1 Groebner hara/

Size: px
Start display at page:

Download "1 Groebner hara/"

Transcription

1 1 Groebner sinara@blade.nagaokaut.ac.jp hara/

2

3 Groebner Groebner URL

4

5 ( ) R 2 + : R R R, (a, b) a + b : R R R, (a, b) a b 2 0, 1 R (R, +,, 0, 1) (1) a, b, c R (a + b) + c = a + (b + c). (2) a, b R a + b = b + a. (3) a R a + 0 = a, 0 + a = a. (4) a R b R a + b = b + a = 0. (5) a, b, c R (a b) c = a (b c). (6) a R a 1 = a, 1 a = a. (7) a, b, c R a (b + c) = a b + a c, (a + b) c = a c + b c. (8) a, b R a b = b a. (9) a R a 0 b R a b = b a = 1. 1 (1) +, R (2) 0, 1 R (3) a b ab (4) 1.1 (4) b a a (5) a + ( b) a b (6) 1.1 (9) b a a 1

6 2 1 1 (7) a b 1 a/b (1) (2) (R, +,, 0, 1) R 1.2 ( ) R (1) R (2) R (3) a R (4) a R (5) a 0 = 0. (6) a ( b) = (a b). 1 ( ) (1) (Z, +,, 0, 1). (2) (Q, +,, 0, 1). (3) (R, +,, 0, 1). (4) (C, +,, 0, 1). (5) (Z[ d], +,, 0, 1) d (6) (k[x 1, x 2,, x n ], +,, 0, 1). k (7) (M n (k), +,, O, E). (8) (D n (k), +,, O, E). (9) A 2 = {a, b} (10) A 4 = {a, b, c, d} + a b a a b b b a a b a a a b a b + a b c d a a b c d b b c d a c c d a b d d a b c 0 = a, 1 = b a b c d a a a a a b a b c d c a c a c d a d c b 0 = a, 1 = b k Q, R, C {a, b, c} : (a, b, c) : x : x x : x P = Q : P Q P Q : P Q P Q : P Q P Q : P Q 1.3 ( ) f : X Y (1) y Y x Xf(x) = y f (2) x, x X(x x f(x) f(x )) f (3) f f

7 ( ) R, S f : R S f R S (1) a, b R f(a + b) = f(a) + f(b) (2) a, b R f(a b) = f(a) f(b) (3) f(1) = 1 f f R S R S R S R = S 1.5 f : R S (1) f(0) = 0. (2) f( a) = f(a). (3) f(a 1 ) = f(a) 1, (a 1 ). (4) f f 1 2 (1) R i : R R, x x (2) f : A 2 A 4, f(a) = a, f(b) = c (3) g : A 4 A 2, g(a) = a, g(b) = b, g(c) = a, g(d) = b 1.6 ( ) (R, +,, 0, 1) S +,, 0, 1 S R j : S R, x x 3 (1) Z Q (2) Q R (3) R C (4) D n (k) M n (k) ( ) R I I R 4 (1) x, y I x + y I. (2) x R y I x y I. (1) R {0} R (2) nz = {n m m Z} Z (3) A 4 I = {a, c} (4) R = k[x] x I = <x 2 + 1> (5) R S R R = S (6) R 1.8 S R <S> = {x R s 1, s 2,, s n S r 1, r 2,, r n R x = r 1 s 1 + r 2 s r n s n }

8 4 1 S S = {s 1, s 2,, s k } <S> <s 1, s 2,, s k > Rs 1 + Rs Rs k <a> = Ra 2 < S > R 5 Z <n> = nz 1.9 ( ) R I a R [a] = {x R x a I} a ( ) R/I = {[a] a R} 3 [a] = {a + x R x I} a + I 6 ( ) (1) Z/2Z = {[0], [1]}, [0] = {, 2, 0, 2, 4, }, [1] = {, 1, 1, 3, 5, }. (2) Z/4Z = {[0], [1], [2], [3]}, [0] = {, 4, 0, 4, 8, }. (3) k[x]/<x 2 + 1>, [0] = {a(x 2 + 1) k[x] a k} ( ) (1) a b I. (2) [a] [b] φ. (3) [a] = [b]. (4) a [b] (1) x x R/I a x a x (2) a 1, a 2, R [a 1 ] [a 2 ] = R [a 1 ], [a 2 ], {a 1, a 2, } R/I (3) π : R R/I, a [a] 7 ( ) (1) {0, 1} Z/2Z (2) {0, 1, 2, 3} Z/4Z (3) {a + bx k[x] a k, b k} k[x]/<x 2 + 1> 1.12 ( ) R I R R/I +, 0, 1 ( ) (1) x + y = [a + b] a x, b y (2) x y = [a b] a x, b y (3) 0 = [0] (4) 1 = [1] 1.13 (R/I, +,, 0, 1) π : R R/I, a [a] 8 ( ) (1) Z/2Z = {[0], [1]}, + [0] [1] [0] [0] [1] [1] [1] [0] [0] [1] [0] [0] [0] [1] [0] [1]

9 1 5 + [0] [1] [2] [3] [0] [1] [2] [3] [0] [0] [1] [2] [3] (2) Z/4Z = {[0], [1], [2], [3]}, [1] [1] [2] [3] [0] [2] [2] [3] [0] [1] [3] [3] [0] [1] [2] (3) R[x]/<x 2 + 1> = {a + bi a, b R}, i = [x]. 0 = 0 + 0i, 1 = 1 + 0i, (a + bi) + (c + di) = (a + c) + (b + d)i, (a + bi) (c + di) = (ac bd) + (ad + bc)i.. [0] [0] [0] [0] [0] [1] [0] [1] [2] [3] [2] [0] [2] [0] [2] [3] [0] [3] [2] [1] (, ) f : R S (1) Imf = {f(x) S x R} f (image) (2) Kerf = {x R f(x) = 0} f (kernel) 1.15 (1) Imf S (2) Kerf R 1.16 ( ) f : R S f : R/Kerf Imf, [a] f(a). [ ] (1) well-defined (2) (3) (4) 1.17 (1) Z/2Z = A 2. (2) Z/4Z = A 4. (3) R[x]/<x 2 + 1> = C ( ) R 1.19 a, b R a b = 0 = a = 0 b = ( ) R I R a, b R a b I = a I b I I R R/I I 9 (1) R = Z, I = 3Z I (2) R = Z, I = 4Z I 1.22 ( ) R I R I J R J J = I J = R

10 R/I I [ ] R/I {0} R I J I R a J I a I [a] 0 R/I [a] [b] [a][b] = [1] [ab 1] = 0 ab 1 I J ab J 1 J J = R I I R R/I [a] R/I, [a] 0 a I <a, I> = R r R s I ra + s = 1 [r][a] = [1] = 1 [r] [a] 10 ( ) (1) 3Z Z Z/3Z (2) R[x]/<x 2 + 1> = C <x 2 + 1> R[x] 1.24 p Z/pZ F p p (, ) R R 4 (1) R R = R {0} (2) R (R[x]) = R k k = Q, R, C 2.1 ( ) k[x] = {a m x m + a m 1 x m a 0 i a i k, m N} (1 ) 5 N = Z 0 = {0 }. 2.2 f = a m x m + a m 1 x m a 0, (a m 0) deg(f) = m (degree) LC(f) = a m (leading coefficient) LM(f) = x m (leading monomial) LT(f) = a m x m (leading term) RT(f) = f LT(f) (rest term) 2.3 f, g 0 (1) deg(fg) = deg(f) + deg(g). (2) f + g 0 deg(f + g) max{deg(f), deg(g)}. (3) f + g 0 deg(f) deg(g) deg(f + g) = max{deg(f), deg(g)}.

11 ( ) f, g k[x], g 0 q k[x] f = g q g f g f q = f/g f g 2.5 f, g 0 (1) deg(g) deg(f) LT(g) LT(f). (2) deg(g) deg(f), h = f LT(f) g h = 0 (h 0 deg(f) > deg(h)). LT(g) 2.6 ( ) f, g k[x], g 0 f g (1) f = g q + r, q, r k[x]. (2) r = 0 (r 0 deg r < deg g). Input : f, g Output : q, r q := 0; r := f WHILE r!= 0 AND LT(g) LT(r) DO q := q + LT(r) / LT(g) r := r - ( LT(r) / LT(g) ) * g (1), (2) q, r 11 f = x 3 + 2x 2 + x + 1 g = 2x + 1 1/2x^2 + 3/4x + 1/ x + 1 x^3 + 2x^2 + x + 1 x^3 + 1/2x^ /2x^2 + x + 1 3/2x^2 + 3/4x /4x + 1 1/4x + 1/ / ( ) q, r q f div g quotient(f, g) r f mod g ramainder(f, g) [ ][ 2.6] 2.8 g f f mod g = 0. [ ] ( ) (1) f mod (x a) = f(a). (2) (x a) f f(a) = ( ) f(x) = 0 deg f 2.11 (1 ) k[x]

12 8 1 [ ] I k[x] {0} I {0} deg h I = <h> <h> I I <h> f I r = f mod h r I r 0 deg r < deg h deg h r = 0 h f f <h> I <h> 2.12 (, PID) PID (Principal Ideal Domain) 2.3 GCD 2.13 f, g k[x] f, g GCD(f, g) (gratest common devisor) h (1) h f, h g. (2) p (p f, p g p h) ( ) f, g k[x] (1) GCD(f, g) k[x] (2) <f, g> = <GCD(f, g)>. (3) GCD(f, g) Input : f, g Output : h h := f s := g WHILE s!= 0 DO r := remainder(h, s) h := s s := r [ ] (1), (2): <f, g> <f, g> = <h> h h f g GCD f, g <h> h f, h g p f, p g <f, g> <p> p h h, h GCD h h h h h h (3): 12 (1) GCD(x 4 1, x 6 1) = x 2 1. (2) GCD(x 5 + 2x 3 + x, x 4 + x 2 x) = x ( ) f, g k[x] h f h g h GCD(f, g) deg GCD(f, g) = f, g, h k[x] f g h f g f h [ ] 1 = af + bg a, b k[x] f gh f bgh = (1 af)h = h afh fk = h afh k f (k + ah) = h f h

13 ( ) f, g k[x] af + bg = GCD(f, g) a, b deg a < deg g deg GCD(f, g), deg b < deg f deg GCD(f, g). a, b : Input : f, g (!= 0) Output : h, a, b h, s := f, g a, b, c, d = 1, 0, 0, 1 WHILE s!= 0 DO q := quotient(h, s) r := h - qs r0 := a - qc r1 := b - qd h, s := s, r a, c := c, r0 b, d := d, r1 [ ] 13 (1) f = x 4 x 2, g = x 3 1 GCD(f, g) = x 1 = (x + 1)f + ( x 2 x 1)g. x x^3-1 x^4-x^2 x^4 - x -x x^2+x x^3-1 x^3-x^ x^2-1 x^2 - x -x x - 1 -x^2 + x -x^2 + x a: x b: x x -1 x -x x 1 -x -1 x^2 + x x + 1 -x^2-x-1 (2) f = x 4 1, g = x 6 1 GCD(f, g) = x 2 1 = x 2 f + 1 g. (3) f = x 5 + 2x 3, g = x 4 + x 2 x GCD(f, g) = x = x 2 f + ( x 3 x 1) g f 1, f 2,, f s GCD h

14 10 1 (1) h f 1, f 2,, f s. (2) p f 1, f 2,, f s p h. h GCD(f 1, f 2,, f s ) 2.19 s 0, f 1, f 2,, f s k[x] (1) GCD(f 1, f 2,, f s ) (2) <GCD(f 1, f 2,, f s )> = <f 1, f 2,, f s >. (3) GCD(f 1, f 2,, f s ) = GCD(f 1, GCD(f 2,, f s )). (4) GCD(f 1, f 2,, f s ) [ ] (1), (2): k[x] <f 1, f 2,, f s > h 2.14 (3), (4): h = GCD(f 2,, f s ) (2) <h> = <f 2,, f s > <f 1, h> = <f 1, <h>> = <f 1, <f 2,, f s >> = <f 1, f 2,, f s > GCD GCD(f 1, h) = GCD(f 1, f 2,, f s ) GCD(f 1, f 2,, f s ) 14 GCD(x 3 3x + 2, x 4 1, x 6 1) = GCD(x 3 3x + 2, x 2 1) = x ( ) x 3 + 4x 2 + 3x 1 <x 3 3x + 2, x 4 1, x 6 1> x 3 + 4x 2 + 3x 1 x ( ) a R a 1 a = bc, (b, c R) b c a 16 Z 2.21 R = Z k[x] (k ) p R R/<p> [ ] [f] R/<p>, [f] 0 p f GCD(f, p) = 1 h = GCD(f, p) h p, h f h p h = 1 h = p h = p p f h = 1 af + bp = 1 a, b R [a][f] = 1 [f] [a] 17 F 7 = Z/7Z ( 2)3 = = 2 = 5 18 Q[x]/<x 2 2> x 2 + x + 1 (x 2)(x 2 2) + ( x + 3)(x 2 + x + 1) = 7. [x 2 + x + 1] 1 = 1 7 [ x + 3] 1 2 = ( 2 + 3) ( ) p R p (ab), (a, b R) p a p b p 2.23 p <p> 2.24

15 3 11 [ ] p p = ab p a p b p a p = au u R p = pub p(1 ub) = 0 ub = 1 b p b 2.25 P ID [ ] p p ab p a GCD(p, a) = 1 k, l pk + la = 1 pkb + lab = b p ab p p b p b p 6 k[x] k[x 1, x 2,, x n ] 19 Z[ 5] = {a+b 5 a, b Z} 2, 3, 1+ 5, = (1+ 5)(1 5) Z[ 5] P ID 3 3 ( ) X Y = {(x, y) x X, y Y } X Y Z = {(x, y, z) x X, y Y, z Z} (X Y ) Z = X (Y Z) = X Y Z X n = {(x 1, x 2,, x n ) x i X} f : X n Y, x = (x 1, x 2,, x n ) f(x) = f(x 1, x 2,, x n ) 3.1 ( ) n k f 1, f 2,, f s k[x 1, x 2,, x n ] V(f 1, f 2,, f s ) = {a k n f i (a) = 0 (1 i s)} f 1, f 2,, f s (1) V(x 2 + y 2 1) (2) V(xy x 3 + 1) (3) V(y 2 x 3 )

16 (4) V(y 2 x 3 x 2 ) (5) V(z x 2 y 2 ) (6) V(z 2 x 2 y 2 ) (7) V(x 2 y 2 z 2 + z 3 ). fi (8) V(x + y + z, x z, 2x + w). (9) V(xz, yz) (10) V(y x 2, z x 3 ) V, W k n V W, V W [ ] V = V(f 1, f 2 ), W = V(g 1, g 2 ) V W = V(f 1, f 2, g 1, g 2 ), V W = V(f 1 g 1, f 1 g 2, f 2 g 1, f 2 g 2 ) (1) V(f 1, f 2,, f s ) φ 1 (2) 1 (3) 3.3 (, ) R I S S I

17 I k[x 1, x 2,, x n ] I V(I) = {a k n f(a) = 0 ( f I)}. 3.5 V(<f 1, f 2,, f s >) = V(f 1, f 2,, f s ). k n [ ] f i <f 1, f 2,, f s > a V(<f 1, f 2,, f s >) a V(f 1, f 2,, f s ) V(<f 1, f 2,, f s >) V(f 1, f 2,, f s ) i f i (a) = 0 f = c i f i <f 1, f 2,, f s > f(a) = ( c i f i )(a) = c i f i (a) = 0 V(f 1, f 2,, f s ) V(<f 1, f 2,, f s >) 21 <2x 2 +3y 2 11, x 2 y 2 3> = <x 2 4, y 2 1> V(2x 2 +3y 2 11, x 2 y 2 3) = V(x 2 4, y 2 1) = {(±2, ±1)} 3.6 S k n I(S) = {f k[x 1, x 2,, x n ] f(a) = 0 ( a S)}. S 3.7 I(S) k[x 1, x 2,, x n ] [ ] 22 (1) k 2 I({(0, 0)}) = <x, y> (2) k n I(k n ) = {0} k I(k n ) = {0} 3.12 k = F 2 I(k) = <x(x 1)> (3) I(φ) = k[x 1, x 2,, x n ]. V : I : { } { }. { } { }. 3.8 (V I ) (1) V W I(V ) I(W ) V, W k n (2) I J V(I) V(J) I, J k[x 1, x 2,, x n ] (3) V V(I) I(V ) I V k n I k[x 1, x 2,, x n ] [ ] (1), (2) (3) V V(I) a V f I f(a) = 0 f I a V f(a) = 0 I(V ) I. 3.9 I k[x 1, x 2,, x n ] I I(V(I)). [ ] V(I) V(I) 3.8(3) V = V(I) I(V(I)) I 7 I = I(V(I))

18 14 1 R 3 I = <y x 2, z x 3 > I(V(I)) I f I(V(I)) = I(V(y x 2, z x 2 )) h 1, h 2 R[x, y, z], r R[x] f = h 1 (y x 2 ) + h 2 (z x 3 ) + r x α y β z γ = x α (x 2 + (y x 2 )) β (x 3 + (z x 3 )) γ ) V(I) (x, y, z) = (t, t 2, t 3 ) t R r(t) = 0 ( t R) r = 0 : R 2 I = <x 2, y 2 > V(I) = {(0, 0)} I(V(I)) = I({(0, 0)}) = <x, y> k 1 I(V(I)) = I I = {f k n Z 0 f n I} 3.10 V k n V = V(I(V )). [ ] V V(I(V )) : I(V ) I(V ) 3.8(3) I = I(V ) V V(I(V )) V V(I(V )) : V V = V(I) I 3.9 I I(V(I)) 3.8(2) V(I) V(I(V(I))) V )) 3.11 V, W (1) V W I(V ) I(W ). (2) V = W I(V ) = I(W ). (3) I : { } { } [ ] (1) ( ) 3.8(1) ( ) I(V ) I(W ) V 3.8(2) V(I(V )) V(I(W )) V, W 3.10 V W (2) (1) (3) (2) 3.12 k I(k n ) = {0} [ ] n = 1 : a k f(a) = 0 f = x a f = 0 n = t OK n = t + 1 x = (x 1, x 2,, x t ), y = x t+1 f I(k t+1 ) f = n f n(x)y n, f n k[x 1, x 2,, x n ] a = (a 1, a 2,, a t ) k n F (y) = n f n(a)y n k[y] b k F (b) = 0 1 F = 0 n f n (a) = 0 a n = t f n = 0 f = 0 f <f 1, f 2,, f s > I I(V(I))

19 15 2 Groebner 2 A, B AB = E BA = E AB = E B = A 1 BA = A 1 A = E ( ) ( ) a b e f A =, B = c d g h ( ) ( ) ae + bg 1 af + bh ae + cf 1 be + df AB E = = 0 BA E = = 0 ce + dg cf + dh 1 ag + ch bg + dh 1 : require "algebra" P = MPolynomial(Rational) a,b,c,d,e,f,g,h = P.vars("abcdefgh") M = SquareMatrix(P, 2) A, B = M[[a,b],[c,d]], M[[e,f],[g,h]] C, D = A*B - 1, B*A - 1 F = C.flatten cb = Groebner.basis_coeff(F) puts "F = #{F.inspect}" D.each do row row.each do g q, r = g.div_cg(f, cb) puts "#{g} = #{q.inspect} * F" if r.zero? end end F = [ae + bg - 1, af + bh, ce + dg, cf + dh - 1] ae + cf - 1 = [dh, -dg, af, -ae + 1] * F be + df = [-df, de, bf, -be] * F ag + ch = [-ch, cg, ah, -ag] * F bg + dh - 1 = [-dh + 1, dg, -af, ae] * F

20 16 2 Groebner ae + cf 1 = dh (ae + bg 1) dg (af + bh) + af (ce + dg) + ( ae + 1) (cf + dh 1) be + df = df (ae + bg 1) + de (af + bh) + bf (ce + dg) be (cf + dh 1) ag + ch = ch (ae + bg 1) + cg (af + bh) + ah (ce + dg) ag (cf + dh 1) bg + dh 1 = ( dh + 1) (ae + bg 1) + dg (af + bh) af (ce + dg) + ae (cf + dh 1) AB = E BA = E ( ) X (X, ) (1) x x. (2) x y, y z x z. (3) x y, y x x = y. x, y, z X (4) x, y X x y y x 23 (1) N = Z 0 = {0 } (2) N x y y x 1.2 ( ) X α β α β 24 (1) N {0} x y y x (1) x > y x y x y (2) x y y x (3) x < y x y x y

21 (N n ) α = (α 1, α 2,, α n ), β = (β 1, β 2,, β n ) N n α β i α i β i N n 8 (N n, ) n ( ) 2 (X, ), (Y, ) (X Y, ) : (x 1, y 1 ) (x 2, y 2 ) x 1 x 2 y 1 y N n N N n = N n 1 N 2 N n 2.1 Dikson 2.1 ( ) (X, ) A A X 25 {n N n 1} N a A x X(x a x A). 2.2 ( ) S X (1) X A S A a A s S a s. S A S A (2) X S <S> = {x X s S x s} S S = {s 1, s 2,, s k } <S> <s 1, s 2,, s k > (3) X A A 2.3 (1) <S> X (2) S <S> = S (3) S A A <S> [ ]

22 18 2 Groebner 2.4 (Dickson ) (X, ) X X Dickson Dickson (1) N N Dickson (2) N 23 (2) N Dickson 2.5 (Dickson ) (X, ) 3 (1) X Dickson (2) X S = (x 1, x 2, ) (3) X S = (x 1, x 2, ) i, j i < j x i x j [ ] (1) (2): S S S S S S i 1 S S(k) = {x i S k < i x i1 x k x i } S(i 1 ) S(i 1 ) S(i 2 ) x i3, x i4, x i1 x i2 x i3 x i4 (2) (3): x i2 (3) (1): Dickson X A x 1 A {x 1 } A A x 2 {x 1, x 2 } A x 2 x 3 A x 1 x 3 x 2 x 3 x n x 1 x n, x 2 x n,, x n 1 x n S = (x 1, x 2, ) (3) x X Dickson A 1 A 2 A 3 X N n N A n = A N [ ] X Dickson i A i F i A i F i A i i n F A n n X Dickson A 1 = {} A 1 A 2 A 3 A k X A k x X A k A k+1 = <A k {x}> A k A k+1 A n, n (X, ), (Y, ) Dickson (X Y, ) Dickson [ ] (x 1, y 1 ), (x 2, y 2 ), X Y X Dickson 2.5 (2) 1, 2, A {x i i A} Y Dickson 2.5 (3) A i, j (i < j) y i y j (x i, y i ) (x j, y j ) 2.5 (3) X Y Dickson 2.8 (N n ) N n Dickson N n <A> A A <A> = <A > [ ] n = 1 N Dickson n = k Dickson 2.7 N k+1 = N k N Dickson n N n Dickson

23 2 19 A A A <A > 2.3 <A> <<A >> = <A > A A <A> = <A > (, ) (X, ) A a A (1) x A (x a) a A (2) x A (x < a ) a A (N 2, ) A = {(0, 1), (1, 0)} a = (0, 1) 2.10 ( ) (X, ) (X, ) 13 Dickson 28 (1) (N, ) (2) (N n, ) n 2 (3) (Z, ) (4) (Q 0, ) 2.3 Noether ( ) Dickson Noether 2.11 (Noether ) (X, ) S S Noether Nethoer 2.12 (X, ) Noether X x 1 > x 2 > [ ] ( X A x 1 A A x 1 x 1 x 2 A x 1 > x 2 > x 3 > A 2.13 Dicskon Noether [ ] 2.12 Noether Dickson 29 Noether Dickson X x, y X x > y Noether Dickson 2.14 Noether Dickson

24 20 2 Groebner [ ] Dickson (X, ), (Y, ) Noether (X Y, ) Noether [ ] N n α = (α 1, α 2,, α n ), β = (β 1, β 2,, β n ) N n α + β = (α 1 + β 1, α 2 + β 2,, α n + β n ) 3.1 ( ) (N n, ) + α β γ N n α + γ β + γ 3.2 (N n, ) + (1) (2) (3) α N n α 0. [ ] (1) (2): A N n A A A A α 0 α A α A α α α α α 0 α 0 A (2) (3): α < 0 α α > α + α > α + α + α > (3) (1): α β α β N n α β 0 β α β 3.3 ( ) N n (1) (2) N n (3) N n [ ] 3.2

25 N n 3.5 (, lex, lexcographic order, > lex ) α = (α 1, α 2,, α n ), β = (β 1, β 2,, β n ) α > lex β α i, β i α i, β i α i > β i. 3.6 lex [ ] 4 α = (α 1, α 2,, α n ) α = α i 3.7 (, grlex, graded lexcographic order, > grlex ) α > grlex β ( α > β ) ( α = β α > lex β). 3.8 grlex [ ] 3.9 (, grevlex, graded reverse lexcographic order, > grevlex ) α = (α 1, α 2,, α n ), β = (β 1, β 2,, β n ) α > grevlex β ( α > β ) ( α = β α i, β i α i, β i α i < β i ) grevlex [ ] 30 {(0, 0, 3), (2, 0, 2), (1, 2, 1)} lex grlex grevlex (3, 0, 0) (2, 0, 2) (1, 2, 1) (2, 0, 2) (1, 2, 1) (2, 0, 2) (1, 2, 1) (3, 0, 0) (3, 0, 0) 14 N 2 grlex grevlex ( ) α = (α 1, α 2,, α n ) x α α = x 1 α2 α 1 x 2 x n n k[x 1, x 2,, x n ] 15 x α x β α β ( ) ( ) N n α = (α 1, α 2,, α n ), β = (β 1, β 2,, β n ) N n x α x β x α x β α β N n

26 22 2 Groebner N n ( ) k[x 1, x 2,, x n ] (1) x α x β x α x β (2) (3) x α x β x α x γ x β x γ 31 5x 3 + 7x 2 z 2 + 4xy 2 z + 4z 2 (lex) = 7x 2 z 2 + 4xy 2 z 5x 3 + 4z 2 (grlex) = 4xy 2 z + 7x 2 z 2 5x 3 + 4z 2 (grevlex) 3.14 f = α a αx α f 0 deg(f) = multideg(f) = max{α a α 0}. LC(f) = a deg(f) (leading coefficient) LM(f) = x deg(f) (leading monomial) LT(f) = a deg(f) x deg(f) (leading term) RT(f) = f LT(f) (rest term) 16 LT(f) LT(g) deg f deg g 32 f = 5x 3 + 7x 2 z 2 + 4xy 2 z + 4z 2 lex deg(f) = (3, 0, 0) LC(f) = 5 LM(f) = x 3 LT(f) = 5x 3 RT(f) = 7x 2 z 2 + 4xy 2 z + 4z f, g 0 (1) deg(fg) = deg(f) + deg(g). (2) f + g 0 deg(f + g) max{deg(f), deg(g)}. (3) f + g 0 deg(f) deg(g) deg(f + g) = max{deg(f), deg(g)} ( ) f F = (f 1, f 2,, f s ) (1) f = a 1 f 1 + a 2 f a s f s + r. a i r (2) r = 0 r 0 i LT(f i ) r (3) a i f i 0 deg(f) deg(a i f i )

27 3 23 Input : f, f_1, f_2,..., f_s Output : a_1, a_2,..., a_s, r a_1 := 0; a_2 = 0;... ; a_s := 0; r := 0 p := f WHILE p!= 0 DO i := 1 sw := False WHILE i <= s AND sw = False DO IF LT(f_i) divides LT(p) THEN a_i := a_i + LT(p) / LT(f_i) p := p - ( LT(p) / LT(f_i) ) * f_i sw := True ELSE i := i + 1 IF sw = False THEN r := r + LT(p) P := p - LT(p) f i f_i 33 lex (x 2 y + xy 2 + y 2 ) (xy 1, y 2 1) = (x + y, 1) x + y + 1. xy - 1 x + y r: x + y + 1 y^ x^2y + xy^2 + y^2 x^2y - x xy^2 + x + y^2 xy^2 - y x + y^2 + y --> x y^ ȳ > y 1 --> 1 0 [ ] ( 3.4) 3.17 ( F, mod F ) f k[x 1, x 2,, x n ], F = (f 1, f 2,, f t ) f F r f F remainder(f, F ) f mod F 3.18 F = (g 1, g 2,, g t ) ( ) F k [ ] 34 (1) F (xy 2 x) (xy 1, y 2 1) = (y, 0) ( x y) [lex]. (xy 2 x) (y 2 1, xy 1) = (x, 0) 0 [lex]. (2) (lex grlex) (xy + y 2 ) (x + y 2 ) = y ( y 3 + y 2 ) [lex]. (xy + y 2 ) (x + y 2 ) = 1 (xy x) [grlex]. (3) (x > y y > x) (x + y 2 ) (x + y) = 1 (y 2 y) [lex, x > y]. (y 2 + x) (y + x) = y x (x 2 + x) [lex, y > x].

28 24 2 Groebner 17 f mod F = 0 f <F > 34 (1) f mod F 0 f <F > 4 N n 5 F k[x 1, x 2,, x n ] deg(f ) = {deg(f) f F, f 0} LT(F ) = {LT(f) f F, f 0} LM(F ) = {LM(f) f F, f 0} 4.1 I deg(i) [ ] ( ) F k[x 1, x 2,, x n ] <F > deg(<f >) < deg(f )> deg(<f >) = < deg(f )> 35 f 1 = x 3, f 2 = x 2 y + x F = {f 1, f 2 }, <F > = <f 1, f 2 > x 2 = yf 1 + xf 2 <F >. lex (2, 0) = deg x 2 deg(<f >). < deg(f )> = < deg(f 1 ), deg(f 2 )> = <(3, 0), (2, 1)> deg x 2 < deg(f )> deg(<f >) < deg(f )> ( <F > = <x> ) 4.2 ( ) I G deg(i) = < deg(g)> G I 4.3 I G I I = <G> [ ] 3.16 f I G = (g 1, g 2,, g t ) a 1, a 2,, a t r r = f a 1 g 1 a t g t I r 0 i deg(g i ) deg(r) < deg(g)> deg(r) deg(i) = < deg(g)> 36 lex G = (x + y, y z) I = <G> [ ] deg(i) < deg(x + y), deg(y z)> f I, f 0 (1, 0, 0) deg(f) (0, 1, 0) deg(f) LT(f) z f z x t f(z) f I f y = t 0 f(t) = 0 f 0 z t

29 ( ) k k[x 1, x 2,, x n ] I ( 0) [ ] deg(i) deg(g 1 ), deg(g 2 ),, deg(g t ), (g i I) G = (g 1, g 2,, g t ) < deg(g)> = < deg(g 1 ), deg(g 2 ),, deg(g t )> = deg(i). 4.5 ( ) k k[x 1, x 2,, x n ] [ ] 4.6 I 1 I 2 k[x 1, x 2,, x n ] i 0 I i = I i0, ( i i 0 ) [ ] k[x 1, x 2,, x n ] I V(I) = {x k n f I f(x) = 0} G = (g 1, g 2,, g t ) I f k[x 1, x 2,, x n ] r (1) r = 0 r 0 r deg deg(g i ) ( ) (2) g I f = g + r [ ] G 3.16 f = g + r = g + r r r = g g I 0 deg(r r ) deg(i) < deg(g)> = < deg(g 1 ), deg(g 2 ),, deg(g t )> i deg(g i ) deg(r r) r r deg deg(g i ) 5.2 ( ) f k[x 1, x 2,, x n ] I : G = (f 1, f 2,, f t ) I f G G f i 5.1 (1), (2) r f G f G 5.3 G I f I f G = 0. [ ] f = f f G = 0. F = (f 1, f 2,, f t )

30 26 2 Groebner 5.2 S- 5.4 (S- ) x γ LM(f) LM(g) f g S S(f, g) = xγ LT(f) f xγ LT(g) g = f g 37 grlex f = x 3 y 2 x 2 y 3 +x, g = 3x 4 y +y 2 x γ = x 4 y 2, S(f, g) = xf y 3 g = x3 y 3 +x 2 y (1) deg S(f, g) < deg LCM(LT(f), LT(g)). (2) deg f = deg g deg S(f, g) < deg f. (3) deg f = deg g S(f, g) = f LC(f) g LC(g). (4) c, c k, c 0, c 0 S(c f, c g) = S(f, g). (5) S(f, g) S(x α f, x β g). x δ = deg LCM(LM(x α f), LM(x β g)), x γ = LCM(LM(f), LM(g)) S(x α f, x β g) = x δ x α f LM(x α f) xδ x β g LM(x β g) = xδ γ ( xγ f LM(f) xγ f LM(g) ) = xδ γ S(f, g) 5.5 δ N n, f 1, f 2,, f t k[x 1, x 2,, x n ] <f 1, f 2,, f t > <f 1, f 2,, f t > δ = { i a if i i deg(a i f i ) δ} F k[x 1, x 2,, x n ] <F > δ 19 δ N n (1) <F > δ + <G> δ = <F G> δ. (2) f i g i (1 i t) <g 1, g 2,, g t > δ <f 1, f 2,, f t > δ. 5.6 f <F > deg f (1) <f> δ <F > δ, δ N n. (2) deg(f) < deg(f )>. [ ] F = (f 1, f 2,, f t ) f = i a if i, deg(a i f i ) deg f (1) af <f> δ af <F > δ (a k[x 1, x 2,, x n ]) af = i aa if i, deg(aa i f i ) deg af δ (2) LT(f) = deg(a if i)=deg f LT(a i)lt(f i ) deg(a i f i ) = deg f i deg(f i ) deg(f) 20 (1) f F = 0 f <F > deg f (2) 2 f <F > : f = y, F = (x + y, x), δ = (0, 1), lex y <x + y, x> (0,1) = {0} deg(y) < deg(x + y), deg(x)> = <(1, 0)> 5.7 f 1, f 2,, f t deg δ f = i c if i, (c i k) deg f < δ f S(f i, f j ) k

31 6 27 [ ] LC(f i ) = 1 i c if i = c 1 (f 1 f 2 ) + (c 1 + c 2 )(f 2 f 3 ) + + (c 1 + c c t 1 )(f t 1 f t ) + (c 1 + c c t )f t. f i f i+1 deg δ c 1 + c c t = 0. i c if i = c 1 S(f 1, f 2 ) + (c 1 + c 2 )S(f 2, f 3 ) + + (c 1 + c c t 1 )S(f t 1, f t ). 5.8 F = {f 1, f 2,, f t } S(F, F ) = {S(f i, f j ) 1 i < j t} T (F ) = F S(F, F ) 5.9 F = {f 1, f 2,, f t }, f <F > δ, deg f < δ δ < δ f <T (F )> δ [ ] f = i a if i, a i k[x 1, x 2,, x n ], deg(a i f i ) δ f = deg(a i f i )=δ LT(a i)f i +f f δ δ 5.7 S(LT(ai )f i, LT(a j )f j ) 1 δ 1 = max{deg S(LT(a i )f i, LT(a j )f j ) i < j, deg(a i f i ) = deg(a j f j ) = δ} δ 1 < δ <S(LT(ai )f i, LT(a j )f j ) i < j> δ1 18(5) S(LT(a i )f i, LT(a j )f j ) S(f i, f j ) 19(2) <S(fi, f j ) i < j> δ1 = <S(F, F )> δ1 f <F > δ2 (δ 2 < δ) δ = max{δ 1, δ 2 } f <S(F, F )> δ + <F > δ = <T (F )> δ 5.10 ( S ) G = (g 1, g 2,, g s ) I G I S(g i, g j ) G = 0 ( i j ) [ ] ( ) S(g i, g j ) I = <G> S(g i, g j ) G = 0 ( 5.3 ) ( ) S(g i, g j ) G = 0 S(g i, g j ) <G> deg S(gi, g j ) 5.6(1) δ <S(g i, g j )> δ <G> δ <T (G)> δ = <G> δ f I = <G> f <G> deg f δ f <G> δ 3.4 δ δ deg f δ deg f < δ 5.9 δ < δ f <T (G)> δ = <G> δ δ δ = deg f f <G> deg f 5.6(2) deg(f) < deg(g)> f I deg(i) < deg(g)> G ( ) I = <f 1, f 2,, f s >

32 28 2 Groebner Input: F = (f_1, f_2,..., f_s) Output: G = (g_1, g_2,..., g_t) : <F> G := F REPEAT G := G For each pair {p, q}, p!= q, in G DO S := S(p, q) mod G IF S!= 0 THEN G := G + (S) UNTIL G = G [ ] ( ) S(F, F ) = {S(f i, f j ) F 1 i < j s} {0}, T (F ) = F S(F, F ) REPEAT G G G = T (G ) < deg(t i (F ))> (i = 0, 1, 2, ) 2.6 i 0 < deg(t i (F ))> (i i 0 ) G 0 = T i0 (F ) < deg(t (G 0 ))> = < deg(g 0 )> deg(s(g 0, G 0 )) < deg(g 0 )> 0 deg(s(g, g ) G0 ) (g, g G 0 ) deg(g 0 ) G 0 S(G 0, G 0 ) = {} REPEAT i 0 ( ) 5.10 G 0 = T i 0(F ) <G 0 > = <F > 6.2 (1) f F = 0 f F +(g) = 0. (2) f F = f f F +(f) = 0. (3) f F = r f F +(r) = 0. [ ] (1) f F = 0 f F +(g) 5.1 LT(g) sw True f F +(g) f F f F +(g) = 0 (2) F 0 f f (3) ( 3.18) r = f F f r F = f F r F = f F r = 0 (1) f r F +(r) = 0 f r F +(r) = f F +(r) r F +(r) = f F +(r) ( r F = r (2)) f F +(r) = ( ) Input: F = (f_1, f_2,..., f_s) Output: G = (g_1, g_2,..., g_t) : <F> G := F B := {(i, j) : 1 <= i < j <= s} t := s WHILE B!= {} DO Select (i, j) in B S := S(f_i, f_j) mod G IF S!= 0 THEN t := t + 1 f_t := S G := G + (f_t) B := B + {(i, t) : 1 <= i < t} B := B - {(i, j)} G [ ] ( ) IF S 0 S = f t 0 deg(g + (S)) deg(g) IF deg(g) 2.6 WHILE 1 B 1 WHILE

33 6 29 ( ) WHILE B (i, j) S(f i, f j ) G = 0 B (i, j) IF G G S(f i, f j ) G = 0 G G 6.2(1) S(f i, f j ) G = 0 S = S(f i, f j ) G 0 6.2(3) S(f i, f j ) G +(S) = 0 G G + (S) S(f i, f j ) G = 0 (i, j) S(f i, f j ) G = G 38 R = k[x, y] x > y grlex f 1 = x 3 2xy f 2 = x 2 y 2y 2 + x I = <f 1, f 2 > [ ] I G = {f 1, f 2, f 3, f 4, f 5 } f 3 = x 2 f 4 = 2xy f 5 = 2y 2 + x. ( ) Calculation of Groebner Basis of (grlex): f1 = x^3-2xy f2 = x^2y - 2y^2 + x G = (f1, f2) = (x^3-2xy, x^2y - 2y^2 + x) B = {(1, 2)} Round 1 S(f1, f2) = (y) * f1 - (x) * f2 = -x^2. (-x^2) mod G = -x^2. Description of mod: (null) New Generator: f3 = -x^ G = (f1, f2, f3) = (x^3-2xy, x^2y - 2y^2 + x, -x^2) B = {(1, 3), (2, 3)} Round 2 S(f1, f3) = (1) * f1 - (-x) * f3 = -2xy. (-2xy) mod G = -2xy. Description of mod: (null) New Generator: f4 = -2xy G = (f1, f2, f3, f4) = (x^3-2xy, x^2y - 2y^2 + x, -x^2, -2xy) B = {(2, 3), (1, 4), (2, 4), (3, 4)} Round 3 S(f2, f3) = (1) * f2 - (-y) * f3 = -2y^2 + x. (-2y^2 + x) mod G = -2y^2 + x. Description of mod: (null) New Generator: f5 = -2y^2 + x G = (f1, f2, f3, f4, f5) = (x^3-2xy, x^2y - 2y^2 + x, -x^2, -2xy, -2y^2 + x) B = {(1, 4), (2, 4), (3, 4), (1, 5), (2, 5), (3, 5), (4, 5)} Round 4 S(f1, f4) = (y) * f1 - (-1/2x^2) * f4 = -2xy^2. (-2xy^2) mod G = 0. Description of mod: #1-2xy^2 => a[4] += y Round 5 S(f2, f4) = (1) * f2 - (-1/2x) * f4 = -2y^2 + x.

34 30 2 Groebner (-2y^2 + x) mod G = 0. Description of mod: #1-2y^2 + x => a[5] += 1 Round 6 S(f3, f4) = (-y) * f3 - (-1/2x) * f4 = 0. (0) mod G = 0. Description of mod: (null) Round 7 S(f1, f5) = (y^2) * f1 - (-1/2x^3) * f5 = 1/2x^4-2xy^3. (1/2x^4-2xy^3) mod G = 0. Description of mod: #1 1/2x^4-2xy^3 => a[1] += 1/2x #2-2xy^3 + x^2y => a[4] += y^2 #3 x^2y => a[4] += -1/2x Round 8 S(f2, f5) = (y) * f2 - (-1/2x^2) * f5 = 1/2x^3-2y^3 + xy. (1/2x^3-2y^3 + xy) mod G = 0. Description of mod: #1 1/2x^3-2y^3 + xy => a[1] += 1/2 #2-2y^3 + 2xy => a[5] += y #3 xy => a[4] += -1/2 Round 9 S(f3, f5) = (-y^2) * f3 - (-1/2x^2) * f5 = 1/2x^3. (1/2x^3) mod G = 0. Description of mod: #1 1/2x^3 => a[1] += 1/2 #2 xy => a[4] += -1/2 Round 10 S(f4, f5) = (-1/2y) * f4 - (-1/2x) * f5 = 1/2x^2. (1/2x^2) mod G = 0. Description of mod: #1 1/2x^2 => a[3] += -1/2 RESULT ================================================================= G = ( f1 = x^3-2xy, f2 = x^2y - 2y^2 + x, f3 = -x^2, f4 = -2xy, f5 = -2y^2 + x ) (, ) I k[x 1, x 2,, x n ] G (1), (2) G (1) p G LC(p) = 1 (2) p G deg(p) < deg(g {p})> (2) (3) G (3) p G p deg < deg(g {p})> 6.5 I G p G deg(p) < deg(g {p})> G {p} I [ ] deg(i) = < deg(g)> = < deg(g {p})> 6.6 ( ) I k[x 1, x 2,, x n ] I [ ] p G deg(p) deg(g {p}) G := G {p} R = k[x, y] x > y grlex f 1 = x 3 2xy, f 2 = x 2 y 2y 2 + x I = <f 1, f 2 > f 3 = x 2, f 4 = 2xy, f 5 = 2y 2 + x G = (f 1, f 2, f 3, f 4, f 5 )

35 6 31 [ ] deg(g) = {(3, 0), (2, 1), (2, 0), (1, 1), (0, 2)} deg(f 3 ) deg(f 1 ), deg(f 4 ) deg(f 2 ) G = <f 3, f 4, f 5 > G = (x 2, xy, y x) 21 x 2 = 2y xy 2x (y 2 1 2x) 6.7 ( ) Input: G = (f_1, f_2,..., f_s): I Output: G~ = (g_1, g_2,..., g_s) : I i := 1 G~ := G WHILE i <= s DO f_i := f mod(g~ - {f_i}) G~ := G~ - {f_i} + {f_i } i := i + 1 [ ] G deg(f 1 ) < deg(g {f 1 })> f 1 G {f 1} = f 1 deg(f 1 ) = deg(f 1 ) G = G {f 1 } {f 1} deg( G) = deg(g) ( ) f 1 deg deg(g {f 1}) = deg( G {f 1}) f 1 I ( ) G G G G G (2) G (3),..., G (s) deg(g) = deg( G) = = deg( G (s) ) f i = f G (i 1) {f i } i deg < deg( G (i 1) {f i })> = < deg( G (s) {f i })> G (s) = <f 1, f 2,, f s> G = (x 2, xy, y 2 1 2x) I = <G> G = (x 2 + xy, xy, y 2 1 2x) I 6.8 ( ) [ ] G, G G, G G, G deg(g) = deg( G) [ ] p G < deg(g)> = < deg( G)> p G deg(p ) deg(p) p G deg(p ) deg(p ) deg(p) p p p G {p} deg(p) < deg(p )> < deg(g {p})> G p = p deg(p) = deg(p ) deg( G) deg(g) deg( G) g G, g G deg(g) = deg( g) g = g [ ] f T(f) g g I g g G = 0 (a) deg(g) = deg( g) T(g g) T(RT(g)) T(RT( g)) (b) T(RT(g)) deg deg(g) deg(g {g}) deg(g) T(RT( g))

36 32 2 Groebner deg deg( G) = deg(g) (a) T(g g) deg deg(g) g g G = g g (c) (a) (c) g g = 0 G = G 6.9 ( )

37 33 3 Groebner x y z = 0. (3.1) w I = <3x 6y 2z, 2x 4y + 4w, x 2y z w> (3.2) 6.3 (lex ) G = (3x 6y 2z, 2x 4y + 4w, x 2y z w, z + 3w) Calculation of Groebner Basis of (lex): f1 = 3x - 6y - 2z f2 = 2x - 4y + 4w f3 = x - 2y - z - w G = (f1, f2, f3) = (3x - 6y - 2z, 2x - 4y + 4w, x - 2y - z - w) B = {(1, 2), (1, 3), (2, 3)} Round 1 S(f1, f2) = (1/3) * f1 - (1/2) * f2 = -2/3z - 2w. (-2/3z - 2w) mod G = -2/3z - 2w. New Generator: f4 = -2/3z - 2w G = (f1, f2, f3, f4) = (3x - 6y - 2z, 2x - 4y + 4w, x - 2y - z - w, -2/3z - 2w) B = {(1, 3), (2, 3), (1, 4), (2, 4), (3, 4)} Round 2 S(f1, f3) = (1/3) * f1 - (1) * f3 = 1/3z + w. (1/3z + w) mod G = 0. Round 3 S(f2, f3) = (1/2) * f2 - (1) * f3 = z + 3w. (z + 3w) mod G = 0. Round 4 S(f1, f4) = (1/3z) * f1 - (-3/2x) * f4 = -3xw - 2yz - 2/3z^2. (-3xw - 2yz - 2/3z^2) mod G = 0. Round 5 S(f2, f4) = (1/2z) * f2 - (-3/2x) * f4 = -3xw - 2yz + 2zw. (-3xw - 2yz + 2zw) mod G = 0. Round 6 S(f3, f4) = (z) * f3 - (-3/2x) * f4 = -3xw - 2yz - z^2 - zw.

38 34 3 Groebner (-3xw - 2yz - z^2 - zw) mod G = 0. RESULT ================================================================= G = ( f1 = 3x - 6y - 2z, f2 = 2x - 4y + 4w, f3 = x - 2y - z - w, f4 = -2/3z - 2w ) LT(G) = (3x, 2x, x, z) G = (x 2y z w, z + 3w) x 2y z w (z+3w) = x 2y + 2w, z + 3w (x 2y z w) = z + 3w G = (x 2y + 2w, z + 3w) (1) : x y z = w (2) : x y z = w 1.2 G I f I f G = 0 I = <x 3 2xy, x 2 y 2y 2 + x> x 2 + 2y 3 x 2 + 2y 3 + y 40 I x > y > z grlex G = <x 2, xy, y 2 1 2x> x 2 + 2y 3G = 0 x 2 + 2y 3 I x 2 + 2y 3 + y G = y 0 x 2 + 2y 3 + y I 1.3 x 2 + y 2 + z 2 = 1 x 2 + z 2 = y x = z I = <f 1, f 2, f 3 >, f 1 = x 2 + y 2 + z 2 1, f 2 = x 2 + z 2 y, f 3 = x z I F = (x 2 + y 2 + z 2 1, x 2 + z 2 y, x z) x > y > z lex G = (x 2 + y 2 + z 2 1, x 2 + z 2 y, x y, y 2 + y 1, y + 2z 2, 4z 4 + 2z 2 1).

39 1 35 Calculation of Groebner Basis of (lex): f1 = x^2 + y^2 + z^2-1 f2 = x^2 - y + z^2 f3 = x - z G = (f1, f2, f3) = (x^2 + y^2 + z^2-1, x^2 - y + z^2, x - z) B = {(1, 2), (1, 3), (2, 3)} Round 1 S(f1, f2) = (1) * f1 - (1) * f2 = y^2 + y - 1. (y^2 + y - 1) mod G = y^2 + y - 1. New Generator: f4 = y^2 + y G = (f1, f2, f3, f4) = (x^2 + y^2 + z^2-1, x^2 - y + z^2, x - z, y^2 + y - 1) B = {(1, 3), (2, 3), (1, 4), (2, 4), (3, 4)} Round 2 S(f1, f3) = (1) * f1 - (x) * f3 = xz + y^2 + z^2-1. (xz + y^2 + z^2-1) mod G = -y + 2z^2. New Generator: f5 = -y + 2z^ G = (f1, f2, f3, f4, f5) = (x^2 + y^2 + z^2-1, x^2 - y + z^2, x - z, y^2 + y - 1, -y + 2z^2) B = {(2, 3), (1, 4), (2, 4), (3, 4), (1, 5), (2, 5), (3, 5), (4, 5)} Round 3 S(f2, f3) = (1) * f2 - (x) * f3 = xz - y + z^2. (xz - y + z^2) mod G = 0. Round 4 S(f1, f4) = (y^2) * f1 - (x^2) * f4 = -x^2y + x^2 + y^4 + y^2z^2 - y^2. (-x^2y + x^2 + y^4 + y^2z^2 - y^2) mod G = 0. Round 5 S(f2, f4) = (y^2) * f2 - (x^2) * f4 = -x^2y + x^2 - y^3 + y^2z^2. (-x^2y + x^2 - y^3 + y^2z^2) mod G = 0. Round 6 S(f3, f4) = (y^2) * f3 - (x) * f4 = -xy + x - y^2z. (-xy + x - y^2z) mod G = 0. Round 7 S(f1, f5) = (y) * f1 - (-x^2) * f5 = 2x^2z^2 + y^3 + yz^2 - y. (2x^2z^2 + y^3 + yz^2 - y) mod G = 4z^4 + 2z^2-1. New Generator: f6 = 4z^4 + 2z^ G = (f1, f2, f3, f4, f5, f6) = (x^2 + y^2 + z^2-1, x^2 - y + z^2, x - z, y^2 + y - 1, -y + 2z^2, 4z^4 + 2z^2-1) B = {(2, 5), (3, 5), (4, 5), (1, 6), (2, 6), (3, 6), (4, 6), (5, 6)} Round 8 S(f2, f5) = (y) * f2 - (-x^2) * f5 = 2x^2z^2 - y^2 + yz^2. (2x^2z^2 - y^2 + yz^2) mod G = 0. Round 9 S(f3, f5) = (y) * f3 - (-x) * f5 = 2xz^2 - yz. (2xz^2 - yz) mod G = 0. Round 10 S(f4, f5) = (1) * f4 - (-y) * f5 = 2yz^2 + y - 1. (2yz^2 + y - 1) mod G = 0. Round 11 S(f1, f6) = (z^4) * f1 - (1/4x^2) * f6 = -1/2x^2z^2 + 1/4x^2 + y^2z^4 + z^6 - z^4. (-1/2x^2z^2 + 1/4x^2 + y^2z^4 + z^6 - z^4) mod G = 0. Round 12 S(f2, f6) = (z^4) * f2 - (1/4x^2) * f6 = -1/2x^2z^2 + 1/4x^2 - yz^4 + z^6. (-1/2x^2z^2 + 1/4x^2 - yz^4 + z^6) mod G = 0. Round 13 S(f3, f6) = (z^4) * f3 - (1/4x) * f6 = -1/2xz^2 + 1/4x - z^5. (-1/2xz^2 + 1/4x - z^5) mod G = 0. Round 14 S(f4, f6) = (z^4) * f4 - (1/4y^2) * f6 = -1/2y^2z^2 + 1/4y^2 + yz^4 - z^4. (-1/2y^2z^2 + 1/4y^2 + yz^4 - z^4) mod G = 0. Round 15 S(f5, f6) = (-z^4) * f5 - (1/4y) * f6 = -1/2yz^2 + 1/4y - 2z^6. (-1/2yz^2 + 1/4y - 2z^6) mod G = 0. RESULT ================================================================= G = ( f1 = x^2 + y^2 + z^2-1, f2 = x^2 - y + z^2, f3 = x - z, f4 = y^2 + y - 1, f5 = -y + 2z^2, f6 = 4z^4 + 2z^2-1 )

40 36 3 Groebner G = (f 3, f 5, f 6 ) = (x z, y 2z 2, z z2 1 4 ) LT(G) = (x, y, z 4 ) z z2 1 4 = 0 z z = ± 1 ± 5. 4 x, y ( (Elimination Theorem)) I k[x 1, x 2,, x n ] G x 1 > x 2 > > x n lex I Groebner G k[x l,, x n ] k[x l,, x n ] I k[x l,, x n ] Groebner [ ] f I k[x l,, x n ] g G LT(g) LT(f) LT(f) k[x l,, x n ] LT(g) k[x l,, x n ] g k[x l,, x n ] g G k[x l,, x n ] LT(g) LT(f) g <LT(I k[x l,, x n ])> <LT(G k[x l,, x n ])> 1.5 : x = t 4 y = t 3 z = t 2 I = <f 1, f 2, f 3 >, f 1 = t 4 x, f 2 = t 3 y, f 3 = t 2 z I t > x > y > z lex G = (t 4 x, t 3 y, t 2 z) : Calculation of Groebner Basis of (lex): f1 = t^4 - x f2 = t^3 - y f3 = t^2 - z G = (t 4 x, t 3 y, t 2 z, ty x, x + z 2, tz y, y 2 + z 3 ) G = (f1, f2, f3) = (t^4 - x, t^3 - y, t^2 - z) B = {(1, 2), (1, 3), (2, 3)} Round 1 S(f1, f2) = (1) * f1 - (t) * f2 = ty - x. (ty - x) mod G = ty - x. New Generator: f4 = ty - x G = (f1, f2, f3, f4) = (t^4 - x, t^3 - y, t^2 - z, ty - x) B = {(1, 3), (2, 3), (1, 4), (2, 4), (3, 4)}

41 1 37 Round 2 S(f1, f3) = (1) * f1 - (t^2) * f3 = t^2z - x. (t^2z - x) mod G = -x + z^2. New Generator: f5 = -x + z^ G = (f1, f2, f3, f4, f5) = (t^4 - x, t^3 - y, t^2 - z, ty - x, -x + z^2) B = {(2, 3), (1, 4), (2, 4), (3, 4), (1, 5), (2, 5), (3, 5), (4, 5)} Round 3 S(f2, f3) = (1) * f2 - (t) * f3 = tz - y. (tz - y) mod G = tz - y. New Generator: f6 = tz - y G = (f1, f2, f3, f4, f5, f6) = (t^4 - x, t^3 - y, t^2 - z, ty - x, -x + z^2, tz - y) B = {(1, 4), (2, 4), (3, 4), (1, 5), (2, 5), (3, 5), (4, 5), (1, 6), (2, 6), (3, 6), (4, 6), (5, 6)} Round 4 S(f1, f4) = (y) * f1 - (t^3) * f4 = t^3x - xy. (t^3x - xy) mod G = 0. Round 5 S(f2, f4) = (y) * f2 - (t^2) * f4 = t^2x - y^2. (t^2x - y^2) mod G = -y^2 + z^3. New Generator: f7 = -y^2 + z^ G = (f1, f2, f3, f4, f5, f6, f7) = (t^4 - x, t^3 - y, t^2 - z, ty - x, -x + z^2, tz - y, -y^2 + z^3) B = {(3, 4), (1, 5), (2, 5), (3, 5), (4, 5), (1, 6), (2, 6), (3, 6), (4, 6), (5, 6), (1, 7), (2, 7), (3, 7), (4, 7), (5, 7), (6, 7)} Round 6 S(f3, f4) = (y) * f3 - (t) * f4 = tx - yz. (tx - yz) mod G = 0. Round 7 S(f1, f5) = (x) * f1 - (-t^4) * f5 = t^4z^2 - x^2. (t^4z^2 - x^2) mod G = 0. Round 8 S(f2, f5) = (x) * f2 - (-t^3) * f5 = t^3z^2 - xy. (t^3z^2 - xy) mod G = 0. Round 9 S(f3, f5) = (x) * f3 - (-t^2) * f5 = t^2z^2 - xz. (t^2z^2 - xz) mod G = 0. Round 10 S(f4, f5) = (x) * f4 - (-ty) * f5 = tyz^2 - x^2. (tyz^2 - x^2) mod G = 0. Round 11 S(f1, f6) = (z) * f1 - (t^3) * f6 = t^3y - xz. (t^3y - xz) mod G = 0. Round 12 S(f2, f6) = (z) * f2 - (t^2) * f6 = t^2y - yz. (t^2y - yz) mod G = 0. Round 13 S(f3, f6) = (z) * f3 - (t) * f6 = ty - z^2. (ty - z^2) mod G = 0. Round 14 S(f4, f6) = (z) * f4 - (y) * f6 = -xz + y^2. (-xz + y^2) mod G = 0. Round 15 S(f5, f6) = (-tz) * f5 - (x) * f6 = -tz^3 + xy. (-tz^3 + xy) mod G = 0. Round 16 S(f1, f7) = (y^2) * f1 - (-t^4) * f7 = t^4z^3 - xy^2. (t^4z^3 - xy^2) mod G = 0. Round 17 S(f2, f7) = (y^2) * f2 - (-t^3) * f7 = t^3z^3 - y^3. (t^3z^3 - y^3) mod G = 0. Round 18 S(f3, f7) = (y^2) * f3 - (-t^2) * f7 = t^2z^3 - y^2z. (t^2z^3 - y^2z) mod G = 0. Round 19 S(f4, f7) = (y) * f4 - (-t) * f7 = tz^3 - xy. (tz^3 - xy) mod G = 0. Round 20 S(f5, f7) = (-y^2) * f5 - (-x) * f7 = xz^3 - y^2z^2. (xz^3 - y^2z^2) mod G = 0. Round 21 S(f6, f7) = (y^2) * f6 - (-tz) * f7 = tz^4 - y^3. (tz^4 - y^3) mod G = 0. RESULT ================================================================= G = ( f1 = t^4 - x, f2 = t^3 - y,

42 38 3 Groebner f3 = t^2 - z, f4 = ty - x, f5 = -x + z^2, f6 = tz - y, f7 = -y^2 + z^3 ) LT(G) = (t 4, t 3, t 2, ty, x, tz, y 2 ) G = (t 2 z, ty x, x z 2, tz y, y 2 z 3 ) LT(G) = (t 2, ty, x, tz, y 2 ) ty x (t2 z, x z 2, tz y, y 2 z 3 ) = ty z 2 G = (t 2 z, ty z 2, x z 2, tz y, y 2 z 3 ) x z 2 = y 2 z 3 = x 2 + y 2 + z 2 = 1 f(x, y, z) = x 3 + 2xyz z 2 g(x, y, z) = x 2 + y 2 + z 2 1 λ f x = λg x f y = λg y f z = λg z g = 0 3x 2 + 2yz 2xλ = 0 2xz 2yλ = 0 2xy 2z 2zλ = 0 x 2 + y 2 + z 2 1 = 0 Groebner lex, λ > x > y > z z z z z 0 z 1.7 x8 x3 x2 x4 x5 x7 x6 x1

43 1 39 F 3 = Z/3Z x i x j x i = x j + 1 x i = x j + 2 (x i x j 1)(x i x j 2) = 0 x i 2 + x i x j + x j 2 1 = 0. (i, j) L L = {(1, 2), (1, 5), (1, 6), (2, 3), (2, 4), (2, 8), (3, 4), (3, 8), (4, 5), (4, 7), (5, 6), (5, 7), (6, 7), (7, 8)} F = {x 2 i +x i x j +x 2 j 1 (i, j) L} V(<F >) x 8 0 F = F {x 8 }, V(<F >) x 1 > > x 8 lex <F > G = {x 1 x 7, x 2 + x 8, x 3 x 7, x 4, x 5 + x 7, x 6, x , x 8 } V(<F >) = V(<G>) (, ) I R I = {f R n 0 f n I} I 1.3 (1) I R (2) R {0} = {0} (3) R = R. (4) I = R I = R. [ ] 1.4 ( ) k a n x n +a n 1 x n 1 + +a 0 = 0, n > 0, a i k (0 i n), a n 0 k k 41 (1) C ( ) (2) F 3 (x = 0 ) 1.5 ( (Hilbert s Nullstellensatz)) k I R = k[x 1, x 2,, x n ] V(I) (1) V(I) = φ I = R. (2) I(V(I)) = I. [ ] 1.6 k (f 1, f 2,, f s ) k[x 1, x 2,, x n ] (1) f 1 = f 2 = = f s = 0 k n 1.9 ( ) 1.7 V(<G>) C x 3 1 = (x 1)(x 2 + x + 1) = 0

44 40 3 Groebner 1, ω, ω 2 ( ω = ) x 3 i 1 = x 3 j 1 = 0 x i, x j 2 x 2 i + x i x j + x 2 j = 0. F = {x 3 i 1 1 i 8} {x 2 i + x ix j + x 2 j (i, j) L} {x 8 1} <F > G = (x 1 x 7, x 2 + x 7 + 1, x 3 x 7, x 4 1, x 5 + x 7 + 1, x 6 1, x x 7 + 1, x 8 1) G (1) V(<G>) 1.10 ( ) ( ) A(a 1, a 2 ), B(b 1, b 2 ), C(c 1, c 2 ) H(x, y) AH, BH, CH BC, CA, AB f 1 = (x a 1 )(b 1 c 1 ) + (y a 2 )(b 2 c 2 ) f 2 = (x b 1 )(c 1 a 1 ) + (y b 2 )(c 2 a 2 ) f 3 = (x c 1 )(a 1 b 1 ) + (y c 2 )(a 2 b 2 ) f 1 = f 2 = f 3 = 0 A, B, C 1 a 1 a 2 s = 1 b 1 b 2 1 c 1 c 2 s 0 s 1 = 0 I = <f 1, f 2, f 3, s 1> lex, x > y > a 1 > a 2 > b 1 > b 2 > c 1 > c 2 g 1 = x + a 1 a 2 b 1 a 1 a 2 c 1 a 1 b 1 c 2 + a 1 c 1 c 2 + a 2 2b 2 a 2 2c 2 a 2 b a 2 b 1 c 1 a 2 b a 2 c b 2 1c 2 b 1 c 1 c 2 b 1 + b 2 2c 2 b 2 c 2 2 g 2 = y a 2 1b 1 + a 2 1c 1 + a 1 b 2 1 a 1 c 2 1 a 2 2b 1 + a 2 2c 1 +a 2 b 1 b 2 + a 2 b 1 c 2 a 2 b 2 c 1 a 2 c 1 c 2 a 2 b 2 1c 1 b 1 b 2 c 2 + b 1 c b 2 c 1 c 2 g 3 = a 1 b 2 a 1 c 2 a 2 b 1 + a 2 c 1 + b 1 c 2 b 2 c 1 1 g 3 = s 1 g 1 = g 2 = g 3 = 0 (x, y) ( (Extension Theorem)) k I = <f 1, f 2,, f s > k[x 1, x 2,, x n ] I 1 = I k[x 2,, x n ] f i x 1 f i = g i (x 2,, x n )x N i 1 +. (a 2,, a n ) V(I 1 ), (a 2,, a n ) V(g 1, g 2,, g s ) k (a 1, a 2,, a n ) V(I) [ ] ( ) a k I = <f 1, f 2,, f s > k[x 1, x 2,, x n ] I 1 = I k[x 2,, x n ] i f i x 1 f i = c x N 1 +, c k, c 0, N > 0. (a 2,, a n ) V(g 1, g 2,, g s ) a 1 k (a 1, a 2,, a n ) V(I)

45 2 41 [ ]

46

47 43 1 ( ) ( ) / / ( ) ( ) 2000, ( ) :3800 :3900 ( ) ( ) 2002, ( ) 3600 ( ) / / ( ) ( ) 2000, ( ) :4200 : ( ) ( ) 2000, ( ) ( ) ( ) 1997, ( ) 3000 ( ) ( ) 2003, ( ) 4200 Risa/Asir ( )

48 44 ( ) 2003, ( ) 4200 [ 9] ( ) ( ) 1993, ( ) 3600 ( ) ( ) 1994, 2 URL Web : hara/class/ : sinara@blade.nagaokaut.ac.jp

49 45 +, 20, 16 =, 16 5, 16 f F, 23 < > δ, 26, 17 bar, 7 deg, 6, 22 deg, 6 Dickson, 18 Dickson, 18 div, 7 F p, 6 GDD, 8, 9 grevlex, 21 grlex, 21 I, 13 LC, 6, 22 lex, 21 LM, 6, 22 LT, 6, 22 mod, 7 mod, 23 multideg, 22 N, 6, 16 Nethoer, 19 Noether, 19 PID, 8 /, 7 quotient, 7 remainder, 7, 39 RT, 6, 22 S(, ), 26 S-, 26 V, 11, 13, 11, 7, 22, 7, 3, 1, 6, 5, 16, 9, 1, 30, 12, 17, 10, 30, 19, 5, 24, 20, 1, 8, 39, 19, 8, 21, 21, 21, 17, 3, 16, 16, 3, 7, 22, 7, 22, 4, 4, 4, 5, 25, 17, 4, 17, 19, 17, 2, 16, 2, 5, 5, 10, 6, 1, 39, 4, 4, 6, 6, 4, 8, 21, 20, 21, 2, 11, 18

50 46, 3, 3, 17, 24, 4, 17, 25, 39, 27, 28, 3, 3, 12, 17, 20, 22, 7, 7, 22

1 1.1 R (ring) R1 R4 R1 R (commutative [abelian] group) R2 a, b, c R (ab)c = a(bc) (associative law) R3 a, b, c R a(b + c) = ab + ac, (a + b)c = ac +

1 1.1 R (ring) R1 R4 R1 R (commutative [abelian] group) R2 a, b, c R (ab)c = a(bc) (associative law) R3 a, b, c R a(b + c) = ab + ac, (a + b)c = ac + ALGEBRA II Hiroshi SUZUKI Department of Mathematics International Christian University 2004 1 1 1 2 2 1 3 3 1 4 4 1 5 5 1 6 6 1 7 7 1 7.1....................... 7 1 7.2........................... 7 4 8

More information

1990 IMO 1990/1/15 1:00-4:00 1 N N N 1, N 1 N 2, N 2 N 3 N 3 2 x x + 52 = 3 x x , A, B, C 3,, A B, C 2,,,, 7, A, B, C

1990 IMO 1990/1/15 1:00-4:00 1 N N N 1, N 1 N 2, N 2 N 3 N 3 2 x x + 52 = 3 x x , A, B, C 3,, A B, C 2,,,, 7, A, B, C 0 9 (1990 1999 ) 10 (2000 ) 1900 1994 1995 1999 2 SAT ACT 1 1990 IMO 1990/1/15 1:00-4:00 1 N 1990 9 N N 1, N 1 N 2, N 2 N 3 N 3 2 x 2 + 25x + 52 = 3 x 2 + 25x + 80 3 2, 3 0 4 A, B, C 3,, A B, C 2,,,, 7,

More information

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x [ ] IC. f(x) = e x () f(x) f (x) () lim f(x) lim f(x) x + x (3) lim f(x) lim f(x) x + x (4) y = f(x) ( ) ( s46). < a < () a () lim a log xdx a log xdx ( ) n (3) lim log k log n n n k=.3 z = log(x + y ),

More information

II R n k +1 v 0,, v k k v 1 v 0,, v k v v 0,, v k R n 1 a 0,, a k a 0 v 0 + a k v k v 0 v k k k v 0,, v k σ k σ dimσ = k 1.3. k

II R n k +1 v 0,, v k k v 1 v 0,, v k v v 0,, v k R n 1 a 0,, a k a 0 v 0 + a k v k v 0 v k k k v 0,, v k σ k σ dimσ = k 1.3. k II 231017 1 1.1. R n k +1 v 0,, v k k v 1 v 0,, v k v 0 1.2. v 0,, v k R n 1 a 0,, a k a 0 v 0 + a k v k v 0 v k k k v 0,, v k σ kσ dimσ = k 1.3. k σ {v 0,...,v k } {v i0,...,v il } l σ τ < τ τ σ 1.4.

More information

( )

( ) 18 10 01 ( ) 1 2018 4 1.1 2018............................... 4 1.2 2018......................... 5 2 2017 7 2.1 2017............................... 7 2.2 2017......................... 8 3 2016 9 3.1 2016...............................

More information

AI n Z f n : Z Z f n (k) = nk ( k Z) f n n 1.9 R R f : R R f 1 1 {a R f(a) = 0 R = {0 R 1.10 R R f : R R f 1 : R R 1.11 Z Z id Z 1.12 Q Q id

AI n Z f n : Z Z f n (k) = nk ( k Z) f n n 1.9 R R f : R R f 1 1 {a R f(a) = 0 R = {0 R 1.10 R R f : R R f 1 : R R 1.11 Z Z id Z 1.12 Q Q id 1 1.1 1.1 R R (1) R = 1 2 Z = 2 n Z (2) R 1.2 R C Z R 1.3 Z 2 = {(a, b) a Z, b Z Z 2 a, b, c, d Z (a, b) + (c, d) = (a + c, b + d), (a, b)(c, d) = (ac, bd) (1) Z 2 (2) Z 2? (3) Z 2 1.4 C Q[ 1] = {a + bi

More information

X G P G (X) G BG [X, BG] S 2 2 2 S 2 2 S 2 = { (x 1, x 2, x 3 ) R 3 x 2 1 + x 2 2 + x 2 3 = 1 } R 3 S 2 S 2 v x S 2 x x v(x) T x S 2 T x S 2 S 2 x T x S 2 = { ξ R 3 x ξ } R 3 T x S 2 S 2 x x T x S 2

More information

Catalog No.AR006-e DIN EN ISO 9001 JIS Z 9901 Certificate: 販売終了

Catalog No.AR006-e DIN EN ISO 9001 JIS Z 9901 Certificate: 販売終了 Catalog No.AR006-e DIN EN ISO 9001 JIS Z 9901 Certificate:09 100 5919 DJ!0 DF DF @3 q w e 130 230 TR RA 0H R 130 230 RA TR R R RA 0.02MPa RA 130 230 130 230 R 0.06MPa RA 0.15MPa q R #1 TR #6 I N D E X

More information

16 B

16 B 16 B (1) 3 (2) (3) 5 ( ) 3 : 2 3 : 3 : () 3 19 ( ) 2 ax 2 + bx + c = 0 (a 0) x = b ± b 2 4ac 2a 3, 4 5 1824 5 Contents 1. 1 2. 7 3. 13 4. 18 5. 22 6. 25 7. 27 8. 31 9. 37 10. 46 11. 50 12. 56 i 1 1. 1.1..

More information

1/68 A. 電気所 ( 発電所, 変電所, 配電塔 ) における変圧器の空き容量一覧 平成 31 年 3 月 6 日現在 < 留意事項 > (1) 空容量は目安であり 系統接続の前には 接続検討のお申込みによる詳細検討が必要となります その結果 空容量が変更となる場合があります (2) 特に記載

1/68 A. 電気所 ( 発電所, 変電所, 配電塔 ) における変圧器の空き容量一覧 平成 31 年 3 月 6 日現在 < 留意事項 > (1) 空容量は目安であり 系統接続の前には 接続検討のお申込みによる詳細検討が必要となります その結果 空容量が変更となる場合があります (2) 特に記載 1/68 A. 電気所 ( 発電所, 変電所, 配電塔 ) における変圧器の空き容量一覧 平成 31 年 3 月 6 日現在 < 留意事項 > (1) 空容量は目安であり 系統接続の前には 接続検討のお申込みによる詳細検討が必要となります その結果 空容量が変更となる場合があります (2) 特に記載のない限り 熱容量を考慮した空き容量を記載しております その他の要因 ( 電圧や系統安定度など ) で連系制約が発生する場合があります

More information

2000年度『数学展望 I』講義録

2000年度『数学展望 I』講義録 2000 I I IV I II 2000 I I IV I-IV. i ii 3.10 (http://www.math.nagoya-u.ac.jp/ kanai/) 2000 A....1 B....4 C....10 D....13 E....17 Brouwer A....21 B....26 C....33 D....39 E. Sperner...45 F....48 A....53

More information

ORIGINAL TEXT I II A B 1 4 13 21 27 44 54 64 84 98 113 126 138 146 165 175 181 188 198 213 225 234 244 261 268 273 2 281 I II A B 292 3 I II A B c 1 1 (1) x 2 + 4xy + 4y 2 x 2y 2 (2) 8x 2 + 16xy + 6y 2

More information

, = = 7 6 = 42, =

, = = 7 6 = 42, = http://www.ss.u-tokai.ac.jp/~mahoro/2016autumn/alg_intro/ 1 1 2016.9.26, http://www.ss.u-tokai.ac.jp/~mahoro/2016autumn/alg_intro/ 1.1 1 214 132 = 28258 2 + 1 + 4 1 + 3 + 2 = 7 6 = 42, 4 + 2 = 6 2 + 8

More information

II Time-stamp: <05/09/30 17:14:06 waki> ii

II Time-stamp: <05/09/30 17:14:06 waki> ii II waki@cc.hirosaki-u.ac.jp 18 1 30 II Time-stamp: ii 1 1 1.1.................................................. 1 1.2................................................... 3 1.3..................................................

More information

取扱説明書 -詳細版- 液晶プロジェクター CP-AW3019WNJ

取扱説明書 -詳細版- 液晶プロジェクター CP-AW3019WNJ B A C D E F K I M L J H G N O Q P Y CB/PB CR/PR COMPONENT VIDEO OUT RS-232C LAN RS-232C LAN LAN BE EF 03 06 00 2A D3 01 00 00 60 00 00 BE EF 03 06 00 BA D2 01 00 00 60 01 00 BE EF 03 06 00 19 D3 02 00

More information

2012 A, N, Z, Q, R, C

2012 A, N, Z, Q, R, C 2012 A, N, Z, Q, R, C 1 2009 9 2 2011 2 3 2012 9 1 2 2 5 3 11 4 16 5 22 6 25 7 29 8 32 1 1 1.1 3 1 1 1 1 1 1? 3 3 3 3 3 3 3 1 1, 1 1 + 1 1 1+1 2 2 1 2+1 3 2 N 1.2 N (i) 2 a b a 1 b a < b a b b a a b (ii)

More information

,2,4

,2,4 2005 12 2006 1,2,4 iii 1 Hilbert 14 1 1.............................................. 1 2............................................... 2 3............................................... 3 4.............................................

More information

D 24 D D D

D 24 D D D 5 Paper I.R. 2001 5 Paper HP Paper 5 3 5.1................................................... 3 5.2.................................................... 4 5.3.......................................... 6

More information

熊本県数学問題正解

熊本県数学問題正解 00 y O x Typed by L A TEX ε ( ) (00 ) 5 4 4 ( ) http://www.ocn.ne.jp/ oboetene/plan/. ( ) (009 ) ( ).. http://www.ocn.ne.jp/ oboetene/plan/eng.html 8 i i..................................... ( )0... (

More information

x V x x V x, x V x = x + = x +(x+x )=(x +x)+x = +x = x x = x x = x =x =(+)x =x +x = x +x x = x ( )x = x =x =(+( ))x =x +( )x = x +( )x ( )x = x x x R

x V x x V x, x V x = x + = x +(x+x )=(x +x)+x = +x = x x = x x = x =x =(+)x =x +x = x +x x = x ( )x = x =x =(+( ))x =x +( )x = x +( )x ( )x = x x x R V (I) () (4) (II) () (4) V K vector space V vector K scalor K C K R (I) x, y V x + y V () (x + y)+z = x +(y + z) (2) x + y = y + x (3) V x V x + = x (4) x V x + x = x V x x (II) x V, α K αx V () (α + β)x

More information

HITACHI 液晶プロジェクター CP-AX3505J/CP-AW3005J 取扱説明書 -詳細版- 【技術情報編】

HITACHI 液晶プロジェクター CP-AX3505J/CP-AW3005J 取扱説明書 -詳細版- 【技術情報編】 B A C E D 1 3 5 7 9 11 13 15 17 19 2 4 6 8 10 12 14 16 18 H G I F J M N L K Y CB/PB CR/PR COMPONENT VIDEO OUT RS-232C LAN RS-232C LAN LAN BE EF 03 06 00 2A D3 01 00 00 60 00 00 BE EF 03 06 00 BA D2 01

More information

a (a + ), a + a > (a + ), a + 4 a < a 4 a,,, y y = + a y = + a, y = a y = ( + a) ( x) + ( a) x, x y,y a y y y ( + a : a ) ( a : a > ) y = (a + ) y = a

a (a + ), a + a > (a + ), a + 4 a < a 4 a,,, y y = + a y = + a, y = a y = ( + a) ( x) + ( a) x, x y,y a y y y ( + a : a ) ( a : a > ) y = (a + ) y = a [] a x f(x) = ( + a)( x) + ( a)x f(x) = ( a + ) x + a + () x f(x) a a + a > a + () x f(x) a (a + ) a x 4 f (x) = ( + a) ( x) + ( a) x = ( a + a) x + a + = ( a + ) x + a +, () a + a f(x) f(x) = f() = a

More information

6kg 1.1m 1.m.1m.1 l λ ϵ λ l + λ l l l dl dl + dλ ϵ dλ dl dl + dλ dl dl 3 1. JIS 1 6kg 1% 66kg 1 13 σ a1 σ m σ a1 σ m σ m σ a1 f f σ a1 σ a1 σ m f 4

6kg 1.1m 1.m.1m.1 l λ ϵ λ l + λ l l l dl dl + dλ ϵ dλ dl dl + dλ dl dl 3 1. JIS 1 6kg 1% 66kg 1 13 σ a1 σ m σ a1 σ m σ m σ a1 f f σ a1 σ a1 σ m f 4 35-8585 7 8 1 I I 1 1.1 6kg 1m P σ σ P 1 l l λ λ l 1.m 1 6kg 1.1m 1.m.1m.1 l λ ϵ λ l + λ l l l dl dl + dλ ϵ dλ dl dl + dλ dl dl 3 1. JIS 1 6kg 1% 66kg 1 13 σ a1 σ m σ a1 σ m σ m σ a1 f f σ a1 σ a1 σ m

More information

入試の軌跡

入試の軌跡 4 y O x 4 Typed by L A TEX ε ) ) ) 6 4 ) 4 75 ) http://kumamoto.s.xrea.com/plan/.. PDF) Ctrl +L) Ctrl +) Ctrl + Ctrl + ) ) Alt + ) Alt + ) ESC. http://kumamoto.s.xrea.com/nyusi/kumadai kiseki ri i.pdf

More information

2014 (2014/04/01)

2014 (2014/04/01) 2014 (2014/04/01) 1 5 1.1...................................... 5 1.2...................................... 7 1.3...................................... 8 1.4............................... 10 1.5 Zorn...........................

More information

x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y)

x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y) x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 1 1977 x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y) ( x 2 y + xy 2 x 2 2xy y 2) = 15 (x y) (x + y) (xy

More information

r 1 m A r/m i) t ii) m i) t B(t; m) ( B(t; m) = A 1 + r ) mt m ii) B(t; m) ( B(t; m) = A 1 + r ) mt m { ( = A 1 + r ) m } rt r m n = m r m n B

r 1 m A r/m i) t ii) m i) t B(t; m) ( B(t; m) = A 1 + r ) mt m ii) B(t; m) ( B(t; m) = A 1 + r ) mt m { ( = A 1 + r ) m } rt r m n = m r m n B 1 1.1 1 r 1 m A r/m i) t ii) m i) t Bt; m) Bt; m) = A 1 + r ) mt m ii) Bt; m) Bt; m) = A 1 + r ) mt m { = A 1 + r ) m } rt r m n = m r m n Bt; m) Aert e lim 1 + 1 n 1.1) n!1 n) e a 1, a 2, a 3,... {a n

More information

20 9 19 1 3 11 1 3 111 3 112 1 4 12 6 121 6 122 7 13 7 131 8 132 10 133 10 134 12 14 13 141 13 142 13 143 15 144 16 145 17 15 19 151 1 19 152 20 2 21 21 21 211 21 212 1 23 213 1 23 214 25 215 31 22 33

More information

2011de.dvi

2011de.dvi 211 ( 4 2 1. 3 1.1............................... 3 1.2 1- -......................... 13 1.3 2-1 -................... 19 1.4 3- -......................... 29 2. 37 2.1................................ 37

More information

0. Introduction (Computer Algebra) Z, Q ( ), 1960, LISP, ( ) ( ) 2

0. Introduction (Computer Algebra) Z, Q ( ), 1960, LISP, ( ) ( ) 2 ( ) 1 0. Introduction (Computer Algebra) Z, Q ( ), 1960, LISP, ( ) ( ) 2 ,, 32bit ( 0 n 2 32 1 2 31 n 2 31 1, mod2 32 ) 64 bit Z (bignum; GNU gmp ) n Z n = ±(b l 1 B l 1 + + b 0 B 0 ) (B = 2 32, 0 b i

More information

1. A0 A B A0 A : A1,...,A5 B : B1,...,B12 2. 5 3. 4. 5. A0 (1) A, B A B f K K A ϕ 1, ϕ 2 f ϕ 1 = f ϕ 2 ϕ 1 = ϕ 2 (2) N A 1, A 2, A 3,... N A n X N n X N, A n N n=1 1 A1 d (d 2) A (, k A k = O), A O. f

More information

( 12 ( ( ( ( Levi-Civita grad div rot ( ( = 4 : 6 3 1 1.1 f(x n f (n (x, d n f(x (1.1 dxn f (2 (x f (x 1.1 f(x = e x f (n (x = e x d dx (fg = f g + fg (1.2 d dx d 2 dx (fg = f g + 2f g + fg 2... d n n

More information

1. A0 A B A0 A : A1,...,A5 B : B1,...,B

1. A0 A B A0 A : A1,...,A5 B : B1,...,B 1. A0 A B A0 A : A1,...,A5 B : B1,...,B12 2. 3. 4. 5. A0 A B f : A B 4 (i) f (ii) f (iii) C 2 g, h: C A f g = f h g = h (iv) C 2 g, h: B C g f = h f g = h 4 (1) (i) (iii) (2) (iii) (i) (3) (ii) (iv) (4)

More information

i I II I II II IC IIC I II ii 5 8 5 3 7 8 iii I 3........................... 5......................... 7........................... 4........................ 8.3......................... 33.4...................

More information

I A A441 : April 15, 2013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida )

I A A441 : April 15, 2013 Version : 1.1 I   Kawahira, Tomoki TA (Shigehiro, Yoshida ) I013 00-1 : April 15, 013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida) http://www.math.nagoya-u.ac.jp/~kawahira/courses/13s-tenbou.html pdf * 4 15 4 5 13 e πi = 1 5 0 5 7 3 4 6 3 6 10 6 17

More information

空き容量一覧表(154kV以上)

空き容量一覧表(154kV以上) 1/3 A. 電気所 ( 発電所, 変電所, 配電塔 ) における変圧器の空き容量 覧 < 留意事項 > (1) 空容量は 安であり 系統接続の前には 接続検討のお申込みによる詳細検討が必要となります その結果 空容量が変更となる場合があります (2) 熱容量を考慮した空き容量を記載しております その他の要因 ( や系統安定度など ) で連系制約が発 する場合があります (3) 表 は 既に空容量がないため

More information

2/8 一次二次当該 42 AX 変圧器 なし 43 AY 変圧器 なし 44 BA 変圧器 なし 45 BB 変圧器 なし 46 BC 変圧器 なし

2/8 一次二次当該 42 AX 変圧器 なし 43 AY 変圧器 なし 44 BA 変圧器 なし 45 BB 変圧器 なし 46 BC 変圧器 なし 1/8 A. 電気所 ( 発電所, 変電所, 配電塔 ) における変圧器の空き容量一覧 < 留意事項 > (1) 空容量は目安であり 系統接続の前には 接続検討のお申込みによる詳細検討が必要となります その結果 空容量が変更となる場合があります (2) 特に記載のない限り 熱容量を考慮した空き容量を記載しております その他の要因 ( や系統安定度など ) で連系制約が発生する場合があります (3)

More information

IMO 1 n, 21n n (x + 2x 1) + (x 2x 1) = A, x, (a) A = 2, (b) A = 1, (c) A = 2?, 3 a, b, c cos x a cos 2 x + b cos x + c = 0 cos 2x a

IMO 1 n, 21n n (x + 2x 1) + (x 2x 1) = A, x, (a) A = 2, (b) A = 1, (c) A = 2?, 3 a, b, c cos x a cos 2 x + b cos x + c = 0 cos 2x a 1 40 (1959 1999 ) (IMO) 41 (2000 ) WEB 1 1959 1 IMO 1 n, 21n + 4 13n + 3 2 (x + 2x 1) + (x 2x 1) = A, x, (a) A = 2, (b) A = 1, (c) A = 2?, 3 a, b, c cos x a cos 2 x + b cos x + c = 0 cos 2x a = 4, b =

More information

2 2 MATHEMATICS.PDF 200-2-0 3 2 (p n ), ( ) 7 3 4 6 5 20 6 GL 2 (Z) SL 2 (Z) 27 7 29 8 SL 2 (Z) 35 9 2 40 0 2 46 48 2 2 5 3 2 2 58 4 2 6 5 2 65 6 2 67 7 2 69 2 , a 0 + a + a 2 +... b b 2 b 3 () + b n a

More information

000 001

000 001 all-round catalogue vol.2 000 001 002 003 AA0102 AA0201 AA0701 AA0801 artistic brushes AA0602 AB2701 AB2702 AB2703 AB2704 AA0301 AH3001 AH3011 AH3101 AH3201 AH3111 AB3201 AB3202 AB2601 AB2602 AB0701 artistic

More information

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) II 214-1 : October 2, 214 Version : 1.1 Kawahira, Tomoki TA (Kondo, Hirotaka ) http://www.math.nagoya-u.ac.jp/~kawahira/courses/14w-biseki.html pdf 1 2 1 9 1 16 1 23 1 3 11 6 11 13 11 2 11 27 12 4 12 11

More information

20 6 4 1 4 1.1 1.................................... 4 1.1.1.................................... 4 1.1.2 1................................ 5 1.2................................... 7 1.2.1....................................

More information

2016 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 1 16 2 1 () X O 3 (O1) X O, O (O2) O O (O3) O O O X (X, O) O X X (O1), (O2), (O3) (O2) (O3) n (O2) U 1,..., U n O U k O k=1 (O3) U λ O( λ Λ) λ Λ U λ O 0 X 0 (O2) n =

More information

PROSTAGE[プロステージ]

PROSTAGE[プロステージ] PROSTAGE & L 2 3200 650 2078 Storage system Panel system 3 esk system 2 250 22 01 125 1 2013-2014 esk System 2 L4OA V 01 2 L V L V OA 4 3240 32 2 7 4 OA P202 MG55 MG57 MG56 MJ58 MG45 MG55 MB95 Z712 MG57

More information

15 mod 12 = 3, 3 mod 12 = 3, 9 mod 12 = N N 0 x, y x y N x y (mod N) x y N mod N mod N N, x, y N > 0 (1) x x (mod N) (2) x y (mod N) y x

15 mod 12 = 3, 3 mod 12 = 3, 9 mod 12 = N N 0 x, y x y N x y (mod N) x y N mod N mod N N, x, y N > 0 (1) x x (mod N) (2) x y (mod N) y x A( ) 1 1.1 12 3 15 3 9 3 12 x (x ) x 12 0 12 1.1.1 x x = 12q + r, 0 r < 12 q r 1 N > 0 x = Nq + r, 0 r < N q r 1 q x/n r r x mod N 1 15 mod 12 = 3, 3 mod 12 = 3, 9 mod 12 = 3 1.1.2 N N 0 x, y x y N x y

More information

A S- hara/lectures/lectures-j.html r A = A 5 : 5 = max{ A, } A A A A B A, B A A A %

A S-   hara/lectures/lectures-j.html r A = A 5 : 5 = max{ A, } A A A A B A, B A A A % A S- http://www.math.kyushu-u.ac.jp/ hara/lectures/lectures-j.html r A S- 3.4.5. 9 phone: 9-8-444, e-mail: hara@math.kyushu-u.ac.jp, http://www.math.kyushu-u.ac.jp/ hara/lectures/lectures-j.html Office

More information

Excel ではじめる数値解析 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

Excel ではじめる数値解析 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 初版 1 刷発行時のものです. Excel ではじめる数値解析 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/009631 このサンプルページの内容は, 初版 1 刷発行時のものです. Excel URL http://www.morikita.co.jp/books/mid/009631 i Microsoft Windows

More information

?

? 240-8501 79-2 Email: nakamoto@ynu.ac.jp 1 3 1.1...................................... 3 1.2?................................. 6 1.3..................................... 8 1.4.......................................

More information

Jacobson Prime Avoidance

Jacobson Prime Avoidance 2016 2017 2 22 1 1 3 2 4 2.1 Jacobson................. 4 2.2.................... 5 3 6 3.1 Prime Avoidance....................... 7 3.2............................. 8 3.3..............................

More information

iii 1 1 1 1................................ 1 2.......................... 3 3.............................. 5 4................................ 7 5................................ 9 6............................

More information

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 初版 1 刷発行時のものです. 微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. ttp://www.morikita.co.jp/books/mid/00571 このサンプルページの内容は, 初版 1 刷発行時のものです. i ii 014 10 iii [note] 1 3 iv 4 5 3 6 4 x 0 sin x x 1 5 6 z = f(x, y) 1 y = f(x)

More information

21 2 26 i 1 1 1.1............................ 1 1.2............................ 3 2 9 2.1................... 9 2.2.......... 9 2.3................... 11 2.4....................... 12 3 15 3.1..........

More information

HITACHI 液晶プロジェクター CP-EX301NJ/CP-EW301NJ 取扱説明書 -詳細版- 【技術情報編】 日本語

HITACHI 液晶プロジェクター CP-EX301NJ/CP-EW301NJ 取扱説明書 -詳細版- 【技術情報編】 日本語 A B C D E F G H I 1 3 5 7 9 11 13 15 17 19 2 4 6 8 10 12 14 16 18 K L J Y CB/PB CR/PR COMPONENT VIDEO OUT RS-232C RS-232C RS-232C Cable (cross) LAN cable (CAT-5 or greater) LAN LAN LAN LAN RS-232C BE

More information

007 0 ue ue 6 67 090 b 6666 D 666 0 6 6 0 0 0 4 0 6 7 6 6706 00000 00000 69 000040 000040 0040 0040 000040 000040 0040 0040 674 00000 70 00000 0 00000

007 0 ue ue 6 67 090 b 6666 D 666 0 6 6 0 0 0 4 0 6 7 6 6706 00000 00000 69 000040 000040 0040 0040 000040 000040 0040 0040 674 00000 70 00000 0 00000 EDOGAWA ITY Y @ Y 60 7 66997 00 00 00 00 600 000 000 4900 900 700 000 f 004000 00 000 7f 70g 0 0 007 0 ue ue 6 67 090 b 6666 D 666 0 6 6 0 0 0 4 0 6 7 6 6706 00000 00000 69 000040 000040 0040 0040 000040

More information

1. A0 A B A0 A : A1,...,A5 B : B1,...,B

1. A0 A B A0 A : A1,...,A5 B : B1,...,B 1. A0 A B A0 A : A1,...,A5 B : B1,...,B12 2. 3. 4. 5. A0 A, B Z Z m, n Z m n m, n A m, n B m=n (1) A, B (2) A B = A B = Z/ π : Z Z/ (3) A B Z/ (4) Z/ A, B (5) f : Z Z f(n) = n f = g π g : Z/ Z A, B (6)

More information

1 1 n 0, 1, 2,, n n 2 a, b a n b n a, b n a b (mod n) 1 1. n = (mod 10) 2. n = (mod 9) n II Z n := {0, 1, 2,, n 1} 1.

1 1 n 0, 1, 2,, n n 2 a, b a n b n a, b n a b (mod n) 1 1. n = (mod 10) 2. n = (mod 9) n II Z n := {0, 1, 2,, n 1} 1. 1 1 n 0, 1, 2,, n 1 1.1 n 2 a, b a n b n a, b n a b (mod n) 1 1. n = 10 1567 237 (mod 10) 2. n = 9 1567 1826578 (mod 9) n II Z n := {0, 1, 2,, n 1} 1.2 a b a = bq + r (0 r < b) q, r q a b r 2 1. a = 456,

More information

名古屋工業大の数学 2000 年 ~2015 年 大学入試数学動画解説サイト

名古屋工業大の数学 2000 年 ~2015 年 大学入試数学動画解説サイト 名古屋工業大の数学 年 ~5 年 大学入試数学動画解説サイト http://mathroom.jugem.jp/ 68 i 4 3 III III 3 5 3 ii 5 6 45 99 5 4 3. () r \= S n = r + r + 3r 3 + + nr n () x > f n (x) = e x + e x + 3e 3x + + ne nx f(x) = lim f n(x) lim

More information

6. Euler x

6. Euler x ...............................................................................3......................................... 4.4................................... 5.5......................................

More information

29

29 9 .,,, 3 () C k k C k C + C + C + + C 8 + C 9 + C k C + C + C + C 3 + C 4 + C 5 + + 45 + + + 5 + + 9 + 4 + 4 + 5 4 C k k k ( + ) 4 C k k ( k) 3 n( ) n n n ( ) n ( ) n 3 ( ) 3 3 3 n 4 ( ) 4 4 4 ( ) n n

More information

1. 2 P 2 (x, y) 2 x y (0, 0) R 2 = {(x, y) x, y R} x, y R P = (x, y) O = (0, 0) OP ( ) OP x x, y y ( ) x v = y ( ) x 2 1 v = P = (x, y) y ( x y ) 2 (x

1. 2 P 2 (x, y) 2 x y (0, 0) R 2 = {(x, y) x, y R} x, y R P = (x, y) O = (0, 0) OP ( ) OP x x, y y ( ) x v = y ( ) x 2 1 v = P = (x, y) y ( x y ) 2 (x . P (, (0, 0 R {(,, R}, R P (, O (0, 0 OP OP, v v P (, ( (, (, { R, R} v (, (, (,, z 3 w z R 3,, z R z n R n.,..., n R n n w, t w ( z z Ke Words:. A P 3 0 B P 0 a. A P b B P 3. A π/90 B a + b c π/ 3. +

More information

II 2 3.,, A(B + C) = AB + AC, (A + B)C = AC + BC. 4. m m A, m m B,, m m B, AB = BA, A,, I. 5. m m A, m n B, AB = B, A I E, 4 4 I, J, K

II 2 3.,, A(B + C) = AB + AC, (A + B)C = AC + BC. 4. m m A, m m B,, m m B, AB = BA, A,, I. 5. m m A, m n B, AB = B, A I E, 4 4 I, J, K II. () 7 F 7 = { 0,, 2, 3, 4, 5, 6 }., F 7 a, b F 7, a b, F 7,. (a) a, b,,. (b) 7., 4 5 = 20 = 2 7 + 6, 4 5 = 6 F 7., F 7,., 0 a F 7, ab = F 7 b F 7. (2) 7, 6 F 6 = { 0,, 2, 3, 4, 5 },,., F 6., 0 0 a F

More information

S K(S) = T K(T ) T S K n (1.1) n {}}{ n K n (1.1) 0 K 0 0 K Q p K Z/pZ L K (1) L K L K (2) K L L K [L : K] 1.1.

S K(S) = T K(T ) T S K n (1.1) n {}}{ n K n (1.1) 0 K 0 0 K Q p K Z/pZ L K (1) L K L K (2) K L L K [L : K] 1.1. () 1.1.. 1. 1.1. (1) L K (i) 0 K 1 K (ii) x, y K x + y K, x y K (iii) x, y K xy K (iv) x K \ {0} x 1 K K L L K ( 0 L 1 L ) L K L/K (2) K M L M K L 1.1. C C 1.2. R K = {a + b 3 i a, b Q} Q( 2, 3) = Q( 2

More information

koji07-01.dvi

koji07-01.dvi 2007 I II III 1, 2, 3, 4, 5, 6, 7 5 10 19 (!) 1938 70 21? 1 1 2 1 2 2 1! 4, 5 1? 50 1 2 1 1 2 2 1?? 2 1 1, 2 1, 2 1, 2, 3,... 3 1, 2 1, 3? 2 1 3 1 2 1 1, 2 2, 3? 2 1 3 2 3 2 k,l m, n k,l m, n kn > ml...?

More information

.3. (x, x = (, u = = 4 (, x x = 4 x, x 0 x = 0 x = 4 x.4. ( z + z = 8 z, z 0 (z, z = (0, 8, (,, (8, 0 3 (0, 8, (,, (8, 0 z = z 4 z (g f(x = g(

.3. (x, x = (, u = = 4 (, x x = 4 x, x 0 x = 0 x = 4 x.4. ( z + z = 8 z, z 0 (z, z = (0, 8, (,, (8, 0 3 (0, 8, (,, (8, 0 z = z 4 z (g f(x = g( 06 5.. ( y = x x y 5 y 5 = (x y = x + ( y = x + y = x y.. ( Y = C + I = 50 + 0.5Y + 50 r r = 00 0.5Y ( L = M Y r = 00 r = 0.5Y 50 (3 00 0.5Y = 0.5Y 50 Y = 50, r = 5 .3. (x, x = (, u = = 4 (, x x = 4 x,

More information

1 1 3 ABCD ABD AC BD E E BD 1 : 2 (1) AB = AD =, AB AD = (2) AE = AB + (3) A F AD AE 2 = AF = AB + AD AF AE = t AC = t AE AC FC = t = (4) ABD ABCD 1 1

1 1 3 ABCD ABD AC BD E E BD 1 : 2 (1) AB = AD =, AB AD = (2) AE = AB + (3) A F AD AE 2 = AF = AB + AD AF AE = t AC = t AE AC FC = t = (4) ABD ABCD 1 1 ABCD ABD AC BD E E BD : () AB = AD =, AB AD = () AE = AB + () A F AD AE = AF = AB + AD AF AE = t AC = t AE AC FC = t = (4) ABD ABCD AB + AD AB + 7 9 AD AB + AD AB + 9 7 4 9 AD () AB sin π = AB = ABD AD

More information

x = a 1 f (a r, a + r) f(a) r a f f(a) 2 2. (a, b) 2 f (a, b) r f(a, b) r (a, b) f f(a, b)

x = a 1 f (a r, a + r) f(a) r a f f(a) 2 2. (a, b) 2 f (a, b) r f(a, b) r (a, b) f f(a, b) 2011 I 2 II III 17, 18, 19 7 7 1 2 2 2 1 2 1 1 1.1.............................. 2 1.2 : 1.................... 4 1.2.1 2............................... 5 1.3 : 2.................... 5 1.3.1 2.....................................

More information

1/1 lim f(x, y) (x,y) (a,b) ( ) ( ) lim limf(x, y) lim lim f(x, y) x a y b y b x a ( ) ( ) xy x lim lim lim lim x y x y x + y y x x + y x x lim x x 1

1/1 lim f(x, y) (x,y) (a,b) ( ) ( ) lim limf(x, y) lim lim f(x, y) x a y b y b x a ( ) ( ) xy x lim lim lim lim x y x y x + y y x x + y x x lim x x 1 1/5 ( ) Taylor ( 7.1) (x, y) f(x, y) f(x, y) x + y, xy, e x y,... 1 R {(x, y) x, y R} f(x, y) x y,xy e y log x,... R {(x, y, z) (x, y),z f(x, y)} R 3 z 1 (x + y ) z ax + by + c x 1 z ax + by + c y x +

More information

ax 2 + bx + c = n 8 (n ) a n x n + a n 1 x n a 1 x + a 0 = 0 ( a n, a n 1,, a 1, a 0 a n 0) n n ( ) ( ) ax 3 + bx 2 + cx + d = 0 4

ax 2 + bx + c = n 8 (n ) a n x n + a n 1 x n a 1 x + a 0 = 0 ( a n, a n 1,, a 1, a 0 a n 0) n n ( ) ( ) ax 3 + bx 2 + cx + d = 0 4 20 20.0 ( ) 8 y = ax 2 + bx + c 443 ax 2 + bx + c = 0 20.1 20.1.1 n 8 (n ) a n x n + a n 1 x n 1 + + a 1 x + a 0 = 0 ( a n, a n 1,, a 1, a 0 a n 0) n n ( ) ( ) ax 3 + bx 2 + cx + d = 0 444 ( a, b, c, d

More information

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt S I. x yx y y, y,. F x, y, y, y,, y n http://ayapin.film.s.dendai.ac.jp/~matuda n /TeX/lecture.html PDF PS yx.................................... 3.3.................... 9.4................5..............

More information

FCシリンダ

FCシリンダ CAT. No. KS-570-01 C ujikura cylinder INDEX Page CS - - -22 CS - -3 - CD - -3 - CS -40-0 -4 CD -40-0 -4 CS - -20-3 CD - -20-3 CL-400 VCS CDR -400 1 ujikura Cylinders 2 3 4 C 0 3 0.0.7 00 CD 0 4 S0 P CS

More information

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y [ ] 7 0.1 2 2 + y = t sin t IC ( 9) ( s090101) 0.2 y = d2 y 2, y = x 3 y + y 2 = 0 (2) y + 2y 3y = e 2x 0.3 1 ( y ) = f x C u = y x ( 15) ( s150102) [ ] y/x du x = Cexp f(u) u (2) x y = xey/x ( 16) ( s160101)

More information

d ϕ i) t d )t0 d ϕi) ϕ i) t x j t d ) ϕ t0 t α dx j d ) ϕ i) t dx t0 j x j d ϕ i) ) t x j dx t0 j f i x j ξ j dx i + ξ i x j dx j f i ξ i x j dx j d )

d ϕ i) t d )t0 d ϕi) ϕ i) t x j t d ) ϕ t0 t α dx j d ) ϕ i) t dx t0 j x j d ϕ i) ) t x j dx t0 j f i x j ξ j dx i + ξ i x j dx j f i ξ i x j dx j d ) 23 M R M ϕ : R M M ϕt, x) ϕ t x) ϕ s ϕ t ϕ s+t, ϕ 0 id M M ϕ t M ξ ξ ϕ t d ϕ tx) ξϕ t x)) U, x 1,...,x n )) ϕ t x) ϕ 1) t x),...,ϕ n) t x)), ξx) ξ i x) d ϕi) t x) ξ i ϕ t x)) M f ϕ t f)x) f ϕ t )x) fϕ

More information

数学Ⅱ演習(足助・09夏)

数学Ⅱ演習(足助・09夏) II I 9/4/4 9/4/2 z C z z z z, z 2 z, w C zw z w 3 z, w C z + w z + w 4 t R t C t t t t t z z z 2 z C re z z + z z z, im z 2 2 3 z C e z + z + 2 z2 + 3! z3 + z!, I 4 x R e x cos x + sin x 2 z, w C e z+w

More information

ALGEBRA I Hiroshi SUZUKI Department of Mathematics International Christian University

ALGEBRA I Hiroshi SUZUKI Department of Mathematics International Christian University ALGEBRA I Hiroshi SUZUKI Department of Mathematics International Christian University 2004 1 1 1 2 2 1 3 3 1 4 4 1 5 5 1 6 6 1 7 7 1 8 8 1 9 9 1 10 10 1 E-mail:hsuzuki@icu.ac.jp 0 0 1 1.1 G G1 G a, b,

More information

A µ : A A A µ(x, y) x y (x y) z = x (y z) A x, y, z x y = y x A x, y A e x e = e x = x A x e A e x A xy = yx = e y x x x y y = x A (1)

A µ : A A A µ(x, y) x y (x y) z = x (y z) A x, y, z x y = y x A x, y A e x e = e x = x A x e A e x A xy = yx = e y x x x y y = x A (1) 7 2 2.1 A µ : A A A µ(x, y) x y (x y) z = x (y z) A x, y, z x y = y x A x, y A e x e = e x = x A x e A e x A xy = yx = e y x x x y y = x 1 2.1.1 A (1) A = R x y = xy + x + y (2) A = N x y = x y (3) A =

More information

3 1 5 1.1........................... 5 1.1.1...................... 5 1.1.2........................ 6 1.1.3........................ 6 1.1.4....................... 6 1.1.5.......................... 7 1.1.6..........................

More information

1W II K =25 A (1) office(a439) (2) A4 etc. 12:00-13:30 Cafe David 1 2 TA appointment Cafe D

1W II K =25 A (1) office(a439) (2) A4 etc. 12:00-13:30 Cafe David 1 2 TA  appointment Cafe D 1W II K200 : October 6, 2004 Version : 1.2, kawahira@math.nagoa-u.ac.jp, http://www.math.nagoa-u.ac.jp/~kawahira/courses.htm TA M1, m0418c@math.nagoa-u.ac.jp TA Talor Jacobian 4 45 25 30 20 K2-1W04-00

More information

211 kotaro@math.titech.ac.jp 1 R *1 n n R n *2 R n = {(x 1,..., x n ) x 1,..., x n R}. R R 2 R 3 R n R n R n D D R n *3 ) (x 1,..., x n ) f(x 1,..., x n ) f D *4 n 2 n = 1 ( ) 1 f D R n f : D R 1.1. (x,

More information

DVIOUT

DVIOUT A. A. A-- [ ] f(x) x = f 00 (x) f 0 () =0 f 00 () > 0= f(x) x = f 00 () < 0= f(x) x = A--2 [ ] f(x) D f 00 (x) > 0= y = f(x) f 00 (x) < 0= y = f(x) P (, f()) f 00 () =0 A--3 [ ] y = f(x) [, b] x = f (y)

More information

13 0 1 1 4 11 4 12 5 13 6 2 10 21 10 22 14 3 20 31 20 32 25 33 28 4 31 41 32 42 34 43 38 5 41 51 41 52 43 53 54 6 57 61 57 62 60 70 0 Gauss a, b, c x, y f(x, y) = ax 2 + bxy + cy 2 = x y a b/2 b/2 c x

More information

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d S I.. http://ayapin.film.s.dendai.ac.jp/~matuda /TeX/lecture.html PDF PS.................................... 3.3.................... 9.4................5.............. 3 5. Laplace................. 5....

More information

高校生の就職への数学II

高校生の就職への数学II II O Tped b L A TEX ε . II. 3. 4. 5. http://www.ocn.ne.jp/ oboetene/plan/ 7 9 i .......................................................................................... 3..3...............................

More information

limit&derivative

limit&derivative - - 7 )................................................................................ 5.................................. 7.. e ).......................... 9 )..........................................

More information

x A Aω ẋ ẋ 2 + ω 2 x 2 = ω 2 A 2. (ẋ, ωx) ζ ẋ + iωx ζ ζ dζ = ẍ + iωẋ = ẍ + iω(ζ iωx) dt dζ dt iωζ = ẍ + ω2 x (2.1) ζ ζ = Aωe iωt = Aω cos ωt + iaω sin

x A Aω ẋ ẋ 2 + ω 2 x 2 = ω 2 A 2. (ẋ, ωx) ζ ẋ + iωx ζ ζ dζ = ẍ + iωẋ = ẍ + iω(ζ iωx) dt dζ dt iωζ = ẍ + ω2 x (2.1) ζ ζ = Aωe iωt = Aω cos ωt + iaω sin 2 2.1 F (t) 2.1.1 mẍ + kx = F (t). m ẍ + ω 2 x = F (t)/m ω = k/m. 1 : (ẋ, x) x = A sin ωt, ẋ = Aω cos ωt 1 2-1 x A Aω ẋ ẋ 2 + ω 2 x 2 = ω 2 A 2. (ẋ, ωx) ζ ẋ + iωx ζ ζ dζ = ẍ + iωẋ = ẍ + iω(ζ iωx) dt dζ

More information

1 X X A, B X = A B A B A B X 1.1 R R I I a, b(a < b) I a x b = x I 1.2 R A 1.3 X : (1)X (2)X X (3)X A, B X = A B A B = 1.4 f : X Y X Y ( ) A Y A Y A f

1 X X A, B X = A B A B A B X 1.1 R R I I a, b(a < b) I a x b = x I 1.2 R A 1.3 X : (1)X (2)X X (3)X A, B X = A B A B = 1.4 f : X Y X Y ( ) A Y A Y A f 1 X X A, B X = A B A B A B X 1.1 R R I I a, b(a < b) I a x b = x I 1. R A 1.3 X : (1)X ()X X (3)X A, B X = A B A B = 1.4 f : X Y X Y ( ) A Y A Y A f 1 (A) f X X f 1 (A) = X f 1 (A) = A a A f f(x) = a x

More information

2

2 p1 i 2 = 1 i 2 x, y x + iy 2 (x + iy) + (γ + iδ) = (x + γ) + i(y + δ) (x + iy)(γ + iδ) = (xγ yδ) + i(xδ + yγ) i 2 = 1 γ + iδ 0 x + iy γ + iδ xγ + yδ xδ = γ 2 + iyγ + δ2 γ 2 + δ 2 p7 = x 2 +y 2 z z p13

More information

Part () () Γ Part ,

Part () () Γ Part , Contents a 6 6 6 6 6 6 6 7 7. 8.. 8.. 8.3. 8 Part. 9. 9.. 9.. 3. 3.. 3.. 3 4. 5 4.. 5 4.. 9 4.3. 3 Part. 6 5. () 6 5.. () 7 5.. 9 5.3. Γ 3 6. 3 6.. 3 6.. 3 6.3. 33 Part 3. 34 7. 34 7.. 34 7.. 34 8. 35

More information

A(6, 13) B(1, 1) 65 y C 2 A(2, 1) B( 3, 2) C 66 x + 2y 1 = 0 2 A(1, 1) B(3, 0) P 67 3 A(3, 3) B(1, 2) C(4, 0) (1) ABC G (2) 3 A B C P 6

A(6, 13) B(1, 1) 65 y C 2 A(2, 1) B( 3, 2) C 66 x + 2y 1 = 0 2 A(1, 1) B(3, 0) P 67 3 A(3, 3) B(1, 2) C(4, 0) (1) ABC G (2) 3 A B C P 6 1 1 1.1 64 A6, 1) B1, 1) 65 C A, 1) B, ) C 66 + 1 = 0 A1, 1) B, 0) P 67 A, ) B1, ) C4, 0) 1) ABC G ) A B C P 64 A 1, 1) B, ) AB AB = 1) + 1) A 1, 1) 1 B, ) 1 65 66 65 C0, k) 66 1 p, p) 1 1 A B AB A 67

More information

1 Abstract 2 3 n a ax 2 + bx + c = 0 (a 0) (1) ( x + b ) 2 = b2 4ac 2a 4a 2 D = b 2 4ac > 0 (1) 2 D = 0 D < 0 x + b 2a = ± b2 4ac 2a b ± b 2

1 Abstract 2 3 n a ax 2 + bx + c = 0 (a 0) (1) ( x + b ) 2 = b2 4ac 2a 4a 2 D = b 2 4ac > 0 (1) 2 D = 0 D < 0 x + b 2a = ± b2 4ac 2a b ± b 2 1 Abstract n 1 1.1 a ax + bx + c = 0 (a 0) (1) ( x + b ) = b 4ac a 4a D = b 4ac > 0 (1) D = 0 D < 0 x + b a = ± b 4ac a b ± b 4ac a b a b ± 4ac b i a D (1) ax + bx + c D 0 () () (015 8 1 ) 1. D = b 4ac

More information

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10%

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10% 1 2006.4.17. A 3-312 tel: 092-726-4774, e-mail: hara@math.kyushu-u.ac.jp, http://www.math.kyushu-u.ac.jp/ hara/lectures/lectures-j.html Office hours: B A I ɛ-δ ɛ-δ 1. 2. A 1. 1. 2. 3. 4. 5. 2. ɛ-δ 1. ɛ-n

More information

VI VI.21 W 1,..., W r V W 1,..., W r W W r = {v v r v i W i (1 i r)} V = W W r V W 1,..., W r V W 1,..., W r V = W 1 W

VI VI.21 W 1,..., W r V W 1,..., W r W W r = {v v r v i W i (1 i r)} V = W W r V W 1,..., W r V W 1,..., W r V = W 1 W 3 30 5 VI VI. W,..., W r V W,..., W r W + + W r = {v + + v r v W ( r)} V = W + + W r V W,..., W r V W,..., W r V = W W r () V = W W r () W (W + + W + W + + W r ) = {0} () dm V = dm W + + dm W r VI. f n

More information

(4) P θ P 3 P O O = θ OP = a n P n OP n = a n {a n } a = θ, a n = a n (n ) {a n } θ a n = ( ) n θ P n O = a a + a 3 + ( ) n a n a a + a 3 + ( ) n a n

(4) P θ P 3 P O O = θ OP = a n P n OP n = a n {a n } a = θ, a n = a n (n ) {a n } θ a n = ( ) n θ P n O = a a + a 3 + ( ) n a n a a + a 3 + ( ) n a n 3 () 3,,C = a, C = a, C = b, C = θ(0 < θ < π) cos θ = a + (a) b (a) = 5a b 4a b = 5a 4a cos θ b = a 5 4 cos θ a ( b > 0) C C l = a + a + a 5 4 cos θ = a(3 + 5 4 cos θ) C a l = 3 + 5 4 cos θ < cos θ < 4

More information

7 27 7.1........................................ 27 7.2.......................................... 28 1 ( a 3 = 3 = 3 a a > 0(a a a a < 0(a a a -1 1 6

7 27 7.1........................................ 27 7.2.......................................... 28 1 ( a 3 = 3 = 3 a a > 0(a a a a < 0(a a a -1 1 6 26 11 5 1 ( 2 2 2 3 5 3.1...................................... 5 3.2....................................... 5 3.3....................................... 6 3.4....................................... 7

More information

.1 z = e x +xy y z y 1 1 x 0 1 z x y α β γ z = αx + βy + γ (.1) ax + by + cz = d (.1') a, b, c, d x-y-z (a, b, c). x-y-z 3 (0,

.1 z = e x +xy y z y 1 1 x 0 1 z x y α β γ z = αx + βy + γ (.1) ax + by + cz = d (.1') a, b, c, d x-y-z (a, b, c). x-y-z 3 (0, .1.1 Y K L Y = K 1 3 L 3 L K K (K + ) 1 1 3 L 3 K 3 L 3 K 0 (K + K) 1 3 L 3 K 1 3 L 3 lim K 0 K = L (K + K) 1 3 K 1 3 3 lim K 0 K = 1 3 K 3 L 3 z = f(x, y) x y z x-y-z.1 z = e x +xy y 3 x-y ( ) z 0 f(x,

More information

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0 1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0 0 < t < τ I II 0 No.2 2 C x y x y > 0 x 0 x > b a dx

More information

1 Ricci V, V i, W f : V W f f(v ) = Imf W ( ) f : V 1 V k W 1

1 Ricci V, V i, W f : V W f f(v ) = Imf W ( ) f : V 1 V k W 1 1 Ricci V, V i, W f : V W f f(v = Imf W ( f : V 1 V k W 1 {f(v 1,, v k v i V i } W < Imf > < > f W V, V i, W f : U V L(U; V f : V 1 V r W L(V 1,, V r ; W L(V 1,, V r ; W (f + g(v 1,, v r = f(v 1,, v r

More information

平成 30 年度 ( 第 40 回 ) 数学入門公開講座テキスト ( 京都大学数理解析研究所, 平成 30 ~8 年月 72 月日開催 30 日 [6] 1 4 A 1 A 2 A 3 l P 3 P 2 P 1 B 1 B 2 B 3 m 1 l 3 A 1, A 2, A 3 m 3 B 1,

平成 30 年度 ( 第 40 回 ) 数学入門公開講座テキスト ( 京都大学数理解析研究所, 平成 30 ~8 年月 72 月日開催 30 日 [6] 1 4 A 1 A 2 A 3 l P 3 P 2 P 1 B 1 B 2 B 3 m 1 l 3 A 1, A 2, A 3 m 3 B 1, [6] 1 4 A 1 A 2 A 3 l P 3 P 2 P 1 B 1 B 2 B 3 m 1 l 3 A 1, A 2, A 3 m 3 B 1, B 2, B 3 A i 1 B i+1 A i+1 B i 1 P i i = 1, 2, 3 3 3 P 1, P 2, P 3 1 *1 19 3 27 B 2 P m l (*) l P P l m m 1 P l m + m *1 A N

More information

x x x 2, A 4 2 Ax.4 A A A A λ λ 4 λ 2 A λe λ λ2 5λ + 6 0,...λ 2, λ 2 3 E 0 E 0 p p Ap λp λ 2 p 4 2 p p 2 p { 4p 2 2p p + 2 p, p 2 λ {

x x x 2, A 4 2 Ax.4 A A A A λ λ 4 λ 2 A λe λ λ2 5λ + 6 0,...λ 2, λ 2 3 E 0 E 0 p p Ap λp λ 2 p 4 2 p p 2 p { 4p 2 2p p + 2 p, p 2 λ { K E N Z OU 2008 8. 4x 2x 2 2 2 x + x 2. x 2 2x 2, 2 2 d 2 x 2 2.2 2 3x 2... d 2 x 2 5 + 6x 0 2 2 d 2 x 2 + P t + P 2tx Qx x x, x 2 2 2 x 2 P 2 tx P tx 2 + Qx x, x 2. d x 4 2 x 2 x x 2.3 x x x 2, A 4 2

More information

2 7 V 7 {fx fx 3 } 8 P 3 {fx fx 3 } 9 V 9 {fx fx f x 2fx } V {fx fx f x 2fx + } V {{a n } {a n } a n+2 a n+ + a n n } 2 V 2 {{a n } {a n } a n+2 a n+

2 7 V 7 {fx fx 3 } 8 P 3 {fx fx 3 } 9 V 9 {fx fx f x 2fx } V {fx fx f x 2fx + } V {{a n } {a n } a n+2 a n+ + a n n } 2 V 2 {{a n } {a n } a n+2 a n+ R 3 R n C n V??,?? k, l K x, y, z K n, i x + y + z x + y + z iv x V, x + x o x V v kx + y kx + ky vi k + lx kx + lx vii klx klx viii x x ii x + y y + x, V iii o K n, x K n, x + o x iv x K n, x + x o x

More information

14 (x a x x a f(x x 3 + 2x 2 + 3x + 4 (x 1 1 y x 1 x y + 1 x 3 + 2x 2 + 3x + 4 (y (y (y y 3 + 3y 2 + 3y y 2 + 4y + 2 +

14 (x a x x a f(x x 3 + 2x 2 + 3x + 4 (x 1 1 y x 1 x y + 1 x 3 + 2x 2 + 3x + 4 (y (y (y y 3 + 3y 2 + 3y y 2 + 4y + 2 + III 2005 1 6 1 1 ( 11 0 0, 0 deg (f(xg(x deg f(x + deg g(x 12 f(x, g(x ( g(x 0 f(x q(xg(x + r(x, r(x 0 deg r(x < deg g(x q(x, r(x q(x, r(x f(x g(x r(x 0 f(x g(x g(x f(x g(x f(x g(x f(x 13 f(x x a q(x,

More information