スライド 1

Size: px
Start display at page:

Download "スライド 1"

Transcription

1 Q & A Q: 猫ひねりができるのって猫だけですか?(2 人 ) A: 動物が専門でない私にとっては難しい質問です おそらく 猫に近い ヒョウ チーター ヤマネコ等はできるのではないかと思います ちなみに猫とともにペットの代表である犬は 猫ほどうまくないようです 犬を抱っこしていて落としてしまい 怪我をする犬もけっこういるようです 猫はおそらく大丈夫です Q: 空気抵抗は気圧に比例したりしますか? A: 第 5 回 5 ページで 空気抵抗は 物体がゆっくり運動するときは 粘性抵抗 速く運動するときは 慣性抵抗と説明しました 粘性抵抗は 半径 R の球体の場合 その大きさは F = 6phR ( ストークスの法則 ) です h は空気の粘度 ( 粘性係数 ) で気体 液体ごとに決まっている定数です 質問は h が気圧に比例するかということです 結果だけをいうと 圧力は関係ありません ( 温度は一定 ) 慣性抵抗は 右のような式で表されます 慣性抵抗は 空気の密度 に比例します 圧力は密度に比例する ( 温度一定 ) ので空気抵抗は 気圧に比例するといえます Q: イグノーベル賞で猫は液体というのがあったのですが 先生に解説をお願いしたいです A: 液体をウィキペディアで見てみると 液体 ( えきたい 英 : liquid) は物質の三態 ( 固体 液体 気体 ) の一つである 気体と同様に流動的で 容器に合わせて形を変える 液体は気体に比して圧縮性が小さい 気体とは異なり 容器全体に広がることはなく ほぼ一定の密度を保つ となっています この説明の前半 容器に合わせて変形する というのは 猫にも当てはまるというのが趣旨です これだけなら 気体でも良さそうですが 液体は気体に比して 圧縮性が小さい ともあるので 猫の圧縮性を考えると 気体でなく 液体ということでしょう 確かに 下のような写真をみると 隙間なく容器に収まる猫は液体という気がしますね 第 27 回 (7/17) 1 ページ

2 第 9 章慣性力 p108 慣性系 : 慣性の法則が成り立つ座標系 ( 運動の法則も成り立つ ) ( これまで考えてきた座標系 ) 例 : 地面に固定された座標系 非慣性系 : 慣性の法則が成り立たない座標系 ( 運動の法則も成り立たない ) 運動の第 1 法則慣性の法則 ( 復習 ) 物体に作用している力の合力が 0 であれば 静止している物体は静止したままであり 運動している物体は等速直線運動をつづける まず 慣性系から考えてみる ガリレオの相対性原理 (p110) ある慣性系に対して等速直線運動をしている座標系はすべて慣性系である 例 : 等速直線運動をしている電車に固定された系も慣性系である 電車に固定された系は 地面に固定された系 ( 慣性系 ) に対して等速直線運動をしている 厳密には非慣性系 ( 地球の自転のため, 後で説明 ) 例 : 地上で物体を落としても 等速直線運動をしている電車の中で物体を落としても同様に落下する 地面に固定された系が特別ではない ( 電車が全く揺れず 窓も閉まっていると 停車しているか 走行しているか 原理的に区別できない ) 問題 : 等速直線運動 ( 速度 ) をしている電車の中で A さんは手に持っていたボールをそっとはなした その後のボールの運動は A さんの系 ( 電車に固定された座標系 ) および B さんの系 ( 地上に固定された座標系 ) でどのように観測されるか 電車に固定された座標系 ( 慣性系 ) 地上に固定された座標系 ( 慣性系 ) どちらの慣性系でも運動の法則が等しく成り立つ 第 27 回 (7/17) 2 ページ

3 ( 参考 ) アインシュタインの相対性原理 (p299) ある慣性系に対して一定の速度で運動する座標系は慣性系であり すべての慣性系で 同じ形の物理学の基本法則が成り立つ 地球に固定された座標系も 等速直線運動をしている電車に固定された座標系もどちらも慣性系で同等である どちらでもすべての物理法則がその座標系において等しく成り立つ 例 : 運動の第 法則 エネルギー保存則 運動量保存則 回転運動の法則 後期に勉強する電磁気学の法則 9.1 非慣性系と慣性力 ( 見かけの力 ) p109 質量 m 電車の床にキャスター付きのトランクが置いてある トランクは摩擦が無視でき なめらかに運動する 電車が加速度 a 0 で走り出した後 1 ホームにいる人 ( 地球に固定された座標系 ) から見るとトランクの運動はどのように見えるか? 加速度 a 0 慣性の法則が成り立っている 慣性系 2 電車に乗っている人 ( 電車に固定された座標系 ) から見るとトランクの運動はどのように見えるか? 加速度 -a 0 で加速している (-ma 0 の力が作用しているように感じる ) 加速中の電車では後方に引っ張られるように感じる 慣性の法則が成り立っていない 非慣性系 ( 力が作用していないのに加速 ) 加速度 a 0 で加速している電車に固定された座標系 ( 非慣性系 ) からみると トランクは逆向きの加速度 -a 0 で動く 電車に固定された系では 見かけの力 ( 慣性力 ) を導入すると 運動の法則が成り立つ 慣性力 = -ma 0 無意識のうちに運動の法則を仮定し その力があるはずと思うため 慣性系に対して加速度 a 0 で加速度運動している座標系では -ma 0 という慣性力を導入すると運動の法則が成り立つ ( 本来は存在しない 見かけの力である慣性力 -ma 0 という力が働いているように感じる ) 第 27 回 (7/17) 3 ページ

4 問 1: 図のように 加速度 a 0 で加速運動をしている電車がある 電車の天井におもりをつけたひもを吊るすと ひもは鉛直方向を向いていない ( 吊革も同じ ) この現象を (1) 地上の観測者 ( 慣性系 ) はどう説明するか?(2) 電車の観測者 ( 非慣性系 ) はどう説明するか ma = F (1) (2) q ( 運動の法則を使って ) ( 慣性力を導入し 運動の法則を使って ) ma = F q 問 2(p110) エレベータが降りはじめるとき 体 ( 質量 m ) が軽くなったように感じる 下向きの加速度が 1 m/s 2 の場合 50 kg の人が床から受ける垂直抗力の大きさはいくらか 地上の観測者と エレベータに乗っている観測者の立場で導け g = 10 m/s 2 とせよ 地上の観測者 ( 慣性系 ) エレベータに乗っている観測者 ( 非慣性系 ) ( 慣性力を用いずに ) ( 慣性力を導入して ) エレベータを吊るしている綱が切れると 垂直抗力はどうなる? 飛行機が 砲弾と同じように ( 速度も ) 放物線を描いて飛ぶと 内部は無重量状態になる 綱が切れて自由落下するエレベータと同じ ( スペースシャトルも ) 同じ [ ビデオ参照 ] スペースシャトルの軌道における重力は地上と大差ない 地上の観測者 : 自由落下 第 27 回 (7/17) 4 ページ

5 遠心力 p111 向心力 向心加速度 ( 復習 ) 質量 m の質点が速さ で半径 角速度 w = の等速円運動をしているとき 2 向心加速度 a: = w = w 2 2 向心力 F: m = mw = mw 2 F = ma 問題 : 福知山線の脱線事故では 列車は 108 km/h (30m/s) でカーブに突っ込んだ 線路の半径を 300 m とした時 列車や乗客の加速度 ( 向心加速度 ) の大きさはいくらか a 0 ( 加速度運動 ) 等速円運動をしている電車に固定された座標系では運動の法則を成り立たせるためには 慣性力 ( 見かけの力 ) を導入しなければならない 向心加速度が a 0 のとき 慣性力は ma 0 である この慣性力は向心力と逆方向なので遠心力という 遠心力の大きさは向心力の大きさに等しい 300 m 遠心力の大きさ : m = mw 2 遠心力は 見かけの力であり 実際は存在しない ( 経験より運動の法則が成り立つと考え あるように感じる力 ) [ 問題 ] 上の電車の天井から吊るされているおもり ( 質量 m ) の様子を以下の二つの座標系で説明せよ 下の図 ( 電車の断面図 ) でおもりの様子を一つ選び 図に作用する力を書き込め 電車の進行方向は 紙面の手前から奥 円運動の中心は電車の右側にある 地面に固定された座標系 ( 慣性系 ) で考える場合電車に固定された座標系 ( 非慣性系 ) で考える場合 2 第 27 回 (7/17) 5 ページ

6 ねこひねりの解説 1 猫は静止した状態で逆さまに落としても 足から着地することができる いったいどうやっているのか? 以下 慣性モーメントによる教育的な方法 I = Sm i l i 2 i 足としっぽを伸ばす 猫の体を上半身と下半身の 2 つの部分に分けて考える 前足は胴体に引き付け上半身の慣性モーメントを小さくする 後ろ足としっぽを伸ばし 下半身の慣性モーメントを大きくする そうすると 上半身を大きく回転させても 反動による下半身の反対方向への回転は少ない 足を縮める 180 度ひねって 上半身の足が下を向いたところでこんどは逆に前足は伸ばし 上半身の慣性モーメントを大きく 後ろ足は胴体に引き付け 下半身の慣性モーメントを小さくする 下半身を大きく回転させても 上半身の反動は少なくてすむ 足としっぽを縮める 足を縮める [ 実験 実演 ] 回転板を使って人間ひねり ( 上の方法で ) 猫ひねり 動画で確認着地にも注目 : クッション ( 運動量の変化 = 力 時間 ) 実際はこれほど 単純ではない しっぽを回転させる等 しっぽを有効に使っている猫もいるし 別の説明の方が適切な場合も多い 時間があったら ねこひねり解説 2 で説明します 皆さんも考えてみて下さい より転載 第 27 回 (7/17) 6 ページ

自由落下と非慣性系における運動方程式 目次無重力... 2 加速度計は重力加速度を測れない... 3 重量は質量と同じ数値で kg が使える... 3 慣性系における運動方程式... 4 非慣性系における運動方程式... 6 見かけの力... 7 慣性系には実在する慣

自由落下と非慣性系における運動方程式 目次無重力... 2 加速度計は重力加速度を測れない... 3 重量は質量と同じ数値で kg が使える... 3 慣性系における運動方程式... 4 非慣性系における運動方程式... 6 見かけの力... 7 慣性系には実在する慣 自由落下と非慣性系における運動方程式 1 1 2 3 4 5 6 7 目次無重力... 2 加速度計は重力加速度を測れない... 3 重量は質量と同じ数値で kg が使える... 3 慣性系における運動方程式... 4 非慣性系における運動方程式... 6 見かけの力... 7 慣性系には実在する慣性力があるか... 7 1 2 無重力 (1) 非慣性系の住人は無重力を体感できる (a) 併進的な加速度運動をしている非慣性系の住人

More information

物理演習問題

物理演習問題 < 物理 > =0 問 ビルの高さを, ある速さ ( 初速 をとおく,において等加速度運動の公式より (- : -= t - t : -=- t - t (-, 式よりを消去すると t - t =- t - t ( + - ( + ( - =0 0 t t t t t t ( t + t - ( t - =0 t=t t=t t - 地面 ( t - t t +t 0 より, = 3 図 問 が最高点では速度が

More information

2 図微小要素の流体の流入出 方向の断面の流体の流入出の収支断面 Ⅰ から微小要素に流入出する流体の流量 Q 断面 Ⅰ は 以下のように定式化できる Q 断面 Ⅰ 流量 密度 流速 断面 Ⅰ の面積 微小要素の断面 Ⅰ から だけ移動した断面 Ⅱ を流入出する流体の流量 Q 断面 Ⅱ は以下のように

2 図微小要素の流体の流入出 方向の断面の流体の流入出の収支断面 Ⅰ から微小要素に流入出する流体の流量 Q 断面 Ⅰ は 以下のように定式化できる Q 断面 Ⅰ 流量 密度 流速 断面 Ⅰ の面積 微小要素の断面 Ⅰ から だけ移動した断面 Ⅱ を流入出する流体の流量 Q 断面 Ⅱ は以下のように 3 章 Web に Link 解説 連続式 微分表示 の誘導.64 *4. 連続式連続式は ある領域の内部にある流体の質量の収支が その表面からの流入出の合計と等しくなることを定式化したものであり 流体における質量保存則を示したものである 2. 連続式 微分表示 の誘導図のような微小要素 コントロールボリューム の領域内の流体の増減と外部からの流体の流入出を考えることで定式化できる 微小要素 流入

More information

Microsoft PowerPoint - 流体力学の基礎02(OpenFOAM 勉強会 for geginner).pptx

Microsoft PowerPoint - 流体力学の基礎02(OpenFOAM 勉強会 for geginner).pptx ~ 流体力学の基礎 ~ 第 2 回 流体静力学 2011 年 10 月 22 日 ( 土 ) 講習会のスケジュール概要 ( あくまでも現時点での予定です ) 流体力学の基礎 第 1 回目 2011.09 流体について 第 2 回目 2011.10 流体静力学 第 3 回目 2011.11/12 流体運動の基礎理論 1 第 4 回目 2012.01 流体運動の基礎理論 2 第 5 回目 2012.02

More information

Microsoft PowerPoint - 1章 [互換モード]

Microsoft PowerPoint - 1章 [互換モード] 1. 直線運動 キーワード 速さ ( 等速直線運動, 変位 ) 加速度 ( 等加速度直線運動 ) 重力加速度 ( 自由落下 ) 力学 I 内容 1. 直線運動 2. ベクトル 3. 平面運動 4. 運動の法則 5. 摩擦力と抵抗 6. 振動 7. 仕事とエネルギー 8. 運動量と力積, 衝突 9. 角運動量 3 章以降は, 運動の向きを考えなければならない 1. 直線運動 キーワード 速さ ( 等速直線運動,

More information

ニュートン重力理論.pptx

ニュートン重力理論.pptx 3 ニュートン重力理論 1. ニュートン重力理論の基本 : 慣性系とガリレイ変換不変性 2. ニュートン重力理論の定式化 3. 等価原理 4. 流体力学方程式とその基礎 3.1 ニュートン重力理論の基本 u ニュートンの第一法則 = 力がかからなければ 等速直線運動を続ける u 等速直線運動に見える系を 慣性系 と呼ぶ ² 直線とはどんな空間の直線か? ニュートン理論では 3 次元ユークリッド空間

More information

ここで, 力の向きに動いた距離 とあることに注意しよう 仮にみかんを支えながら, 手を水平に 1 m 移動させる場合, 手がした仕事は 0 である 手がみかんに加える力の向きは鉛直上向き ( つまり真上 ) で, みかんが移動した向きはこれに垂直 みかんは力の向きに動いていないからである 解説 1

ここで, 力の向きに動いた距離 とあることに注意しよう 仮にみかんを支えながら, 手を水平に 1 m 移動させる場合, 手がした仕事は 0 である 手がみかんに加える力の向きは鉛直上向き ( つまり真上 ) で, みかんが移動した向きはこれに垂直 みかんは力の向きに動いていないからである 解説 1 1 仕事と仕事の原理 仕事の原理 解説 1 エネルギー電池で明かりをともすことができる 音を出すことやモーターを動かすことにも利用できる 電池には光, 音, 物を動かすといった能力がある 車の燃料はガソリンが一般的だが, 水素を燃料とするもの, 太陽光で動くものもある ガソリン, 水素, 太陽光それぞれには, 車を動かすという能力がある 電池, ガソリン, 水素, 太陽光 には, 光, 音, 物を動かす,

More information

ギリシャ文字の読み方を教えてください

ギリシャ文字の読み方を教えてください 埼玉工業大学機械工学学習支援セミナー ( 小西克享 ) 慣性モーメント -1/6 テーマ 01: 慣性モーメント (Momet of ietia) コマ回しをすると, 長い時間回転させるには重くて大きなコマを選ぶことや, ひもを早く引くことが重要であることが経験的にわかります. 遊びを通して, 回転の運動エネルギーを増やせば, 回転の勢いが増すことを学習できるので, 機械系の学生にとってコマ回しも大切な体験学習のひとつと言えます.

More information

物理学 (2) 担当 : 白井 英俊

物理学 (2) 担当 : 白井 英俊 物理学 (2) 担当 : 白井 英俊 Email: [email protected] 2 章力のつり合い 力学とは 力と運動の関係を調べる学問 そのための基礎として 静止している物体 = 物体に働く力がつりあって平衡状態にある について 力の働きを調べる 2.1 力とは きちんとした定義が与えられ 特定の意味を持つ用語のこと 物理学に限らず いろいろな学問において 力 のように普通の言葉が専門用語として用いられることが多いので注意しよう

More information

木村の物理小ネタ ケプラーの第 2 法則と角運動量保存則 A. 面積速度面積速度とは平面内に定点 O と動点 P があるとき, 定点 O と動点 P を結ぶ線分 OP( 動径 OP という) が単位時間に描く面積を 動点 P の定点 O に

木村の物理小ネタ   ケプラーの第 2 法則と角運動量保存則 A. 面積速度面積速度とは平面内に定点 O と動点 P があるとき, 定点 O と動点 P を結ぶ線分 OP( 動径 OP という) が単位時間に描く面積を 動点 P の定点 O に ケプラーの第 法則と角運動量保存則 A. 面積速度面積速度とは平面内に定点 O と動点 P があるとき, 定点 O と動点 P を結ぶ線分 OP( 動径 OP という が単位時間に描く面積を 動点 P の定点 O に関する面積速度の大きさ という 定点 O まわりを回る面積速度の導き方導き方 A ( x( + D, y( + D v ( q r ( A ( x (, y( 動点 P が xy 座標平面上を時刻

More information

数値計算で学ぶ物理学 4 放物運動と惑星運動 地上のように下向きに重力がはたらいているような場においては 物体を投げると放物運動をする 一方 中心星のまわりの重力場中では 惑星は 円 だ円 放物線または双曲線を描きながら運動する ここでは 放物運動と惑星運動を 運動方程式を導出したうえで 数値シミュ

数値計算で学ぶ物理学 4 放物運動と惑星運動 地上のように下向きに重力がはたらいているような場においては 物体を投げると放物運動をする 一方 中心星のまわりの重力場中では 惑星は 円 だ円 放物線または双曲線を描きながら運動する ここでは 放物運動と惑星運動を 運動方程式を導出したうえで 数値シミュ 数値計算で学ぶ物理学 4 放物運動と惑星運動 地上のように下向きに重力がはたらいているような場においては 物体を投げると放物運動をする 一方 中心星のまわりの重力場中では 惑星は 円 だ円 放物線または双曲線を描きながら運動する ここでは 放物運動と惑星運動を 運動方程式を導出したうえで 数値シミュレーションによって計算してみる 4.1 放物運動一様な重力場における放物運動を考える 一般に質量の物体に作用する力をとすると運動方程式は

More information

大阪大学物理 8 を解いてみた Ⅱ. 問 ( g cosq a sin q ) m - 台 B 上の観測者から見ると, 小物体は, 斜面からの垂直抗力 N, 小物体の重力 mg, 水平左向きの慣性力 ma を受け, 台 B の斜面と平行な向きに運動する したがって, 小物体は台 B の斜面に垂直な方

大阪大学物理 8 を解いてみた Ⅱ. 問 ( g cosq a sin q ) m - 台 B 上の観測者から見ると, 小物体は, 斜面からの垂直抗力 N, 小物体の重力 mg, 水平左向きの慣性力 ma を受け, 台 B の斜面と平行な向きに運動する したがって, 小物体は台 B の斜面に垂直な方 大阪大学物理 8 を解いてみた Ⅰ. 問 g 最高点の座標を y max とすると, 力学的エネルギー保存則より \ y m mgy 補足 max g max 小物体の運動方向に対する仕事は重力 ( 保存力 ) の斜面に沿った成分のみであり, 垂直抗力 ( 非保存力 ) の仕事は である よって, 力学的エネルギー保存則が成り立つ これを確かめてみよう 小物体は重力の斜面に沿った外力を受けながらその運動エネルギーを失っていく

More information

図 7-: コリオリ力の原理 以下では 回転台の上で物体が運動したとき 物体にはたらくみかけの力を定量的に求めてみる 回転台は角速度 で回転していて 回転台に乗っている観測者から見た物体の速度ベクトルの動径方向の成分を u 接線方向の成分を v とする 図 7-3: 回転台の上での物体の運動 はじめ

図 7-: コリオリ力の原理 以下では 回転台の上で物体が運動したとき 物体にはたらくみかけの力を定量的に求めてみる 回転台は角速度 で回転していて 回転台に乗っている観測者から見た物体の速度ベクトルの動径方向の成分を u 接線方向の成分を v とする 図 7-3: 回転台の上での物体の運動 はじめ 7 大気の力学 () 7. コリオリ力 水平面内に気圧の差があると風が吹く原因となる 気圧の差によって空気塊 高にはたらく力を気圧傾度力 (pessue gaient foce) という 気圧傾度力は等 圧線と直角に 高圧側から低圧側に向かってはたらく しかし 天気図で見ら れる風向と 等圧線とのなす角は直角ではないことが多い これは 地球の自 高転の影響によって 地球上を運動する空気塊にコリオリ力

More information

スライド 1

スライド 1 Q&A Q: 空気より重いガスなら声は低くなるのですか A: はい そのとおりです ( 動画参照 ) この動画で使われている気体は六フッ化硫黄 (SF 6 ) 分子量は 146 で窒素分子 28 の約 5 倍 無色 無臭 無毒の気体です Q: 貝を耳にあてると海の音が聞こえてくるというのはうそだったのだと知って悲しくなりました A: うそというわけではないと思いますが 気柱を耳にあてたときに聞こえるゴーっという音と同種のものだと思います

More information

.( 斜面上の放物運動 ) 目的 : 放物運動の方向の分け方は, 鉛直と水平だけではない 図のように, 水平面から角 だけ傾いた固定した滑らかな斜面 と, 質量 の小球を用意する 原点 から斜面に垂直な向きに, 速さ V で小球を投げ上げた 重力の加速度を g として, 次の問い に答えよ () 小

.( 斜面上の放物運動 ) 目的 : 放物運動の方向の分け方は, 鉛直と水平だけではない 図のように, 水平面から角 だけ傾いた固定した滑らかな斜面 と, 質量 の小球を用意する 原点 から斜面に垂直な向きに, 速さ V で小球を投げ上げた 重力の加速度を g として, 次の問い に答えよ () 小 折戸の物理 演習編 ttp://www.orito-buturi.co/ N..( 等加速度運動目的 : 等加速度運動の公式を使いこなす 問題を整理する能力を養う ) 直線上の道路に,A,B の 本の線が 5. の間隔で道路に 垂直に交差して引かれている この線上を一定の加速度で運 動しているトラックが通過する トラックの先端が A を通過してか ら後端が B を通過するまでの時間は.8s であった

More information

Review Test 1 センター試験対策 物理 I [ 力学編 ] 単元別総復習 6 回分 このテストは 大学入試攻略の部屋で配布されている Excel でセンター対 策 [ 物理 ] with CAT on Excel の印刷版です 同じ問題が Excel の画面上で簡単に解くことができて,

Review Test 1 センター試験対策 物理 I [ 力学編 ] 単元別総復習 6 回分 このテストは 大学入試攻略の部屋で配布されている Excel でセンター対 策 [ 物理 ] with CAT on Excel の印刷版です 同じ問題が Excel の画面上で簡単に解くことができて, Review Test センター試験対策 物理 I [ 力学編 ] 単元別総復習 6 回分 このテストは 大学入試攻略の部屋で配布されている Excel でセンター対 策 [ 物理 ] with CAT on Excel の印刷版です 同じ問題が Excel の画面上で簡単に解くことができて, しかもその場で採点 ができる CAT システム をなるべくご利用いただきたいのですが, それがで きない受験生の皆さんのために,

More information

FdData理科3年

FdData理科3年 FdData 中間期末 : 中学理科 3 年 [ 仕事の原理 : 斜面 ] パソコン タブレット版へ移動 [ 仕事の原理 引く力 ] [ 問題 ](2 学期期末 ) 次の図のような斜面を使って質量 35kg の物体を 3m の高さまで引き上げた ただし, ひもの重さ, 斜面や滑車の摩擦はないものとする また,100g の物体にはたらく重力を 1N とする (1) このとき, 物体がされた仕事はいくらか

More information

Hanako-公式集力学熱編.jhd

Hanako-公式集力学熱編.jhd 熱分野 ================================================= E-mail [email protected] ホームページ htt://www.ne.j/asahi/hanako/hysics/ ================================================= 公式集力学熱編.jhd < 1 > 気体の法則 気体の状態変化

More information

線積分.indd

線積分.indd 線積分 線積分 ( n, n, n ) (ξ n, η n, ζ n ) ( n-, n-, n- ) (ξ k, η k, ζ k ) ( k, k, k ) ( k-, k-, k- ) 物体に力 を作用させて位置ベクトル A の点 A から位置ベクトル の点 まで曲線 に沿って物体を移動させたときの仕事 W は 次式で計算された A, A, W : d 6 d+ d+ d@,,, d+ d+

More information

高校電磁気学 ~ 電磁誘導編 ~ 問題演習

高校電磁気学 ~ 電磁誘導編 ~ 問題演習 高校電磁気学 ~ 電磁誘導編 ~ 問題演習 問 1 磁場中を動く導体棒に関する問題 滑車 導体棒の間隔 L m a θ (1) おもりの落下速度が のとき 導体棒 a に生じる誘導起電力の 大きさを求めよ 滑車 導体棒の間隔 L m a θ 導体棒の速度 水平方向の速度 cosθ Δt の時間に回路を貫く磁束の変化 ΔΦ は ΔΦ = ΔS = LcosθΔt ΔΦ ファラデーの法則 V = N より

More information

ÿþŸb8bn0irt

ÿþŸb8bn0irt 折戸の物理 スペシャル補習 http://oritobuturi.co/ NO.5(009..16) 今日の目的 : 1 物理と微分 積分について 微分方程式について学ぶ 3 近似を学ぶ 10. 以下の文を読み,[ ア ]~[ ク ] の空欄に適当な式をいれよ 物体物体に一定の大きさの力を加えたときの, 物体の運動について考え よう 右図のように, なめらかな水平面上で質量 の物体に水平に一定の大きさ

More information

<4D F736F F D2089F082AF82E997CD8A7796E291E A282EB82A282EB82C8895E93AE2E646F63>

<4D F736F F D2089F082AF82E997CD8A7796E291E A282EB82A282EB82C8895E93AE2E646F63> いろいろな運動. 自由落下. 投げ上げ 3. 放物運動 4. 標的にボールを当てる 5. 斜面に向かって投げ上げる 6. ブレーキをかけた自動車 7. 摩擦のある斜面上を滑り落ちる物体 8. ばね振り子 ( 単振動 ) 9. 摩擦を受けるばね振り子. 補足 : 微分方程式の解き方 自由落下質量 の質点を高さ h の地点から初速 で落とした. 鉛直上向きを 軸正 の向き, 地表を原点とし, 重力加速度の大きさを

More information

物体の自由落下の跳ね返りの高さ 要約 物体の自由落下に対する物体の跳ね返りの高さを測定した 自由落下させる始点を高くするにつれ 跳ね返りの高さはただ単に始点の高さに比例するわけではなく 跳ね返る直前の速度に比例することがわかった

物体の自由落下の跳ね返りの高さ 要約 物体の自由落下に対する物体の跳ね返りの高さを測定した 自由落下させる始点を高くするにつれ 跳ね返りの高さはただ単に始点の高さに比例するわけではなく 跳ね返る直前の速度に比例することがわかった 物体の自由落下の跳ね返りの高さ 要約 物体の自由落下に対する物体の跳ね返りの高さを測定した 自由落下させる始点を高くするにつれ 跳ね返りの高さはただ単に始点の高さに比例するわけではなく 跳ね返る直前の速度に比例することがわかった (1) 目的球技において必ず発生する球の跳ね返りとはどのような規則性に基づいて発生しているのかを調べるために 4 種類の物体を用い様々な床の上で実験をして跳ね返りの規則性を測定した

More information

19年度一次基礎科目計算問題略解

19年度一次基礎科目計算問題略解 9 年度機械科目 ( 計算問題主体 ) 略解 基礎科目の解析の延長としてわかる範囲でトライしてみたものです Coprigh (c) 7 宮田明則技術士事務所 Coprigh (c) 7 宮田明則技術士事務所 Ⅳ- よってから は許容荷重として は直径をロ - プの断面積 Ⅳ- cr E E E I, から Ⅳ- Ⅳ- : q q q q q q q q q で絶対値が最大 で絶対値が最大モーメントはいずれも中央で最大となる

More information

木村の物理小ネタ 単振動と単振動の力学的エネルギー 1. 弾性力と単振動 弾性力も単振動も力は F = -Kx の形で表されるが, x = 0 の位置は, 弾性力の場合, 弾性体の自然状態の位置 単振動の場合, 振動する物体に働く力のつり合

木村の物理小ネタ   単振動と単振動の力学的エネルギー 1. 弾性力と単振動 弾性力も単振動も力は F = -Kx の形で表されるが, x = 0 の位置は, 弾性力の場合, 弾性体の自然状態の位置 単振動の場合, 振動する物体に働く力のつり合 単振動と単振動の力学的エネルギー. 弾性力と単振動 弾性力も単振動も力は F = -x の形で表されるが, x = の位置は, 弾性力の場合, 弾性体の自然状態の位置 単振動の場合, 振動する物体に働く力のつり合いの位置 である たとえば, おもりをつるしたばねについて, ばねの弾性力を考えるときは, ばねの自然長を x = とし, おもりの単振動で考える場合は, おもりに働く力がつり合った位置を

More information

Taro-解答例NO3放物運動H16

Taro-解答例NO3放物運動H16 放物運動 解答のポイント 初速度, 水平との角度 θ で 高さ の所から投げあげるとき 秒後の速度 =θ =θ - 秒後の位置 =θ 3 ( 水平飛行距離 ) =θ - + 4 ( 高さ ) ~4 の導出は 基本問題 参照 ( 地上から投げた場合の図 : 教科書参照 ) 最高点の 高さ 最高点では において = 水平到達距離 より 最高点に到達する時刻 を求め 4に代入すると最高点の高さH 地上では

More information

OCW-iダランベールの原理

OCW-iダランベールの原理 講義名連続体力学配布資料 OCW- 第 2 回ダランベールの原理 無機材料工学科准教授安田公一 1 はじめに今回の講義では, まず, 前半でダランベールの原理について説明する これを用いると, 動力学の問題を静力学の問題として解くことができ, さらに, 前回の仮想仕事の原理を適用すると動力学問題も簡単に解くことができるようになる また, 後半では, ダランベールの原理の応用として ラグランジュ方程式の導出を示す

More information

剛体過去問解答例 2 1.1) 長さの棒の慣性モーメントは 公式より l I G = Ml /12 A 点のまわりは平行軸の定理より 2 2 I A = Ml /12 + M ( l / 2) = Ml 2 / 3 B y 2) 壁からの垂直抗力を R, 床からの垂直抗力と摩擦力を N,f とすると

剛体過去問解答例 2 1.1) 長さの棒の慣性モーメントは 公式より l I G = Ml /12 A 点のまわりは平行軸の定理より 2 2 I A = Ml /12 + M ( l / 2) = Ml 2 / 3 B y 2) 壁からの垂直抗力を R, 床からの垂直抗力と摩擦力を N,f とすると 剛体過去問解答例. 長さの棒の慣性モーメントは 公式より l G l A 点のまわりは平行軸の定理より A l l l B y 壁からの垂直抗力を R, 床からの垂直抗力と摩擦力を N,f とすると 運動方程式は 方向 : R f, y 方向 : y N l 回転 : G { N f R cos } A 静止しているとき 方向の力と 力のモーメントがつり合うので y ~ より R ' また 摩擦力が最大静止摩擦力より大きいとはしごは動き出すので

More information

<48616E616B6F31352D8CF68EAE8F5797CD8A772E6A6864>

<48616E616B6F31352D8CF68EAE8F5797CD8A772E6A6864> ================================================= E-il [email protected] ホームページ p://www.ne.jp/si/nko/pysics/ ================================================= 公式集力学.jd < > 物体の運動 2 2 2 b y 2 (2) 2 = +b 0k/

More information

例題 1 表は, 分圧 Pa, 温度 0 および 20 において, 水 1.00L に溶解する二酸化炭素と 窒素の物質量を表している 二酸化炭素窒素 mol mol mol mol 温度, 圧力, 体積を変えられる容器を用意し,

例題 1 表は, 分圧 Pa, 温度 0 および 20 において, 水 1.00L に溶解する二酸化炭素と 窒素の物質量を表している 二酸化炭素窒素 mol mol mol mol 温度, 圧力, 体積を変えられる容器を用意し, ヘンリーの法則問題の解き方 A. ヘンリーの法則とは溶解度が小さいある気体 ( 溶媒分子との結合力が無視できる気体 ) が, 同温 同体積の溶媒に溶けるとき, 溶解可能な気体の物質量または標準状態換算体積はその気体の分圧に比例する つまり, 気体の分圧が P のとき, ある温度 ある体積の溶媒に n mol または標準状態に換算してV L 溶けるとすると, 分圧が kp のとき, その溶媒に kn

More information

ÿþŸb8bn0irt

ÿþŸb8bn0irt 折戸の物理 演習プリント N.15 43. 目的 : 電磁誘導は, 基本を理解すれば問題はそれほど難しくない! ということを学ぶ 問 1 の [ ] に適切な数値または数式を入れ, 問 に答えよ 図 1 のように, 紙面に垂直で一様な磁界が 0 の領域だけにある場合について考える 磁束密度は Wb/m で, 磁界は紙面の表から裏へ向かっている 図のように,1 辺の長さが m の正方形のコイル を,

More information

ÿþŸb8bn0irt

ÿþŸb8bn0irt 折戸の物理 スペシャル補習 http://orito-buturi.com/ NO.3 今日の目的 : 1 微分方程式をもう一度 三角関数の近似について学ぶ 3 微分の意味を考える 5. 起電力 の電池, 抵抗値 の抵抗, 自己インダクタンス のコイルとスイッチを用いて右図のような回路をつくった 始めスイッチは 開かれている 時刻 t = でスイッチを閉じた 以下の問に答えよ ただし, 電流はコイルに

More information

FdData理科3年

FdData理科3年 FdData 中間期末 : 中学理科 3 年 : 仕事 [ 仕事の原理 : 斜面 ] [ 仕事の原理 引く力 ] [ 問題 ](2 学期期末 ) 図のような斜面を使って質量 35kg の物体を 3m の高さまで引き上げた ただし, ひもの重さ, 斜面や滑車の摩擦はないものとする また,100g の物体を引き上げるのに必要な力を 1N とする (1) このとき, 物体がされた仕事はいくらか (2) 図のとき,

More information

問 一 次の各問いに答えなさい

問 一 次の各問いに答えなさい 年 組 番 名前 教材 8-(1) の解答力と圧力 次の 図 のように, 質量 18kg の直方体の形をした物体をいろいろな面を下にしてスポンジの 上に置き, スポンジのくぼみ方を調べる実験を行いました ただし, 質量 100g の物体にはたら く重力の大きさを1Nとして, 下の各問いに答えなさい 図 20cm 直方体の物体 30cm B C 10cm A スポンジ (1) 図 のA~C 面を下にして順番にスポンジの上に置いたとき,

More information

Microsoft Word - t30_西_修正__ doc

Microsoft Word - t30_西_修正__ doc 反応速度と化学平衡 金沢工業大学基礎教育部西誠 ねらい 化学反応とは分子を構成している原子が組み換り 新しい分子構造を持つことといえます この化学反応がどのように起こるのか どのような速さでどの程度の分子が組み換るのかは 反応の種類や 濃度 温度などの条件で決まってきます そして このような反応の進行方向や速度を正確に予測するために いろいろな数学 物理的な考え方を取り入れて化学反応の理論体系が作られています

More information

Xamテスト作成用テンプレート

Xamテスト作成用テンプレート 気体の性質 1 1990 年度本試験化学第 2 問 問 1 次の問い (a b) に答えよ a 一定質量の理想気体の温度を T 1 [K] または T 2 [K] に保ったまま, 圧力 P を変える このときの気体の体積 V[L] と圧力 P[atm] との関係を表すグラフとして, 最も適当なものを, 次の1~6のうちから一つ選べ ただし,T 1 >T 2 とする b 理想気体 1mol がある 圧力を

More information

木村の理論化学小ネタ 理想気体と実在気体 A. 標準状態における気体 1mol の体積 標準状態における気体 1mol の体積は気体の種類に関係なく 22.4L のはずである しかし, 実際には, その体積が 22.4L より明らかに小さい

木村の理論化学小ネタ   理想気体と実在気体 A. 標準状態における気体 1mol の体積 標準状態における気体 1mol の体積は気体の種類に関係なく 22.4L のはずである しかし, 実際には, その体積が 22.4L より明らかに小さい 理想気体と実在気体 A. 標準状態における気体 1mol の体積 標準状態における気体 1mol の体積は気体の種類に関係なく.4L のはずである しかし, 実際には, その体積が.4L より明らかに小さい気体も存在する このような気体には, 気体分子に, 分子量が大きい, 極性が大きいなどの特徴がある そのため, 分子間力が大きく, 体積が.4L より小さくなる.4L とみなせる実在気体 H :.449

More information

PowerPoint Presentation

PowerPoint Presentation 1. 力のつりあい 力学の復習と準備 ベクトル (vector) B C A A B C この講義の資料では大抵の専門書や大学の教科書 論文等と同じくベクトル (vector) を太字のイタリックで書きます 矢印や縦線を追加した字で書いてもかまいません A 質点 (partcle, ass pont, ateral pont) 質点? 大きさは無視できるが 質量を無視できない仮想の物体 パチンコ玉

More information

07 年度センター試験物理 問 5 ウ 気温が低くなるほど音速は遅くなるので, 上空より地表のほうが音速は遅い エ 地表から斜め上方に出た音波は, 屈折の法則より音速が大きいと屈折角も大きくなるの で, 大きく地表に向かって曲がっていく したがって, 遠くの地表面上に届きやすくなる ( 答 ) 5

07 年度センター試験物理 問 5 ウ 気温が低くなるほど音速は遅くなるので, 上空より地表のほうが音速は遅い エ 地表から斜め上方に出た音波は, 屈折の法則より音速が大きいと屈折角も大きくなるの で, 大きく地表に向かって曲がっていく したがって, 遠くの地表面上に届きやすくなる ( 答 ) 5 07 年度大学入試センター試験解説 物理 第 問小問集合問 右向きを正として小球 B の衝突後の速度を v [m/s] とすると, 衝突前後での小球 A,B の運動量保存則より, 4.0 [kg].0 [m/s] +.0 [kg] (-.0 [m/s]) 4.0 [kg].0 [m/s] +.0 [kg] v [m/s] ゆえに, v.0 [m/s] ( 答 ) 問 端 A のまわりでの棒 AB における力のモーメントのつりあいより,

More information

CERT化学2013前期_問題

CERT化学2013前期_問題 [1] から [6] のうち 5 問を選んで解答用紙に解答せよ. いずれも 20 点の配点である.5 問を超えて解答した場合, 正答していれば成績評価に加算する. 有効数字を適切に処理せよ. 断りのない限り大気圧は 1013 hpa とする. 0 C = 273 K,1 cal = 4.184 J,1 atm = 1013 hpa = 760 mmhg, 重力加速度は 9.806 m s 2, 気体

More information

浮力と圧力

浮力と圧力 浮力と圧力 もくじ 浮力以前 2 ビニル袋の水の重さは なくなった のか 3 浮力の導入 4 圧力とは 4 液体による圧力 5 浮力はなぜ生じるのか 6 アルキメデスの原理 8 浮力とそれ以外の力のつりあい 9 問題 10 答え 13 1 浮力以前 ばねを水にひたしても, 水の重さがばねにかかることはない ( 図 1) 水の入ったビニル袋がばねの近くにただよっていても, ばねに影響はない ( 図 2)

More information

流体地球科学第 7 回 力のバランス永遠に回れるバランス ( 以下, 北半球 =コリオリ力は進行方向の右向き ) 慣性振動 : 遠心力 =コリオリ力 地衡風 : コリオリ力 = 圧力傾度力 東京大学大気海洋研究所准教授藤尾伸三

流体地球科学第 7 回 力のバランス永遠に回れるバランス ( 以下, 北半球 =コリオリ力は進行方向の右向き ) 慣性振動 : 遠心力 =コリオリ力 地衡風 : コリオリ力 = 圧力傾度力 東京大学大気海洋研究所准教授藤尾伸三 流体地球科学第 7 回 力のバランス永遠に回れるバランス ( 以下, 北半球 =コリオリ力は進行方向の右向き ) 慣性振動 : 遠心力 =コリオリ力 地衡風 : コリオリ力 = 圧力傾度力 東京大学大気海洋研究所准教授藤尾伸三 http://ovd.aori.u-tokyo.ac.jp/fujio/205chiba/ [email protected] F C F A 旋衡風 : 遠心力

More information

物理学 (4) 担当 : 白井 英俊

物理学 (4) 担当 : 白井 英俊 物理学 (4) 担当 : 白井 英俊 Email: [email protected] 4 章力のモーメントとモーメントのつり合い 物体に力を加えた時 作用点の位置によるが 並進運動 --- 物体全体としての移動回転運動 --- 物体自体の回転をおこす回転運動をおこす能力のことを力のモーメントという 4 章では力のモーメントについて学ぶ 4.1 力のモーメント 剛体 (rigid body):

More information

Microsoft PowerPoint - elast.ppt [互換モード]

Microsoft PowerPoint - elast.ppt [互換モード] 弾性力学入門 年夏学期 中島研吾 科学技術計算 Ⅰ(48-7) コンピュータ科学特別講義 Ⅰ(48-4) elast 弾性力学 弾性力学の対象 応力 弾性力学の支配方程式 elast 3 弾性力学 連続体力学 (Continuum Mechanics) 固体力学 (Solid Mechanics) の一部 弾性体 (lastic Material) を対象 弾性論 (Theor of lasticit)

More information

デジカメ天文学実習 < ワークシート : 解説編 > ガリレオ衛星の動きと木星の質量 1. 目的 木星のガリレオ衛星をデジカメで撮影し その動きからケプラーの第三法則と万有引 力の法則を使って, 木星本体の質量を求める 2. ガリレオ衛星の撮影 (1) 撮影の方法 4つのガリレオ衛星の内 一番外側を

デジカメ天文学実習 < ワークシート : 解説編 > ガリレオ衛星の動きと木星の質量 1. 目的 木星のガリレオ衛星をデジカメで撮影し その動きからケプラーの第三法則と万有引 力の法則を使って, 木星本体の質量を求める 2. ガリレオ衛星の撮影 (1) 撮影の方法 4つのガリレオ衛星の内 一番外側を デジカメ天文学実習 < ワークシート : 解説編 > ガリレオ衛星の動きと木星の質量 1. 目的 木星のガリレオ衛星をデジカメで撮影し その動きからケプラーの第三法則と万有引 力の法則を使って, 木星本体の質量を求める 2. ガリレオ衛星の撮影 (1) 撮影の方法 4つのガリレオ衛星の内 一番外側を回るカリストまたはその内側のガニメデが 木星から最も離れる最大離角の日に 200~300mm の望遠レンズ

More information

DVIOUT-力・???????

DVIOUT-力・??????? 単振動 (I) 単振動の意味 同じところを行ったり来たりする運動 ma = kx 場所と加速度の向きが必ず反対になる中心で速度最大 加速度 0 端で加速度最大 速度 0 単振動の運動方程式水平面上にバネ定数が k のバネに質量 m のおもりを取り付け ておもりを引っ張り, 手を放す するとおもりは自然長の点を 中心として同じ場所を行ったり来たりする これが単振動であ る 右の図の場合, 運動方程式は

More information

相対性理論入門 1 Lorentz 変換 光がどのような座標系に対しても同一の速さ c で進むことから導かれる座標の一次変換である. (x, y, z, t ) の座標系が (x, y, z, t) の座標系に対して x 軸方向に w の速度で進んでいる場合, 座標系が一次変換で関係づけられるとする

相対性理論入門 1 Lorentz 変換 光がどのような座標系に対しても同一の速さ c で進むことから導かれる座標の一次変換である. (x, y, z, t ) の座標系が (x, y, z, t) の座標系に対して x 軸方向に w の速度で進んでいる場合, 座標系が一次変換で関係づけられるとする 相対性理論入門 Lorentz 変換 光がどのような座標系に対しても同一の速さ で進むことから導かれる座標の一次変換である. x, y, z, t ) の座標系が x, y, z, t) の座標系に対して x 軸方向に w の速度で進んでいる場合, 座標系が一次変換で関係づけられるとすると, x A x wt) y y z z t Bx + Dt 弨弱弩弨弲弩弨弳弩弨弴弩 が成立する. 図 : 相対速度

More information

1/10 平成 29 年 3 月 24 日午後 1 時 37 分第 5 章ローレンツ変換と回転 第 5 章ローレンツ変換と回転 Ⅰ. 回転 第 3 章光速度不変の原理とローレンツ変換 では 時間の遅れをローレンツ変換 ct 移動 v相対 v相対 ct - x x - ct = c, x c 2 移動

1/10 平成 29 年 3 月 24 日午後 1 時 37 分第 5 章ローレンツ変換と回転 第 5 章ローレンツ変換と回転 Ⅰ. 回転 第 3 章光速度不変の原理とローレンツ変換 では 時間の遅れをローレンツ変換 ct 移動 v相対 v相対 ct - x x - ct = c, x c 2 移動 / 平成 9 年 3 月 4 日午後 時 37 分第 5 章ローレンツ変換と回転 第 5 章ローレンツ変換と回転 Ⅰ. 回転 第 3 章光速度不変の原理とローレンツ変換 では 時間の遅れをローレンツ変換 t t - x x - t, x 静止静止静止静止 を導いた これを 図の場合に当てはめると t - x x - t t, x t + x x + t t, x (5.) (5.) (5.3) を得る

More information

θ T [N] φ T os φ mg T sin φ mg tn φ T sin φ mg tn φ θ 0 sin θ tn θ θ sin φ tn φ φ θ φ mg θ f J mg f π J mg π J J 4π f mg 4π f () () /8

θ T [N] φ T os φ mg T sin φ mg tn φ T sin φ mg tn φ θ 0 sin θ tn θ θ sin φ tn φ φ θ φ mg θ f J mg f π J mg π J J 4π f mg 4π f () () /8 [N/m] m[g] mẍ x (N) x. f[hz] f π ω π m ω πf[rd/s] m ω 4π f [Nm/rd] J[gm ] J θ θ (gm ) θ. f[hz] f π ω π J J ω 4π f /8 θ T [N] φ T os φ mg T sin φ mg tn φ T sin φ mg tn φ θ 0 sin θ tn θ θ sin φ tn φ φ θ

More information

Microsoft PowerPoint - zairiki_3

Microsoft PowerPoint - zairiki_3 材料力学講義 (3) 応力と変形 Ⅲ ( 曲げモーメント, 垂直応力度, 曲率 ) 今回は, 曲げモーメントに関する, 断面力 - 応力度 - 変形 - 変位の関係について学びます 1 曲げモーメント 曲げモーメント M 静定力学で求めた曲げモーメントも, 仮想的に断面を切ることによって現れる内力です 軸方向力は断面に働く力 曲げモーメント M は断面力 曲げモーメントも, 一つのモーメントとして表しますが,

More information

1

1 問題を解こう. 熱力学の基礎 問題. 容積 [m ] の密閉容器内に 温度 0[ ] 質量 0[kg] の酸素が含まれている この容器内の圧力を求めよ ただし 酸素の気体定数を R= 59.8[J/kg K] とする 解答 酸素の体積 V=m 質量 m=0kg なので 酸素の比容積 v=/0 m /kg である 式 (.) において ガス定数 R=59.8 温度 T=(0+7)K であるので 圧力

More information

センター試験対策[物理I]

センター試験対策[物理I] Review Test センター試験対策 物理 I [ 力学編 ] 単元別総復習 6 回分 このテストは 大学入試攻略の部屋で配布されている Excel でセンター対 策 [ 物理 ] with CT on Excel の印刷版です 同じ問題が Excel の画面上で簡単に解くことができて, しかもその場で採点 ができる CT システム をなるべくご利用いただきたいのですが, それがで きない受験生の皆さんのために,

More information

<4D F736F F F696E74202D D488A778AEE B4F93B982CC8AEE A2E707074>

<4D F736F F F696E74202D D488A778AEE B4F93B982CC8AEE A2E707074> 宇宙工学基礎 ( 軌道の基礎 松永三郎 機械宇宙学科 機械宇宙システム専攻 ニュートンの法則 第 法則 力が作用作用しないしない限り 質点質点は静止静止ないしはないしは一定速度一定速度で運動するする ( 慣性の法則 慣性空間 慣性座標系慣性座標系の定義第 法則 慣性座標系におけるにおける質点質点の運動 p F ( pɺ t ( F: 全作用力, pmv: 並進運動量 ( 質量と速度速度の積 慣性系を規準規準としてとして時間微分時間微分を行うことにことに注意第

More information

DVIOUT-SS_Ma

DVIOUT-SS_Ma 第 章 微分方程式 ニュートンはリンゴが落ちるのを見て万有引力を発見した という有名な逸話があります 無重力の宇宙船の中ではリンゴは落ちないで静止していることを考えると 重力が働くと始め静止しているものが動き出して そのスピードはどんどん大きくなる つまり速度の変化が現れることがわかります 速度は一般に時間と共に変化します 速度の瞬間的変化の割合を加速度といい で定義しましょう 速度が変化する, つまり加速度がでなくなるためにはその原因があり

More information

Microsoft PowerPoint - 熱力学Ⅱ2FreeEnergy2012HP.ppt [互換モード]

Microsoft PowerPoint - 熱力学Ⅱ2FreeEnergy2012HP.ppt [互換モード] 熱力学 Ⅱ 第 章自由エネルギー システム情報工学研究科 構造エネルギー工学専攻 金子暁子 問題 ( 解答 ). 熱量 Q をある系に与えたところ, 系の体積は膨張し, 温度は上昇した. () 熱量 Q は何に変化したか. () またこのとき系の体積がV よりV に変化した.( 圧力は変化無し.) 内部エネルギーはどのように表されるか. また, このときのp-V 線図を示しなさい.. 不可逆過程の例を

More information

プランクの公式と量子化

プランクの公式と量子化 Planck の公式と量子化 埼玉大学理学部物理学科 久保宗弘 序論 一般に 量子力学 と表現すると Schrödinger の量子力学などの 後期量子力学 を指すことが多い 本当の量子概念 には どうアプローチ? 何故 エネルギーが量子化されるか という根本的な問いにどうこたえるか? どのように 量子 の扉は叩かれたのか? 序論 統計力学 熱力学 がことの始まり 総括的な動き を表現するための学問である

More information

宇宙機工学 演習問題

宇宙機工学 演習問題 宇宙システム工学演習 重力傾度トルク関連. 図に示すように地球回りの円軌道上を周回する宇宙機の運動 を考察する 地球中心座標系を 系 { } 軌道面基準回転系を 系 { } 機体固定系を 系 { } とする 特に次の右手直交系 : 地心方向単位ベクトル 軌道面内 : 進行方向単位ベクトル 軌道面内 : 面外方向単位ベクトル 軌道面外 を取る 特に この { } Lol Horiotl frme と呼ぶ

More information

物理学 II( 熱力学 ) 期末試験問題 (2) 問 (2) : 以下のカルノーサイクルの p V 線図に関して以下の問題に答えなさい. (a) "! (a) p V 線図の各過程 ( ) の名称とそのと (& きの仕事 W の面積を図示せよ. # " %&! (' $! #! " $ %'!!!

物理学 II( 熱力学 ) 期末試験問題 (2) 問 (2) : 以下のカルノーサイクルの p V 線図に関して以下の問題に答えなさい. (a) ! (a) p V 線図の各過程 ( ) の名称とそのと (& きの仕事 W の面積を図示せよ. #  %&! (' $! #!  $ %'!!! 物理学 II( 熱力学 ) 期末試験問題 & 解答 (1) 問 (1): 以下の文章の空欄に相応しい用語あるいは文字式を記入しなさい. 温度とは物体の熱さ冷たさを表す概念である. 物体は外部の影響を受けなければ, 十分な時間が経過すると全体が一様な温度の定常的な熱平衡状態となる. 物体 と物体 が熱平衡にあり, 物体 と物体 が熱平衡にあるならば, 物体 と物体 も熱平衡にある. これを熱力学第 0

More information

第1章 単 位

第1章  単  位 H. Hamano,. 長柱の座屈 - 長柱の座屈 長い柱は圧縮荷重によって折れてしまう場合がある. この現象を座屈といい, 座屈するときの荷重を座屈荷重という.. 換算長 長さ の柱に荷重が作用する場合, その支持方法によって, 柱の理論上の長さ L が異なる. 長柱の計算は, この L を用いて行うと都合がよい. この L を換算長 ( あるいは有効長さという ) という. 座屈荷重は一般に,

More information

Taro-3年生生徒による重力加速度

Taro-3年生生徒による重力加速度 重力加速度測定方法の研究 物理実験室使用 3 年組 SS 番 班 名前 重力加速度測定実験 結果検討について 1. 目的 生徒が重力加速度の測定実験を行う中で 積極的 能動的に討議し検討していく事を目指す 正確な数値を求めることよりも 方法の検討 誤差の原因等を検討することを主眼とする 重力が働く場での運動 ( 落下運動 繰り返し行われる運動等 ) には重力加速度が関係していることを理解し それぞれの実験の原理を把握してから実験を行う

More information

Microsoft PowerPoint - 第9回電磁気学

Microsoft PowerPoint - 第9回電磁気学 017 年 1 月 04 日 ( 月 ) 13:00-14:30 C13 平成 9 年度工 V 系 ( 社会環境工学科 ) 第 9 回電磁気学 Ⅰ 天野浩 [email protected] 9 1 月 04 日 第 5 章 電流の間に働く力 磁場 微分形で表したア ンペールの法則 ビオ サバールの法則 第 5 章電流の作る場 http://www.ntt-est.co.jp/business/mgzine/netwok_histoy/0/

More information

ギリシャ文字の読み方を教えてください

ギリシャ文字の読み方を教えてください 埼玉工業大学機械工学学習支援セミナー ( 小西克享 ) 単振り子の振動の近似解と厳密解 -/ テーマ H: 単振り子の振動の近似解と厳密解. 運動方程式図 のように, 質量 m のおもりが糸で吊り下げられている時, おもりには重力 W と糸の張力 が作用しています. おもりは静止した状態なので,W と F は釣り合った状態注 ) になっています. すなわち, W です.W は質量 m と重力加速度

More information

(Microsoft PowerPoint _4_25.ppt [\214\335\212\267\203\202\201[\203h])

(Microsoft PowerPoint _4_25.ppt [\214\335\212\267\203\202\201[\203h]) 平成 25 年度化学入門講義スライド 第 3 回テーマ : 熱力学第一法則 平成 25 年 4 月 25 日 奥野恒久 よく出てくる用語 1 熱力学 (thermodynamcs) 系 (system) 我々が注意を集中したい世界の特定の一部分外界 (surroundngs) 系以外の部分 系 外界 系に比べてはるかに大きい温度 体積 圧力一定系の変化の影響を受けない よく出てくる用語 2 外界との間で開放系

More information

運動方程式の基本 座標系と変数を導入 (u,v) ニュートンの第一法則 力 = 質量 加速度 大気や海洋に加わる力を, 思いつくだけ挙げてみよう 重力, 圧力傾度力, コリオリ力, 摩擦力 水平方向に働く力に下線をつけよう. したがって水平方向の運動方程式は 質量 水平加速度 = コリオリ力 + 圧

運動方程式の基本 座標系と変数を導入 (u,v) ニュートンの第一法則 力 = 質量 加速度 大気や海洋に加わる力を, 思いつくだけ挙げてみよう 重力, 圧力傾度力, コリオリ力, 摩擦力 水平方向に働く力に下線をつけよう. したがって水平方向の運動方程式は 質量 水平加速度 = コリオリ力 + 圧 2. 潜水方程式系の導出 見延庄士郎 ( 海洋気候物理学研究室 ) [email protected] 第 1 回まとめ 1/2 二つの変数の関係の強さを表す統計量は相関であり, 最小値は -1, 最大値は +1, 無相関は である. 過去数十年間の ( 気象庁は 3 年 ) 月ごとの平均値を, 月平均データの平年値または気候値という. 観測値から平年値を引いたものが, 偏差である.

More information

実験題吊  「加速度センサーを作ってみよう《

実験題吊  「加速度センサーを作ってみよう《 加速度センサーを作ってみよう 茨城工業高等専門学校専攻科 山越好太 1. 加速度センサー? 最近話題のセンサーに 加速度センサー というものがあります これは文字通り 加速度 を測るセンサーで 主に動きの検出に使われたり 地球から受ける重力加速度を測定することで傾きを測ることなどにも使われています 最近ではゲーム機をはじめ携帯電話などにも搭載されるようになってきています 2. 加速度センサーの仕組み加速度センサーにも様々な種類があります

More information

今週の内容 後半全体のおさらい ラグランジュの運動方程式の導出 リンク機構のラグランジュの運動方程式 慣性行列 リンク機構のエネルギー保存則 エネルギー パワー 速度 力の関係 外力が作用する場合の運動方程式 粘性 粘性によるエネルギーの消散 慣性 粘性 剛性と微分方程式 拘束条件 ラグランジュの未

今週の内容 後半全体のおさらい ラグランジュの運動方程式の導出 リンク機構のラグランジュの運動方程式 慣性行列 リンク機構のエネルギー保存則 エネルギー パワー 速度 力の関係 外力が作用する場合の運動方程式 粘性 粘性によるエネルギーの消散 慣性 粘性 剛性と微分方程式 拘束条件 ラグランジュの未 力学 III GA 工業力学演習 X5 解析力学 5X 5 週目 立命館大学機械システム系 8 年度後期 今週の内容 後半全体のおさらい ラグランジュの運動方程式の導出 リンク機構のラグランジュの運動方程式 慣性行列 リンク機構のエネルギー保存則 エネルギー パワー 速度 力の関係 外力が作用する場合の運動方程式 粘性 粘性によるエネルギーの消散 慣性 粘性 剛性と微分方程式 拘束条件 ラグランジュの未定乗数法

More information

第 3 章二相流の圧力損失

第 3 章二相流の圧力損失 第 3 章二相流の圧力損失 単相流の圧力損失 圧力損失 (/) 壁面せん断応力 τ W 力のバランス P+ u m πd 4 τ w 4 τ D u τ w m w πd : 摩擦係数 λ : 円管の摩擦係数 λ D u m D P τ W 摩擦係数 層流 16/Re 乱流 0.079 Re -1/4 0.046 Re -0.0 (Blasius) (Colburn) 大まかには 0.005 二相流の圧力損失液相のみが流れた場合の単相流の圧力損失

More information

また単分子層吸着量は S をすべて加えればよく N m = S (1.5) となる ここで計算を簡単にするために次のような仮定をする 2 層目以上に吸着した分子の吸着エネルギーは潜熱に等しい したがって Q = Q L ( 2) (1.6) また 2 層目以上では吸着に与える表面固体の影響は小さく

また単分子層吸着量は S をすべて加えればよく N m = S (1.5) となる ここで計算を簡単にするために次のような仮定をする 2 層目以上に吸着した分子の吸着エネルギーは潜熱に等しい したがって Q = Q L ( 2) (1.6) また 2 層目以上では吸着に与える表面固体の影響は小さく BET 法による表面積測定について 1. 理論編ここでは吸着等温線を利用した表面積の測定法 特に Brunauer,Emmett Teller による BET 吸着理論について述べる この方法での表面積測定は 気体を物質表面に吸着させた場合 表面を 1 層覆い尽くすのにどれほどの物質量が必要か を調べるものである 吸着させる気体分子が 1 個あたりに占める表面積をあらかじめ知っていれば これによって固体の表面積を求めることができる

More information

パソコンシミュレータの現状

パソコンシミュレータの現状 第 2 章微分 偏微分, 写像 豊橋技術科学大学森謙一郎 2. 連続関数と微分 工学において物理現象を支配する方程式は微分方程式で表されていることが多く, 有限要素法も微分方程式を解く数値解析法であり, 定式化においては微分 積分が一般的に用いられており. 数学の基礎知識が必要になる. 図 2. に示すように, 微分は連続な関数 f() の傾きを求めることであり, 微小な に対して傾きを表し, を無限に

More information

応用数学Ⅱ 偏微分方程式(2) 波動方程式(12/13)

応用数学Ⅱ 偏微分方程式(2) 波動方程式(12/13) 偏微分方程式. 偏微分方程式の形 偏微分 偏導関数 つの独立変数 をもつ関数 があるとき 変数 が一定値をとって だけが変化したとす ると は だけの関数となる このとき を について微分して得られる関数を 関数 の に関する 偏微分係数 略して偏微分 あるいは偏導関数 pil deiie といい 次のように表される についても同様な偏微分を定義できる あるいは あるいは - あるいは あるいは -

More information

( 全体 ) 年 1 月 8 日,2017/1/8 戸田昭彦 ( 参考 1G) 温度計の種類 1 次温度計 : 熱力学温度そのものの測定が可能な温度計 どれも熱エネルギー k B T を

( 全体 ) 年 1 月 8 日,2017/1/8 戸田昭彦 ( 参考 1G) 温度計の種類 1 次温度計 : 熱力学温度そのものの測定が可能な温度計 どれも熱エネルギー k B T を ( 全体 htt://home.hiroshima-u.ac.j/atoda/thermodnamics/ 9 年 月 8 日,7//8 戸田昭彦 ( 参考 G 温度計の種類 次温度計 : 熱力学温度そのものの測定が可能な温度計 どれも熱エネルギー k T を単位として決められている 9 年 月 日 ( 世界計量記念日 から, 熱力学温度 T/K の定義も熱エネルギー k T/J に基づく. 定積気体温度計

More information

Microsoft PowerPoint - ВЬ“H−w†i…„…C…m…‰…Y’fl†j.ppt

Microsoft PowerPoint - ВЬ“H−w†i…„…C…m…‰…Y’fl†j.ppt 乱流とは? 不規則運動であり, 速度の時空間的な変化が複雑であり, 個々の測定結果にはまったく再現性がなく, 偶然の値である. 渦運動 3 次元流れ 非定常流 乱流は確率過程 (Stochastic Process) である. 乱流工学 1 レイノルズの実験 UD = = ν 慣性力粘性力 乱流工学 F レイノルズ数 U L / U 3 = mα = ρl = ρ 慣性力 L U u U A = µ

More information

2014年度 名古屋大・理系数学

2014年度 名古屋大・理系数学 04 名古屋大学 ( 理系 ) 前期日程問題 解答解説のページへ空間内にある半径 の球 ( 内部を含む ) を B とする 直線 と B が交わっており, その交わりは長さ の線分である () B の中心と との距離を求めよ () のまわりに B を 回転してできる立体の体積を求めよ 04 名古屋大学 ( 理系 ) 前期日程問題 解答解説のページへ 実数 t に対して 点 P( t, t ), Q(

More information

スライド 1

スライド 1 第 3 章 鉄筋コンクリート工学の復習 鉄筋によるコンクリートの補強 ( 圧縮 ) 鉄筋で補強したコンクリート柱の圧縮を考えてみよう 鉄筋とコンクリートの付着は十分で, コンクリートと鉄筋は全く同じように動くものとする ( 平面保持の仮定 ) l Δl 長さの柱に荷重を載荷したときの縮み量をとする 鉄筋及びコンクリートの圧縮ひずみは同じ量なのでで表す = Δl l 鉄筋及びコンクリートの応力はそれぞれの弾性定数を用いて次式で与えられる

More information

スライド 1

スライド 1 電流と磁場 目次 0. はじめにー物質の磁気的性質と磁場ー 1. 磁石と磁場 2. 電流のつくる磁場 (1) 3. 磁場中の運動する荷電粒子に働く磁気力 ( ローレンツ力 ) 4. 磁場中の電流に働く力 ( アンペアの力 ) 5. 平行または反平行電流の間に働く磁気力 6. 電流のつくる磁場 (2)- ビオ サバールの法則 7. アンペアの法則 ( アンペアの回路定理 ) 8. 磁場 に対するガウスの法則付録

More information