JSME-JT

Size: px
Start display at page:

Download "JSME-JT"

Transcription

1 585 日本機械学会論文集 C 編 77 巻 776 号 -4 論文 No.-693 * 瀬山夏彦 *, 永村和照 * *3, 池条清隆 Influence of Cente Distnce Eo on Diving Pefonce of Involute-Ccloid Coposite Tooth Pofile Spu e Ntsuhiko SEYM *, Kzuteu NMUR nd Kiotk IKEJO * dute School of Hioshi Univesit, -4- Kgi, Higshi-Hioshi, Jpn We developed n olute-ccloid coposite tooth pofile ge to obtin highe pefonce thn n olute one. The diving pefonce in the olute-ccloid coposite tooth pofile ge is influenced b vition in cente distnce becuse of the tooth pofile bsed on ccloid tooth pofile. In this stud, we clculted the tnsission eo nd the tooth oot stess fo the vious cente distnces. Futhe, we eined the diving pefonce fo the olute-ccloid coposite tooth pofile ge b esuing the tooth oot stess nd the tnsission eo. Ke Wods : e, Mchine Eleent, Involute-Ccloid Coposite Tooth Pofile, Cente Distnce, Tnsission Eo. 緒言著者らは, インボリュート歯形歯車に対して強度面で優れている新しい歯形として, インボリュート サイクロイド合成歯形歯車を開発した. そして, 実験によりインボリュート サイクロイド合成歯形歯車は, 歯面強度, 曲げ強度, かみ合い摩擦損失のいずれもインボリュート歯形歯車よりも優れていることを実証した ~ 3. しかしながら, インボリュート歯形の場合, 中心距離が変化してもかみ合い状態はほとんど変化しないのに対し, インボリュート サイクロイド合成歯形歯車は歯形にサイクロイド部分を有するため, 中心距離の変動に対してかみ合い状態が鋭敏に変化することが予想される. そこで, 本研究ではインボリュート サイクロイド合成歯形歯車について, 中心距離の変動に伴うかみ合い伝達誤差の理論解析を行った. さらに歯車運転試験を実施し, 歯元応力 かみ合い伝達誤差を測定してかみ合い特性及び運転性能を検討した.. インボリュート サイクロイド合成歯形歯車 図 に本研究で使用したインボリュート サイクロイド合成歯形歯車の基準ラック形状と歯形形状を示す. イ ンボリュート サイクロイド合成歯形歯車は, 図 に示すようにサイクロイド歯形を基本としてピッチ点付近を インボリュート曲線に置換え, サイクロイド曲線と滑らかにつないだものである. これによって, ピッチ点で接 触応力が理論上無限大となるサイクロイド歯形の欠点を取り除いている. 本研究で取り扱うインボリュート サイクロイド合成歯形歯車では, 転位を意図的に与えて歯車を製作するこ とはないが, 実際にはホブの切り込み量の誤差によって, わずかであるがしばしば意図せずに転位が与えられる. この転位はかみ合いの状態に影響を与えるため, 解析において無視することはできない. このため, 本研究では 転位を含めて解析を行った. 歯車の中心を座標原点とし, 原点から注目する歯面のピッチ点を通る直線を 軸と * 原稿受付 年 8 月 6 日 * 正員, 広島大学大学院工学研究科 広島県東広島市鏡山 -4- * 正員, フェロー, 広島大学大学院工学研究院 *3 正員, 広島大学大学院工学研究院 E-il: ntsu55sue@hioshi-u.c.jp 45

2 586 Y Pitch cicle Cicle Epi-Ccloid Epi-ccloid Involute α o Q P R R θq P P Pitch Pitch point Point Hpo-Ccloid Hpo-ccloid θq Tooth pofile b sic ck fo Fig. Tooth pofile nd bsic ck fo of olute-ccloid coposite tooth pofile ge し, それと直交するように 軸を定めると, 図 に示すラックによって創成されるインボリュート サイクロイ ド合成歯形歯車の歯形曲線のサイクロイド曲線は, 転位を考慮した場合次のように表される. ただし, / / o tn o / ここで, : モジュール, : 転がり円半径, : 転がり円の回転角, : 転位係数である. また, は基準ピッ チ円半径 = z, z: 歯数 である. また複号は上が歯末サイクロイドを, 下が歯元サイクロイドを表す. 一方, インボリュート曲線は転位に関わらず以下のように表される. b o b o ここで, b : インボリュート部分の基礎円半径,: インボリュート歯形上の任意の点における圧力角, o : ピ ッチ点における圧力角 インボリュート部分の工具圧力角 である. 3. 解析方法 3 インボリュート サイクロイド合成歯形歯車対のかみ合い経過インボリュート サイクロイド歯形歯車対の, 中心距離の変化に伴うかみ合い経過の違いを表 に示す. 中心距離が設計値と等しい場合には表 のように, 駆動 被動歯車のかみ合いはそれぞれの歯末サイクロイド部分と歯元サイクロイド部分, あるいはインボリュート部分同士で行われるのみであるが, 中心距離が設計値よりも狭い場合, 表 b に示すように, 駆動 被動歯車のそれぞれの歯元サイクロイド部分とインボリュート部分でのかみ合いも生じる. ただし, このようなかみ合いが生ずる領域はごく狭い. また, 本合成歯形歯車の歯元の形状は末広がり状であるので, 中心距離が設計値よりも狭い場合には歯元と相手の歯の歯先稜が接触し, 負荷による歯のたわみがない場合でも歯先稜のかみ合いが生じる. 中心距離が設計値よりも広い場合 [ 表 c], 駆動 被動歯車それぞれの歯末サイクロイドとインボリュート部分のかみ合いが生じる. 3 回転角誤差の解析方法 図 に一例として, 中心距離が設計値よりも狭まった場合の歯車と歯の位置関係を示す. 駆動歯車 歯車 Ⅰ, 被動歯車 歯車 Ⅱ の中心をそれぞれ O, O として,O を原点とする直交座標, を考える. 図 において, は基準ピッチ円半径,, はかみ合いピッチ円半径であり, 駆動歯車の歯 P と被動歯車の歯 の基準ピッチ点 46

3 587 Tble Pogess of contct on Involute-ccloid coposite tooth pofile ge Nol cente distnce Diving ge Diven ge Stt of contct Dedendu ccloid ddendu ccloid Pitch point Involute Involute End of contct ddendu ccloid Deddendu ccloid b Sll cente distnce Diving ge Diven ge Stt of contct Dedendu ccloid Tooth tip edge Dedendu ccloid ddendu Ccloid Dedendu ccloid Involute Pitch point Involute Involute Involute Dedendu ccloid ddendu Ccloid Dedendu ccloid End of contct Tooth tip edge Dedendu ccloid M, M, P O Diven ge II Cente distnce c Lge cente distnce Diving ge Diven ge Stt of contct Dedendu ccloid ddendu Ccloid Involute ddendu Ccloid Pitch point Involute Involute ddendu Ccloid Involute End of contct ddendu Ccloid Dedendu ccloid Fig. O Diving ge I nlsis of tnsission eo が, 歯車中心を結んだ直線 O O からそれぞれ, 回転している. このとき各歯面上の任意の点を M,, M, とする. 式, に示した歯形曲線式を一般式として = f, = g f, g は関数 で表し, 図 の座標系に座標変換 すると点 M について, また点 M について, f g f g 3 4 と表すことができる. ここで, は中心距離である. さらに点 M, M を O を原点とする接線座標で表す. 各点の動径を,, 各動径と歯面の接線のなす角を, とすると, それらは式 3, 4 から, 次のように表される. d tn d d tn d d d ここで,, および, はそれぞれ関数を表す. 図 では二つの歯が離れているが, 歯車が回転して歯 P と が点 M, M で接触すると考えると, その接触条件は, d d 5 47

4 , 歯車の一対の歯のかみ合い範囲はわずかであり, かみ合いの移動に伴う接触点の座標値の変化も小さいので, 式 6 の代わりに以下の式を用いることができる., tn tn 式 7 に式 5 を代入すると,, 式 8 の連立方程式を解くことにより, 歯車回転角, が求まり, さらにかみ合いピッチ点の回転角, が求まる. これらの回転角の差をとれば回転角誤差 が得られる. そしてピッチ円上のかみ合い伝達誤差, つまり被動歯車の駆動歯車に対する遅れ量は, 次式で求まる. なお, 中心距離が図 とは逆に設計値よりも広がった場合についても同様にして計算することができる. 前節の表 で説明したように, 中心距離の変化により歯車のかみ合い経過が変化し, かみ合う歯形曲線が異なる. また, かみ合いはじめ域とかみ合い終わり域では, 駆動歯車と被動歯車を交換したような逆の経過をたどる. そこで次節以降では, 主としてかみ合い終わり域について, かみ合う歯形曲線ごとの解析方法を説明する. また, 章で述べたように, 歯車製作時のホブ切込みの誤差を考慮するため, 以下では転位を含んだ場合の解析方法について説明する. 3 3 駆動歯車の歯末サイクロイドと被動歯車の歯元サイクロイド部分のかみ合い図 3 は駆動 被動歯車がともに正転位し, 中心距離が設計値よりも広い場合の駆動歯車の歯末サイクロイドと被動歯車の歯元サイクロイド部分のかみ合い状態を示している. ここで,, : 駆動 被動歯車の転位係数,, : 駆動歯車, 被動歯車のサイクロイドに対する転がり円回転角,: 転がり円半径,: モジュール,, : 駆動 被動歯車の歯先円半径である. それぞれの歯車は中心を結ぶ直線 O O からそれぞれ, 回転しており, 点 M, で互いの歯が接触しているとする. 歯車の歯形曲線式 をそれぞれ, 回転させ, さらに O を原点とする座標系に座標変換して式 5 に代入すると,,,, に対して式, が得られる. F 3 / tn ただし F また, 3 / tn

5 ただし tn ] } { } { } { [ ] } { } { } { [ ここで, はインボリュート部分の工具圧力角である. 点 M で接触するための条件式として式 7 を使用し, 式, より tn = tn, = として連立方程式を解く. 未知数は,, である. まず被動歯車の回転角 の値を仮定し, この連立方程式を解くことにより転がり円の回転角, が得られる. そして, 接触点 M の座標, は得られた を以下の式に代入して求めることができる. Fig.3 Tooth contct between ddendu ccloid of diving ge nd dedendu ccloid of diven ge O Diving ge I Diven ge II O M,

6 こうして接触点 M の座標が求まると両歯車のかみ合いピッチ点を基準とした場合の回転角, は次のように求まる. tn tn ただし, tn ここで, はかみ合いピッチ点における圧力角である. 式 3 によって, が求まると, 被動歯車の駆動歯車に対するかみ合い伝達誤差 は式 9 により求めることができる. 3 4 駆動歯車の歯末サイクロイドと被動歯車のインボリュート部分のかみ合い図 4 は つの歯車が正転位し, 中心距離が設計値よりも広い場合の, 駆動歯車の歯末サイクロイドと被動歯車のインボリュート部分とのかみ合い状態を示している. ここで, b : 被動歯車のインボリュートの基礎円半径, : 接触点における圧力角である. それぞれの歯車が中心を結ぶ直線 O O からそれぞれ, 回転しているとき, 点 M, で互いの歯が接触しているとする.,, は前節と同じく, 駆動歯車の歯末サイクロイド曲線から求まるため, その式は式 と同一である. また, 被動歯車の接触点位置の歯形はインボリュート曲線であるから, 歯車の歯形曲線式 をそれぞれ, 回転させ, さらに O を原点とする座標系に座標変換して式 5 に代入すると次式が得られる. tn tn tn b b b b ただし, 式 と式 4 より,tn = tn, = として連立方程式を解くが, 未知数は,, である. の値を仮定し, 連立方程式を解くことにより, が求まる. これらの値を使用し被動歯車のインボリュート歯形曲線式 から接触点 M の座標が以下のように得られる., b b 接触点 M の座標が求まるとかみ合いピッチ点を基準とした場合の両歯車の回転角, は式 3 から求まり, これを式 9 に代入すれば, かみ合い伝達誤差 を得ることができる

7 59 O Diven ge II O Diven ge II M, b d M, e O Diving ge I O Diving ge I Fig.4 Tooth contct between ddendu ccloid of Fig.5 Tooth contct between tooth tip edge of diving diving ge nd olute of diven ge ge nd dedendu ccloid of diven ge 3 5 駆動歯車の歯先稜と被動歯車の歯元サイクロイド部分のかみ合い 図 5 は駆動歯車が歯先稜で被動歯車の歯元サイクロイドとかみ合っている状態を示したもので, 駆動歯車の基 準ピッチ点が ほど回転しているとき, 図 5 のように, e を定めると次の関係がある. e ただし, tn 6 ここで, : 駆動歯車の歯先における転がり円回転角である. 接触点 M と被動歯車の中心 O との距離を d とす ると, d e 7 4

8 接触点 M における被動歯車の転がり円の回転角 は, 4 4 D C D C C d また, 接触点 M の座標, は, e e, これらの座標値を使用することにより, 被動歯車の基準ピッチ点の回転角 が次のように得られる. d d tn tn ただし d d tn そして, かみ合いピッチ点を基準とした場合の両歯車の回転角, は次のように得られる. 式 と式 9 から, この場合のかみ合い伝達誤差 を求めることができる. 4. 解析結果図 6 は, モジュール =4, インボリュート部分の圧力角 =3, 歯数 z /z =9/9, サイクロイド部分の転がり円半径 =7, 歯末たけ h =4.8, 転位係数 = = のインボリュート サイクロイド合成歯形歯車のかみ合い伝達誤差 を, 中心距離が設計値 =6. よりも狭まった場合として =5.8, 5.9, 広がった場合として =6., 6. の結果をそれぞれ示す. 図 6 の横軸は歯車の回転角をとっており, 縦軸のかみ合い伝達誤差 は, 駆動歯車に対して被動歯車が進む場合を正, 遅れる場合を負で表したピッチ円上の進み 遅れ量を表している. この計算においては歯車の歯形誤差は考慮していない. また図では, 着目する歯対 P, の結果を実線で, この歯対より先行する歯対 P,, および後続の歯対 P3 3 の結果をそれぞれ破線と一点鎖線で示している. 図 6 より, 中心距離が設計値よりも狭まった場合, 着目する歯対 P, のかみ合いは, 駆動歯車の歯元サイクロイド部分と被動歯車歯先稜の接触 図 6 における - 間の領域 で始まり, かみ合いが進行するとともに歯元サイクロイド曲線と歯先稜のかみ合いの位置関係によりかみ合い伝達誤差は漸次増加して極大値をとった後に減少し, かみ合いは次に両歯車のサイクロイド部分同士の接触 -C に移行し, このときかみ合い伝達誤差は減少する. そしてさらにかみ合いは両歯車のインボリュート部分の接触 C-D に移る. かみ合いピッチ点 P 以降のかみ合い終わり域では, かみ合い始めの場合と逆の経過をたどる. 一方, 中心距離が広がった場合には, 中心距離が狭いときに起こる駆動歯車の歯元サイクロイド部分と被動歯車の歯先稜のかみ合い 図 6, b の区間 - は発生しないので, かみ合い伝達誤差に極値が現れない. このとき つの歯車のかみ合いは, サイクロイド部分同士

9 593 の接触 - で始まり, 駆動歯車のインボリュート部分と被動歯車の歯末サイクロイド部分の接触 -C に移行する. このとき被動歯車の回転は駆動歯車のそれより遅れており, このかみ合い伝達誤差はかみあいがインボリュート同士の接触に近づくにつれて徐々に減少する傾向を示す. 中心距離が狭い場合, 広い場合のいずれにおいても設計値との差が大きいほどかみ合い伝達誤差の絶対値は大きくなることがわかる. また, 中心距離が設計値よりも狭い場合,-H 間と I-J 間 図 6, 青色の長方形の領域 において, P と の歯対のかみ合い伝達誤差よりも同時にかみ合う P と の歯対, あるいは P3 と 3 の歯対のかみ合い伝達誤差のほうが大きくなっている. これは, これらの区間において P と の歯対が非接触となることを意味しており, 中心距離が設計値よりも広い場合の - 間,J-E 間 図 6, 青色の長方形の領域 においても同様である. 従って, 中心距離が設計値よりも狭い場合, 着目の P の歯対はかみ合いの途中で歯面が離れ, このとき P の歯対あるいは P3 3 の歯対がかみ合う. 後続の歯対もこのようなかみ合い挙動を行う. 一方, 中心距離が設計値よりも広い場合は歯元, 歯先でかみ合いが行われない. d [] d [] d [] d [] P E 75 5 P J 5 P3 3 C H P I D F =5.8 5 E 5 J C H P I D b =5.9 F C P D -5 D J -5 c =6. E Rottionl ngle of ge [deg] C 5 5 P D Pitch point -5 D -5 J E d =6. Fig.6 Tnsission eo Theoeticl Tble Specifictions of test ges Pofile Involute-ccloid coposite Involute Module [] 4 Pessue ngle* [deg] 3 Nube of teeth z /z 9/9 Diving ge / Diven ge Roolling cicle dius [] 7 - Pitch cicle diete d [] 6 Tip cicle diete d [] Fce width b [] ddendu h [] Dedendu h f [] Contct tio e Mteil Het tetent Finishing SC44 Cbuized Hobbing *Vlue t pitch point 5. 実験方法ここまでに述べた解析方法の是非を検討するために, 中心距離を可変とした動力循環式歯車試験機 と, 表 に示す諸元を持つ試験歯車を使用して実験を行った. 負荷トルクは T=96.N とし, 低速回転で運転してかみ合い伝達誤差と歯元曲げ応力を測定した. かみ合い伝達誤差は, 駆動 被動の各軸に取り付けたロータリーエンコーダにより駆動歯車 被動歯車の回転角度に比例した周波数信号を取り出し, その周波数信号を増幅して各々の歯数で分周した後, 位相差演算機に通して測定した. 歯元応力は圧縮側歯元, 歯幅中央の Hofe の 3 接線法による危険断面位置にひずみゲージを貼付し測定した. 6. 実験結果と計算結果の比較図 7 にインボリュート サイクロイド合成歯形平歯車のかみ合い伝達誤差の理論解析による値 歯形誤差を含む と実験により測定されたかみ合い伝達誤差 を示す. この図から, かみ合い伝達誤差の測定結果と計算結果はよく一致しており, 中心距離が変化するとかみ合い伝達誤差の大きさが大きく変化する様子を見て取ることがで 43

10 594 きる. これは, インボリュート サイクロイド合成歯形歯車の場合, 歯形誤差に加えて中心距離の変動によってかみ合い伝達誤差が生じているためであり, 中心距離誤差によってかみ合い状態に影響が現れることがわかる. 図 8 は, インボリュート サイクロイド合成歯形歯車の ピッチ間における最大かみ合い伝達誤差と中心距離の関係を示したもので, 中心距離が大きくなると, かみ合い伝達誤差は漸次減少している. 測定結果と計算結果はやや異なっているが, これは, インボリュート サイクロイド合成歯形歯車の歯形誤差測定には既存のインボリュート歯形試験機を用いて行っているため, その測定誤差が歯形誤差データに含まれており, 計算に用いた歯形誤差データと実際の歯形誤差に若干の違いがあることが原因と思われる. 次に, 中心距離の誤差がかみ合い状態へ及ぼす影響を検討するために, 歯元曲げ応力の変化について考察する. 歯元応力の計算は, 本稿で解析した中心距離誤差により生じるかみ合い伝達誤差に加えて, 歯形誤差も考慮し, 歯形形状からたわみを計算して荷重分担率を算出し, 会田 小田の式 4 にインボリュート サイクロイド合成歯形の形状寸法の値を入れて歯元応力を計算した. 歯のたわみは, 歯を 3 つの台形に近似してたわみを計算する石川らの方法 5 をもとに, インボリュート サイクロイド合成歯形歯車の歯形形状を 5 つの台形に近似してたわみを計算した. 図 9, はそれぞれインボリュート歯形歯車とインボリュート サイクロイド合成歯形歯車の圧縮側の歯元曲げ応力 c を示したものである. これらの図では, 中心距離を少しずつ変化させ, 各中心距離における実験結果と計算結果を示した. 図 9, のいずれにおいても計算結果は測定結果とよく一致しており, 計算方法は妥当であるといえる. また, 図 9 に示すように, インボリュート歯形歯車では中心距離を変化させても歯元曲げ応力の大きさと形状はほとんど変化しない. これに対して, インボリュート サイクロイド合成歯形歯車の歯元曲げ応力は図 に示すように, 中心距離によって大きく変化している. このことから, インボリュート サイクロイド合成歯形歯車のかみ合い状態は, 中心距離の変動に敏感であることがわかる. さらに, 図 では中心距離 =6.4 においてほぼ設計どおりのかみ合い率 =.35 を示す歯元応力波形となっているが, このときの中心距離は設計値 =6. よりも大きい. これは, 試験歯車製作時のホブ切り込み不足によって駆動 被動両歯車がわずかに正転位し, この転位量に見合うだけ中心距離が広がり, その結果適正なかみ合い状態が得られた d [] d [] d [] d [] Theoeticl =6.5 =6.35 =6.4 = Pitch point Rottionl ngle of ge [deg] Epeientl n=3p =6.5 =6.35 =6.4 =6.5 Mu tnsission eo [] Theoeticl Epeientl n=3p Cente distnce [] Fig.7 Copison of theoeticl vlue nd epeientl Fig.8 Effect of cente distnce on iu esults on tnsission eo Lod toque: tnsission eo Lod toque: T=96.N T=96.N 44

11 595 s c [MP] s c [MP] s c [MP] Theoeticl =5.7 =6. =6.3 MP MP MP Epeientl n=5.6p =5.7 =6. = Pitch point Rottionl ngle of ge [deg] Fig.9 Tooth oot stess c of olute ge Lod toque: T=96.N s c [MP] Theoeticl 8 = = = = Pitch point Rottionl ngle of ge [deg] s c [MP] s c [MP] s c [MP] 4MP 4MP 4MP 4MP Epeientl n=5.6p =6.5 =6.35 =6.4 =6.5 Fig. Tooth oot stess c of olute-ccloid coposite tooth pofile ge Lod toque: T=96.N ものと考えられる. そこで, 図 において試験歯車の中心距離の適正値を =6.4 として考察すると, 中心距離が適正値よりも小さい場合, 対の歯のかみ合いの途中で歯面が離れて歯元応力が となり, その後再び歯面が接触して荷重を受け持っていることを示している. その歯対の歯面が離れている間の荷重伝達はこの歯対の つ前あるいは後ろの歯対が担当するため, 歯車全体で見れば荷重の伝達が中断することはなく, 運転は可能であるが, 荷重を受け持つ歯が頻繁に変わることで, 騒音 振動増加の原因となる. そして, 中心距離が適正値から離れるほどかみ合いの途中で歯面が離れる範囲が広がっている. 一方, 中心距離が適正値 =6.4 よりも広がると, 歯元と歯先ではかみ合いが起こらず, かみ合い率は 近くまで急減する. これらのことは,4 章において述べた中心距離の変動に起因するかみ合い伝達誤差の理論解析結果の考察と対応している. 以上の考察から, インボリュート サイクロイド合成歯形歯車では, 歯車製作時のホブ切り込み量に誤差がある場合は, 中心距離を微調整することによりかみ合い状態が適正となるように補正することができるといえる. 7. 結言本研究では, 中心距離変動にともなうインボリュート サイクロイド合成歯形歯車のかみ合い伝達誤差を理論的に解析した. また, 試験歯車を製作して運転試験を行い, 理論解析結果と実験結果を比較し, 中心距離の変動がインボリュート サイクロイド合成歯形歯車のかみ合い状態に与える影響について考察した. 本研究の結論を以下に示す. インボリュート サイクロイド合成歯形歯車のかみ合い伝達誤差を理論的に解析する方法を示した. そしてその方法を用いて計算した結果は, 実験結果とよく一致することを確認した. インボリュート サイクロイド合成歯形歯車のかみ合い状態は, 中心距離の変化の影響を大きく受ける. 3 インボリュート サイクロイド合成歯形歯車の中心距離が設計値よりも狭い場合, かみ合いに不連続が生じる場合があり, 中心距離の設計値との差が大きいほどその傾向は著しくなる. 45

12 596 4 インボリュート サイクロイド合成歯形歯車の中心距離が設計値よりも広い場合, 歯先, 歯元付近ではかみ合わず, かみ合い率は急激に低下する. 5 インボリュート サイクロイド合成歯形歯車は, 意図せず転位歯車となった場合にも, 転位がわずかであれば, 中心距離を調整することによって, かみ合い状態を適正に補正することができる. 文 献 Teuchi, Y., nd Ngu, K., nd Sijo, H., On Design nd Pefonce of Involute-ccloid Coposite Tooth Pofile e, ulletin of the JSME, Vol.5, No.99 98, pp.8-6. Teuchi, Y., Ngu, K., nd SIJO, H., On Sufce Dubilit of Involute-ccloid Coposite Tooth Pofile e, ulletin of the JSME Vol.5, No. 98, pp Ikejo, K., Ngu, K., Tutuln, F.., Fiction Loss of Non-Involute Tooth Pofile es, Poceedings of the SME 5 Intentionl Design Engineeing Technicl Confeences & Coputes nd Infotion in Engineeing Confeence IDETC / CIE 5, SME 5, SME Ppe No. DETC5-8448, CD-ROM. 4 会田俊夫, 小田哲, 田村喜昭, 歯車の曲げ疲れ強さに関する研究 第 8 報, 歯の圧縮側応力計算式と運転時の歯元応力, 日本機械学会論文集 第 3 部,Vol.33, No.5 967, pp 藤井賢治, 石川二郎, 梅沢清彦, 歯のたわみについて, 日本機械学会第 4 回シンポジウム講演論文集, No , pp

円筒歯車の最適歯面修整の設計例 適正な歯面修整で負荷容量の増大を目指すー 目次 1. はじめに 2 2. ` 解析例 ( はすば歯車の例 ) 歯車諸元 (C 面取り ) 歯車諸元 (R 面取り ) 最適歯面修整 歯先修整 + 歯先

円筒歯車の最適歯面修整の設計例 適正な歯面修整で負荷容量の増大を目指すー 目次 1. はじめに 2 2. ` 解析例 ( はすば歯車の例 ) 歯車諸元 (C 面取り ) 歯車諸元 (R 面取り ) 最適歯面修整 歯先修整 + 歯先 円筒歯車の最適歯面修整の設計例 適正な歯面修整で負荷容量の増大を目指すー 2019.02.25 目次 1. はじめに 2 2. ` 解析例 ( はすば歯車の例 ) 2 2.1 歯車諸元 (C 面取り ) 2 2.2 歯車諸元 (R 面取り ) 7 2.3 最適歯面修整 9 2.4 歯先修整 + 歯先 C 12 2.5 歯先修整 + 歯先 R 14 2.6 解析結果の比較 16 3. 修整歯形 + 歯先

More information

Microsoft Word - 9章3 v3.2.docx

Microsoft Word - 9章3 v3.2.docx 3. 内歯歯車 K--V 機構の効率 3. 退行駆動前項では外歯の K--V 機構の効率について考察した ここでは内歯歯車の K--V 機構を対象とする その考え方は外歯の場合と同じであるが 一部外歯の場合とは違った現象が起こるのでその部分に焦点を当てて述べる 先に固定したラックとピニオンの例を取り上げた そこではピニオン軸心を押す場合と ピニオンにモーメントを加える方法とではラックの役割が違うことを示した

More information

機械設計工学

機械設計工学 伝達装置 ( 歯車装置 ) 歯車とは 1 減速 増速運動は機械の最も重要な運動の一つ 歯車は機械の減速 増速を実現させる重要な機械要素の一つ 3 歯車性能 ( 振動 騒音 効率 伝達精度など ) と寿命 ( 強度 ) は機械装置の性能と寿命に直接に影響を与えている 4 歯車の設計 製造技術は機械産業の基盤となり 極めて重要な技術の一つである 大歯車 小歯車 Shimane University, Machine

More information

カタログ

カタログ [32] 正弦歯車設計ソフトウエア 図 32.3 歯車諸元 図 32. 正弦歯車設計ソフトウエア 32. 概要古くからポンプギヤ用として提案されてきた正弦曲線で構成される歯形を基準ラックとする歯車 ( 以下, 正弦歯車 ) は, インボリュート歯車に比べすべり率が小さいため動力損失が小さくなる. そのため, かみ合い時の摩擦発熱量が減少し, 歯の温度上昇も押さえられると考えることができる. このことから,

More information

<4D F736F F F696E74202D C835B B C8CB38DCF82DD2E B8CDD8AB B83685D>

<4D F736F F F696E74202D C835B B C8CB38DCF82DD2E B8CDD8AB B83685D> 歯車の歯形修整と 3D モデリング 1 歯形修整の種類とその目的 1) 歯先修整と歯元修整 2) クラウニングとエンドレリーフ 3) セミトッピング 2. 歯車の 3D モデリング 1) 機構部品のモデリングの際の留意点 2) モデリング曲面生成の方法 3) 歯車の 3D モデリング 2009/12/04 テクファ ジャパン ( 株 ) 香取英男 1 歯車の歯形修整 広義の歯形修整には 下記の3 種類がある

More information

CAT_728g

CAT_728g . 歯車の荷重計算. 平歯車, はすば歯車, やまば歯車にかかる力の計算 被動歯車に作用する力,, の大きさは, それぞれ,, に等しく方向が反対である. 歯車と転がり軸受の二つの機械要素の間には, 非常に密接な関係があり, 多くの機械に使用されている歯車装置には, 軸受がほとんど使われている. これらの歯車装置に使用する軸受の定格寿命計算, 軸受の選定は, 歯車のかみあい点における力が基本となる.

More information

断面の諸量

断面の諸量 断面の諸量 建設システム工学科高谷富也 断面 次モーメント 定義 G d G d 座標軸の平行移動 断面 次モーメント 軸に平行な X Y 軸に関する断面 次モーメント G X G Y を求める X G d d d Y 0 0 G 0 G d d d 0 0 G 0 重心 軸に関する断面 次モーメントを G G とし 軸に平行な座標軸 X Y の原点が断面の重心に一致するものとする G G, G G

More information

<4D F736F F D2097CD8A7793FC96E582BD82ED82DD8A E6318FCD2E646F63>

<4D F736F F D2097CD8A7793FC96E582BD82ED82DD8A E6318FCD2E646F63> - 第 章たわみ角法の基本式 ポイント : たわみ角法の基本式を理解する たわみ角法の基本式を梁の微分方程式より求める 本章では たわみ角法の基本式を導くことにする 基本式の誘導法は各種あるが ここでは 梁の微分方程式を解いて基本式を求める方法を採用する この本で使用する座標系は 右手 右ネジの法則に従った座標を用いる また ひとつの部材では 図 - に示すように部材の左端の 点を原点とし 軸線を

More information

Microsoft Word - 1B2011.doc

Microsoft Word - 1B2011.doc 第 14 回モールの定理 ( 単純梁の場合 ) ( モールの定理とは何か?p.11) 例題 下記に示す単純梁の C 点のたわみ角 θ C と, たわみ δ C を求めよ ただし, 部材の曲げ 剛性は材軸に沿って一様で とする C D kn B 1.5m 0.5m 1.0m 解答 1 曲げモーメント図を描く,B 点の反力を求める kn kn 4 kn 曲げモーメント図を描く knm 先に得られた曲げモーメントの値を

More information

1. はじめに非対称歯形歯車は, 歯車の大きさや材料を変更しないで負荷容量を増大させることができることからロシア航空機の TV7-117( 図 1.1),TV3-117VMA-SBM1,NK-93 ターボプロップエンジンの遊星歯車 ( 図 1.2) などに採用されている 1). この歯車の採用により

1. はじめに非対称歯形歯車は, 歯車の大きさや材料を変更しないで負荷容量を増大させることができることからロシア航空機の TV7-117( 図 1.1),TV3-117VMA-SBM1,NK-93 ターボプロップエンジンの遊星歯車 ( 図 1.2) などに採用されている 1). この歯車の採用により 技術資料 1: 非対称歯形歯車の設計 1. はじめに 2. 高圧力角の効果 3. 基準ラック 4. 外歯車の設計例 4.1 歯車寸法, 歯厚 4.2 歯形 4.3 すべり率 4.4 歯面応力解析 4.5 フラッシュ温度, 摩擦係数, 油膜厚さ, 動力損失 4.6 曲げ応力解析 4.7 伝達誤差解析 4.8 寿命, スカッヒング発生確率 5. 内歯車の設計例 5.1 歯車寸法 5.2 歯形 5.3 すべり率

More information

Microsoft Word - thesis.doc

Microsoft Word - thesis.doc 剛体の基礎理論 -. 剛体の基礎理論初めに本論文で大域的に使用する記号を定義する. 使用する記号トルク撃力力角運動量角速度姿勢対角化された慣性テンソル慣性テンソル運動量速度位置質量時間 J W f F P p .. 質点の並進運動 質点は位置 と速度 P を用いる. ニュートンの運動方程式 という状態を持つ. 但し ここでは速度ではなく運動量 F P F.... より質点の運動は既に明らかであり 質点の状態ベクトル

More information

PowerPoint Presentation

PowerPoint Presentation Non-linea factue mechanics き裂先端付近の塑性変形 塑性域 R 破壊進行領域応カ特異場 Ω R R Hutchinson, Rice and Rosengen 全ひずみ塑性理論に基づいた解析 現段階のひずみは 除荷がないとすると現段階の応力で一義的に決まる 単純引張り時の応カーひずみ関係 ( 構成方程式 ): ( ) ( ) n () y y y ここで α,n 定数, /

More information

<4D F736F F D208D5C91A297CD8A7793FC96E591E631308FCD2E646F63>

<4D F736F F D208D5C91A297CD8A7793FC96E591E631308FCD2E646F63> 第 1 章モールの定理による静定梁のたわみ 1-1 第 1 章モールの定理による静定梁のたわみ ポイント : モールの定理を用いて 静定梁のたわみを求める 断面力の釣合と梁の微分方程式は良く似ている 前章では 梁の微分方程式を直接積分する方法で 静定梁の断面力と変形状態を求めた 本章では 梁の微分方程式と断面力による力の釣合式が類似していることを利用して 微分方程式を直接解析的に解くのではなく 力の釣合より梁のたわみを求める方法を学ぶ

More information

Microsoft PowerPoint - zairiki_3

Microsoft PowerPoint - zairiki_3 材料力学講義 (3) 応力と変形 Ⅲ ( 曲げモーメント, 垂直応力度, 曲率 ) 今回は, 曲げモーメントに関する, 断面力 - 応力度 - 変形 - 変位の関係について学びます 1 曲げモーメント 曲げモーメント M 静定力学で求めた曲げモーメントも, 仮想的に断面を切ることによって現れる内力です 軸方向力は断面に働く力 曲げモーメント M は断面力 曲げモーメントも, 一つのモーメントとして表しますが,

More information

構造力学Ⅰ第12回

構造力学Ⅰ第12回 第 回材の座屈 (0 章 ) p.5~ ( 復習 ) モールの定理 ( 手順 ) 座屈とは 荷重により梁に生じた曲げモーメントをで除して仮想荷重と考える 座屈荷重 偏心荷重 ( 曲げと軸力 ) 断面の核 この仮想荷重に対するある点でのせん断力 たわみ角に相当する曲げモーメント たわみに相当する ( 例 ) 単純梁の支点のたわみ角 : は 図 を仮想荷重と考えたときの 点の支点反力 B は 図 を仮想荷重と考えたときのB

More information

フィードバック ~ 様々な電子回路の性質 ~ 実験 (1) 目的実験 (1) では 非反転増幅器の増幅率や位相差が 回路を構成する抵抗値や入力信号の周波数によってどのように変わるのかを調べる 実験方法 図 1 のような自由振動回路を組み オペアンプの + 入力端子を接地したときの出力電圧 が 0 と

フィードバック ~ 様々な電子回路の性質 ~ 実験 (1) 目的実験 (1) では 非反転増幅器の増幅率や位相差が 回路を構成する抵抗値や入力信号の周波数によってどのように変わるのかを調べる 実験方法 図 1 のような自由振動回路を組み オペアンプの + 入力端子を接地したときの出力電圧 が 0 と フィードバック ~ 様々な電子回路の性質 ~ 実験 (1) 目的実験 (1) では 非反転増幅器の増幅率や位相差が 回路を構成する抵抗値や入力信号の周波数によってどのように変わるのかを調べる 実験方法 図 1 のような自由振動回路を組み オペアンプの + 入力端子を接地したときの出力電圧 が 0 となるように半固定抵抗器を調整する ( ゼロ点調整のため ) 図 1 非反転増幅器 2010 年度版物理工学実験法

More information

vecrot

vecrot 1. ベクトル ベクトル : 方向を持つ量 ベクトルには 1 方向 2 大きさ ( 長さ ) という 2 つの属性がある ベクトルの例 : 物体の移動速度 移動量電場 磁場の強さ風速力トルクなど 2. ベクトルの表現 2.1 矢印で表現される 矢印の長さ : ベクトルの大きさ 矢印の向き : ベクトルの方向 2.2 2 個の点を用いて表現する 始点 () と終点 () を結ぶ半直線の向き : ベクトルの方向

More information

かみ合い部分における損失

かみ合い部分における損失 第 8 章かみ合い部分における損失 遊星歯車機構の効率を取り扱うには 組の歯車のかみ合い損失を吟味する必要がある ここでかみ合い損失は摩擦に起因しているが 摩擦現象を理論的に説明することは非常に難しい そのため摩擦係数が一定として処理されるのが一般的である このような前提で従来から歯車の摩擦損失の大きさを算出する計算式はいくつも提案されているが ここではそれらの計算式の解説をまず行う このような摩擦現象によって発生する歯車の損失で定まる効率は通常の平歯車では非常に高く99%

More information

Kumamoto University Center for Multimedia and Information Technologies Lab. 熊本大学アプリケーション実験 ~ 実環境における無線 LAN 受信電波強度を用いた位置推定手法の検討 ~ InKIAI 宮崎県美郷

Kumamoto University Center for Multimedia and Information Technologies Lab. 熊本大学アプリケーション実験 ~ 実環境における無線 LAN 受信電波強度を用いた位置推定手法の検討 ~ InKIAI 宮崎県美郷 熊本大学アプリケーション実験 ~ 実環境における無線 LAN 受信電波強度を用いた位置推定手法の検討 ~ InKIAI プロジェクト @ 宮崎県美郷町 熊本大学副島慶人川村諒 1 実験の目的 従来 信号の受信電波強度 (RSSI:RecevedSgnal StrengthIndcator) により 対象の位置を推定する手法として 無線 LAN の AP(AccessPont) から受信する信号の減衰量をもとに位置を推定する手法が多く検討されている

More information

第1章 単 位

第1章  単  位 H. Hmno 問題解答 問題解答. 力の釣合い [ 問題.] V : sin. H :.cos. 7 V : sin sin H : cos cos cos 上第 式より これと第 式より.. cos V : sin sin H : coscos cos 上第 式より これと第 式より.98. cos [ 問題.] :. V :. : 9 9. V :. : sin V : sin 8.78 H

More information

2011年度 大阪大・理系数学

2011年度 大阪大・理系数学 0 大阪大学 ( 理系 ) 前期日程問題 解答解説のページへ a a を自然数とする O を原点とする座標平面上で行列 A= a の表す 次変換 を f とする cosθ siθ () >0 および0θ

More information

機械設計工学

機械設計工学 歯車の加工 精度及び歯面修整 歯車の歯切り方法 歯車の加工精度 歯車の加工寸法の管理 歯車の組立誤差及び加工誤差と歯面接触応力分布の関係 歯車の歯面修整 歯車の歯切り方法 歯の創成運動 ホブギリ加工法 シェーピング法 研磨加工法 1. 歯車の創成運動 ( 創成法 ) 歯の創成運動 ( 歯を形成するために ) = ラックの直線運動 + 円板の回転運動 ラック ホブカッタ ラックの直線運動 V = ω

More information

例 e 指数関数的に減衰する信号を h( a < + a a すると, それらのラプラス変換は, H ( ) { e } e インパルス応答が h( a < ( ただし a >, U( ) { } となるシステムにステップ信号 ( y( のラプラス変換 Y () は, Y ( ) H ( ) X (

例 e 指数関数的に減衰する信号を h( a < + a a すると, それらのラプラス変換は, H ( ) { e } e インパルス応答が h( a < ( ただし a >, U( ) { } となるシステムにステップ信号 ( y( のラプラス変換 Y () は, Y ( ) H ( ) X ( 第 週ラプラス変換 教科書 p.34~ 目標ラプラス変換の定義と意味を理解する フーリエ変換や Z 変換と並ぶ 信号解析やシステム設計における重要なツール ラプラス変換は波動現象や電気回路など様々な分野で 微分方程式を解くために利用されてきた ラプラス変換を用いることで微分方程式は代数方程式に変換される また 工学上使われる主要な関数のラプラス変換は簡単な形の関数で表されるので これを ラプラス変換表

More information

0 21 カラー反射率 slope aspect 図 2.9: 復元結果例 2.4 画像生成技術としての計算フォトグラフィ 3 次元情報を復元することにより, 画像生成 ( レンダリング ) に応用することが可能である. 近年, コンピュータにより, カメラで直接得られない画像を生成する技術分野が生

0 21 カラー反射率 slope aspect 図 2.9: 復元結果例 2.4 画像生成技術としての計算フォトグラフィ 3 次元情報を復元することにより, 画像生成 ( レンダリング ) に応用することが可能である. 近年, コンピュータにより, カメラで直接得られない画像を生成する技術分野が生 0 21 カラー反射率 slope aspect 図 2.9: 復元結果例 2.4 画像生成技術としての計算フォトグラフィ 3 次元情報を復元することにより, 画像生成 ( レンダリング ) に応用することが可能である. 近年, コンピュータにより, カメラで直接得られない画像を生成する技術分野が生まれ, コンピューテーショナルフォトグラフィ ( 計算フォトグラフィ ) と呼ばれている.3 次元画像認識技術の計算フォトグラフィへの応用として,

More information

画像類似度測定の初歩的な手法の検証

画像類似度測定の初歩的な手法の検証 画像類似度測定の初歩的な手法の検証 島根大学総合理工学部数理 情報システム学科 計算機科学講座田中研究室 S539 森瀧昌志 1 目次 第 1 章序論第 章画像間類似度測定の初歩的な手法について.1 A. 画素値の平均を用いる手法.. 画素値のヒストグラムを用いる手法.3 C. 相関係数を用いる手法.4 D. 解像度を合わせる手法.5 E. 振れ幅のヒストグラムを用いる手法.6 F. 周波数ごとの振れ幅を比較する手法第

More information

カタログ

カタログ [ 付録 :E] 正弦歯形歯車の動力損失低減の可能性 E1. 緒言 1980 年代初め頃より AV 機器などに盛んに使われ始めたプラ スチック歯車は, 鋼歯車の設計基準に倣ってインボリュート歯形 が採用されている. プラスチック歯車を低トルク領域での動力伝 達や回転伝達のみを目的とする場合はインボリュート歯形を採用 することに全く異論は無い. しかしながら, ある程度大きなトル ク領域での動力伝達に用いられた場合は,

More information

Chap2.key

Chap2.key . f( ) V (V V ) V e + V e V V V V ( ) V V ( ) E. - () V (0 ) () V (0 ) () V (0 ) (4) V ( ) E. - () V (0 ) () V (0 ) O r θ ( ) ( ) : (r θ) : { r cos θ r sn θ { r + () V (0 ) (4) V ( ) θ θ arg( ) : π π

More information

第 4 週コンボリューションその 2, 正弦波による分解 教科書 p. 16~ 目標コンボリューションの演習. 正弦波による信号の分解の考え方の理解. 正弦波の複素表現を学ぶ. 演習問題 問 1. 以下の図にならって,1 と 2 の δ 関数を図示せよ δ (t) 2

第 4 週コンボリューションその 2, 正弦波による分解 教科書 p. 16~ 目標コンボリューションの演習. 正弦波による信号の分解の考え方の理解. 正弦波の複素表現を学ぶ. 演習問題 問 1. 以下の図にならって,1 と 2 の δ 関数を図示せよ δ (t) 2 第 4 週コンボリューションその, 正弦波による分解 教科書 p. 6~ 目標コンボリューションの演習. 正弦波による信号の分解の考え方の理解. 正弦波の複素表現を学ぶ. 演習問題 問. 以下の図にならって, と の δ 関数を図示せよ. - - - δ () δ ( ) - - - 図 δ 関数の図示の例 δ ( ) δ ( ) δ ( ) δ ( ) δ ( ) - - - - - - - -

More information

Microsoft Word - NumericalComputation.docx

Microsoft Word - NumericalComputation.docx 数値計算入門 武尾英哉. 離散数学と数値計算 数学的解法の中には理論計算では求められないものもある. 例えば, 定積分は, まずは積分 ( 被積分関数の原始関数をみつけること できなければ値を得ることはできない. また, ある関数の所定の値における微分値を得るには, まずその関数の微分ができなければならない. さらに代数方程式の解を得るためには, 解析的に代数方程式を解く必要がある. ところが, これらは必ずしも解析的に導けるとは限らない.

More information

s とは何か 2011 年 2 月 5 日目次へ戻る 1 正弦波の微分 y=v m sin ωt を時間 t で微分します V m は正弦波の最大値です 合成関数の微分法を用い y=v m sin u u=ωt と置きますと dy dt dy du du dt d du V m sin u d dt

s とは何か 2011 年 2 月 5 日目次へ戻る 1 正弦波の微分 y=v m sin ωt を時間 t で微分します V m は正弦波の最大値です 合成関数の微分法を用い y=v m sin u u=ωt と置きますと dy dt dy du du dt d du V m sin u d dt とは何か 0 年 月 5 日目次へ戻る 正弦波の微分 y= in を時間 で微分します は正弦波の最大値です 合成関数の微分法を用い y= in u u= と置きますと y y in u in u (co u co になります in u の は定数なので 微分後も残ります 合成関数の微分法ですので 最後に u を に戻しています 0[ra] の co 値は [ra] の in 値と同じです その先の角

More information

Microsoft PowerPoint - fuseitei_6

Microsoft PowerPoint - fuseitei_6 不静定力学 Ⅱ 骨組の崩壊荷重の計算 不静定力学 Ⅱ では, 最後の問題となりますが, 骨組の崩壊荷重の計算法について学びます 1 参考書 松本慎也著 よくわかる構造力学の基本, 秀和システム このスライドの説明には, 主にこの参考書の説明を引用しています 2 崩壊荷重 構造物に作用する荷重が徐々に増大すると, 構造物内に発生する応力は増加し, やがて, 構造物は荷重に耐えられなくなる そのときの荷重を崩壊荷重あるいは終局荷重という

More information

PowerPoint プレゼンテーション

PowerPoint プレゼンテーション - = 4 = 4 = - y = x y = x y = x + 4 y = x 比例は y = ax の形であらわすことができる 4 - 秒後 y = 5 y = 0 (m) 5 秒後 y = 5 5 y = 5 (m) 5 0 = 05 (m) 05 5 = 5 (m/ 秒 ) 4 4 秒後 y = 5 4 y = 80 (m) 5-80 5 4 = 45 (m/ 秒 ) 5 v = 0 5

More information

パソコンシミュレータの現状

パソコンシミュレータの現状 第 2 章微分 偏微分, 写像 豊橋技術科学大学森謙一郎 2. 連続関数と微分 工学において物理現象を支配する方程式は微分方程式で表されていることが多く, 有限要素法も微分方程式を解く数値解析法であり, 定式化においては微分 積分が一般的に用いられており. 数学の基礎知識が必要になる. 図 2. に示すように, 微分は連続な関数 f() の傾きを求めることであり, 微小な に対して傾きを表し, を無限に

More information

20~22.prt

20~22.prt [ 三クリア W] 辺が等しいことの証明 ( 円周角と弦の関係利用 ) の の二等分線がこの三角形の外接円と交わる点をそれぞれ とするとき 60 ならば であることを証明せよ 60 + + 0 + 0 80-60 60 から ゆえに 等しい長さの弧に対する弦の長さは等しいから [ 三クリア ] 方べきの定理 接線と弦のなす角と円周角を利用 線分 を直径とする円 があり 右の図のように の延長上の点

More information

Microsoft Word - 断面諸量

Microsoft Word - 断面諸量 応用力学 Ⅱ 講義資料 / 断面諸量 断面諸量 断面 次 次モーメントの定義 図 - に示すような形状を有する横断面を考え その全断面積を とする いま任意に定めた直交座標軸 O-, をとり また図中の斜線部の微小面積要素を d とするとき d, d () で定義される, をそれぞれ与えられた横断面の 軸, 軸に関する断面 次モーメント (geometrcal moment of area) という

More information

第1章 単 位

第1章  単  位 H. Hamano,. 長柱の座屈 - 長柱の座屈 長い柱は圧縮荷重によって折れてしまう場合がある. この現象を座屈といい, 座屈するときの荷重を座屈荷重という.. 換算長 長さ の柱に荷重が作用する場合, その支持方法によって, 柱の理論上の長さ L が異なる. 長柱の計算は, この L を用いて行うと都合がよい. この L を換算長 ( あるいは有効長さという ) という. 座屈荷重は一般に,

More information

<4D F736F F D EBF97CD8A B7982D189898F4B A95748E9197BF4E6F31312E646F63>

<4D F736F F D EBF97CD8A B7982D189898F4B A95748E9197BF4E6F31312E646F63> 土質力学 Ⅰ 及び演習 (B 班 : 小高担当 ) 配付資料 N.11 (6.1.1) モールの応力円 (1) モールの応力円を使う上での3つの約束 1 垂直応力は圧縮を正とし, 軸の右側を正の方向とする 反時計まわりのモーメントを起こさせるせん断応力 の組を正とする 3 物体内で着目する面が,θ だけ回転すると, モールの応力円上では θ 回転する 1とは物理的な実際の作用面とモールの応力円上との回転の方向を一致させるために都合の良い約束である

More information

問題-1.indd

問題-1.indd 科目名学科 学年 組学籍番号氏名採点結果 016 年度材料力学 Ⅲ 問題 1 1 3 次元的に外力負荷を受ける物体を考える際にデカルト直交座標 - を採る 物体 内のある点 を取り囲む微小六面体上に働く応力 が v =- 40, = 60 =- 30 v = 0 = 10 v = 60 である 図 1 の 面上にこれらの応力 の作用方向を矢印で記入し その脇にその矢印が示す応力成分を記入しなさい 図

More information

2 Hermite-Gaussian モード 2-1 Hermite-Gaussian モード 自由空間を伝搬するレーザ光は次のような Hermite-gaussian Modes を持つ光波として扱う ことができる ここで U lm (x, y, z) U l (x, z)u m (y, z) e

2 Hermite-Gaussian モード 2-1 Hermite-Gaussian モード 自由空間を伝搬するレーザ光は次のような Hermite-gaussian Modes を持つ光波として扱う ことができる ここで U lm (x, y, z) U l (x, z)u m (y, z) e Wavefront Sensor 法による三角共振器のミスアラインメント検出 齊藤高大 新潟大学大学院自然科学研究科電気情報工学専攻博士後期課程 2 年 214 年 8 月 6 日 1 はじめに Input Mode Cleaner(IMC) は Fig.1 に示すような三角共振器である 懸架鏡の共振などにより IMC を構成する各ミラーが角度変化を起こすと 入射光軸と共振器軸との間にずれが生じる

More information

3 数値解の特性 3.1 CFL 条件 を 前の章では 波動方程式 f x= x0 = f x= x0 t f c x f =0 [1] c f 0 x= x 0 x 0 f x= x0 x 2 x 2 t [2] のように差分化して数値解を求めた ここでは このようにして得られた数値解の性質を 考

3 数値解の特性 3.1 CFL 条件 を 前の章では 波動方程式 f x= x0 = f x= x0 t f c x f =0 [1] c f 0 x= x 0 x 0 f x= x0 x 2 x 2 t [2] のように差分化して数値解を求めた ここでは このようにして得られた数値解の性質を 考 3 数値解の特性 3.1 CFL 条件 を 前の章では 波動方程式 f x= x = f x= x t f c x f = [1] c f x= x f x= x 2 2 t [2] のように差分化して数値解を求めた ここでは このようにして得られた数値解の性質を 考える まず 初期時刻 t=t に f =R f exp [ik x ] [3] のような波動を与えたとき どのように時間変化するか調べる

More information

横浜市環境科学研究所

横浜市環境科学研究所 周期時系列の統計解析 単回帰分析 io 8 年 3 日 周期時系列に季節調整を行わないで単回帰分析を適用すると, 回帰係数には周期成分の影響が加わる. ここでは, 周期時系列をコサイン関数モデルで近似し単回帰分析によりモデルの回帰係数を求め, 周期成分の影響を検討した. また, その結果を気温時系列に当てはめ, 課題等について考察した. 気温時系列とコサイン関数モデル第 報の結果を利用するので, その一部を再掲する.

More information

Microsoft Word - 微分入門.doc

Microsoft Word - 微分入門.doc 基本公式 例題 0 定義式 f( ) 数 Ⅲ 微分入門 = の導関数を定義式にもとづいて計算しなさい 基本事項 ( f( ), g( ) が微分可能ならば ) y= f( ) g( ) のとき, y = y= f( ) g( ) h( ) のとき, y = ( f( ), g( ) が微分可能で, g( ) 0 ならば ) f( ) y = のとき, y = g ( ) とくに, y = のとき,

More information

座標軸以外の直線のまわりの回転体の体積 ( バウムクーヘン分割公式 ) の問題の解答 立体の体積の求め方 図 1 の立体の体積 V を求める方法を考えてみる 図 1 図 1 のように 軸の から までの長さを 等分する そして とおく とすると となる 図 1 のように のときの 軸に垂直な平面 に

座標軸以外の直線のまわりの回転体の体積 ( バウムクーヘン分割公式 ) の問題の解答 立体の体積の求め方 図 1 の立体の体積 V を求める方法を考えてみる 図 1 図 1 のように 軸の から までの長さを 等分する そして とおく とすると となる 図 1 のように のときの 軸に垂直な平面 に 立体の体積の求め方 図 1 の立体の体積 V を求める方法を考えてみる 図 1 図 1 のように 軸の から までの長さを 等分する そして とおく とすると となる 図 1 のように のときの 軸に垂直な平面 による立体の断面積を とする 図 1の から までの斜線部分の立体 の体積を とすると, 図 2のように は 底面積 高さ の角柱の体積とみなせる よって 図 2 と表せる ただし とすると,

More information

学習指導要領

学習指導要領 (1 ) 数と式 ア数と集合 ( ア ) 実数数を実数まで拡張する意義を理解し 簡単な無理数の四則計算をすること 自然数 整数 有理数 無理数の包含関係など 実 数の構成を理解する ( 例 ) 次の空欄に適当な言葉をいれて, 数の集合を表しなさい 実数の絶対値が実数と対応する点と原点との距離で あることを理解する ( 例 ) 次の値を求めよ (1) () 6 置き換えなどを利用して 三項の無理数の乗法の計

More information

2015-2017年度 2次数学セレクション(複素数)解答解説

2015-2017年度 2次数学セレクション(複素数)解答解説 05 次数学セレクション解答解説 [ 筑波大 ] ( + より, 0 となり, + から, ( (,, よって, の描く図形 C は, 点 を中心とし半径が の円である すなわち, 原 点を通る円となる ( は虚数, は正の実数より, である さて, w ( ( とおくと, ( ( ( w ( ( ( ここで, w は純虚数より, は純虚数となる すると, の描く図形 L は, 点 を通り, 点 と点

More information

Microsoft Word - ミクロ経済学02-01費用関数.doc

Microsoft Word - ミクロ経済学02-01費用関数.doc ミクロ経済学の シナリオ 講義の 3 分の 1 の時間で理解させる技術 国際派公務員養成所 第 2 章 生産者理論 生産者の利潤最大化行動について学び 供給曲線の導出プロセスを確認します 2-1. さまざまな費用曲線 (1) 総費用 (TC) 固定費用 (FC) 可変費用 (VC) 今回は さまざまな費用曲線を学んでいきましょう 費用曲線にはまず 総費用曲線があります 総費用 TC(Total Cost)

More information

機械設計工学

機械設計工学 はすば歯車 傘歯車 とウォームギヤ 参考文献 : (1) KHK 総合カタログ歯車技術資料 小原歯車工業株式会社 (2) KG GEARS CATALOGE 協育歯車工業株式会社 はすば歯車 自動車のトランスミッションによく使われている 1. はすば歯車の特徴 はすば歯車 平歯車 歯筋は軸に対して斜めになっている 大小歯車のねじれ角度は同じであるが ねじれ方向は逆である 平歯車より高強度 ( かみ合い率が高いため

More information

受信機時計誤差項の が残ったままであるが これをも消去するのが 重位相差である. 重位相差ある時刻に 衛星 から送られてくる搬送波位相データを 台の受信機 でそれぞれ測定する このとき各受信機で測定された衛星 からの搬送波位相データを Φ Φ とし 同様に衛星 からの搬送波位相データを Φ Φ とす

受信機時計誤差項の が残ったままであるが これをも消去するのが 重位相差である. 重位相差ある時刻に 衛星 から送られてくる搬送波位相データを 台の受信機 でそれぞれ測定する このとき各受信機で測定された衛星 からの搬送波位相データを Φ Φ とし 同様に衛星 からの搬送波位相データを Φ Φ とす RTK-GPS 測位計算アルゴリズム -FLOT 解 - 東京海洋大学冨永貴樹. はじめに GPS 測量を行う際 実時間で測位結果を得ることが出来るのは今のところ RTK-GPS 測位のみである GPS 測量では GPS 衛星からの搬送波位相データを使用するため 整数値バイアスを決定しなければならず これが測位計算を複雑にしている所以である この整数値バイアスを決定するためのつの方法として FLOT

More information

2018年度 東京大・理系数学

2018年度 東京大・理系数学 08 東京大学 ( 理系 ) 前期日程問題 解答解説のページへ関数 f ( ) = + cos (0 < < ) の増減表をつくり, + 0, 0 のと sin きの極限を調べよ 08 東京大学 ( 理系 ) 前期日程問題 解答解説のページへ n+ 数列 a, a, を, Cn a n = ( n =,, ) で定める n! an qn () n とする を既約分数 an p として表したときの分母

More information

19年度一次基礎科目計算問題略解

19年度一次基礎科目計算問題略解 9 年度機械科目 ( 計算問題主体 ) 略解 基礎科目の解析の延長としてわかる範囲でトライしてみたものです Coprigh (c) 7 宮田明則技術士事務所 Coprigh (c) 7 宮田明則技術士事務所 Ⅳ- よってから は許容荷重として は直径をロ - プの断面積 Ⅳ- cr E E E I, から Ⅳ- Ⅳ- : q q q q q q q q q で絶対値が最大 で絶対値が最大モーメントはいずれも中央で最大となる

More information

2 図微小要素の流体の流入出 方向の断面の流体の流入出の収支断面 Ⅰ から微小要素に流入出する流体の流量 Q 断面 Ⅰ は 以下のように定式化できる Q 断面 Ⅰ 流量 密度 流速 断面 Ⅰ の面積 微小要素の断面 Ⅰ から だけ移動した断面 Ⅱ を流入出する流体の流量 Q 断面 Ⅱ は以下のように

2 図微小要素の流体の流入出 方向の断面の流体の流入出の収支断面 Ⅰ から微小要素に流入出する流体の流量 Q 断面 Ⅰ は 以下のように定式化できる Q 断面 Ⅰ 流量 密度 流速 断面 Ⅰ の面積 微小要素の断面 Ⅰ から だけ移動した断面 Ⅱ を流入出する流体の流量 Q 断面 Ⅱ は以下のように 3 章 Web に Link 解説 連続式 微分表示 の誘導.64 *4. 連続式連続式は ある領域の内部にある流体の質量の収支が その表面からの流入出の合計と等しくなることを定式化したものであり 流体における質量保存則を示したものである 2. 連続式 微分表示 の誘導図のような微小要素 コントロールボリューム の領域内の流体の増減と外部からの流体の流入出を考えることで定式化できる 微小要素 流入

More information

2011年度 筑波大・理系数学

2011年度 筑波大・理系数学 0 筑波大学 ( 理系 ) 前期日程問題 解答解説のページへ O を原点とするy 平面において, 直線 y= の を満たす部分をC とする () C 上に点 A( t, ) をとるとき, 線分 OA の垂直二等分線の方程式を求めよ () 点 A が C 全体を動くとき, 線分 OA の垂直二等分線が通過する範囲を求め, それ を図示せよ -- 0 筑波大学 ( 理系 ) 前期日程問題 解答解説のページへ

More information

. 角の二等分線と調和平均 平面上に点 を端点とする線分 と を重ならないようにとる, とし とする の二等分線が線分 と交わる点を とし 点 から に垂直に引いた直線が線分 と交わる点 とする 線分 の長さを求めてみよう 点 から に垂直な直線と および との交点をそれぞれ, Dとする つの直角三

. 角の二等分線と調和平均 平面上に点 を端点とする線分 と を重ならないようにとる, とし とする の二等分線が線分 と交わる点を とし 点 から に垂直に引いた直線が線分 と交わる点 とする 線分 の長さを求めてみよう 点 から に垂直な直線と および との交点をそれぞれ, Dとする つの直角三 角の二等分線で開くいろいろな平均 札幌旭丘高校中村文則 0. 数直線上に現れるいろいろな平均下図は 数 (, ) の調和平均 相乗平均 相加平均 二乗平均を数直線上に置いたものである, とし 直径 中心 である円を用いていろいろな平均の大小関係を表現するもっとも美しい配置方法であり その証明も容易である Q D E F < 相加平均 > (0), ( ), ( とすると 線分 ) の中点 の座標はである

More information

テレコンバージョンレンズの原理 ( リアコンバーター ) レンズの焦点距離を伸ばす方法として テレコンバージョンレンズ ( テレコンバーター ; 略して テレコン ) を入れる方法があります これには二つのタイプがあって 一つはレンズとカメラ本体の間に入れるタイプ ( リアコンバーター ) もう一つ

テレコンバージョンレンズの原理 ( リアコンバーター ) レンズの焦点距離を伸ばす方法として テレコンバージョンレンズ ( テレコンバーター ; 略して テレコン ) を入れる方法があります これには二つのタイプがあって 一つはレンズとカメラ本体の間に入れるタイプ ( リアコンバーター ) もう一つ テレコンバージョンレンズの原理 ( リアコンバーター ) レンズの焦点距離を伸ばす方法として テレコンバージョンレンズ ( テレコンバーター ; 略して テレコン ) を入れる方法があります これには二つのタイプがあって 一つはレンズとカメラ本体の間に入れるタイプ ( リアコンバーター ) もう一つはレンズの前に取り付けるタイプ ( フロントコンバーター ) です 以前 フロントコンバーターについて書いたことがありました

More information

数値計算で学ぶ物理学 4 放物運動と惑星運動 地上のように下向きに重力がはたらいているような場においては 物体を投げると放物運動をする 一方 中心星のまわりの重力場中では 惑星は 円 だ円 放物線または双曲線を描きながら運動する ここでは 放物運動と惑星運動を 運動方程式を導出したうえで 数値シミュ

数値計算で学ぶ物理学 4 放物運動と惑星運動 地上のように下向きに重力がはたらいているような場においては 物体を投げると放物運動をする 一方 中心星のまわりの重力場中では 惑星は 円 だ円 放物線または双曲線を描きながら運動する ここでは 放物運動と惑星運動を 運動方程式を導出したうえで 数値シミュ 数値計算で学ぶ物理学 4 放物運動と惑星運動 地上のように下向きに重力がはたらいているような場においては 物体を投げると放物運動をする 一方 中心星のまわりの重力場中では 惑星は 円 だ円 放物線または双曲線を描きながら運動する ここでは 放物運動と惑星運動を 運動方程式を導出したうえで 数値シミュレーションによって計算してみる 4.1 放物運動一様な重力場における放物運動を考える 一般に質量の物体に作用する力をとすると運動方程式は

More information

学習指導要領

学習指導要領 (1) いろいろな式 学習指導要領紅葉川高校学力スタンダードア式と証明展開の公式を用いて 3 乗に関わる式を展開すること ( ア ) 整式の乗法 除法 分数式の計算ができるようにする 三次の乗法公式及び因数分解の公式を理解し そ 3 次の因数分解の公式を理解し それらを用いて因数れらを用いて式の展開や因数分解をすること また 分解することができるようにする 整式の除法や分数式の四則計算について理解し

More information

例題1 転がり摩擦

例題1 転がり摩擦 重心 5.. 重心問題解法虎の巻. 半円 分円. 円弧. 扇形. 半球殻 5. 半球体 6. 厚みのある半球殻 7. 三角形 8. 円錐 9. 円錐台. 穴あき板. 空洞のある半球ボール 重心問題解法虎の巻 関西大学工学部物理学教室 齊藤正 重心を求める場合 質点系の重心の求め方が基本 実際の物体では連続体であるので 積分形式で求める場合が多い これらの式は 次元のベクトル形式で書かれている通り つの式は実際には

More information

Microsoft PowerPoint - MathcadPrime10-Katori.pptx

Microsoft PowerPoint - MathcadPrime10-Katori.pptx 研究開発 設計業務の処理になぜ Mathcad が有効か? 2011/02/15 テクファ ジャパン ( 株 ) 香取英男 技術業務に Mathcad を導入して 研究開発 設計業務の革新的な効率化を図る --------------------------------------------------------------------------------------------------------

More information

PowerPoint プレゼンテーション

PowerPoint プレゼンテーション 材料実験演習 第 6 回 2015.05.17 スケジュール 回 月 / 日 標題 内容 授業種別 時限 講義 演習 6,7 5 月 17 日 8 5 月 24 日 5 月 31 日 9,10 6 月 7 日 11 6 月 14 日 講義 曲げモーメントを受ける鉄筋コンクリート(RC) 梁の挙動その1 構造力学の基本事項その2 RC 梁の特徴演習 曲げを受ける梁の挙動 実験 鉄筋コンクリート梁の載荷実験レポート

More information

千葉大学 ゲーム論II

千葉大学 ゲーム論II 千葉大学ゲーム論 II 第五, 六回 担当 上條良夫 千葉大学ゲーム論 II 第五 六回上條良夫 本日の講義内容 前回宿題の問題 3 の解答 Nash の交渉問題 Nash 解とその公理的特徴づけ 千葉大学ゲーム論 II 第五 六回上條良夫 宿題の問題 3 の解答 ホワイトボードでやる 千葉大学ゲーム論 II 第五 六回上條良夫 3 Nash の二人交渉問題 Nash の二人交渉問題は以下の二つから構成される

More information

振動学特論火曜 1 限 TA332J 藤井康介 6 章スペクトルの平滑化 スペクトルの平滑化とはギザギザした地震波のフーリエ スペクトルやパワ スペクトルでは正確にスペクトルの山がどこにあるかはよく分からない このようなスペクトルから不純なものを取り去って 本当の性質を浮き彫

振動学特論火曜 1 限 TA332J 藤井康介 6 章スペクトルの平滑化 スペクトルの平滑化とはギザギザした地震波のフーリエ スペクトルやパワ スペクトルでは正確にスペクトルの山がどこにあるかはよく分からない このようなスペクトルから不純なものを取り去って 本当の性質を浮き彫 6 章スペクトルの平滑化 スペクトルの平滑化とはギザギザした地震波のフーリエ スペクトルやパワ スペクトルでは正確にスペクトルの山がどこにあるかはよく分からない このようなスペクトルから不純なものを取り去って 本当の性質を浮き彫りにするために スペクトルを滑らかにする操作のことをいう 6.1 合積のフーリエ変換スペクトルの平滑化を行う際に必要な 合積とそのフーリエ変換について説明する 6.2 データ

More information

重要例題113

重要例題113 04_ 高校 数学 Ⅱ 必須基本公式 定理集 数学 Ⅱ 第 章式の計算と方程式 0 商と余り についての整式 A をについての整式 B で割ったときの商を Q, 余りを R とすると, ABQ+R (R の次数 ) > 0

More information

PowerPoint プレゼンテーション

PowerPoint プレゼンテーション 材料実験演習 第 6 回 2017.05.16 スケジュール 回 月 / 日 標題 内容 授業種別 時限 実験レポート評価 講義 演習 6,7 5 月 16 日 8 5 月 23 日 5 月 30 日 講義 曲げモーメントを受ける鉄筋コンクリート(RC) 梁の挙動その1 構造力学の基本事項その2 RC 梁の特徴演習 曲げを受ける梁の挙動 実験 鉄筋コンクリート梁の載荷実験レポート 鉄筋コンクリート梁実験レポート作成

More information

2013年度 九州大・理系数学

2013年度 九州大・理系数学 九州大学 ( 理系 ) 前期日程問題 解答解説のページへ a> とし, つの曲線 y= ( ), y= a ( > ) を順にC, C とする また, C とC の交点 P におけるC の接線をl とする 以下 の問いに答えよ () 曲線 C とy 軸および直線 l で囲まれた部分の面積をa を用いて表せ () 点 P におけるC の接線と直線 l のなす角を ( a) とき, limasin θ(

More information

【FdData中間期末過去問題】中学数学1年(比例と反比例の応用/点の移動/速さ)

【FdData中間期末過去問題】中学数学1年(比例と反比例の応用/点の移動/速さ) FdDt 中間期末過去問題 中学数学 1 年 ( 比例と反比例の応用 / 点の移動 / 速さ ) http://www.fdtet.com/dt/ 水そうの問題 [ 問題 ](2 学期期末 ) 水が 200 l 入る水そうに, 毎分 8 l の割合で水を入れていく 水を入れはじめてから 分後の水の量を y l とするとき, 次の各問いに答えよ (1), y の関係を式に表せ (2) の変域を求めよ

More information

RLC 共振回路 概要 RLC 回路は, ラジオや通信工学, 発信器などに広く使われる. この回路の目的は, 特定の周波数のときに大きな電流を得ることである. 使い方には, 周波数を設定し外へ発する, 外部からの周波数に合わせて同調する, がある. このように, 周波数を扱うことから, 交流を考える

RLC 共振回路 概要 RLC 回路は, ラジオや通信工学, 発信器などに広く使われる. この回路の目的は, 特定の周波数のときに大きな電流を得ることである. 使い方には, 周波数を設定し外へ発する, 外部からの周波数に合わせて同調する, がある. このように, 周波数を扱うことから, 交流を考える 共振回路 概要 回路は ラジオや通信工学 などに広く使われる この回路の目的は 特定の周波数のときに大きな電流を得ることである 使い方には 周波数を設定し外へ発する 外部からの周波数に合わせて同調する がある このように 周波数を扱うことから 交流を考える 特に ( キャパシタ ) と ( インダクタ ) のそれぞれが 周波数によってインピーダンス *) が変わることが回路解釈の鍵になることに注目する

More information

Microsoft PowerPoint - 10.pptx

Microsoft PowerPoint - 10.pptx m u. 固有値とその応用 8/7/( 水 ). 固有値とその応用 固有値と固有ベクトル 行列による写像から固有ベクトルへ m m 行列 によって線形写像 f : R R が表せることを見てきた ここでは 次元平面の行列による写像を調べる とし 写像 f : を考える R R まず 単位ベクトルの像 u y y f : R R u u, u この事から 線形写像の性質を用いると 次の格子上の点全ての写像先が求まる

More information

材料強度試験 ( 曲げ試験 ) [1] 概要 実験 実習 Ⅰ の引張り試験に引続き, 曲げ試験による機械特性評価法を実施する. 材料力学で学ぶ梁 の曲げおよびたわみの基礎式の理解, 材料への理解を深めることが目的である. [2] 材料の変形抵抗変形抵抗は, 外力が付与された時の変形に対する各材料固有

材料強度試験 ( 曲げ試験 ) [1] 概要 実験 実習 Ⅰ の引張り試験に引続き, 曲げ試験による機械特性評価法を実施する. 材料力学で学ぶ梁 の曲げおよびたわみの基礎式の理解, 材料への理解を深めることが目的である. [2] 材料の変形抵抗変形抵抗は, 外力が付与された時の変形に対する各材料固有 材料強度試験 ( 曲げ試験 [] 概要 実験 実習 Ⅰ の引張り試験に引続き, 曲げ試験による機械特性評価法を実施する. 材料力学で学ぶ梁 の曲げおよびたわみの基礎式の理解, 材料への理解を深めることが目的である. [] 材料の変形抵抗変形抵抗は, 外力が付与された時の変形に対する各材料固有の抵抗値のことであり, 一般に素材の真応力 - 真塑性ひずみ曲線で表される. 多くの金属材料は加工硬化するため,

More information

以下 変数の上のドットは時間に関する微分を表わしている (ex. 2 dx d x x, x 2 dt dt ) 付録 E 非線形微分方程式の平衡点の安定性解析 E-1) 非線形方程式の線形近似特に言及してこなかったが これまでは線形微分方程式 ( x や x, x などがすべて 1 次で なおかつ

以下 変数の上のドットは時間に関する微分を表わしている (ex. 2 dx d x x, x 2 dt dt ) 付録 E 非線形微分方程式の平衡点の安定性解析 E-1) 非線形方程式の線形近似特に言及してこなかったが これまでは線形微分方程式 ( x や x, x などがすべて 1 次で なおかつ 以下 変数の上のドットは時間に関する微分を表わしている (e. d d, dt dt ) 付録 E 非線形微分方程式の平衡点の安定性解析 E-) 非線形方程式の線形近似特に言及してこなかったが これまでは線形微分方程式 ( や, などがすべて 次で なおかつそれらの係数が定数であるような微分方程式 ) に対して安定性の解析を行ってきた しかしながら 実際には非線形の微分方程式で記述される現象も多く存在する

More information

学習指導要領

学習指導要領 (1) 数と式 学習指導要領ア数と集合 ( ア ) 実数数を実数まで拡張する意義を理解し 簡単な無理数の四則計算をすること 千早高校学力スタンダード 自然数 整数 有理数 無理数の用語の意味を理解す る ( 例 ) 次の数の中から自然数 整数 有理 数 無理数に分類せよ 3 3,, 0.7, 3,,-, 4 (1) 自然数 () 整数 (3) 有理数 (4) 無理数 自然数 整数 有理数 無理数の包含関係など

More information

宇宙機工学 演習問題

宇宙機工学 演習問題 宇宙システム工学演習 重力傾度トルク関連. 図に示すように地球回りの円軌道上を周回する宇宙機の運動 を考察する 地球中心座標系を 系 { } 軌道面基準回転系を 系 { } 機体固定系を 系 { } とする 特に次の右手直交系 : 地心方向単位ベクトル 軌道面内 : 進行方向単位ベクトル 軌道面内 : 面外方向単位ベクトル 軌道面外 を取る 特に この { } Lol Horiotl frme と呼ぶ

More information

Microsoft Word - kojima.doc

Microsoft Word - kojima.doc 小径ボールエンドミルによる 3 次元曲面加工の高精度化 小島龍広 1), 扇谷保彦 2), 矢澤孝哲 1) 長崎大学工学部教育研究支援部 2) 長崎大学工学部機械システム工学講座 2) 1. 緒言金型加工では製品の高性能化や小型化に伴い, 複雑形状を高精度に効率よく加工する必要性が高まっている. 金型加工には, 従来, 放電加工機が用いられてきたが, マシニングセンタおよび性能の向上に伴い, 仕上げ加工までを小径ボールエンドミル加工で効率的に行うことが増えてきている.

More information

2016年度 筑波大・理系数学

2016年度 筑波大・理系数学 06 筑波大学 ( 理系 ) 前期日程問題 解答解説のページへ k を実数とする y 平面の曲線 C : y とC : y- + k+ -k が異なる共 有点 P, Q をもつとする ただし点 P, Q の 座標は正であるとする また, 原点を O とする () k のとりうる値の範囲を求めよ () k が () の範囲を動くとき, OPQ の重心 G の軌跡を求めよ () OPQ の面積を S とするとき,

More information

p tn tn したがって, 点 の 座標は p p tn tn tn また, 直線 l と直線 p の交点 の 座標は p p tn p tn よって, 点 の座標 (, ) は p p, tn tn と表され p 4p p 4p 4p tn tn tn より, 点 は放物線 4 p 上を動くこと

p tn tn したがって, 点 の 座標は p p tn tn tn また, 直線 l と直線 p の交点 の 座標は p p tn p tn よって, 点 の座標 (, ) は p p, tn tn と表され p 4p p 4p 4p tn tn tn より, 点 は放物線 4 p 上を動くこと 567_ 次曲線の三角関数による媒介変数表示 次曲線の三角関数による媒介変数表示 次曲線 ( 放物線 楕円 双曲線 ) の標準形の, についての方程式と, 三角関数による媒介変数表示は次のように対応している.. 放物線 () 4 p (, ) ( ptn, ptn ) (). 楕円. 双曲線 () () (, p p ), tn tn (, ) ( cos, sin ) (, ), tn cos (,

More information

二次関数 1 二次関数とは ともなって変化する 2 つの数 ( 変数 ) x, y があります x y つの変数 x, y が, 表のように変化するとき y は x の二次関数 といいます また,2 つの変数を式に表すと, 2 y x となりま

二次関数 1 二次関数とは ともなって変化する 2 つの数 ( 変数 ) x, y があります x y つの変数 x, y が, 表のように変化するとき y は x の二次関数 といいます また,2 つの変数を式に表すと, 2 y x となりま 二次関数 二次関数とは ともなって変化する つの数 ( 変数 ) x, y があります y 0 9 6 5 つの変数 x, y が, 表のように変化するとき y は x の二次関数 といいます また, つの変数を式に表すと, x となります < 二次関数の例 > x y 0 7 8 75 x ( 表の上の数 ) を 乗して 倍すると, y ( 表の下の数 ) になります x y 0 - -8-8 -

More information

DVIOUT-SS_Ma

DVIOUT-SS_Ma 第 章 微分方程式 ニュートンはリンゴが落ちるのを見て万有引力を発見した という有名な逸話があります 無重力の宇宙船の中ではリンゴは落ちないで静止していることを考えると 重力が働くと始め静止しているものが動き出して そのスピードはどんどん大きくなる つまり速度の変化が現れることがわかります 速度は一般に時間と共に変化します 速度の瞬間的変化の割合を加速度といい で定義しましょう 速度が変化する, つまり加速度がでなくなるためにはその原因があり

More information

平成 年 月 7 日 ( 土 第 75 回数学教育実践研究会アスティ 45 ビル F セミナールーム A 札幌医科大学 年 P ab, を正の定数とする 平面上において ( a, を中心とする円 Q 4 C と (, b を中心とする円 C が 原点 O で外接している また P を円 C 上の点と

平成 年 月 7 日 ( 土 第 75 回数学教育実践研究会アスティ 45 ビル F セミナールーム A 札幌医科大学 年 P ab, を正の定数とする 平面上において ( a, を中心とする円 Q 4 C と (, b を中心とする円 C が 原点 O で外接している また P を円 C 上の点と 平成 年 月 7 日 ( 土 第 75 回数学教育実践研究会アスティ 45 ビル F セミナールーム 微分積分の拡張 変数関数問題へのアプローチ 予選決勝優勝法からラグランジュ未定乗数法 松本睦郎 ( 札幌北高等学校 変数関数の最大値 最小値に関する問題には多様なアプローチ法がある 文字を固定した 予選決勝優勝法, 計算のみで解法する 文字消去法, 微分積分を利用した ラグランジュ未定乗数法 がある

More information

データ解析

データ解析 データ解析 ( 前期 ) 最小二乗法 向井厚志 005 年度テキスト 0 データ解析 - 最小二乗法 - 目次 第 回 Σ の計算 第 回ヒストグラム 第 3 回平均と標準偏差 6 第 回誤差の伝播 8 第 5 回正規分布 0 第 6 回最尤性原理 第 7 回正規分布の 分布の幅 第 8 回最小二乗法 6 第 9 回最小二乗法の練習 8 第 0 回最小二乗法の推定誤差 0 第 回推定誤差の計算 第

More information

代数 幾何 < ベクトル > 1 ベクトルの演算 和 差 実数倍については 文字の計算と同様 2 ベクトルの成分表示 平面ベクトル : a x e y e x, ) ( 1 y1 空間ベクトル : a x e y e z e x, y, ) ( 1 1 z1

代数 幾何 < ベクトル > 1 ベクトルの演算 和 差 実数倍については 文字の計算と同様 2 ベクトルの成分表示 平面ベクトル : a x e y e x, ) ( 1 y1 空間ベクトル : a x e y e z e x, y, ) ( 1 1 z1 代数 幾何 < ベクトル > ベクトルの演算 和 差 実数倍については 文字の計算と同様 ベクトルの成分表示 平面ベクトル :, 空間ベクトル : z,, z 成分での計算ができるようにすること ベクトルの内積 : os 平面ベクトル :,, 空間ベクトル :,,,, z z zz 4 ベクトルの大きさ 平面上 : 空間上 : z は 良く用いられる 5 m: に分ける点 : m m 図形への応用

More information

Microsoft Word - Chap17

Microsoft Word - Chap17 第 7 章化学反応に対する磁場効果における三重項機構 その 7.. 節の訂正 年 7 月 日. 節 章の9ページ の赤枠に記載した説明は間違いであった事に気付いた 以下に訂正する しかし.. 式は 結果的には正しいので安心して下さい 磁場 の存在下でのT 状態のハミルトニアン は ゼーマン項 と時間に依存するスピン-スピン相互作用の項 との和となる..=7.. g S = g S z = S z g

More information

第6章 実験モード解析

第6章 実験モード解析 第 6 章実験モード解析 6. 実験モード解析とは 6. 有限自由度系の実験モード解析 6.3 連続体の実験モード解析 6. 実験モード解析とは 実験モード解析とは加振実験によって測定された外力と応答を用いてモードパラメータ ( 固有振動数, モード減衰比, 正規固有モードなど ) を求める ( 同定する ) 方法である. 力計 試験体 変位計 / 加速度計 実験モード解析の概念 時間領域データを利用する方法

More information

試験 研究 仮設構造物の設計風速 Design wind speeds for temporary structures 西村宏昭 *1 1. はじめに仮設構造物は比較的短い期間だけに存在する構造物である これらの構造物は 通常の恒久建築物や構造物の設計風速を用いて耐風設計されると 安全ではあるが

試験 研究 仮設構造物の設計風速 Design wind speeds for temporary structures 西村宏昭 *1 1. はじめに仮設構造物は比較的短い期間だけに存在する構造物である これらの構造物は 通常の恒久建築物や構造物の設計風速を用いて耐風設計されると 安全ではあるが 試験 研究 仮設構造物の設計 Design wind speeds for temporary structures 西村宏昭 *. はじめに仮設構造物は比較的短い期間だけに存在する構造物である これらの構造物は 通常の恒久建築物や構造物の設計を用いて耐風設計されると 安全ではあるが 過剰な設計となることは明らかである 一般に 建築基準法では 建築物は50 の再現期間を想定した基準から計算される風荷重に対して安全であるように設計される

More information

<4D F736F F D E682568FCD CC82B982F192668BAD9378>

<4D F736F F D E682568FCD CC82B982F192668BAD9378> 7. 組み合わせ応力 7.7. 応力の座標変換載荷 ( 要素 の上方右側にずれている位置での載荷を想定 図 ( この場合正 ( この場合負 応力の座標変換の知識は なぜ必要か? 例 土の二つの基本的せん断変形モード : - 三軸圧縮変形 - 単純せん断変形 一面せん断変形両者でのせん断強度の関連を理解するためには 応力の座標変換を理解する必要がある 例 粘着力のない土 ( 代表例 乾燥した砂 のせん断破壊は

More information

機構学 平面機構の運動学

機構学 平面機構の運動学 問題 1 静止座標系 - 平面上を運動する節 b 上に2 定点,Bを考える. いま,2 点の座標は(0,0),B(50,0) である. 2 点間の距離は 50 mm, 点の速度が a 150 mm/s, 点 Bの速度の向きが150 である. 以下の問いに答えよ. (1) 点 Bの速度を求めよ. (2) 瞬間中心を求めよ. 節 b a (0,0) b 150 B(50,0) 問題 1(1) 解答 b

More information

技術者のための構造力学 2014/06/11 1. はじめに 資料 2 節点座標系による傾斜支持節点節点の処理 三好崇夫加藤久人 従来, マトリックス変位法に基づく骨組解析を紹介する教科書においては, 全体座標系に対して傾斜 した斜面上の支持条件を考慮する処理方法として, 一旦, 傾斜支持を無視した

技術者のための構造力学 2014/06/11 1. はじめに 資料 2 節点座標系による傾斜支持節点節点の処理 三好崇夫加藤久人 従来, マトリックス変位法に基づく骨組解析を紹介する教科書においては, 全体座標系に対して傾斜 した斜面上の支持条件を考慮する処理方法として, 一旦, 傾斜支持を無視した . はじめに 資料 節点座標系による傾斜支持節点節点の処理 三好崇夫加藤久人 従来, マトリックス変位法に基づく骨組解析を紹介する教科書においては, 全体座標系に対して傾斜 した斜面上の支持条件を考慮する処理方法として, 一旦, 傾斜支持を無視した全体座標系に関する構造 全体の剛性マトリックスを組み立てた後に, 傾斜支持する節点に関して対応する剛性成分を座標変換に よって傾斜方向に回転処理し, その後は通常の全体座標系に対して傾斜していない支持点に対するのと

More information

木村の物理小ネタ ケプラーの第 2 法則と角運動量保存則 A. 面積速度面積速度とは平面内に定点 O と動点 P があるとき, 定点 O と動点 P を結ぶ線分 OP( 動径 OP という) が単位時間に描く面積を 動点 P の定点 O に

木村の物理小ネタ   ケプラーの第 2 法則と角運動量保存則 A. 面積速度面積速度とは平面内に定点 O と動点 P があるとき, 定点 O と動点 P を結ぶ線分 OP( 動径 OP という) が単位時間に描く面積を 動点 P の定点 O に ケプラーの第 法則と角運動量保存則 A. 面積速度面積速度とは平面内に定点 O と動点 P があるとき, 定点 O と動点 P を結ぶ線分 OP( 動径 OP という が単位時間に描く面積を 動点 P の定点 O に関する面積速度の大きさ という 定点 O まわりを回る面積速度の導き方導き方 A ( x( + D, y( + D v ( q r ( A ( x (, y( 動点 P が xy 座標平面上を時刻

More information

1 次関数 1 次関数の式 1 次の表は, ろうそくを燃やした時間 x 分と残りのろうそくの長さ ycm の関係を表しています 次の問いに答えなさい x( 分 ) y(cm ) (1) 上の表のをうめなさい (2) ろうそくは,5 分間に何 cm 短くなっていく

1 次関数 1 次関数の式 1 次の表は, ろうそくを燃やした時間 x 分と残りのろうそくの長さ ycm の関係を表しています 次の問いに答えなさい x( 分 ) y(cm ) (1) 上の表のをうめなさい (2) ろうそくは,5 分間に何 cm 短くなっていく 次関数 次関数の式 次の表は, ろうそくを燃やした時間 分と残りのろうそくの長さ cm の関係を表しています 次の問いに答えなさい ( 分 ) 0 5 0 5 (cm ) 0 () 上の表のをうめなさい () ろうそくは,5 分間に何 cm 短くなっていくか () ろうそくは, 分間に何 cm の割合で短くなっていくか () ろうそくは, 分間に何 cm の割合で短くなっていくか (5) ろうそくの長さ

More information

スライド 1

スライド 1 第 3 章 鉄筋コンクリート工学の復習 鉄筋によるコンクリートの補強 ( 圧縮 ) 鉄筋で補強したコンクリート柱の圧縮を考えてみよう 鉄筋とコンクリートの付着は十分で, コンクリートと鉄筋は全く同じように動くものとする ( 平面保持の仮定 ) l Δl 長さの柱に荷重を載荷したときの縮み量をとする 鉄筋及びコンクリートの圧縮ひずみは同じ量なのでで表す = Δl l 鉄筋及びコンクリートの応力はそれぞれの弾性定数を用いて次式で与えられる

More information

1

1 半剛節が部材上の任意点にある部材剛性方程式 米子高専 川端康洋 稲田祐二. ピン半剛節を有する部材の解析の歴史 ()940 二見秀雄材の途中にピン接合点を有するラーメン材の算式とその応用建築学会論文集 つのピン節を含む部材の撓角法基本式と荷重項ピン節を含む部材の撓角法基本式と荷重項が求められている 以降 固定モーメント法や異形ラーメンの解法への応用が研究された 戦後には 関連する論文は見当たらない

More information

多変量解析 ~ 重回帰分析 ~ 2006 年 4 月 21 日 ( 金 ) 南慶典

多変量解析 ~ 重回帰分析 ~ 2006 年 4 月 21 日 ( 金 ) 南慶典 多変量解析 ~ 重回帰分析 ~ 2006 年 4 月 21 日 ( 金 ) 南慶典 重回帰分析とは? 重回帰分析とは複数の説明変数から目的変数との関係性を予測 評価説明変数 ( 数量データ ) は目的変数を説明するのに有効であるか得られた関係性より未知のデータの妥当性を判断する これを重回帰分析という つまり どんなことをするのか? 1 最小 2 乗法により重回帰モデルを想定 2 自由度調整済寄与率を求め

More information

Microsoft Word - 2_0421

Microsoft Word - 2_0421 電気工学講義資料 直流回路計算の基礎 ( オームの法則 抵抗の直並列接続 キルヒホッフの法則 テブナンの定理 ) オームの法則 ( 復習 ) 図 に示すような物体に電圧 V (V) の直流電源を接続すると物体には電流が流れる 物体を流れる電流 (A) は 物体に加えられる電圧の大きさに比例し 次式のように表すことができる V () これをオームの法則 ( 実験式 ) といい このときの は比例定数であり

More information

軸受内部すきまと予圧 δeff =δo (δf +δt ) (8.1) δeff: 運転すきま mm δo: 軸受内部すきま mm δf : しめしろによる内部すきまの減少量 mm δt: 内輪と外輪の温度差による内部すきまの減少量 mm (1) しめしろによる内部すきまの減少量しめしろを与えて軸受

軸受内部すきまと予圧 δeff =δo (δf +δt ) (8.1) δeff: 運転すきま mm δo: 軸受内部すきま mm δf : しめしろによる内部すきまの減少量 mm δt: 内輪と外輪の温度差による内部すきまの減少量 mm (1) しめしろによる内部すきまの減少量しめしろを与えて軸受 軸受内部すきまと予圧 8. 軸受内部すきまと予圧 8. 1 軸受内部すきま軸受内部すきまとは, 軸又はハウジングに取り付ける前の状態で, 図 8.1に示すように内輪又は外輪のいずれかを固定して, 固定されていない軌道輪をラジアル方向又はアキシアル方向に移動させたときの軌道輪の移動量をいう 移動させる方向によって, それぞれラジアル内部すきま又はアキシアル内部すきまと呼ぶ 軸受内部すきまを測定する場合は,

More information

3. 試験体および実験条件 試験体は丸孔千鳥配置 (6 配置 ) のステンレス製パンチングメタルであり, 寸法は 70mm 70mm である 実験条件は, 孔径および板厚をパラメータとし ( 開口率は一定 ), および実験風速を変化させて計測する ( 表 -1, 図 -4, 図 -) パンチングメタ

3. 試験体および実験条件 試験体は丸孔千鳥配置 (6 配置 ) のステンレス製パンチングメタルであり, 寸法は 70mm 70mm である 実験条件は, 孔径および板厚をパラメータとし ( 開口率は一定 ), および実験風速を変化させて計測する ( 表 -1, 図 -4, 図 -) パンチングメタ パンチングメタルから発生する風騒音に関する研究 孔径および板厚による影響 吉川優 *1 浅見豊 *1 田端淳 *2 *2 冨高隆 Keywords : perforated metal, low noise wind tunnel test, aerodynamic noise パンチングメタル, 低騒音風洞実験, 風騒音 1. はじめにバルコニー手摺や目隠しパネル, または化粧部材としてパンチングメタルが広く使用されている

More information

<4D F736F F D208D5C91A297CD8A7793FC96E591E631318FCD2E646F63>

<4D F736F F D208D5C91A297CD8A7793FC96E591E631318FCD2E646F63> 11-1 第 11 章不静定梁のたわみ ポイント : 基本的な不静定梁のたわみ 梁部材の断面力とたわみ 本章では 不静定構造物として 最も単純でしかも最も大切な両端固定梁の応力解析を行う ここでは 梁の微分方程式を用いて解くわけであるが 前章とは異なり 不静定構造物であるため力の釣合から先に断面力を決定することができない そのため 梁のたわみ曲線と同時に断面力を求めることになる この両端固定梁のたわみ曲線や断面力分布は

More information

Microsoft PowerPoint - ce07-04e.ppt

Microsoft PowerPoint - ce07-04e.ppt 制御工学 4 5. ボード線図 キーワード : ボード線図, ゲイン曲線, 曲線 周波数 に対し 5. ボード線図 j の変化を表すゲイン曲線 j の変化を表す曲線 5.4 ボード線図の性質 キーワード : ボード線図の利点 6 横軸 : 周波数 を対数目盛り 縦軸 : ゲイン曲線 lg j 曲線 ( 度 ( デカード (dec デシベル値 ( 絶対値 j. デシベル値 6 4 7 積分系 j j

More information

Xamテスト作成用テンプレート

Xamテスト作成用テンプレート 電場と電位 00 年度本試験物理 IB 第 5 問 A A 図 のように,x 軸上の原点に電気量 Q の正の点電荷を, また, x d Q の位置に電気量の正の点電荷を固定した 問 図 の x 軸を含む平面内の等電位線はどのようになるか 最も適当なものを, 次の~のうちから一つ選べ ただし, 図中の左の黒丸 Q は電気量 Q の点電荷の位置を示し, 右の黒丸は電気量の点電荷の 位置を示す 電場と電位

More information

<4D F736F F F696E74202D20836F CC8A C58B858B4F93B982A882E682D1978E89BA814091B28BC68CA48B E >

<4D F736F F F696E74202D20836F CC8A C58B858B4F93B982A882E682D1978E89BA814091B28BC68CA48B E > バットの角度 打球軌道および落下地点の関係 T999 和田真迪 担当教員 飯田晋司 目次 1. はじめに. ボールとバットの衝突 -1 座標系 -ボールとバットの衝突の前後でのボールの速度 3. ボールの軌道の計算 4. おわりに参考文献 はじめに この研究テーマにした理由は 好きな野球での小さい頃からの疑問であるバッテングについて 角度が変わればどう打球に変化が起こるのかが大学で学んだ物理と数学んだ物理と数学を使って判明できると思ったから

More information

大分工業高等専門学校紀要第 46 号 ( 平成 1 年 11 月 ) 表. 切削条件 切削条件 (1) 切粉挙動撮影 () 切削抵抗測定 ホブ諸元 超硬合金 ( 刃数 =15, モジュール m=1.75, 高速度鋼 ( 刃数 =1, モジュール m=1.75, 外形 D=49mm, 進み角 1, 圧

大分工業高等専門学校紀要第 46 号 ( 平成 1 年 11 月 ) 表. 切削条件 切削条件 (1) 切粉挙動撮影 () 切削抵抗測定 ホブ諸元 超硬合金 ( 刃数 =15, モジュール m=1.75, 高速度鋼 ( 刃数 =1, モジュール m=1.75, 外形 D=49mm, 進み角 1, 圧 大分工業高等専門学校紀要第 46 号 ( 平成 1 年 11 月 ) 歯形形状と切りくずかみ込み状態 安部達朗 1 福永圭悟 1 大分高専機械 環境システム工学専攻, 機械工学科 ドライホブ切りは生産コスト低減や環境保護などの面から注目されている加工方法である. しかし, 切粉のワークへのかみこみによる歯車精度悪化の品質低下が課題とされている. そこで, 歯車歯形形状を数値的に解析し, ホブ切り時の理論的な切粉生成状況を明らかにした.

More information

Microsoft Word - 博士論文概要.docx

Microsoft Word - 博士論文概要.docx [ 博士論文概要 ] 平成 25 年度 金多賢 筑波大学大学院人間総合科学研究科 感性認知脳科学専攻 1. 背景と目的映像メディアは, 情報伝達における効果的なメディアの一つでありながら, 容易に感情喚起が可能な媒体である. 誰でも簡単に映像を配信できるメディア社会への変化にともない, 見る人の状態が配慮されていない映像が氾濫することで見る人の不快な感情を生起させる問題が生じている. したがって,

More information

周期時系列の統計解析 (3) 移動平均とフーリエ変換 nino 2017 年 12 月 18 日 移動平均は, 周期時系列における特定の周期成分の消去や不規則変動 ( ノイズ ) の低減に汎用されている統計手法である. ここでは, 周期時系列をコサイン関数で近似し, その移動平均により周期成分の振幅

周期時系列の統計解析 (3) 移動平均とフーリエ変換 nino 2017 年 12 月 18 日 移動平均は, 周期時系列における特定の周期成分の消去や不規則変動 ( ノイズ ) の低減に汎用されている統計手法である. ここでは, 周期時系列をコサイン関数で近似し, その移動平均により周期成分の振幅 周期時系列の統計解析 3 移動平均とフーリエ変換 io 07 年 月 8 日 移動平均は, 周期時系列における特定の周期成分の消去や不規則変動 ノイズ の低減に汎用されている統計手法である. ここでは, 周期時系列をコサイン関数で近似し, その移動平均により周期成分のがどのように変化するのか等について検討する. また, 気温の実測値に移動平均を適用した結果についてフーリエ変換も併用して考察する. 単純移動平均の計算式移動平均には,

More information