筑波大学大学院博士課程

Size: px
Start display at page:

Download "筑波大学大学院博士課程"

Transcription

1

2

3 . [] 3 [] [3-] 3

4 . [-] [5] [3] 5kHz [8] 3.6Hz

5 Fig. - 5

6 . Fig. - Tpe C3/YAMAHA 88 (A~F#) G A# 3 B~C8 (Fig. -) Sound Hammer Damper String Soundboard Bridge Keboard Fig. - Fig. - 6

7 Fig. -3. Fig. -4 4V 5V -5V.4 mm.4 mm.4 mm.6% 7

8 Eletromagnet Hammer Keboard Fig

9 3 3. LED (TLRH8P/Toshiba) (f 7.7mm, 4.mm, AJ455G/Edmund) S/N Fig. 3- LED LED 45 4 x- 9

10 Photo transistor Lens U Piano string x Ux LED Fig. 3- AD/DA

11 Fig. 3- Fig. 3- x - P(Ux,U ) Vx V A Ux' AV U' AV r x' θ tan x,. ' ', x', (3-) (3-)

12 x x- P ). 45 sin( ), 45 os( θ θ r U r Ux (3-3) () () (3) ). ( ), ( x x V V A U V V A Ux (3-4) ). ( ), ( x x V V A U V V A Ux (3-5) ). ( ), ( x x V V A U V V A Ux (3-6) ). ( ), ( x x V V A U V V A Ux (3-7)

13 3. Fig mm (3-) A A.4387 mm/v Output (V) Displaement (mm) Fig E 4.Hz Fig..6 Fig..7 z637 mm Fig..6. x - Fig..6. (3-4) 3

14 Fig

15 Fig

16

17 4 4. Fig. 4- x mm mm z mm E 4.Hz z3 mm z45 77 mm mm 7 5kHz 4. 4(m/s) Fig. 4- (a) (b) z77 mm [] L.47 (m) L (m/s). (4-) Fig

18 Bridge Optial Probe Wound String z Hammer x Agraffe Fig. 4-8

19 .8 z3 U (mm) z Time (ms) 93.8 Fig. 4- z3, 77 (mm) 9

20 75 z (mm) Time (s) Fig. 4-3

21 4.3 3 E 4.Hz 5kHz z45~77 mm m z63 mm Fig. 4-4 z63 mm Fig. 4-5 FFT z63 mm 75 mm 8 z478 mm z47 mm Fig Fig

22 Fig. 4-4 z63 mm

23 Vertial Relative Amplitude(dB) Horizontal Frequen (Hz) Fig. 4-5 z63 mm 3

24 Vertial Relative Amplitude (db) Horizontal Frequen (Hz) Fig. 4-6 z47 mm 4

25 5 5. Fig. 5- Fig. 4-4 Fig. 4-4 (UxAC,UAC) (UxDC, UDC) (Ux,U) [4] (Ux,U) (UxDC,UDC) (UxAC,UAC) (5-) 5. Fig. 5- FFT (Fig. 5-3) 5

26 Fig. 5- z77 mm 6

27 . Ux DC (mm) U DC (mm) Time (s) Fig. 5- z77 mm 7

28 - Relative Amplitude of Ux DC (db) Relative Amplitude of (db) U DC Frequen (Hz) Fig. 5-3 z77 mm 8

29 .6 Hz Fig. 5-. Hz [5] x(i) G(k) G(k) kmax ( ) G( k max) > G( k max ) r G( k max) (5-) f k G( k max) r r max (5-) ( ) G( k max) < G( k max ) s G( k max ) (5-3) f k G( k max) s s max (5-4).66 Hz 9

30 .4 Displaement of Ux DC (mm) Displaement of U DC (mm) Time (s) Fig

31 Hz Hz Fig Fig. 5-4 Fig. 5-5 x-.5 Fig

32 ..-.(s).5.-.(s) (s) (s) Vertial Vibration (mm) -.4 x x x (s) x (s) x -3 x -3 5 x (s) x -5 x (s) x x x x Horizontal Vibration (mm) Fig. 5-5 x- 3

33 Fig. 5-5 Fig. 5-6,Fig. 5-7 Fig. 5-7 Fig. 5-6 z638 mm z59 mm z57 mm Fig

34 Displaement of Vertial U DC ( m) 5 Horizontal Position in z axis(mm) Time(s) Fig

35 Displaement of UDC ( m) Vertial Horizontal Position in z axis (mm) Time (s) Fig

36 Fig mm 7.5 mm z57 59 mm 75 mm % 46.5 % z mm Fig. 5-8 Fig. 5-9 Fig. 5-9 Fig m.66 Hz 36

37 m/s 4 m/s [] E F F Fig. 5- z (mm) Fig. 5- z mm Fig. 5- z 588 mm z 588 mm 37

38 .8 Ux (mm) U (mm) Time (s) Fig. 5- E F 38

39 U (mm) z583 z584 z585 z586 z587 z588 z589 z Time (s) Fig. 5-39

40 t z v t u v Y u z A v u v t u z (6-) (6-) - [6] Y t Y z Yi Y Yi, Yi, Yi, Y h Y τ, i, Y i, i, i,, i, λ τ h τ Yi A h Y (6-3) (6-4) (6-5) 4

41 } ) ( ) {(,,, i i i Y A E A Y E Y λ λ (6-6) ) ( ) ( ) ( ) (,,,,,,,,, i i i i i i i i i u u v v u u v v Y λ λ (6-7).) sin(5 ) (, z z ).,.4 (.4) (. < < z z z (6-8) 3 3 ) ( ) ( ) ( < < z l l z l l z (,) (,) (,) (,) v v (6-9) t t l t t l t t l t t l v v v v,,,,,,,. 3 3 (6-) ) (, ) (, t t v z t u (6-) 4

42 ,, h u u z u u u,, (6-) (6-7) ) ( ) ( ) ( ) (,,,,,,,,, i u u v v u u v v Y λ λ (6-3) v v,, (6-4) u v u,,, λ (6-5) (6-6) N N N N N N N u v u v v u u,,,,,,, λ (6-7) (6-8) i i i i i i i i v v,,,,,,,, ) ( τ τ (6-9) L, (6-) 4

43 , (6-) l l,,, (6-) l,,, (6-3) l l, 3 3, 3 3, 3 (6-4) l, 3 3, 3, 3 3 (6-5) 6- (6-) (6-) z t T S ρ z S T t ρ (6-6) t f T x v t v x f σ (6-7) 43

44 f T / x σ ρs (6-7) Table 6- i x e x e C t i L t (6-8) (6-8) 3 Fig. 6- Eh sin(t) t Eh S Table 6- Mehanial Sstem v f r / T Eletrial Sstem Mobilit Analog e i G L Impedane Analog i e R C S U E h L L L 3 C C C 3 Fig Fig. 6- z 77 mm 44

45 .6 U (mm) Time (s).6 U (mm) Time (s) Fig. 6- z 77 mm. 45

46 6.3 Fig U (mm) Time (s) Fig

47 6.4 47

48 mm

49 5 3 49

50 [] Flether, "The Phsis of musial instruments, Springer-Verlag(998) [], YAMAHA: FM, [3] D.W. Martin: Dea rates of piano tones, J. Aoust. So. Am., 9, pp (947). [4] H. Flether, E.D. Blakham and R. Stratton: Qualit of piano tones, J. Aoust. So. Am., 34, pp (96) [5] I. Nakamura: Fundamental theor and omputer simulation of dea harateristis of piano sound, J. Aousti. So. Jpn. (E),, pp (989). [6] :,, MA93-, pp.5- (993) [7],,, :,, LST6-6, pp.45-5 () [8],, :,, MA-9, pp.-6 () [9],, : (3) [] () [],, : (3) [],,, :, 3 I, -7-, pp.87-88, (3.3) [3] H.Flether, E.D.Blakham and R.Stratton: Qualit of piano tones, J. Aoust. So. Am. 34, pp (96) [4],, : (4) [5], : FFT,, A Vol. J7-A No.5 pp (987) [6] : (998) 5

51 ,, :,, MA5-4, pp9-3 (5) 5

空気の屈折率変調を光学的に検出する超指向性マイクロホン

空気の屈折率変調を光学的に検出する超指向性マイクロホン 23 2 1M36268 2 2 4 5 6 7 8 13 15 2 21 2 23 2 2 3 32 34 38 38 54 57 62 63 1-1 ( 1) ( 2) 1-1 a ( sinθ ) 2J D ( θ ) = 1 (1-1) kaka sinθ ( 3) 1-2 1 Back face hole Amplifier Diaphragm Equiphase wave surface

More information

LD

LD 989935 1 1 3 3 4 4 LD 6 7 10 1 3 13 13 16 0 4 5 30 31 33 33 35 35 37 38 5 40 FFT 40 40 4 4 4 44 47 48 49 51 51 5 53 54 55 56 Abstract [1] HDD (LaserDopplerVibrometer; LDV) [] HDD IC 1 4 LDV LDV He-Ne Acousto-optic

More information

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0 1 1 1.1 1.) T D = T = D = kn 1. 1.4) F W = F = W/ = kn/ = 15 kn 1. 1.9) R = W 1 + W = 6 + 5 = 11 N. 1.9) W b W 1 a = a = W /W 1 )b = 5/6) = 5 cm 1.4 AB AC P 1, P x, y x, y y x 1.4.) P sin 6 + P 1 sin 45

More information

r d 2r d l d (a) (b) (c) 1: I(x,t) I(x+ x,t) I(0,t) I(l,t) V in V(x,t) V(x+ x,t) V(0,t) l V(l,t) 2: 0 x x+ x 3: V in 3 V in x V (x, t) I(x, t

r d 2r d l d (a) (b) (c) 1: I(x,t) I(x+ x,t) I(0,t) I(l,t) V in V(x,t) V(x+ x,t) V(0,t) l V(l,t) 2: 0 x x+ x 3: V in 3 V in x V (x, t) I(x, t 1 1 2 2 2r d 2r d l d (a) (b) (c) 1: I(x,t) I(x+ x,t) I(0,t) I(l,t) V in V(x,t) V(x+ x,t) V(0,t) l V(l,t) 2: 0 x x+ x 3: V in 3 V in x V (x, t) I(x, t) V (x, t) I(x, t) V in x t 3 4 1 L R 2 C G L 0 R 0

More information

c 2009 i

c 2009 i I 2009 c 2009 i 0 1 0.0................................... 1 0.1.............................. 3 0.2.............................. 5 1 7 1.1................................. 7 1.2..............................

More information

untitled

untitled ( 9:: 3:6: (k 3 45 k F m tan 45 k 45 k F m tan S S F m tan( 6.8k tan k F m ( + k tan 373 S S + Σ Σ 3 + Σ os( sin( + Σ sin( os( + sin( os( p z ( γ z + K pzdz γ + K γ K + γ + 9 ( 9 (+ sin( sin { 9 ( } 4

More information

修士論文

修士論文 SAW 14 2 M3622 i 1 1 1-1 1 1-2 2 1-3 2 2 3 2-1 3 2-2 5 2-3 7 2-3-1 7 2-3-2 2-3-3 SAW 12 3 13 3-1 13 3-2 14 4 SAW 19 4-1 19 4-2 21 4-2-1 21 4-2-2 22 4-3 24 4-4 35 5 SAW 36 5-1 Wedge 36 5-1-1 SAW 36 5-1-2

More information

all.dvi

all.dvi 38 5 Cauchy.,,,,., σ.,, 3,,. 5.1 Cauchy (a) (b) (a) (b) 5.1: 5.1. Cauchy 39 F Q Newton F F F Q F Q 5.2: n n ds df n ( 5.1). df n n df(n) df n, t n. t n = df n (5.1) ds 40 5 Cauchy t l n mds df n 5.3: t

More information

2.2 h h l L h L = l cot h (1) (1) L l L l l = L tan h (2) (2) L l 2 l 3 h 2.3 a h a h (a, h)

2.2 h h l L h L = l cot h (1) (1) L l L l l = L tan h (2) (2) L l 2 l 3 h 2.3 a h a h (a, h) 1 16 10 5 1 2 2.1 a a a 1 1 1 2.2 h h l L h L = l cot h (1) (1) L l L l l = L tan h (2) (2) L l 2 l 3 h 2.3 a h a h (a, h) 4 2 3 4 2 5 2.4 x y (x,y) l a x = l cot h cos a, (3) y = l cot h sin a (4) h a

More information

20 4 20 i 1 1 1.1............................ 1 1.2............................ 4 2 11 2.1................... 11 2.2......................... 11 2.3....................... 19 3 25 3.1.............................

More information

untitled

untitled 9118 154 B-1 B-3 B- 5cm 3cm 5cm 3m18m5.4m.5m.66m1.3m 1.13m 1.134m 1.35m.665m 5 , 4 13 7 56 M 1586.1.18 7.77.9 599.5.8 7 1596.9.5 7.57.75 684.11.9 8.5 165..3 7.9 87.8.11 6.57. 166.6.16 7.57.6 856 6.6.5

More information

1. 4cm 16 cm 4cm 20cm 18 cm L λ(x)=ax [kg/m] A x 4cm A 4cm 12 cm h h Y 0 a G 0.38h a b x r(x) x y = 1 h 0.38h G b h X x r(x) 1 S(x) = πr(x) 2 a,b, h,π

1. 4cm 16 cm 4cm 20cm 18 cm L λ(x)=ax [kg/m] A x 4cm A 4cm 12 cm h h Y 0 a G 0.38h a b x r(x) x y = 1 h 0.38h G b h X x r(x) 1 S(x) = πr(x) 2 a,b, h,π . 4cm 6 cm 4cm cm 8 cm λ()=a [kg/m] A 4cm A 4cm cm h h Y a G.38h a b () y = h.38h G b h X () S() = π() a,b, h,π V = ρ M = ρv G = M h S() 3 d a,b, h 4 G = 5 h a b a b = 6 ω() s v m θ() m v () θ() ω() dθ()

More information

Microsoft Word - ‚²‰ÆŸ_Ł¶−®’¬.doc

Microsoft Word - ‚²‰ÆŸ_Ł¶−®’¬.doc 1 1 75 1 4 81 1 3 4 5..5 6 3 1 4 5 1 6 7..5mm 8.1. C.1 ( ).5 ( ) ( ) 3. ( ).5. 1..5 1-131 TEACDR-F1 khz 648frame/sec 9 Hot Film Probe Anemometer Stabilizer Digital Recorder Video Compressor Camera Flow

More information

pdf

pdf http://www.ns.kogakuin.ac.jp/~ft13389/lecture/physics1a2b/ pdf I 1 1 1.1 ( ) 1. 30 m µm 2. 20 cm km 3. 10 m 2 cm 2 4. 5 cm 3 km 3 5. 1 6. 1 7. 1 1.2 ( ) 1. 1 m + 10 cm 2. 1 hr + 6400 sec 3. 3.0 10 5 kg

More information

Hz

Hz ( ) 2006 1 3 3 3 4 10 Hz 1 1 1.1.................................... 1 1.2.................................... 1 2 2 2.1.................................... 2 2.2.................................... 3

More information

pp d 2 * Hz Hz 3 10 db Wind-induced noise, Noise reduction, Microphone array, Beamforming 1

pp d 2 * Hz Hz 3 10 db Wind-induced noise, Noise reduction, Microphone array, Beamforming 1 72 12 2016 pp. 739 748 739 43.60.+d 2 * 1 2 2 3 2 125 Hz 0.3 0.8 2 125 Hz 3 10 db Wind-induced noise, Noise reduction, Microphone array, Beamforming 1. 1.1 PSS [1] [2 4] 2 Wind-induced noise reduction

More information

untitled

untitled MRR Physical Basis( 1.8.4) METEK MRR 1 MRR 1.1 MRR 24GHz FM-CW(frequency module continuous wave) 30 r+ r f+ f 1.2 1 4 MRR 24GHz 1.3 50mW 1 rf- (waveguide) (horn) 60cm ( monostatic radar) (continuous wave)

More information

TSP信号を用いた音響系評価の研究

TSP信号を用いた音響系評価の研究 1 TSP 98kc068 2 1. 4 2. TSP 2.1 2.2 TSP 2.2.1 ATSP 2.2.2 OATSP 2.3 N 3. 5 5 6 6 7 8 2.3.1 N 8 2.3.2 TSP 9 2.3.3 2.3.4 m 3.1 3.1.1 3.1.2 3.2 3.3 15 18 20 20 20 21 22 24 3.3.1 24 3.3.2 3.4 3.4.1 3.4.2 4.

More information

MP-E 65mm f/2.8 1-5× 使用説明書

MP-E 65mm f/2.8 1-5× 使用説明書 MACRO PHOTO LENS MP-E 65mm f/2.8 1-5 JPN JPN-1 a JPN-2 JPN-3 1. 2. JPN-4 JPN-5 JPN-6 3. JPN-7 JPN-8 4. JPN-9 5. JPN-10 6. 7. JPN-11 8. JPN-12 canon.jp/ef 050-555-90001 JPN-13 CT1-7525-010 CANON INC. 2002

More information

2 Chapter 4 (f4a). 2. (f4cone) ( θ) () g M. 2. (f4b) T M L P a θ (f4eki) ρ H A a g. v ( ) 2. H(t) ( )

2 Chapter 4 (f4a). 2. (f4cone) ( θ) () g M. 2. (f4b) T M L P a θ (f4eki) ρ H A a g. v ( ) 2. H(t) ( ) http://astr-www.kj.yamagata-u.ac.jp/~shibata f4a f4b 2 f4cone f4eki f4end 4 f5meanfp f6coin () f6a f7a f7b f7d f8a f8b f9a f9b f9c f9kep f0a f0bt version feqmo fvec4 fvec fvec6 fvec2 fvec3 f3a (-D) f3b

More information

[Ver. 0.2] 1 2 3 4 5 6 7 1 1.1 1.2 1.3 1.4 1.5 1 1.1 1 1.2 1. (elasticity) 2. (plasticity) 3. (strength) 4. 5. (toughness) 6. 1 1.2 1. (elasticity) } 1 1.2 2. (plasticity), 1 1.2 3. (strength) a < b F

More information

4‐E ) キュリー温度を利用した消磁:熱消磁

4‐E ) キュリー温度を利用した消磁:熱消磁 ( ) () x C x = T T c T T c 4D ) ) Fe Ni Fe Fe Ni (Fe Fe Fe Fe Fe 462 Fe76 Ni36 4E ) ) (Fe) 463 4F ) ) ( ) Fe HeNe 17 Fe Fe Fe HeNe 464 Ni Ni Ni HeNe 465 466 (2) Al PtO 2 (liq) 467 4G ) Al 468 Al ( 468

More information

untitled

untitled ( ) c a sin b c b c a cos a c b c a tan b a b cos sin a c b c a ccos b csin (4) Ma k Mg a (Gal) g(98gal) (Gal) a max (K-E) kh Zck.85.6. 4 Ma g a k a g k D τ f c + σ tanφ σ 3 3 /A τ f3 S S τ A σ /A σ /A

More information

xyz,, uvw,, Bernoulli-Euler u c c c v, w θ x c c c dv ( x) dw uxyz (,, ) = u( x) y z + ω( yz, ) φ dx dx c vxyz (,, ) = v( x) zθ x ( x) c wxyz (,, ) =

xyz,, uvw,, Bernoulli-Euler u c c c v, w θ x c c c dv ( x) dw uxyz (,, ) = u( x) y z + ω( yz, ) φ dx dx c vxyz (,, ) = v( x) zθ x ( x) c wxyz (,, ) = ,, uvw,, Bernoull-Euler u v, w θ dv ( ) dw u (,, ) u( ) ω(, ) φ d d v (,, ) v( ) θ ( ) w (,, ) w( ) θ ( ) (11.1) ω φ φ dθ / dφ v v θ u w u w 11.1 θ θ θ 11. vw, (11.1) u du d v d w ε d d d u v ω γ φ w u

More information

keisoku01.dvi

keisoku01.dvi 2.,, Mon, 2006, 401, SAGA, JAPAN Dept. of Mechanical Engineering, Saga Univ., JAPAN 4 Mon, 2006, 401, SAGA, JAPAN Dept. of Mechanical Engineering, Saga Univ., JAPAN 5 Mon, 2006, 401, SAGA, JAPAN Dept.

More information

pc725v0nszxf_j

pc725v0nszxf_j PC725NSZXF PC725NSZXF PC725NSZXF PC725 DE file PC725 Date Jun. 3. 25 SHARP Corporation PC725NSZXF 2 6 5 2 3 4 Anode Cathode NC Emitter 3 4 5 Collector 6 Base PC725NSZXF PC725YSZXF.6 ±.2.2 ±.3 SHARP "S"

More information

Part () () Γ Part ,

Part () () Γ Part , Contents a 6 6 6 6 6 6 6 7 7. 8.. 8.. 8.3. 8 Part. 9. 9.. 9.. 3. 3.. 3.. 3 4. 5 4.. 5 4.. 9 4.3. 3 Part. 6 5. () 6 5.. () 7 5.. 9 5.3. Γ 3 6. 3 6.. 3 6.. 3 6.3. 33 Part 3. 34 7. 34 7.. 34 7.. 34 8. 35

More information

2005 2006.2.22-1 - 1 Fig. 1 2005 2006.2.22-2 - Element-Free Galerkin Method (EFGM) Meshless Local Petrov-Galerkin Method (MLPGM) 2005 2006.2.22-3 - 2 MLS u h (x) 1 p T (x) = [1, x, y]. (1) φ(x) 0.5 φ(x)

More information

t θ, τ, α, β S(, 0 P sin(θ P θ S x cos(θ SP = θ P (cos(θ, sin(θ sin(θ P t tan(θ θ 0 cos(θ tan(θ = sin(θ cos(θ ( 0t tan(θ

t θ, τ, α, β S(, 0 P sin(θ P θ S x cos(θ SP = θ P (cos(θ, sin(θ sin(θ P t tan(θ θ 0 cos(θ tan(θ = sin(θ cos(θ ( 0t tan(θ 4 5 ( 5 3 9 4 0 5 ( 4 6 7 7 ( 0 8 3 9 ( 8 t θ, τ, α, β S(, 0 P sin(θ P θ S x cos(θ SP = θ P (cos(θ, sin(θ sin(θ P t tan(θ θ 0 cos(θ tan(θ = sin(θ cos(θ ( 0t tan(θ S θ > 0 θ < 0 ( P S(, 0 θ > 0 ( 60 θ

More information

64 3 g=9.85 m/s 2 g=9.791 m/s 2 36, km ( ) 1 () 2 () m/s : : a) b) kg/m kg/m k

64 3 g=9.85 m/s 2 g=9.791 m/s 2 36, km ( ) 1 () 2 () m/s : : a) b) kg/m kg/m k 63 3 Section 3.1 g 3.1 3.1: : 64 3 g=9.85 m/s 2 g=9.791 m/s 2 36, km ( ) 1 () 2 () 3 9.8 m/s 2 3.2 3.2: : a) b) 5 15 4 1 1. 1 3 14. 1 3 kg/m 3 2 3.3 1 3 5.8 1 3 kg/m 3 3 2.65 1 3 kg/m 3 4 6 m 3.1. 65 5

More information

untitled

untitled 88 25 11 6 6 59/61/116 JIS C 9335-1201X IEC 60335-1 5 1 a) IEC b) 6.1 0 0I 0 150 V c) 7.3 IEC () 50 Hz 60 Hz IEC d) I 7.12 I 0I I 0I I 0I 1 e) 0I 7.12.5 0I f) 7.16 g) 8.1.1 IEC IEC JIS h) PTC 10.1 PTC

More information

SO(2)

SO(2) TOP URL http://amonphys.web.fc2.com/ 1 12 3 12.1.................................. 3 12.2.......................... 4 12.3............................. 5 12.4 SO(2).................................. 6

More information

振動工学に基礎

振動工学に基礎 Ky Words. ω. ω.3 osω snω.4 ω snω ω osω.5 .6 ω osω snω.7 ω ω ( sn( ω φ.7 ( ω os( ω φ.8 ω ( ω sn( ω φ.9 ω anφ / ω ω φ ω T ω T s π T π. ω Hz ω. T π π rad/s π ω π T. T ω φ 6. 6. 4. 4... -... -. -4. -4. -6.

More information

RS 175

RS 175 RS 175 Digital Wireless Headphone System ... 2 RS 175... 4... 5... 6 HDR 175... 6 TR 175... 7... 8 RS 175... 11...11...12 AC...16...17...18...19 RS 175... 20...20...21...21 /...21 /...22 Dynamic Bass

More information

, [g/cm 3 ] [m/s] 1 6 [kg m 2 s 1 ] ,58 1, ,56 1, , ,58 1,

, [g/cm 3 ] [m/s] 1 6 [kg m 2 s 1 ] ,58 1, ,56 1, , ,58 1, 264 72 5 216 pp. 264 272 * 43.3. k, Yj; 43.38.Hz 1. 2. 2.1 1 4.8 1 2 [kg m 2 s 1 ] 1.2 1 3 [g/cm 3 ] 34 [m/s] 1.48 1 6 [kg m 2 s 1 ] 1 [g/cm 3 ] 1,48 [m/s] 1, 1 4 1 2,5 1 Tutorial on the underwater or

More information

Note.tex 2008/09/19( )

Note.tex 2008/09/19( ) 1 20 9 19 2 1 5 1.1........................ 5 1.2............................. 8 2 9 2.1............................. 9 2.2.............................. 10 3 13 3.1.............................. 13 3.2..................................

More information

Microsoft PowerPoint - 02_資料.ppt [互換モード]

Microsoft PowerPoint - 02_資料.ppt [互換モード] db log db db db log log log db log log log4 y log4 log y log log y log4 log log log y log 4 log log log y log log log log y log log y log log y log y 5V.5 m db db log db db.893 - +..5.779-3 +3.43 db(.)

More information

変 位 変位とは 物体中のある点が変形後に 別の点に異動したときの位置の変化で あり ベクトル量である 変位には 物体の変形の他に剛体運動 剛体変位 が含まれている 剛体変位 P(x, y, z) 平行移動と回転 P! (x + u, y + v, z + w) Q(x + d x, y + dy,

変 位 変位とは 物体中のある点が変形後に 別の点に異動したときの位置の変化で あり ベクトル量である 変位には 物体の変形の他に剛体運動 剛体変位 が含まれている 剛体変位 P(x, y, z) 平行移動と回転 P! (x + u, y + v, z + w) Q(x + d x, y + dy, 変 位 変位とは 物体中のある点が変形後に 別の点に異動したときの位置の変化で あり ベクトル量である 変位には 物体の変形の他に剛体運動 剛体変位 が含まれている 剛体変位 P(x, y, z) 平行移動と回転 P! (x + u, y + v, z + w) Q(x + d x, y + dy, z + dz) Q! (x + d x + u + du, y + dy + v + dv, z +

More information

) a + b = i + 6 b c = 6i j ) a = 0 b = c = 0 ) â = i + j 0 ˆb = 4) a b = b c = j + ) cos α = cos β = 6) a ˆb = b ĉ = 0 7) a b = 6i j b c = i + 6j + 8)

) a + b = i + 6 b c = 6i j ) a = 0 b = c = 0 ) â = i + j 0 ˆb = 4) a b = b c = j + ) cos α = cos β = 6) a ˆb = b ĉ = 0 7) a b = 6i j b c = i + 6j + 8) 4 4 ) a + b = i + 6 b c = 6i j ) a = 0 b = c = 0 ) â = i + j 0 ˆb = 4) a b = b c = j + ) cos α = cos β = 6) a ˆb = b ĉ = 0 7) a b = 6i j b c = i + 6j + 8) a b a b = 6i j 4 b c b c 9) a b = 4 a b) c = 7

More information

Gauss Gauss ɛ 0 E ds = Q (1) xy σ (x, y, z) (2) a ρ(x, y, z) = x 2 + y 2 (r, θ, φ) (1) xy A Gauss ɛ 0 E ds = ɛ 0 EA Q = ρa ɛ 0 EA = ρea E = (ρ/ɛ 0 )e

Gauss Gauss ɛ 0 E ds = Q (1) xy σ (x, y, z) (2) a ρ(x, y, z) = x 2 + y 2 (r, θ, φ) (1) xy A Gauss ɛ 0 E ds = ɛ 0 EA Q = ρa ɛ 0 EA = ρea E = (ρ/ɛ 0 )e 7 -a 7 -a February 4, 2007 1. 2. 3. 4. 1. 2. 3. 1 Gauss Gauss ɛ 0 E ds = Q (1) xy σ (x, y, z) (2) a ρ(x, y, z) = x 2 + y 2 (r, θ, φ) (1) xy A Gauss ɛ 0 E ds = ɛ 0 EA Q = ρa ɛ 0 EA = ρea E = (ρ/ɛ 0 )e z

More information

I 1

I 1 I 1 1 1.1 1. 3 m = 3 1 7 µm. cm = 1 4 km 3. 1 m = 1 1 5 cm 4. 5 cm 3 = 5 1 15 km 3 5. 1 = 36 6. 1 = 8.64 1 4 7. 1 = 3.15 1 7 1 =3 1 7 1 3 π 1. 1. 1 m + 1 cm = 1.1 m. 1 hr + 64 sec = 1 4 sec 3. 3. 1 5 kg

More information

21 2 26 i 1 1 1.1............................ 1 1.2............................ 3 2 9 2.1................... 9 2.2.......... 9 2.3................... 11 2.4....................... 12 3 15 3.1..........

More information

30-2 -

30-2 - 27 19 40 12 3-1 - 30-2 - 10-3 - 150-4 - Photo: Osamu NAKAMURA - 5 - - 6 - 10 10 10 10-7 - - 8 - 10 200 200-9 - 2000 16 17 18-10 - 2,000-11 - - 12 - 70 80 30-13 - 150 150 150 150 150 140 1 2 015 2-14 -

More information

(1) 1.1

(1) 1.1 1 1 1.1 1.1.1 1.1 ( ) ( ) ( ) { ( ) ( ) { ( ) ( ) { ( ) ( ) { ( ) ( ) { ( ) ( ) ( ) ( ) ( ) 2 1 1.1.2 (1) 1.1 1.1 3 (2) 1.2 4 1 (3) 1.3 ( ) ( ) (4) 1.1 5 (5) ( ) 1.4 6 1 (6) 1.5 (7) ( ) (8) 1.1 7 1.1.3

More information

各位                               平成17年5月13日

各位                               平成17年5月13日 9000 1 6 7 8 8 9000 1960 1 2 2 3 3 1471 4 1362 5 2006 6 7 8 1967 9 1988 1988 10 1000 1348 5000 3000 2 11 3 1999 12 13 14 9000 A 15 9000 9000 9000 10000 16 6000 7000 2000 3000 6800 7000 7000 9000 17 18

More information

1 I 1.1 ± e = = - = C C MKSA [m], [Kg] [s] [A] 1C 1A 1 MKSA 1C 1C +q q +q q 1

1 I 1.1 ± e = = - = C C MKSA [m], [Kg] [s] [A] 1C 1A 1 MKSA 1C 1C +q q +q q 1 1 I 1.1 ± e = = - =1.602 10 19 C C MKA [m], [Kg] [s] [A] 1C 1A 1 MKA 1C 1C +q q +q q 1 1.1 r 1,2 q 1, q 2 r 12 2 q 1, q 2 2 F 12 = k q 1q 2 r 12 2 (1.1) k 2 k 2 ( r 1 r 2 ) ( r 2 r 1 ) q 1 q 2 (q 1 q 2

More information

: 1/ dB 1/ Hz 210mm 1/6 1/ Hz 1/3 500Hz 4 315Hz 500Hz?? Hz Hz Hz 315Hz Hz 500Hz

: 1/ dB 1/ Hz 210mm 1/6 1/ Hz 1/3 500Hz 4 315Hz 500Hz?? Hz Hz Hz 315Hz Hz 500Hz 93 5 [19] 3 4 5.1 3 1/15 3 2kHz 1/2 85mm 500Hz 2/3 94 5 5.1: 1/3 3 3.5 20dB 1/3 0.315 500Hz 210mm 1/6 1/2 5.1 5.1.1 1 200Hz 1/3 500Hz 4 315Hz 500Hz?? 5.3 200Hz 170 250Hz 215 280Hz 315Hz 275 395Hz 500Hz

More information

[ ] [ ] [ ] [ ] [ ] [ ] ADC

[ ] [ ] [ ] [ ] [ ] [ ] ADC [ ] [ ] [ ] [ ] [ ] [ ] ADC BS1 m1 PMT m2 BS2 PMT1 PMT ADC PMT2 α PMT α α = n ω n n Pn TMath::Poisson(x,[0]) 0.35 0.3 0.25 0.2 0.15 λ 1.5 ω n 2 = ( α 2 ) n n! e α 2 α 2 = λ = λn n! e λ Poisson Pn 0.1

More information

The DatasheetArchive - Datasheet Search Engine

The DatasheetArchive - Datasheet Search Engine Bipolar Analog Integrated Circuit 3 IC 3 5 V, 8 V, 12 V, 15 V, 18 V, 24 V 6 1 A Marking Side TO-22 MP-45G 4 MIN. µpc1435 5 V µpc1435 3 SIP TO-22 MP-45G 1 2 3 1 INPUT 2 GND 3 OUTPUT µ PC1435HF TO-22 MP-45G

More information

ELCODIS.COM - ELECTRONIC COMPONENTS DISTRIBUTOR

ELCODIS.COM - ELECTRONIC COMPONENTS DISTRIBUTOR Bipolar Analog Integrated Circuit 3 IC 3 5 V, 8 V, 12 V, 15 V, 18 V, 24 V 6 1 A Marking Side TO-22 MP-45G 4 MIN. µpc1435 5 V µpc1435 3 SIP TO-22 MP-45G 1 2 3 1 INPUT 2 GND 3 OUTPUT µ PC1435HF TO-22 MP-45G

More information

, (GPS: Global Positioning Systemg),.,, (LBS: Local Based Services).. GPS,.,. RFID LAN,.,.,.,,,.,..,.,.,,, i

, (GPS: Global Positioning Systemg),.,, (LBS: Local Based Services).. GPS,.,. RFID LAN,.,.,.,,,.,..,.,.,,, i 25 Estimation scheme of indoor positioning using difference of times which chirp signals arrive 114348 214 3 6 , (GPS: Global Positioning Systemg),.,, (LBS: Local Based Services).. GPS,.,. RFID LAN,.,.,.,,,.,..,.,.,,,

More information

°ÌÁê¿ô³ØII

°ÌÁê¿ô³ØII July 14, 2007 Brouwer f f(x) = x x f(z) = 0 2 f : S 2 R 2 f(x) = f( x) x S 2 3 3 2 - - - 1. X x X U(x) U(x) x U = {U(x) x X} X 1. U(x) A U(x) x 2. A U(x), A B B U(x) 3. A, B U(x) A B U(x) 4. A U(x),

More information

I ( ) 2019

I ( ) 2019 I ( ) 2019 i 1 I,, III,, 1,,,, III,,,, (1 ) (,,, ), :...,, : NHK... NHK, (YouTube ),!!, manaba http://pen.envr.tsukuba.ac.jp/lec/physics/,, Richard Feynman Lectures on Physics Addison-Wesley,,,, x χ,

More information

Q & A Q A p

Q & A Q A p Q & A 2004.12 1 Q1. 12 2 A1. 11 3 p.1 1.1 2 Q2. A2. < > [ ] 10 5 15 (p.138) (p.150) (p.176) (p.167 ) 3 1. 4 1.6 1.6.1 (2) (p.6) Q3. 5 1 1:1.0 12 2 1:0.6 1:1.0 1:1.0 1:0.6 1:0.6 1:0.6 1:1.0 1:0.6 ( ) 1:1.0

More information

( ) 2002 1 1 1 1.1....................................... 1 1.1.1................................. 1 1.1.2................................. 1 1.1.3................... 3 1.1.4......................................

More information

0.1 I I : 0.2 I

0.1 I I : 0.2 I 1, 14 12 4 1 : 1 436 (445-6585), E-mail : sxiida@sci.toyama-u.ac.jp 0.1 I I 1. 2. 3. + 10 11 4. 12 1: 0.2 I + 0.3 2 1 109 1 14 3,4 0.6 ( 10 10, 2 11 10, 12/6( ) 3 12 4, 4 14 4 ) 0.6.1 I 1. 2. 3. 0.4 (1)

More information

( ) e + e ( ) ( ) e + e () ( ) e e Τ ( ) e e ( ) ( ) () () ( ) ( ) ( ) ( )

( ) e + e ( ) ( ) e + e () ( ) e e Τ ( ) e e ( ) ( ) () () ( ) ( ) ( ) ( ) n n (n) (n) (n) (n) n n ( n) n n n n n en1, en ( n) nen1 + nen nen1, nen ( ) e + e ( ) ( ) e + e () ( ) e e Τ ( ) e e ( ) ( ) () () ( ) ( ) ( ) ( ) ( n) Τ n n n ( n) n + n ( n) (n) n + n n n n n n n n

More information

再・ 音の印象の操作を目指した基礎的研究.doc

再・ 音の印象の操作を目指した基礎的研究.doc 0151020 1.1 3 1.2 5 1.3 5 2.1 2.1.1 2.1.2 2.1.3 9 2.2 2.2.1 2.2.2 13 2.3 2.3.1 2.3.2 6 6 10 16 17 3.1 18 3.2 3.2.1 3.2.2 3.4 3.5 19 21 27 28 1 4.1 [ ] 4.1.1 29 4.1.2 29 4.1.3 4.1.4 33 4.2 1 [ ] 4.2.1 4.2.2

More information

FDTD(Finite Difference Time Domain) Maxwell FDTD FDTD FDTD (FFT) FDTD CP(Contour-Path)-FDTD i

FDTD(Finite Difference Time Domain) Maxwell FDTD FDTD FDTD (FFT) FDTD CP(Contour-Path)-FDTD i FDTD 17 2 7 03GD191 FDTD(Finite Difference Time Domain) Maxwell FDTD FDTD FDTD (FFT) FDTD CP(Contour-Path)-FDTD 45 1 2 i 1 1 1.1 FDTD....................... 1 1.2 FDTD............................ 2 1.3

More information

untitled

untitled Ph.D 66851 ohnishi@geotech.kuciv.kyotou.ac.jp 66851 66851 573166 111 573166 111 573166 111 1) 2) 3) 4) 15 CL KP126.85 KP126.6 KP125.91 KP125.735 CL 1. 2. 5.m 5.m 5.m 5.m 5.m 5.m 5.m AS 13 2) 2) 13 2) 2)

More information

12

12 12 1 2 3 4 5 6 1.2 AFRP (3.4.1)(3.4.3) ht M = 1.2M By0 M Ty0 h A n MBy0 h B AF p = 1000 = t AF AAF b 7 / 8 AF B M σ AFb h (tf m) (m) M T y0 (tf m) h T (m) M (tf m) AAF AFRPcm 2 σafb AFRPkgf/cm 2 σ AFb

More information

Product Data: 3053型 LAN-XI 12ch モジュール Japanese (BP2332)

Product Data: 3053型 LAN-XI 12ch モジュール Japanese (BP2332) PRODUCT DATA 3053 LAN-XI 12ch 12ch 3053 LAN-XI 12 ch 12ch 12 3053 LAN-XI LAN-XI ODS 12ch PULSE 7708 PC LAN-XI Notar 12ch 25.6 khz 130 db 24-bit 65.5 khz CCLD CCLD Deltatron ICP IEPE LAN DCPoE IEEE 802.3af

More information

280-NX702J-A0_TX-1138A-A_NX702J.indb

280-NX702J-A0_TX-1138A-A_NX702J.indb NX702 1. 2. 3. 9 10 11 12 13 1 2 3 4 5 6 4 7 8 16 17 18 19 20 21 22 23 24 25 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18. 19. 20. 21. 22.

More information

杏香は2000年5月16日午前5時15分に横浜市立市民病院で生まれた

杏香は2000年5月16日午前5時15分に横浜市立市民病院で生まれた 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 http://opac.ndl.go.jp/process NDL-OPAC2009 2 11 P12 19 2000 10 P19 2008 10 9 2008 3 PP14 17 20 2001 PP470 473 2007 PP81 176 1972 P86 2002 PP346 348 1982 P162

More information

.I.v e pmd

.I.v e pmd Structural Design for Curved Panels by Laminated Composite Materials (Identification of Lamination Parameters Using Modal Testing Method ) Tetsuya NARISAWA, Shohei IWATA Abstract - Using a modal testing

More information

15

15 15 1...1 1-1...1 1-1-1...1 1-1-2...3 1-1-3...4 1-1-4...5 1-2...5 1-2-1...5 1-2-2...6 1-3...6 1-3-1...6 1-3-2...7 1-3-3...8 1-3-4...8 1.4 Co-Pt...9 1.5...9 2...10 2-1...10 2-1-1...10 2-1-2...10 2-2...11

More information

JIS Z803: (substitution method) 3 LCR LCR GPIB

JIS Z803: (substitution method) 3 LCR LCR GPIB LCR NMIJ 003 Agilent 8A 500 ppm JIS Z803:000 50 (substitution method) 3 LCR LCR GPIB Taylor 5 LCR LCR meter (Agilent 8A: Basic accuracy 500 ppm) V D z o I V DUT Z 3 V 3 I A Z V = I V = 0 3 6 V, A LCR meter

More information

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202E646F63>

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202E646F63> 高速流体力学 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/067361 このサンプルページの内容は, 第 1 版発行時のものです. i 20 1999 3 2 2010 5 ii 1 1 1.1 1 1.2 4 9 2 10 2.1 10 2.2 12 2.3 13 2.4 13 2.5

More information

x,, z v = (, b, c) v v 2 + b 2 + c 2 x,, z 1 i = (1, 0, 0), j = (0, 1, 0), k = (0, 0, 1) v 1 = ( 1, b 1, c 1 ), v 2 = ( 2, b 2, c 2 ) v

x,, z v = (, b, c) v v 2 + b 2 + c 2 x,, z 1 i = (1, 0, 0), j = (0, 1, 0), k = (0, 0, 1) v 1 = ( 1, b 1, c 1 ), v 2 = ( 2, b 2, c 2 ) v 12 -- 1 4 2009 9 4-1 4-2 4-3 4-4 4-5 4-6 4-7 4-8 4-9 4-10 c 2011 1/(13) 4--1 2009 9 3 x,, z v = (, b, c) v v 2 + b 2 + c 2 x,, z 1 i = (1, 0, 0), j = (0, 1, 0), k = (0, 0, 1) v 1 = ( 1, b 1, c 1 ), v 2

More information

dvipsj.8449.dvi

dvipsj.8449.dvi 9 1 9 9.1 9 2 (1) 9.1 9.2 σ a = σ Y FS σ a : σ Y : σ b = M I c = M W FS : M : I : c : = σ b

More information

Microsoft Word - 学士論文(表紙).doc

Microsoft Word - 学士論文(表紙).doc GHz 18 2 1 1 3 1.1....................................... 3 1.2....................................... 3 1.3................................... 3 2 (LDV) 5 2.1................................ 5 2.2.......................

More information

untitled

untitled 18 1 2,000,000 2,000,000 2007 2 2 2008 3 31 (1) 6 JCOSSAR 2007pp.57-642007.6. LCC (1) (2) 2 10mm 1020 14 12 10 8 6 4 40,50,60 2 0 1998 27.5 1995 1960 40 1) 2) 3) LCC LCC LCC 1 1) Vol.42No.5pp.29-322004.5.

More information

βdxβ r a, < E e uγ r ha d E e r dx e r γd e r βdx 3.2 a = {a} γ = {γ} max E e r dx e r γd e r βdx, 2 s.. dx = qand + σndz, 1 E e r uγ ha d, 3 a arg maxã E e r uγ hã d. 4 3.3 γ = {γ : γ, γ} a = {a : a,

More information

cms.pdf

cms.pdf RoHS compliant INTERNAL STRUTURE FEATURES Part name over Slider Housing Slider contact Fixed contact Terminal pin lick spring Ground terminal Material Steel (SP), Tin-plated Polyamide opper alloy, Gold-plated

More information

20 9 19 1 3 11 1 3 111 3 112 1 4 12 6 121 6 122 7 13 7 131 8 132 10 133 10 134 12 14 13 141 13 142 13 143 15 144 16 145 17 15 19 151 1 19 152 20 2 21 21 21 211 21 212 1 23 213 1 23 214 25 215 31 22 33

More information

( ; ) C. H. Scholz, The Mechanics of Earthquakes and Faulting : - ( ) σ = σ t sin 2π(r a) λ dσ d(r a) =

( ; ) C. H. Scholz, The Mechanics of Earthquakes and Faulting : - ( ) σ = σ t sin 2π(r a) λ dσ d(r a) = 1 9 8 1 1 1 ; 1 11 16 C. H. Scholz, The Mechanics of Earthquakes and Faulting 1. 1.1 1.1.1 : - σ = σ t sin πr a λ dσ dr a = E a = π λ σ πr a t cos λ 1 r a/λ 1 cos 1 E: σ t = Eλ πa a λ E/π γ : λ/ 3 γ =

More information

128 3 II S 1, S 2 Φ 1, Φ 2 Φ 1 = { B( r) n( r)}ds S 1 Φ 2 = { B( r) n( r)}ds (3.3) S 2 S S 1 +S 2 { B( r) n( r)}ds = 0 (3.4) S 1, S 2 { B( r) n( r)}ds

128 3 II S 1, S 2 Φ 1, Φ 2 Φ 1 = { B( r) n( r)}ds S 1 Φ 2 = { B( r) n( r)}ds (3.3) S 2 S S 1 +S 2 { B( r) n( r)}ds = 0 (3.4) S 1, S 2 { B( r) n( r)}ds 127 3 II 3.1 3.1.1 Φ(t) ϕ em = dφ dt (3.1) B( r) Φ = { B( r) n( r)}ds (3.2) S S n( r) Φ 128 3 II S 1, S 2 Φ 1, Φ 2 Φ 1 = { B( r) n( r)}ds S 1 Φ 2 = { B( r) n( r)}ds (3.3) S 2 S S 1 +S 2 { B( r) n( r)}ds

More information

QMI_09.dvi

QMI_09.dvi 25 3 19 Erwin Schrödinger 1925 3.1 3.1.1 3.1.2 σ τ 2 2 ux, t) = ux, t) 3.1) 2 x2 ux, t) σ τ 2 u/ 2 m p E E = p2 3.2) E ν ω E = hν = hω. 3.3) k p k = p h. 3.4) 26 3 hω = E = p2 = h2 k 2 ψkx ωt) ψ 3.5) h

More information

4 5.............................................. 5............................................ 6.............................................. 7......................................... 8.3.................................................4.........................................4..............................................4................................................4.3...............................................

More information

untitled

untitled (a) (b) (c) (d) Wunderlich 2.5.1 = = =90 2 1 (hkl) {hkl} [hkl] L tan 2θ = r L nλ = 2dsinθ dhkl ( ) = 1 2 2 2 h k l + + a b c c l=2 l=1 l=0 Polanyi nλ = I sinφ I: B A a 110 B c 110 b b 110 µ a 110

More information

QMI_10.dvi

QMI_10.dvi 25 3 19 Erwin Schrödinger 1925 3.1 3.1.1 σ τ x u u x t ux, t) u 3.1 t x P ux, t) Q θ P Q Δx x + Δx Q P ux + Δx, t) Q θ P u+δu x u x σ τ P x) Q x+δx) P Q x 3.1: θ P θ Q P Q equation of motion P τ Q τ σδx

More information

TOP URL 1

TOP URL   1 TOP URL http://amonphys.web.fc2.com/ 1 30 3 30.1.............. 3 30.2........................... 4 30.3...................... 5 30.4........................ 6 30.5.................................. 8 30.6...............................

More information

untitled

untitled 1 SS 2 2 (DS) 3 2.1 DS................................ 3 2.2 DS................................ 4 2.3.................................. 4 2.4 (channel papacity)............................ 6 2.5........................................

More information

= hυ = h c λ υ λ (ev) = 1240 λ W=NE = Nhc λ W= N 2 10-16 λ / / Φe = dqe dt J/s Φ = km Φe(λ)v(λ)dλ THBV3_0101JA Qe = Φedt (W s) Q = Φdt lm s Ee = dφe ds E = dφ ds Φ Φ THBV3_0102JA Me = dφe ds M = dφ ds

More information

xx/xx Vol. Jxx A No. xx 1 Fig. 1 PAL(Panoramic Annular Lens) PAL(Panoramic Annular Lens) PAL (2) PAL PAL 2 PAL 3 2 PAL 1 PAL 3 PAL PAL 2. 1 PAL

xx/xx Vol. Jxx A No. xx 1 Fig. 1 PAL(Panoramic Annular Lens) PAL(Panoramic Annular Lens) PAL (2) PAL PAL 2 PAL 3 2 PAL 1 PAL 3 PAL PAL 2. 1 PAL PAL On the Precision of 3D Measurement by Stereo PAL Images Hiroyuki HASE,HirofumiKAWAI,FrankEKPAR, Masaaki YONEDA,andJien KATO PAL 3 PAL Panoramic Annular Lens 1985 Greguss PAL 1 PAL PAL 2 3 2 PAL DP

More information

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5.

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5. A 1. Boltzmann Planck u(ν, T )dν = 8πh ν 3 c 3 kt 1 dν h 6.63 10 34 J s Planck k 1.38 10 23 J K 1 Boltzmann u(ν, T ) T ν e hν c = 3 10 8 m s 1 2. Planck λ = c/ν Rayleigh-Jeans u(ν, T )dν = 8πν2 kt dν c

More information

Microsoft Word - 演習5_蒸発装置

Microsoft Word - 演習5_蒸発装置 1-4) q T sat T w T S E D.N.B.(Departure from Nucleate Boiling)h(=q/ T sat ) F q B q D 3) 1 5-7) 4) T W [K] T B [K]T BPR [K] B.P.E.Boiling Pressure Rising T B T W T BPR (3.1) Dühring T BPR T W T W T B T

More information

2007-Kanai-paper.dvi

2007-Kanai-paper.dvi 19 Estimation of Sound Source Zone using The Arrival Time Interval 1080351 2008 3 7 S/N 2 2 2 i Abstract Estimation of Sound Source Zone using The Arrival Time Interval Koichiro Kanai The microphone array

More information

untitled

untitled GeoFem 1 1.1 1 1.2 1 1.3 1 2 2.1 2 2.2 3 2.3 FEM 5 (1) 5 (2) 5 (3) 6 2.4 GeoFem 7 2.5 FEM 16 2.6 19 2.7 26 3.1 33 3.2 35 3.3 GeoFem 36 3.4 48 3.5 49 A A1 A2 A3 A4 A5 A6 A7 GeoFem GeoFem CRS GeoFem GeoFem

More information

1. 1 A : l l : (1) l m (m 3) (2) m (3) n (n 3) (4) A α, β γ α β + γ = 2 m l lm n nα nα = lm. α = lm n. m lm 2β 2β = lm β = lm 2. γ l 2. 3

1. 1 A : l l : (1) l m (m 3) (2) m (3) n (n 3) (4) A α, β γ α β + γ = 2 m l lm n nα nα = lm. α = lm n. m lm 2β 2β = lm β = lm 2. γ l 2. 3 1. 1 A : l l : (1) l m (m 3) (2) m (3) n (n 3) (4) A 2 1 2 1 2 3 α, β γ α β + γ = 2 m l lm n nα nα = lm. α = lm n. m lm 2β 2β = lm β = lm 2. γ l 2. 3 4 P, Q R n = {(x 1, x 2,, x n ) ; x 1, x 2,, x n R}

More information

25 22 1 2 2 4 2.1........................ 5 2.2.................. 7 3 9 3.1................................. 9 3.2............................. 10 3.3................. 10 3.4....................... 12

More information