) (ik) n n= n! κ n κ n = ( i) n n k n

2 G(k) e ikx = (ik) n x n n! n=0 (k ) ( ) X n = ( i) n n k n G(k) k=0 F (k) ln G(k) = ln e ikx n κ n F (k) = F (k) (ik) n n= n! κ n κ n = ( i) n n k n . X {x, x 2, x 3,... x n } X X {, 2, 3, 4, 5, 6} X x i P i. 0 P i 2. n P i = 3. P (i ω) = i ω P i P 3 {x, x 2, x 3,... x n } ω P i = 6 X f(x) f(x) X n n f(x i )P i n x n i P i X n 2 G(k) e ikx = (ik) n

More information

II (Percolation) ( 3-4 ) 1. [ ],,,,,,,. 2. [ ],.. 3. [ ],. 4. [ ] [ ] G. Grimmett Percolation Springer-Verlag New-York [ ] 3

II (Percolation) ( 3-4 ) 1. [ ],,,,,,,. 2. [ ],.. 3. [ ],. 4. [ ] [ ] G. Grimmett Percolation Springer-Verlag New-York [ ] 3 II (Percolation) 12 9 27 ( 3-4 ) 1 [ ] 2 [ ] 3 [ ] 4 [ ] 1992 5 [ ] G Grimmett Percolation Springer-Verlag New-York 1989 6 [ ] 3 1 3 p H 2 3 2 FKG BK Russo 2 p H = p T (=: p c ) 3 2 Kesten p c =1/2 ( )

More information

2016 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 1 16 2 1 () X O 3 (O1) X O, O (O2) O O (O3) O O O X (X, O) O X X (O1), (O2), (O3) (O2) (O3) n (O2) U 1,..., U n O U k O k=1 (O3) U λ O( λ Λ) λ Λ U λ O 0 X 0 (O2) n =

More information

gr09.dvi

gr09.dvi .1, θ, ϕ d = A, t dt + B, t dtd + C, t d + D, t dθ +in θdϕ.1.1 t { = f1,t t = f,t { D, t = B, t =.1. t A, tdt e φ,t dt, C, td e λ,t d.1.3,t, t d = e φ,t dt + e λ,t d + dθ +in θdϕ.1.4 { = f1,t t = f,t {

More information

..3. Ω, Ω F, P Ω, F, P ). ) F a) A, A,..., A i,... F A i F. b) A F A c F c) Ω F. ) A F A P A),. a) 0 P A) b) P Ω) c) [ ] A, A,..., A i,... F i j A i A

..3. Ω, Ω F, P Ω, F, P ). ) F a) A, A,..., A i,... F A i F. b) A F A c F c) Ω F. ) A F A P A),. a) 0 P A) b) P Ω) c) [ ] A, A,..., A i,... F i j A i A .. Laplace ). A... i),. ω i i ). {ω,..., ω } Ω,. ii) Ω. Ω. A ) r, A P A) P A) r... ).. Ω {,, 3, 4, 5, 6}. i i 6). A {, 4, 6} P A) P A) 3 6. ).. i, j i, j) ) Ω {i, j) i 6, j 6}., 36. A. A {i, j) i j }.

More information

( )

( ) 7..-8..8.......................................................................... 4.................................... 3...................................... 3..3.................................. 4.3....................................

More information

熊本県数学問題正解

熊本県数学問題正解 00 y O x Typed by L A TEX ε ( ) (00 ) 5 4 4 ( ) http://www.ocn.ne.jp/ oboetene/plan/. ( ) (009 ) ( ).. http://www.ocn.ne.jp/ oboetene/plan/eng.html 8 i i..................................... ( )0... (

More information

( ) Loewner SLE 13 February

( ) Loewner SLE 13 February ( ) Loewner SLE 3 February 00 G. F. Lawler, Conformally Invariant Processes in the Plane, (American Mathematical Society, 005)., Summer School 009 (009 8 7-9 ) . d- (BES d ) d B t = (Bt, B t,, Bd t ) (d

More information

(2 X Poisso P (λ ϕ X (t = E[e itx ] = k= itk λk e k! e λ = (e it λ k e λ = e eitλ e λ = e λ(eit 1. k! k= 6.7 X N(, 1 ϕ X (t = e 1 2 t2 : Cauchy ϕ X (t

(2 X Poisso P (λ ϕ X (t = E[e itx ] = k= itk λk e k! e λ = (e it λ k e λ = e eitλ e λ = e λ(eit 1. k! k= 6.7 X N(, 1 ϕ X (t = e 1 2 t2 : Cauchy ϕ X (t 6 6.1 6.1 (1 Z ( X = e Z, Y = Im Z ( Z = X + iy, i = 1 (2 Z E[ e Z ] < E[ Im Z ] < Z E[Z] = E[e Z] + ie[im Z] 6.2 Z E[Z] E[ Z ] : E[ Z ] < e Z Z, Im Z Z E[Z] α = E[Z], Z = Z Z 1 {Z } E[Z] = α = α [ α ]

More information

四変数基本対称式の解放

四変数基本対称式の解放 The second-thought of the Galois-style way to solve a quartic equation Oomori, Yasuhiro in Himeji City, Japan Jan.6, 013 Abstract v ρ (v) Step1.5 l 3 1 6. l 3 7. Step - V v - 3 8. Step1.3 - - groupe groupe

More information

,,,17,,, ( ),, E Q [S T F t ] < S t, t [, T ],,,,,,,,

,,,17,,, ( ),, E Q [S T F t ] < S t, t [, T ],,,,,,,, 14 5 1 ,,,17,,,194 1 4 ( ),, E Q [S T F t ] < S t, t [, T ],,,,,,,, 1 4 1.1........................................ 4 5.1........................................ 5.........................................

More information

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2 2005 9/8-11 2 2.2 ( 2-5) γ ( ) γ cos θ 2πr πρhr 2 g h = 2γ cos θ ρgr (2.1) γ = ρgrh (2.2) 2 cos θ θ cos θ = 1 (2.2) γ = 1 ρgrh (2.) 2 2. p p ρgh p ( ) p p = p ρgh (2.) h p p = 2γ r 1 1 (Berry,1975) 2-6

More information

³ÎΨÏÀ

³ÎΨÏÀ 2017 12 12 Makoto Nakashima 2017 12 12 1 / 22 2.1. C, D π- C, D. A 1, A 2 C A 1 A 2 C A 3, A 4 D A 1 A 2 D Makoto Nakashima 2017 12 12 2 / 22 . (,, L p - ). Makoto Nakashima 2017 12 12 3 / 22 . (,, L p

More information

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 初版 1 刷発行時のものです. 微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. ttp://www.morikita.co.jp/books/mid/00571 このサンプルページの内容は, 初版 1 刷発行時のものです. i ii 014 10 iii [note] 1 3 iv 4 5 3 6 4 x 0 sin x x 1 5 6 z = f(x, y) 1 y = f(x)

More information

第5章 偏微分方程式の境界値問題

第5章 偏微分方程式の境界値問題 October 5, 2018 1 / 113 4 ( ) 2 / 113 Poisson 5.1 Poisson ( A.7.1) Poisson Poisson 1 (A.6 ) Γ p p N u D Γ D b 5.1.1: = Γ D Γ N 3 / 113 Poisson 5.1.1 d {2, 3} Lipschitz (A.5 ) Γ D Γ N = \ Γ D Γ p Γ N Γ

More information

.3. (x, x = (, u = = 4 (, x x = 4 x, x 0 x = 0 x = 4 x.4. ( z + z = 8 z, z 0 (z, z = (0, 8, (,, (8, 0 3 (0, 8, (,, (8, 0 z = z 4 z (g f(x = g(

.3. (x, x = (, u = = 4 (, x x = 4 x, x 0 x = 0 x = 4 x.4. ( z + z = 8 z, z 0 (z, z = (0, 8, (,, (8, 0 3 (0, 8, (,, (8, 0 z = z 4 z (g f(x = g( 06 5.. ( y = x x y 5 y 5 = (x y = x + ( y = x + y = x y.. ( Y = C + I = 50 + 0.5Y + 50 r r = 00 0.5Y ( L = M Y r = 00 r = 0.5Y 50 (3 00 0.5Y = 0.5Y 50 Y = 50, r = 5 .3. (x, x = (, u = = 4 (, x x = 4 x,

More information

ohpmain.dvi

ohpmain.dvi fujisawa@ism.ac.jp 1 Contents 1. 2. 3. 4. γ- 2 1. 3 10 5.6, 5.7, 5.4, 5.5, 5.8, 5.5, 5.3, 5.6, 5.4, 5.2. 5.5 5.6 +5.7 +5.4 +5.5 +5.8 +5.5 +5.3 +5.6 +5.4 +5.2 =5.5. 10 outlier 5 5.6, 5.7, 5.4, 5.5, 5.8,

More information

(1) (2) (1) (2) 2 3 {a n } a 2 + a 4 + a a n S n S n = n = S n

(1) (2) (1) (2) 2 3 {a n } a 2 + a 4 + a a n S n S n = n = S n . 99 () 0 0 0 () 0 00 0 350 300 () 5 0 () 3 {a n } a + a 4 + a 6 + + a 40 30 53 47 77 95 30 83 4 n S n S n = n = S n 303 9 k d 9 45 k =, d = 99 a d n a n d n a n = a + (n )d a n a n S n S n = n(a + a n

More information

No2 4 y =sinx (5) y = p sin(2x +3) (6) y = 1 tan(3x 2) (7) y =cos 2 (4x +5) (8) y = cos x 1+sinx 5 (1) y =sinx cos x 6 f(x) = sin(sin x) f 0 (π) (2) y

No2 4 y =sinx (5) y = p sin(2x +3) (6) y = 1 tan(3x 2) (7) y =cos 2 (4x +5) (8) y = cos x 1+sinx 5 (1) y =sinx cos x 6 f(x) = sin(sin x) f 0 (π) (2) y No1 1 (1) 2 f(x) =1+x + x 2 + + x n, g(x) = 1 (n +1)xn + nx n+1 (1 x) 2 x 6= 1 f 0 (x) =g(x) y = f(x)g(x) y 0 = f 0 (x)g(x)+f(x)g 0 (x) 3 (1) y = x2 x +1 x (2) y = 1 g(x) y0 = g0 (x) {g(x)} 2 (2) y = µ

More information

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y [ ] 7 0.1 2 2 + y = t sin t IC ( 9) ( s090101) 0.2 y = d2 y 2, y = x 3 y + y 2 = 0 (2) y + 2y 3y = e 2x 0.3 1 ( y ) = f x C u = y x ( 15) ( s150102) [ ] y/x du x = Cexp f(u) u (2) x y = xey/x ( 16) ( s160101)

More information

‚åŁÎ“·„´Šš‡ðŠp‡¢‡½‹âfi`fiI…A…‰…S…−…Y…•‡ÌMarkovŸA“½fiI›ð’Í

‚åŁÎ“·„´Šš‡ðŠp‡¢‡½‹âfi`fiI…A…‰…S…−…Y…•‡ÌMarkovŸA“½fiI›ð’Í Markov 2009 10 2 Markov 2009 10 2 1 / 25 1 (GA) 2 GA 3 4 Markov 2009 10 2 2 / 25 (GA) (GA) L ( 1) I := {0, 1} L f : I (0, ) M( 2) S := I M GA (GA) f (i) i I Markov 2009 10 2 3 / 25 (GA) ρ(i, j), i, j I

More information

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2 II No.1 [n/] [1]H n x) H n x) = 1) r n! r!n r)! x)n r r= []H n x) n,, H n x) = 1) n H n x) [3] H n x) = 1) n dn x e dx n e x [4] H n+1 x) = xh n x) nh n 1 x) ) d dx x H n x) = H n+1 x) d dx H nx) = nh

More information

25 7 18 1 1 1.1 v.s............................. 1 1.1.1.................................. 1 1.1.2................................. 1 1.1.3.................................. 3 1.2................... 3

More information

17 ( ) II III A B C(100 ) 1, 2, 6, 7 II A B (100 ) 2, 5, 6 II A B (80 ) 8 10 I II III A B C(80 ) 1 a 1 = 1 2 a n+1 = a n + 2n + 1 (n = 1,

17 ( ) II III A B C(100 ) 1, 2, 6, 7 II A B (100 ) 2, 5, 6 II A B (80 ) 8 10 I II III A B C(80 ) 1 a 1 = 1 2 a n+1 = a n + 2n + 1 (n = 1, 17 ( ) 17 5 1 4 II III A B C(1 ) 1,, 6, 7 II A B (1 ), 5, 6 II A B (8 ) 8 1 I II III A B C(8 ) 1 a 1 1 a n+1 a n + n + 1 (n 1,,, ) {a n+1 n } (1) a 4 () a n OA OB AOB 6 OAB AB : 1 P OB Q OP AQ R (1) PQ

More information

2 1 1 (1) 1 (2) (3) Lax : (4) Bäcklund : (5) (6) 1.1 d 2 q n dt 2 = e q n 1 q n e q n q n+1 (1.1) 1 m q n n ( ) r n = q n q n 1 r ϕ(r) ϕ (r)

2 1 1 (1) 1 (2) (3) Lax : (4) Bäcklund : (5) (6) 1.1 d 2 q n dt 2 = e q n 1 q n e q n q n+1 (1.1) 1 m q n n ( ) r n = q n q n 1 r ϕ(r) ϕ (r) ( ( (3 Lax : (4 Bäcklud : (5 (6 d q = e q q e q q + ( m q ( r = q q r ϕ(r ϕ (r 0 5 0 q q q + 5 3 4 5 m d q = ϕ (r + ϕ (r + ( Hooke ϕ(r = κr (κ > 0 ( d q = κ(q q + κ(q + q = κ(q + + q q (3 ϕ(r = a b e br

More information

d ϕ i) t d )t0 d ϕi) ϕ i) t x j t d ) ϕ t0 t α dx j d ) ϕ i) t dx t0 j x j d ϕ i) ) t x j dx t0 j f i x j ξ j dx i + ξ i x j dx j f i ξ i x j dx j d )

d ϕ i) t d )t0 d ϕi) ϕ i) t x j t d ) ϕ t0 t α dx j d ) ϕ i) t dx t0 j x j d ϕ i) ) t x j dx t0 j f i x j ξ j dx i + ξ i x j dx j f i ξ i x j dx j d ) 23 M R M ϕ : R M M ϕt, x) ϕ t x) ϕ s ϕ t ϕ s+t, ϕ 0 id M M ϕ t M ξ ξ ϕ t d ϕ tx) ξϕ t x)) U, x 1,...,x n )) ϕ t x) ϕ 1) t x),...,ϕ n) t x)), ξx) ξ i x) d ϕi) t x) ξ i ϕ t x)) M f ϕ t f)x) f ϕ t )x) fϕ

More information

untitled

untitled 0. =. =. (999). 3(983). (980). (985). (966). 3. := :=. A A. A A. := := 4 5 A B A B A B. A = B A B A B B A. A B A B, A B, B. AP { A, P } = { : A, P } = { A P }. A = {0, }, A, {0, }, {0}, {}, A {0}, {}.

More information

* n x 11,, x 1n N(µ 1, σ 2 ) x 21,, x 2n N(µ 2, σ 2 ) H 0 µ 1 = µ 2 (= µ ) H 1 µ 1 µ 2 H 0, H 1 *2 σ 2 σ 2 0, σ 2 1 *1 *2 H 0 H

* n x 11,, x 1n N(µ 1, σ 2 ) x 21,, x 2n N(µ 2, σ 2 ) H 0 µ 1 = µ 2 (= µ ) H 1 µ 1 µ 2 H 0, H 1 *2 σ 2 σ 2 0, σ 2 1 *1 *2 H 0 H 1 1 1.1 *1 1. 1.3.1 n x 11,, x 1n Nµ 1, σ x 1,, x n Nµ, σ H 0 µ 1 = µ = µ H 1 µ 1 µ H 0, H 1 * σ σ 0, σ 1 *1 * H 0 H 0, H 1 H 1 1 H 0 µ, σ 0 H 1 µ 1, µ, σ 1 L 0 µ, σ x L 1 µ 1, µ, σ x x H 0 L 0 µ, σ 0

More information

Chap11.dvi

Chap11.dvi . () x 3 + dx () (x )(x ) dx + sin x sin x( + cos x) dx () x 3 3 x + + 3 x + 3 x x + x 3 + dx 3 x + dx 6 x x x + dx + 3 log x + 6 log x x + + 3 rctn ( ) dx x + 3 4 ( x 3 ) + C x () t x t tn x dx x. t x

More information

−g”U›ß™ö‡Æ…X…y…N…g…‰

−g”U›ß™ö‡Æ…X…y…N…g…‰ 1 / 74 ( ) 2019 3 8 URL: http://www.math.kyoto-u.ac.jp/ ichiro/ 2 / 74 Contents 1 Pearson 2 3 Doob h- 4 (I) 5 (II) 6 (III-1) - 7 (III-2-a) 8 (III-2-b) - 9 (III-3) Pearson 3 / 74 Pearson Definition 1 ρ

More information

master.dvi

master.dvi 4 Maxwell- Boltzmann N 1 4.1 T R R 5 R (Heat Reservor) S E R 20 E 4.2 E E R E t = E + E R E R Ω R (E R ) S R (E R ) Ω R (E R ) = exp[s R (E R )/k] E, E E, E E t E E t E exps R (E t E) exp S R (E t E )

More information

f(x) = x (1) f (1) (2) f (2) f(x) x = a y y = f(x) f (a) y = f(x) A(a, f(a)) f(a + h) f(x) = A f(a) A x (3, 3) O a a + h x 1 f(x) x = a

f(x) = x (1) f (1) (2) f (2) f(x) x = a y y = f(x) f (a) y = f(x) A(a, f(a)) f(a + h) f(x) = A f(a) A x (3, 3) O a a + h x 1 f(x) x = a 3 3.1 3.1.1 A f(a + h) f(a) f(x) lim f(x) x = a h 0 h f(x) x = a f 0 (a) f 0 (a) = lim h!0 f(a + h) f(a) h = lim x!a f(x) f(a) x a a + h = x h = x a h 0 x a 3.1 f(x) = x x = 3 f 0 (3) f (3) = lim h 0 (

More information

第1章 微分方程式と近似解法

第1章 微分方程式と近似解法 April 12, 2018 1 / 52 1.1 ( ) 2 / 52 1.2 1.1 1.1: 3 / 52 1.3 Poisson Poisson Poisson 1 d {2, 3} 4 / 52 1 1.3.1 1 u,b b(t,x) u(t,x) x=0 1.1: 1 a x=l 1.1 1 (0, t T ) (0, l) 1 a b : (0, t T ) (0, l) R, u

More information

B2 ( 19 ) Lebesgue ( ) ( ) 0 This note is c 2007 by Setsuo Taniguchi. It may be used for personal or classroom purposes, but not for commercia

B2 ( 19 ) Lebesgue ( ) ( ) 0 This note is c 2007 by Setsuo Taniguchi. It may be used for personal or classroom purposes, but not for commercia B2 ( 19) Lebesgue ( ) ( 19 7 12 ) 0 This note is c 2007 by Setsuo Taniguchi. It may be used for personal or classroom purposes, but not for commercial purposes. i Riemann f n : [0, 1] R 1, x = k (1 m

More information

simx simxdx, cosxdx, sixdx 6.3 px m m + pxfxdx = pxf x p xf xdx = pxf x p xf x + p xf xdx 7.4 a m.5 fx simxdx 8 fx fx simxdx = πb m 9 a fxdx = πa a =

simx simxdx, cosxdx, sixdx 6.3 px m m + pxfxdx = pxf x p xf xdx = pxf x p xf x + p xf xdx 7.4 a m.5 fx simxdx 8 fx fx simxdx = πb m 9 a fxdx = πa a = II 6 ishimori@phys.titech.ac.jp 6.. 5.4.. f Rx = f Lx = fx fx + lim = lim x x + x x f c = f x + x < c < x x x + lim x x fx fx x x = lim x x f c = f x x < c < x cosmx cosxdx = {cosm x + cosm + x} dx = [

More information

DVIOUT-fujin

DVIOUT-fujin 2005 Limit Distribution of Quantum Walks and Weyl Equation 2006 3 2 1 2 2 4 2.1...................... 4 2.2......................... 5 2.3..................... 6 3 8 3.1........... 8 3.2..........................

More information

8.1 Fubini 8.2 Fubini 9 (0%) 10 (50%) Carathéodory 10.3 Fubini 1 Introduction 1 (1) (2) {f n (x)} n=1 [a, b] K > 0 n, x f n (x) K < ( ) x [a

8.1 Fubini 8.2 Fubini 9 (0%) 10 (50%) Carathéodory 10.3 Fubini 1 Introduction 1 (1) (2) {f n (x)} n=1 [a, b] K > 0 n, x f n (x) K < ( ) x [a % 100% 1 Introduction 2 (100%) 2.1 2.2 2.3 3 (100%) 3.1 3.2 σ- 4 (100%) 4.1 4.2 5 (100%) 5.1 5.2 5.3 6 (100%) 7 (40%) 8 Fubini (90%) 2007.11.5 1 8.1 Fubini 8.2 Fubini 9 (0%) 10 (50%) 10.1 10.2 Carathéodory

More information

( 30 ) 30 4 5 1 4 1.1............................................... 4 1.............................................. 4 1..1.................................. 4 1.......................................

More information

A A = a 41 a 42 a 43 a 44 A (7) 1 (3) A = M 12 = = a 41 (8) a 41 a 43 a 44 (3) n n A, B a i AB = A B ii aa

A A = a 41 a 42 a 43 a 44 A (7) 1 (3) A = M 12 = = a 41 (8) a 41 a 43 a 44 (3) n n A, B a i AB = A B ii aa 1 2 21 2 2 [ ] a 11 a 12 A = a 21 a 22 (1) A = a 11 a 22 a 12 a 21 (2) 3 3 n n A A = n ( 1) i+j a ij M ij i =1 n (3) j=1 M ij A i j (n 1) (n 1) 2-1 3 3 A A = a 11 a 12 a 13 a 21 a 22 a 23 a 31 a 32 a 33

More information

ii 3.,. 4. F. ( ), ,,. 8.,. 1. (75% ) (25% ) =7 24, =7 25, =7 26 (. ). 1.,, ( ). 3.,...,.,.,.,.,. ( ) (1 2 )., ( ), 0., 1., 0,.

ii 3.,. 4. F. ( ), ,,. 8.,. 1. (75% ) (25% ) =7 24, =7 25, =7 26 (. ). 1.,, ( ). 3.,...,.,.,.,.,. ( ) (1 2 )., ( ), 0., 1., 0,. (1 C205) 4 10 (2 C206) 4 11 (2 B202) 4 12 25(2013) http://www.math.is.tohoku.ac.jp/~obata,.,,,..,,. 1. 2. 3. 4. 5. 6. 7. 8. 1., 2007 ( ).,. 2. P. G., 1995. 3. J. C., 1988. 1... 2.,,. ii 3.,. 4. F. ( ),..

More information

1 I

1 I 1 I 3 1 1.1 R x, y R x + y R x y R x, y, z, a, b R (1.1) (x + y) + z = x + (y + z) (1.2) x + y = y + x (1.3) 0 R : 0 + x = x x R (1.4) x R, 1 ( x) R : x + ( x) = 0 (1.5) (x y) z = x (y z) (1.6) x y =

More information

C (q, p) (1)(2) C (Q, P ) ( Qi (q, p) P i (q, p) dq j + Q ) i(q, p) dp j P i dq i (5) q j p j C i,j1 (q,p) C D C (Q,P) D C Phase Space (1)(2) C p i dq

C (q, p) (1)(2) C (Q, P ) ( Qi (q, p) P i (q, p) dq j + Q ) i(q, p) dp j P i dq i (5) q j p j C i,j1 (q,p) C D C (Q,P) D C Phase Space (1)(2) C p i dq 7 2003 6 26 ( ) 5 5.1 F K 0 (q 1,,q N,p 1,,p N ) (Q 1,,Q N,P 1,,P N ) Q i Q i (q, p). (1) P i P i (q, p), (2) (p i dq i P i dq i )df. (3) [ ] Q αq + βp, P γq + δp α, β, γ, δ [ ] PdQ pdq (γq + δp)(αdq +

More information

18 ( ) I II III A B C(100 ) 1, 2, 3, 5 I II A B (100 ) 1, 2, 3 I II A B (80 ) 6 8 I II III A B C(80 ) 1 n (1 + x) n (1) n C 1 + n C

18 ( ) I II III A B C(100 ) 1, 2, 3, 5 I II A B (100 ) 1, 2, 3 I II A B (80 ) 6 8 I II III A B C(80 ) 1 n (1 + x) n (1) n C 1 + n C 8 ( ) 8 5 4 I II III A B C( ),,, 5 I II A B ( ),, I II A B (8 ) 6 8 I II III A B C(8 ) n ( + x) n () n C + n C + + n C n = 7 n () 7 9 C : y = x x A(, 6) () A C () C P AP Q () () () 4 A(,, ) B(,, ) C(,,

More information

現代物理化学 2-1(9)16.ppt

現代物理化学 2-1(9)16.ppt --- S A, G U S S ds = d 'Q r / ΔS = S S = ds =,r,r d 'Q r r S -- ds = d 'Q r / ΔS = S S = ds =,r,r d 'Q r r d Q r e = P e = P ΔS d 'Q / e (d'q / e ) --3,e Q W Q (> 0),e e ΔU = Q + W = (Q + Q ) + W = 0

More information

n 2 + π2 6 x [10 n x] x = lim n 10 n n 10 k x 1.1. a 1, a 2,, a n, (a n ) n=1 {a n } n=1 1.2 ( ). {a n } n=1 Q ε > 0 N N m, n N a m

n 2 + π2 6 x [10 n x] x = lim n 10 n n 10 k x 1.1. a 1, a 2,, a n, (a n ) n=1 {a n } n=1 1.2 ( ). {a n } n=1 Q ε > 0 N N m, n N a m 1 1 1 + 1 4 + + 1 n 2 + π2 6 x [10 n x] x = lim n 10 n n 10 k x 1.1. a 1, a 2,, a n, (a n ) n=1 {a n } n=1 1.2 ( ). {a n } n=1 Q ε > 0 N N m, n N a m a n < ε 1 1. ε = 10 1 N m, n N a m a n < ε = 10 1 N

More information

変 位 変位とは 物体中のある点が変形後に 別の点に異動したときの位置の変化で あり ベクトル量である 変位には 物体の変形の他に剛体運動 剛体変位 が含まれている 剛体変位 P(x, y, z) 平行移動と回転 P! (x + u, y + v, z + w) Q(x + d x, y + dy,

変 位 変位とは 物体中のある点が変形後に 別の点に異動したときの位置の変化で あり ベクトル量である 変位には 物体の変形の他に剛体運動 剛体変位 が含まれている 剛体変位 P(x, y, z) 平行移動と回転 P! (x + u, y + v, z + w) Q(x + d x, y + dy, 変 位 変位とは 物体中のある点が変形後に 別の点に異動したときの位置の変化で あり ベクトル量である 変位には 物体の変形の他に剛体運動 剛体変位 が含まれている 剛体変位 P(x, y, z) 平行移動と回転 P! (x + u, y + v, z + w) Q(x + d x, y + dy, z + dz) Q! (x + d x + u + du, y + dy + v + dv, z +

More information

,,,,., = (),, (1) (4) :,,,, (1),. (2),, =. (3),,. (4),,,,.. (1) (3), (4).,,., () : = , ( ) : = F 1 + F 2 + F 3 + ( ) : = i Fj j=1 2

,,,,., = (),, (1) (4) :,,,, (1),. (2),, =. (3),,. (4),,,,.. (1) (3), (4).,,., () : = , ( ) : = F 1 + F 2 + F 3 + ( ) : = i Fj j=1 2 6 2 6.1 2 2, 2 5.2 R 2, 2 (R 2, B, µ)., R 2,,., 1, 2, 3,., 1, 2, 3,,. () : = 1 + 2 + 3 + (6.1.1).,,, 1 ,,,,., = (),, (1) (4) :,,,, (1),. (2),, =. (3),,. (4),,,,.. (1) (3), (4).,,., () : = 1 + 2 + 3 +,

More information

20 6 4 1 4 1.1 1.................................... 4 1.1.1.................................... 4 1.1.2 1................................ 5 1.2................................... 7 1.2.1....................................

More information

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x [ ] IC. f(x) = e x () f(x) f (x) () lim f(x) lim f(x) x + x (3) lim f(x) lim f(x) x + x (4) y = f(x) ( ) ( s46). < a < () a () lim a log xdx a log xdx ( ) n (3) lim log k log n n n k=.3 z = log(x + y ),

More information

B ver B

B ver B B ver. 2017.02.24 B Contents 1 11 1.1....................... 11 1.1.1............. 11 1.1.2.......................... 12 1.2............................. 14 1.2.1................ 14 1.2.2.......................

More information

III ϵ-n ϵ-n lim n a n = α n a n α 1 lim a n = 0 1 n a k n n k= ϵ-n 1.1

III ϵ-n ϵ-n lim n a n = α n a n α 1 lim a n = 0 1 n a k n n k= ϵ-n 1.1 III http://www2.mth.kyushu-u.c.jp/~hr/lectures/lectures-j.html 1 1 1.1 ϵ-n ϵ-n lim n = α n n α 1 lim n = 0 1 n k n k=1 0 1.1.7 ϵ-n 1.1.1 n α n n α lim n = α ϵ Nϵ n > Nϵ n α < ϵ 1.1.1 ϵ n > Nϵ n α < ϵ 1.1.2

More information

基礎数学I

基礎数学I I & II ii ii........... 22................. 25 12............... 28.................. 28.................... 31............. 32.................. 34 3 1 9.................... 1....................... 1............

More information

1. 1 BASIC PC BASIC BASIC BASIC Fortran WS PC (1.3) 1 + x 1 x = x = (1.1) 1 + x = (1.2) 1 + x 1 = (1.

1. 1 BASIC PC BASIC BASIC BASIC Fortran WS PC (1.3) 1 + x 1 x = x = (1.1) 1 + x = (1.2) 1 + x 1 = (1. Section Title Pages Id 1 3 7239 2 4 7239 3 10 7239 4 8 7244 5 13 7276 6 14 7338 7 8 7338 8 7 7445 9 11 7580 10 10 7590 11 8 7580 12 6 7395 13 z 11 7746 14 13 7753 15 7 7859 16 8 7942 17 8 Id URL http://km.int.oyo.co.jp/showdocumentdetailspage.jsp?documentid=

More information

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d S I.. http://ayapin.film.s.dendai.ac.jp/~matuda /TeX/lecture.html PDF PS.................................... 3.3.................... 9.4................5.............. 3 5. Laplace................. 5....

More information

6.1 (P (P (P (P (P (P (, P (, P.

6.1 (P (P (P (P (P (P (, P (, P. (011 30 7 0 ( ( 3 ( 010 1 (P.3 1 1.1 (P.4.................. 1 1. (P.4............... 1 (P.15.1 (P.16................. (P.0............3 (P.18 3.4 (P.3............... 4 3 (P.9 4 3.1 (P.30........... 4 3.

More information

ii 3.,. 4. F. (), ,,. 8.,. 1. (75%) (25%) =7 20, =7 21 (. ). 1.,, (). 3.,. 1. ().,.,.,.,.,. () (12 )., (), 0. 2., 1., 0,.

ii 3.,. 4. F. (), ,,. 8.,. 1. (75%) (25%) =7 20, =7 21 (. ). 1.,, (). 3.,. 1. ().,.,.,.,.,. () (12 )., (), 0. 2., 1., 0,. 24(2012) (1 C106) 4 11 (2 C206) 4 12 http://www.math.is.tohoku.ac.jp/~obata,.,,,.. 1. 2. 3. 4. 5. 6. 7.,,. 1., 2007 (). 2. P. G. Hoel, 1995. 3... 1... 2.,,. ii 3.,. 4. F. (),.. 5... 6.. 7.,,. 8.,. 1. (75%)

More information

Macdonald, ,,, Macdonald. Macdonald,,,,,.,, Gauss,,.,, Lauricella A, B, C, D, Gelfand, A,., Heckman Opdam.,,,.,,., intersection,. Macdona

Macdonald, ,,, Macdonald. Macdonald,,,,,.,, Gauss,,.,, Lauricella A, B, C, D, Gelfand, A,., Heckman Opdam.,,,.,,., intersection,. Macdona Macdonald, 2015.9.1 9.2.,,, Macdonald. Macdonald,,,,,.,, Gauss,,.,, Lauricella A, B, C, D, Gelfand, A,., Heckman Opdam.,,,.,,., intersection,. Macdonald,, q., Heckman Opdam q,, Macdonald., 1 ,,. Macdonald,

More information

untitled

untitled 2 : n =1, 2,, 10000 0.5125 0.51 0.5075 0.505 0.5025 0.5 0.4975 0.495 0 2000 4000 6000 8000 10000 2 weak law of large numbers 1. X 1,X 2,,X n 2. µ = E(X i ),i=1, 2,,n 3. σi 2 = V (X i ) σ 2,i=1, 2,,n ɛ>0

More information

(2) Fisher α (α) α Fisher α ( α) 0 Levi Civita (1) ( 1) e m (e) (m) ([1], [2], [13]) Poincaré e m Poincaré e m Kähler-like 2 Kähler-like

(2) Fisher α (α) α Fisher α ( α) 0 Levi Civita (1) ( 1) e m (e) (m) ([1], [2], [13]) Poincaré e m Poincaré e m Kähler-like 2 Kähler-like () 10 9 30 1 Fisher α (α) α Fisher α ( α) 0 Levi Civita (1) ( 1) e m (e) (m) ([1], [], [13]) Poincaré e m Poincaré e m Kähler-like Kähler-like Kähler M g M X, Y, Z (.1) Xg(Y, Z) = g( X Y, Z) + g(y, XZ)

More information

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α 18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α 2 ), ϕ(t) = B 1 cos(ω 1 t + α 1 ) + B 2 cos(ω 2 t

More information

: , 2.0, 3.0, 2.0, (%) ( 2.

: , 2.0, 3.0, 2.0, (%) ( 2. 2017 1 2 1.1...................................... 2 1.2......................................... 4 1.3........................................... 10 1.4................................. 14 1.5..........................................

More information

() Remrk I = [0, ] [x i, x i ]. (x : ) f(x) = 0 (x : ) ξ i, (f) = f(ξ i )(x i x i ) = (x i x i ) = ξ i, (f) = f(ξ i )(x i x i ) = 0 (f) 0.

() Remrk I = [0, ] [x i, x i ]. (x : ) f(x) = 0 (x : ) ξ i, (f) = f(ξ i )(x i x i ) = (x i x i ) = ξ i, (f) = f(ξ i )(x i x i ) = 0 (f) 0. () 6 f(x) [, b] 6. Riemnn [, b] f(x) S f(x) [, b] (Riemnn) = x 0 < x < x < < x n = b. I = [, b] = {x,, x n } mx(x i x i ) =. i [x i, x i ] ξ i n (f) = f(ξ i )(x i x i ) i=. (ξ i ) (f) 0( ), ξ i, S, ε >

More information