RC 規準改定に関する第 2 回公開小委員会 解析 WG 計算例 8 条構造解析の基本事項 9 条骨組の解析 竹中工務店角彰 2008 年 3 月 31 日 計算例 : 建物概要 / 使用材料 中規模事務所ビルを対象 コンピューター一貫計算手法での設計 耐震スリットの無い RC 造 延べ面積 362

Size: px
Start display at page:

Download "RC 規準改定に関する第 2 回公開小委員会 解析 WG 計算例 8 条構造解析の基本事項 9 条骨組の解析 竹中工務店角彰 2008 年 3 月 31 日 計算例 : 建物概要 / 使用材料 中規模事務所ビルを対象 コンピューター一貫計算手法での設計 耐震スリットの無い RC 造 延べ面積 362"

Transcription

1 規準改定に関する第 2 回公開小委員会 計算例 8 条構造解析の基本事項 9 条骨組の解析 竹中工務店角彰 28 年 3 月 31 日 計算例 : 建物概要 / 使用材料 中規模事務所ビルを対象 コンピューター一貫計算手法での設計 耐震スリットの無い 造 延べ面積 m 2 建築面積 m 2 構造 鉄筋コンクリート造 階数 地上 7 階 高さ 28.3 m 軒の高さ 27.7 m 材料 普通コンクリート 鉄筋 設計基準強度又は品質 Fc24 Fc3 Fc27 SD295A SD345 SD39 使用部位 4 階立上り以上基礎 ~4 階床杭 D16 以下 D19~D25 D29 1 / 46 1

2 計算例 : 建築図 ( 基準階平面図 ) 基準階平面図 1:2 2 / 46 計算例 : 構造図 ( 基準階床伏図 ) 基準階床伏図 1:2 3 / 46 2

3 計算例 : 構造図 (A 通り軸組図 ) A 通軸組図 1:2 4 / 46 計算例 : 構造図 (B 通り軸組図 ) B 通軸組図 1:2 5 / 46 3

4 計算例 : 構造図 (C 通り軸組図 ) C 通軸組図 1:2 6 / 46 計算例 : 構造図 (2 3 通り軸組図 ) 2 通軸組図 1:2 3 通軸組図 1:2 7 / 46 4

5 計算例 : 構造計画の特徴 構造種別は鉄筋コンクリート造とし 架構形式はX 方向 Y 方向ともコア部分に耐力壁を有するラーメン構造とする X 方向 A 通り大梁は腰壁を設けて剛性を高め C 通り耐震壁架構とできるだけバランスさせる なお 腰壁を考慮しても柱内法スパンは柱成の 2 倍を確保できるように配慮した X 方向 B 通りは 2 通り 5 通りから長さ 2.4m の袖壁を有する柱とする X 方向 C 通りは 3-4 通り間を開口つき耐震壁とし 2 通り 5 通りから長さ 3.2m の袖壁を有する柱を設ける Y 方向は 2 通りと 5 通りの B-C 通り間 ( 階段横 ) を無開口耐震壁として 剛性を高める 杭は先端が GL-3m のアースドリル工法による場所打ちコンクリート杭を用いる 8 / 46 計算例 : 構造設計方針 構造計算ルートは大地震に対する保有耐力計算を行うルート 3 とする 地盤は第二種地盤とし Ai Rt 建物一次固有周期は告示による略算式を用いて算出する 応力解析には一貫構造計算プログラム BRAIN- 旧認定番号 TRPG-1 を使用する 許容応力度計算に用いる応力 変形は ひび割れを考慮した立体静的弾塑性解析結果を用いる 腰壁付き梁 そで壁付き柱は壁を構造部材として扱い 耐力 剛性ともに適切に評価する 9 / 46 5

6 計算例 : 応力解析方針 解析における部材のモデル化は 梁 : 材端剛塑性回転バネつき曲げせん断線材要素 柱 : 材端剛塑性回転バネつき曲げせん断軸力線材要素 耐震壁 : 壁谷澤モデル ( 上下の剛梁に接続する柱要素と両端ピンの軸方向弾塑性バネ ) に置換して行う 梁要素と柱要素の回転バネには曲げひび割れ強度と曲げ降伏強度を持ったトリリニア復元力特性 耐震壁要素のせん断バネにはせん断ひび割れ強度とせん断降伏強度を持ったトリリニア復元力特性 その他は降伏のみ考慮するバイリニア復元力特性を与えて解析を行う 柱梁接合部は剛域を設定し 剛域端は材成の 1/4 入った位置とする 袖壁つき柱と腰壁つき梁の初期剛性 ( 弾性剛性 ) は 変断面部材として精算して求める ひび割れによる剛性低下率は袖壁や腰壁がないものとして算出し 初期剛性に乗じてひび割れ後剛性とした 上部構造の応力解析時は最下階ピン支持モデルとし 基礎バネは設けない 1 / 46 計算例 : 許容応力度設計 柱および梁の設計用せん断力は 1 次設計用応力に対して修復性の確保を目的にしたせん断設計を行う 従って設計用せん断力は Q D =Q L +Q E とする 腰壁つき梁の短期曲げ設計設計では 変断面部材として腰壁の縁応力度を 2/3Fc 以下 あるいは壁筋を降伏応力度以下に抑える 袖壁つき柱も同様である 基礎の浮き上がりに対しては 1 次設計においては杭の許容引抜き抵抗力以下であることを確認する 変形角 偏心率 剛性率などの検討は 弾性と剛性低下考慮の両者のうち危険側を採用する 11 / 46 6

7 計算例 : 解析モデル図 (A 通り ) RFL 7FL 6FL 5FL 4FL 3FL 2FL 1FLGL 2 Z G 1 7,2 2 7,2 3 7,2 4 7,2 5 7, / 46 計算例 : 解析モデル図 (B 通り ) RFL 7FL 6FL 5FL 4FL 3FL 2FL 1FLGL 2 Z G 1 7,2 2 7,2 3 7,2 4 7,2 5 7, / 46 7

8 計算例 : 応力図 ( 長期応力 /C 通り ) ( -82) ( -86) ( -91) ( -73) RFL ( -33) ( 73) ( -1) ( 91) ( ) ( 1) ( ) ( 86) ( 9) ( 82) ( 33) 7FL 38 ( -2) 6FL 46 ( -24) 5FL 44 ( -22) 4FL 46 ( -23) 3FL 44 ( -22) 2FL 48 ( -24) ( -33) ( -76) ( -1) (-12) ( ) ( 1) ( ) (-14) ( 9) ( -76) ( 33) ( 76) ( -16) ( 139) ( ) ( 3) ( ) ( 14) ( 16) ( 76) ( 21) ( -2) ( -77) ( -16) (-16) ( ) ( 3) ( ) (-14) ( 16) ( -75) ( 21) ( 75) ( -16) ( 145) ( ) ( 2) ( ) ( 14) ( 15) ( 77) ( 24) ( -24) ( -77) ( -16) (-12) ( ) ( 2) ( ) (-14) ( 15) ( -75) ( 24) ( 75) ( -15) ( 139) ( ) ( 2) ( ) ( 14) ( 15) ( 77) ( 22) ( -22) ( -77) ( -15) (-12) ( ) ( 2) ( ) (-14) ( 15) ( -75) ( 22) ( 75) ( -15) ( 139) ( ) ( 2) ( ) ( 14) ( 16) ( 77) ( 23) ( -23) ( -77) ( -15) (-12) ( ) ( 2) ( ) (-14) ( 16) ( -75) ( 23) ( 75) ( -15) ( 139) ( ) ( 2) ( ) ( 14) ( 16) ( 77) ( 22) ( -22) ( -77) ( -15) (-13) ( ) ( 2) ( ) (-14) ( 16) ( -75) ( 22) ( 75) ( -11) ( 139) ( ) ( 1) ( ) ( 14) ( 11) ( 77) ( 25) ( -24) (-112) ( -11) (-119) ( ) ( 1) ( ) (-154) ( 11) ( -86) ( 25) FLGL ( 86) ( 154) ( 119) ( 112) Rx= Rx= Rx= Rx= Rx= Rx= Rz=1715 Rz=2932 Rz=2678 Rz=2534 Rz=2914 Rz=148 Z My= My= My= My= My= My= G 1 7,2 2 7,2 3 7,2 4 7,2 5 7, / 46 計算例 : 解析モデル図 応力図 ( 長期応力 /2 通り ) RFL 7FL 6FL 5FL 4FL 3FL 2FL (-232) 428 RFL (-131) ( 214) ( ) ( 154) ( ) 7FL 164 ( -88) 6FL 191 ( -97) 5FL 183 ( -93) 4FL 189 ( -97) 3FL 182 ( -92) 2FL 194 ( -99) (-131) (-241) ( ) ( 154) ( ) ( 241) ( ) ( 16) ( ) ( -88) (-243) ( ) ( 16) ( ) ( 239) ( ) ( 112) ( ) ( -97) (-243) ( ) ( 112) ( ) ( 239) ( ) ( 18) ( ) ( -93) (-243) ( ) ( 18) ( ) ( 239) ( ) ( 112) ( ) ( -97) (-243) ( ) ( 112) ( ) ( 239) ( ) ( 16) ( ) ( -92) (-243) ( ) ( 16) ( ) ( 239) ( ) ( 124) ( ) 解析モデル図 1FLGL 2 Z B A 9, B 5,4 C 応力図 ( -99) 241 1FLGL ( 237) Ry= Rz=3741 Z Mx= B A 284 Mx= Mx= 9, B 5,4 C (-297) 548 ( ) Ry= Rz=5139 ( 124) -245 ( ) Ry= Rz= / 46 8

9 計算例 : 応力図 ( 短期応力 :A 通り ) (-137) (-14) (-138) (-141) (-1) RFL ( 8) ( -1) ( 256) ( -8) ( 267) ( -6) ( 272) ( -1) ( 256) ( -9) ( 125) 7FL-43 ( 158) 6FL-428 ( 191) 5FL-494 ( 247) 4FL-465 ( 264) 3FL-432 ( 318) 2FL-244 ( 341) ( 8) (-236) ( 256) (-242) ( 267) (-242) ( 272) (-24) ( 256) (-24) ( 125) (-16) ( 326) (-14) ( 342) (-14) ( 343) (-13) ( 3) (-11) ( 181) ( 158) (-263) ( 326) (-264) ( 342) (-264) ( 343) (-263) ( 3) (-266) ( 181) (-132) ( 45) (-126) ( 413) (-126) ( 412) (-126) ( 49) (-1) ( 219) ( 191) (-318) ( 45) (-36) ( 413) (-37) ( 412) (-36) ( 49) (-321) ( 219) (-188) ( 489) (-169) ( 49) (-169) ( 489) (-168) ( 49) (-191) ( 273) ( 247) (-7) ( 489) (-338) ( 49) (-338) ( 489) (-337) ( 49) (-9) ( 273) (-226) ( 536) (-2) ( 539) (-2) ( 539) (-2) ( 541) (-229) ( 289) ( 264) (-369) ( 536) (-345) ( 539) (-345) ( 539) (-343) ( 541) (-372) ( 289) (-239) ( 516) (-28) ( 519) (-27) ( 521) (-25) ( 513) (-242) ( 349) ( 318) (-391) ( 516) (-364) ( 519) (-364) ( 521) (-364) ( 513) (-393) ( 349) (-258) ( 72) (-224) ( 7) (-223) ( 698) (-224) ( 731) (-26) ( 374) ( 341) (-459) ( 72) (-392) ( 7) (-397) ( 698) (-394) ( 731) (-465) ( 374) FLGL (-291) (-214) (-219) (-216) (-297) Rx= Rx= Rx= Rx= Rx= Rx= Rz=864 Rz=3983 Rz=3692 Rz=85 Rz=38 Rz=497 Z My= My= My= My= My= My= G 1 7,2 2 7,2 3 7,2 4 7,2 5 7, / 46 計算例 : 応力図 ( 短期応力 :C 通り ) (-139) (-232) (-285) (-143) RFL ( 52) ( 16) ( 34) ( -55) ( ) ( 73) ( ) (-18) ( 183) ( 12) ( 11) 7FL-138 ( 53) 6FL-153 ( 61) 5FL-168 ( 73) 4FL-172 ( 88) 3FL-121 ( 6) 2FL-181 ( 181) ( 52) (-149) ( 34) (-249) ( ) ( 73) ( ) (-1) ( 183) (-151) ( 11) ( 2) ( 224) ( -8) ( ) ( 985) ( ) (-18) ( 6) ( 1) ( 68) ( 53) (-154) ( 224) (-265) ( ) ( 985) ( ) (-366) ( 6) (-155) ( 68) ( -3) ( 299) ( -14) ( ) (1728) ( ) (-123) ( 433) ( -4) ( 87) ( 61) (-166) ( 299) (-274) ( ) (1728) ( ) (-383) ( 433) (-167) ( 87) ( -14) ( 431) ( -34) ( ) (22) ( ) (-139) ( 563) ( -15) ( 98) ( 73) (-177) ( 431) (-289) ( ) (22) ( ) (-399) ( 563) (-178) ( 98) ( -26) ( 52) ( -48) ( ) (2433) ( ) (-155) ( 639) ( -27) ( 116) ( 88) (-178) ( 52) (-281) ( ) (2433) ( ) (-389) ( 639) (-179) ( 116) ( -26) ( 76) ( -4) ( ) (263) ( ) (-146) ( 894) ( -27) ( 76) ( 6) (-176) ( 76) (-252) ( ) (263) ( ) (-364) ( 894) (-177) ( 76) ( -24) ( 298) ( -1) ( ) (2693) ( ) (-119) ( 499) ( -25) ( 231) ( 181) (-332) ( 298) (-526) ( ) (2693) ( ) (-646) ( 499) (-337) ( 231) FLGL (-134) (-254) (-373) (-139) Rx= Rx= Rx= Rx= Rx= Rx= Rz=681 Rz=1678 Rz=-126 Rz=5925 Rz=4617 Rz=269 Z My= My= My= My= My= My= G 1 7,2 2 7,2 3 7,2 4 7,2 5 7, / 46 9

10 計算例 : 応力図 ( 短期応力 :2 3 通り ) (-364) 864 RFL ( 152) ( 82) ( ) ( 16) ( ) 7FL-289 ( 123) 6FL-312 ( 143) 5FL-319 ( 153) 4FL-329 ( 156) 3FL-318 ( 19) 2FL -87 ( 195) ( 152) (-396) ( ) ( 16) ( ) ( 86) ( ) (1155) ( ) ( 123) (-42) ( ) (1155) ( ) ( 8) ( ) (1783) ( ) ( 143) (-418) ( ) (1783) ( ) ( 64) ( ) (2114) ( ) ( 153) (-424) ( ) (2114) ( ) ( 58) ( ) (2674) ( ) ( 156) (-414) ( ) (2674) ( ) ( 68) ( ) (311) ( ) ( 19) (-386) ( ) (311) ( ) ( 96) ( ) (2894) ( ) (-283) ( -8) RFL ( 95) ( 117) ( 216) ( 25) ( 56) 7FL-25 ( 1) 6FL-247 ( 111) 5FL-271 ( 13) 4FL-281 ( 134) 3FL-298 ( 181) 2FL -86 ( 196) ( 95) (-337) ( 216) (-126) ( 56) ( 99) ( 218) ( 1) ( 57) ( 1) (-348) ( 218) (-132) ( 57) ( 88) ( 238) ( -5) ( 61) ( 111) (-367) ( 238) (-142) ( 61) ( 69) ( 272) ( -15) ( 67) ( 13) (-383) ( 272) (-152) ( 67) ( 53) ( 297) ( -25) ( 76) ( 134) (-387) ( 297) (-155) ( 76) ( 49) ( 286) ( -27) ( 7) ( 181) (-381) ( 286) (-156) ( 7) ( 56) ( 8) ( -28) ( 193) ( 195) FLGL 2766 ( 83) Ry= Rz=2498 Z Mx= B A 629 (-452) 通り 3 通り ( ) (2894) ( ) Ry= Ry= Rz=-198 Rz=1829 Mx= Mx= 9, B 5,4 C ( 196) -77 1FLGL 277 ( 58) Ry= Rz=2452 Z Mx= B A (-429) ( 8) (-264) ( 193) ( -9) Ry= Ry= Rz=413 Rz=3894 Mx= Mx= 9, B 5,4 C 18 / 46 計算例 : 層間変形角 / 剛性率 / 偏心率 方向 X Y 階 Ci 耐震壁の分担率 (%) 最大の層間変形角剛性率偏心率弾性弾塑性弾性弾塑性弾性弾塑性 Fes /2883 1/ /219 1/ /1794 1/ /161 1/ /1546 1/ /1589 1/ /261 1/ /1364 1/ /113 1/ /119 1/ /975 1/ /116 1/ /1129 1/ /1584 1/ / 46 1

11 計算例 : 保有水平耐力計算方針 解析モデルは一次設計と同じ架構モデルとする 外力分布は Ai 分布とし 基礎の浮き上がりを拘束して崩壊メカニズムを形成させて Ds を決定した X 方向は概ね全ての梁端に曲げヒンジが生じる崩壊メカニズムとなる 腰壁つき梁では壁体の圧壊が先行するという実験結果もあり FB ランク部材とした 耐震壁分担率が多くなる 1 階 FB 部材と 部材の比率により Ds=.3 と Ds=. の階が混在する Y 方向の保有耐力算出に際しては 基礎の浮き上がりと直交抑え効果を考慮した WA の組合せであるが 耐震壁分担率が 3% を超えるので Ds=. となる 終局強度を計算する場合の鉄筋強度は基準強度を 1.1 倍した値を用いる せん断終局強度は荒川 mean 式を採用した 袖壁付き柱部材のランク判定においては軸力比 せん断応力比および鉄筋比は袖壁を含んだ面積で判定し h /D は柱の断面のみで判定した メカニズム形成時は概ね 1/5 程度で 保有耐力時は 1/1 程度とした 2 / 46 計算例 : メカニズム図 (A 通り ) RFL (39) 47 (46) (16) 47 (21) (46) (13) 47 (22) (46) (12) 47 (2) (46) (12) (46) 48 (48) (48) 7FL 6FL (21) 5FL (21) 4FL (24) (48) ( 8) 45 (3) (18) 36 ( 5) 44 (29) (19) 37 ( 5) 44 (3) (19) 36 ( 5) 44 (3) 43 (2) 36 ( 7) (29) 28 ( 4) 42 (33) (19) 3 ( 3) 41 (29) (19) 31 ( 3) 41 (3) (19) 3 ( 3) 41 (32) 4 (19) 29 ( 4) (33) (33) 4 ( 3) 43 (24) (19) 43 ( 3) 44 (24) (19) 44 ( 3) 43 (25) (2) 43 ( 3) 43 (24) 38 (2) 43 ( 3) (44) (29) 36 ( 3) 4 (24) (22) 39 ( 2) 4 (24) (22) 4 ( 2) 39 (25) (23) 39 ( 2) 39 (25) (23) 39 ( 3) 34 (28) 3FL ( 2) 37 (25) (27) 37 ( 2) 37 (25) (27) 37 ( 2) 37 (26) (28) 37 ( 2) 37 (25) (27) 37 ( 2) FL 45 ( 8) ( 5) 38 (27) (28) 46 ( 5) 39 (26) (28) 46 ( 5) 39 (27) (28) 46 ( 6) 4 (27) (26) 46 ( 5) (41) (39) 46 1FLGL 234 (14) 41 (15) 4 (16) 39 (16) 38 (16) 39 (16) 36 (16) 41 (16) 39 (13) 31 Z G 1 7,2 2 7,2 3 7,2 4 7,2 5 7, / 46 11

12 計算例 : メカニズム図 (B 通り ) ( 7) RFL (33) (12) ( 8) 43 (38) (1) (4) (22) (47) 43 7FL (45) () 39 (19) (21) (26) (23) 4 (33) (38) (45) (36) 6FL (31) 34 (26) (21) (29) (22) (29) (39) (27) 5FL (48) 34 (38) 41 (24) 33 (24) 36 (26) (24) 42 (43) 44 (27) (24) 37 (23) 34 (37) 4 (28) (24) 4FL (3) 3 (23) 32 (29) (28) (28) (26) 33 (22) (29) (28) 3FL (23) 31 (29) (34) (27) (29) 32 (22) 31 (48) (22) (2) 2FL (23) 31 () (31) (31) 31 (23) 33 (23) (45) (44) (24) (23) (2) 1FLGL (17) (18) 44 (1) (29) 32 (2) 36 (2) Z G 1 7,2 2 7,2 3 7,2 4 7,2 5 7, / 46 計算例 : メカニズム図 (C 通り ) 47 RFL (34) (23) (28) (32) (48) (46) (48) 39 7FL (38) 38 (21) (31) (47) (45) (21) (45) 6FL (41) (28) 3 34 (47) (17) (25) 38 5FL (42) 38 (22) 24 (46) (25) (15) (24) 4FL (42) () (26) 27 (33) (13) (31) 3FL (46) (26) (18) (12) (18) 2FL (4) (28) (12) (29) (18) 1FLGL (15) 31 4 ( 9) (2) 3 (16) 44 (19) Z G 1 7,2 2 7,2 3 7,2 4 7,2 5 7, / 46 12

13 計算例 : メカニズム図 (2 3 通り ) RFL (21) 45 (17) 3 RFL (27) * ( 1) (37) 7FL (26) (33) 36 (15) 28 7FL (28) (44) 46 (25) ( 1) (14) (48) (24) 6FL (23) (34) 34 (14) 27 (41) 6FL (22) ( 1) ( 9) (43) (17) 5FL (23) (28) 39 (11) 34 5FL (19) (3) 32 (14) (42) 4FL (24) (25) 37 (14) 34 4FL (27) (3) 44 (19) 45 (16) (17) 37 (29) 29 (13) 3FL (26) (26) 36 (16) (3) 3FL (18) 43 (18) (2) (28) 29 (11) 2FL (3) (24) 37 (2) FL (33) 44 (19) 41 (2) (22) 32 (27) 28 (14) (32) 39 1FLGL 通り 3 通り Z B A 9, B 5,4 C FLGL 236 Z B A 9, B 5,4 C (12) 46 (28) 49 (16) 24 / 46 計算例 : Q-γ 関係図 (X 方向正加力時 ) 3 Q-γ グラフ K E K SE K SE /K E = Q(kN) FL 5FL 6FL 2FL 4FL 5FL 1FL 2FL 3FL 3FL 4FL 5 短期設計時 保有耐力時 7FL 7FL メカニズム時 1/1 1/5 1/25 1/2 1/125 1/1 1/5 γ 25 / 46 13

14 計算例 : Q-γ 関係図 (Y 方向正加力時 ) 3 Q-γ グラフ 25 K E K SE K SE /K E =.51 1FL Q(kN) FL 4FL 5FL 3FL 4FL 2FL 2FL 3FL 1 6FL 6FL 5 短期設計時 保有耐力時 7FL 7FL メカニズム時 ( 浮き上がり ) 1/1 1/5 1/25 1/2 1/125 1/1 1/5 γ 26 / 46 計算例 : 部材ランク図 (A 通り ) RFL FB FB FB FB FB 7FL FB FB FB FB FB FB FB FB FB FB 6FL FB FB FB FB FB FB 5FL FB FB FB FB FB 4FL FB FB FB FB FB 3FL FB FB FB FB FB 2FL FB FB FB FB FB FB FB 1FLGL 2 FB FB FB FB FB Z G 1 7,2 2 7,2 3 7,2 4 7,2 5 7, / 46 14

15 計算例 : 部材ランク図 (B 通り ) RFL 7FL () () () () () () 6FL () () () () () () 5FL () () () () () () 4FL () () () () () () 3FL () () () () () () 2FL () () () () () () () 1FLGL 2 () () () FC (FC) () Z G 1 7,2 2 7,2 3 7,2 4 7,2 5 7, / 46 計算例 : 部材ランク図 (C 通り ) 29 / 46 15

16 計算例 : 部材ランク図 (2 3 通り ) 2 通り 3 通り 3 / 46 計算例 : 保有水平耐力計算結果 (X 方向 ) 方向 +X 階 柱ランク耐震壁ランク βu Ds Fes Qud Qun Qu Qu/Qun (kn) (kn) (kn) 判定 7 FB WA ,478 4,367 5, OK 6 WA ,662 6,499 9, OK 5 FB WA ,176 1,212 12, OK 4 FB WA ,48 12,393 15, OK 3 WA ,538 12,56 17, OK 2 FB WA ,642 17,487 19, OK 1 FB WA ,789 16,726 2, OK 31 / 46 16

17 計算例 : 保有水平耐力計算結果 (Y 方向 ) 方向 階 柱ランク耐震壁ランク βu Ds Fes Qud Qun Qu Qu/Qun (kn) (kn) (kn) 判定 7 WA ,478 3,743 5, OK 6 WA ,662 7,582 9, OK 5 WA ,176 1,212 13, OK +Y 4 WA ,48 12,393 15, OK 3 WA ,538 14,188 18, OK 2 WA ,642 15,625 2, OK 1 WA ,789 16,726 21, OK 7 WA ,478 3,743 4, OK 6 WA ,662 7,582 8,4 1.6 OK 5 WA ,176 1,212 1, OK -Y 4 WA ,48 12,393 13, OK 3 WA ,538 14,188 15, OK 2 WA ,642 15,625 16, OK 1 WA ,789 16,726 17, OK 32 / 46 計算例 : 断面設計 ( 一般柱 :1 階 CA2) 安全性検討用の短期設計 (1.5QE) 修復性検討用の短期設計 (1.QE) 主筋 14-UD32 帯筋 主筋 14-UD32 帯筋 2 次設計時も同上 短期設計用せん断力 Qd=197 kn せん断検定比.84 短期設計用せん断力 Qd=732 kn せん断検定比 / 46 17

18 計算例 : 断面設計 ( 袖壁柱 :3 階 CB2) 3 階 CB2 中立軸 ( 壁圧縮 ) 中立軸 ( 壁引張 ) 曲げ ( 壁圧縮 ) MAL=281 kn m > MDL=3 kn m OK MAS=5242 kn m > MDS=699 kn m OK 曲げ ( 壁引張 ) MAL=3334 kn m > MDL=3 kn m OK MAS=4122 kn m > MDS=856 kn m OK せん断 QAS=1838 kn > QDS=482 kn OK 34 / 46 計算例 : 断面設計 ( 腰壁梁 :3 階 GA2) 3 階 GA2 曲げ ( 上端引張 ) MAL=677 kn m > MDL=88 kn m OK MAS=94 kn m > MDS=911 kn m OK 中立軸 ( 壁圧縮 ) 中立軸 ( 壁引張 ) 曲げ ( 下端引張 ) MAL=927 kn m > MDL=45 kn m OK MAS=1819 kn m > MDS=781 kn m OK せん断 QAS=839 kn > QDS=336 kn OK / 46 18

19 計算例 : 代表断面リスト ( 柱 壁 ) 壁リスト 壁厚 2 壁厚 2 階 名称 WC3G WB2B, WB5B 5~7 1~4 たて筋たて筋 LD13@2ダブル LD16@2ダブル LD13@2ダブル LD13@2ダブルよこ筋よこ筋 LD13@1ダブル LD16@1ダブル LD13@1ダブル LD13@1ダブル 36 / 46 計算例 : 代表断面リスト (X 方向大梁 ) 37 / 46 19

20 計算例 : 代表断面リスト (Y 方向大梁 ) 38 / 46 8 条の改定 現行 8 条 8 条構造解析の基本事項 1. 応力と変形の算定 (1) 弾性剛性と剛性低下 (2) ヤング係数 (3) 断面積 断面 2 次モーメント T 形断面 (4) 考慮する変形 2. 部材の接合部や材に接する部分などが応力 変形に及ぼす影響 39 / 46 2

21 8 条の改定 改定案 8 条 8 条構造解析の基本事項 1. 応力と変形の算定 (1) 弾性剛性と剛性低下 (2) ヤング係数 2. 柱 梁の剛性評価 (1) 断面積 断面 2 次モーメント (2) T 形断面 (3) 考慮する変形 (4) ひび割れによる剛性低下 3. 壁の剛性評価 (1) 開口のある耐震壁 (2) ひび割れによる剛性低下 ⅰ) ひび割れによるせん断剛性の低下 ⅱ) ひび割れによる曲げ剛性の低下 (3) 高強度材料を用いた場合の耐震壁の剛性 (4) 構造解析の目的に応じた耐震壁の剛性の設定 4 / 46 9 条の改定 現行 1 条 1 条梁 柱および耐震壁 1. 受ける荷重の範囲 2. 柱荷重 3. 積載荷重 4. 小梁のモーメント 5. 鉛直荷重を受けるラーメンの解析 (1) 柱の部材角を無視する (2) 曲げモーメントは隣接する材まで (3) 梁のせん断力は単純梁として 6. 水平力を受ける有壁ラーメンおよび無壁ラーメンの解析 (1) 直交 2 方向に別々に作用する (2) 水平力は床位置に集中する (3) 剛床仮定 7. 水平力に対する床のねじれ回転の影響 8. 水平力に対する耐震壁の剛性評価 (1) 耐震壁の基礎回転 (2) 無壁ラーメン部分の地震力分担 (3) 開口のある耐震壁 (4) せん断剛性の低下 (5) 高強度材料を用いた場合の耐震壁の剛性 (6) 構造解析の目的に対応した耐震壁の剛性低下率の設定 41 / 46 21

22 9 条の改定 (9 条と 1 条入れ換え ) 9 条骨組の解析 1. 受ける荷重の範囲 2. 柱荷重 3. 積載荷重 4. 小梁のモーメント 5. 架構のモデル化 (1) 柱 梁のモデル化 ⅰ) 剛域の考慮 ⅱ) 接合部の考慮 ⅲ) 特殊な架構 (2) 耐震壁のモデル化 ⅰ) 耐震壁要素のモデル化 ⅱ) 基礎支点のモデル化 6. 地震力を受ける架構の解析 (1) 直交 2 方向に別々に作用する (2) 水平力は床位置に集中する (3) 剛床仮定 (4) 床のねじれ回転の影響 (5) 直交効果の考慮 (6) 地震時鉛直力の考慮 (7)P-Δ の効果 7. 部材の力と変形関係を適切に評価した増分解析 42 / 46 9 条骨組の解析 5. 架構のモデル化 (1) 柱 梁のモデル化 ⅲ) 特殊な架構では発生する応力 変形を考え ふさわしいモデルを考慮する ⅲ) 特殊な架構に対する考慮常時荷重時には通常の場合は軸変形を考慮することは少ない (8 条 参照 ) しかし 高層建物等で軸剛性の異なる柱が並存する場合には 施工の段階で徐々に軸変形が増加し 柱間に軸変形の差が現れ 取り付く梁や床に比較的大きな部材角が発生する恐れがある 特に高層部に低層部等が取り付く場合には 高層部の柱の軸変形が施工につれて進み 低層部との接続部の床 梁に支障を生じる可能性がある この軸変形には勿論クリープ変形量を含んで考える必要がある このような恐れがある場合には施工段階を考えた解析が必要であり 施工時に変形を考えた柱長さとする あるいは後打ち帯を設けて低層部との連結の施工時期をずらすなどの対策が考えられる 低層部 高層部 接続部に影響 (a) 柱の軸変形 43 / 46 22

23 9 条骨組の解析 柱抜けなどにより階に渡ってトラス架構やフィーレンディール架構が形成される場合は上下弦材となる梁に軸力が生じる この場合に 通常のように剛床が仮定された解析を行っていると梁の軸剛性を過大に想定し 鉛直変形を過小に評価してしまう また断面設計においても軸力を考慮しないため危険側となる場合がある この場合には剛床条件をはずし 有効範囲を適切に判断した梁の軸剛性を評価し 変形量を求めると同時に断面設計にも考慮する必要がある フィーレンディール架構 梁軸変形 (b) 梁の軸変形 44 / 46 9 条骨組の解析 6. 地震力を受ける架構の解析地震力を受けるラーメンおよび耐震壁から構成される骨組の解析にあたっては, 下記によることができる. (5) 柱の鉛直変位による直交梁 直交壁の影響が無視できない場合には, その影響を適切に考慮する. (6) 片持ちのバルコニー等の建物外壁から突出する部分については 地震時鉛直力の影響を適切に考慮する. (7) 軸力や水平変位が大きい場合は P-Δ 効果の影響を適切に考慮する. 直交梁 δ Q P-δ 無視 地震時水平力 耐震壁側柱 P P δ P-δ 考慮 隣接骨組 耐震壁付骨組 隣接骨組 P-δ 負剛性 δ 45 / 46 23

24 ありがとうございました 46 / 46 24

PowerPoint プレゼンテーション

PowerPoint プレゼンテーション 材料実験演習 第 6 回 2015.05.17 スケジュール 回 月 / 日 標題 内容 授業種別 時限 講義 演習 6,7 5 月 17 日 8 5 月 24 日 5 月 31 日 9,10 6 月 7 日 11 6 月 14 日 講義 曲げモーメントを受ける鉄筋コンクリート(RC) 梁の挙動その1 構造力学の基本事項その2 RC 梁の特徴演習 曲げを受ける梁の挙動 実験 鉄筋コンクリート梁の載荷実験レポート

More information

PowerPoint プレゼンテーション

PowerPoint プレゼンテーション 材料実験演習 第 6 回 2017.05.16 スケジュール 回 月 / 日 標題 内容 授業種別 時限 実験レポート評価 講義 演習 6,7 5 月 16 日 8 5 月 23 日 5 月 30 日 講義 曲げモーメントを受ける鉄筋コンクリート(RC) 梁の挙動その1 構造力学の基本事項その2 RC 梁の特徴演習 曲げを受ける梁の挙動 実験 鉄筋コンクリート梁の載荷実験レポート 鉄筋コンクリート梁実験レポート作成

More information

Taro-2012RC課題.jtd

Taro-2012RC課題.jtd 2011 RC 構造学 http://design-s.cc.it-hiroshima.ac.jp/tsato/kougi/top.htm 課題 1 力学と RC 構造 (1) 図のような鉄筋コンクリート構造物に どのように主筋を配筋すればよいか 図中に示し 最初に 生じる曲げひび割れを図示せよ なお 概略の曲げモーメント図も図示せよ w L 3 L L 2-1 - 課題 2. コンクリートの自重

More information

-2-6. 地震力を受ける架構の解析地震力を受けるラーメンおよび耐震壁から構成される骨組の解析にあたっては, 下記によることができる. (1) 水平力は, 一般にはラーメン方向となる互いに直交する 2 方向に別々に作用するものとする. ただし, 建築物の平面が特殊な形状の場合などでは, 必要に応じて

-2-6. 地震力を受ける架構の解析地震力を受けるラーメンおよび耐震壁から構成される骨組の解析にあたっては, 下記によることができる. (1) 水平力は, 一般にはラーメン方向となる互いに直交する 2 方向に別々に作用するものとする. ただし, 建築物の平面が特殊な形状の場合などでは, 必要に応じて 2008.2.26-1- 9 条骨組の解析 1. 床スラブから梁に加わる鉛直荷重は, 床スラブ上の荷重状態および床スラブの周辺条件を考慮して定める. 等分布荷重を受ける長方形スラブを支える梁は, 梁の交点から描いた 2 等分線および梁に平行な直線から作られる台形または三角形の部分の荷重を受けるものとみなすことができる 図 9.1 参照. 図 9.1 等分布荷重を受ける長方形スラブを支える大梁および小梁の荷重範囲

More information

Super Build/FA1出力サンプル

Super Build/FA1出力サンプル *** Super Build/FA1 *** [ 計算例 7] ** UNION SYSTEM ** 3.44 2012/01/24 20:40 PAGE- 1 基本事項 計算条件 工 事 名 : 計算例 7 ( 耐震補強マニュアル設計例 2) 略 称 : 計算例 7 日 付 :2012/01/24 担 当 者 :UNION SYSTEM Inc. せん断による変形の考慮 : する 剛域の考慮 伸縮しない材(Aを1000

More information

構造番号質疑回答 3 講習会資料 P5 判定事例の対応集 横補剛材について屋根ブレース等により水平移動が拘束された大梁に対して 例えば図 1 のよう下図 a 又は b 又は a b 材共に ( 梁に ) 対する横補剛材として c の火打ち材をに大梁せいの中心位置に横補剛材を設け 補剛材

構造番号質疑回答 3 講習会資料 P5 判定事例の対応集 横補剛材について屋根ブレース等により水平移動が拘束された大梁に対して 例えば図 1 のよう下図 a 又は b 又は a b 材共に ( 梁に ) 対する横補剛材として c の火打ち材をに大梁せいの中心位置に横補剛材を設け 補剛材 S 造 1 講習会資料 P6 露出柱脚設計フロー 14の基礎コンクリート破壊防止等の検討について (a) 柱脚のアンカーボルトがせん断力を負担しない場合 (a) 柱脚の終局せん断力 (Ds 算定時 ) をベースプレート下面の摩擦で処理できる 柱軸力による B.PL 底面の摩擦力でせん断力を負担できる場合は アンカーボ 場合はアンカーボルトによる基礎立上がり部側面のコーン状破壊の検討を省略 ルトにせん断力が作用しないとして基礎立上がり部のコーン状破壊の検討を省

More information

AP 工法 による増設壁補強計算例 (1) 設計フロー RC 耐震改修設計指針に示された 中低層鉄筋コンクリート造建物を対象とした開口付き増設壁に AP 工法 を用いて強度抵抗型補強とする場合の補強壁 ( せん断壁 ) の設計フローを示す 周辺架構から補強壁に期待できる耐力の目安をつけ プロポーショ

AP 工法 による増設壁補強計算例 (1) 設計フロー RC 耐震改修設計指針に示された 中低層鉄筋コンクリート造建物を対象とした開口付き増設壁に AP 工法 を用いて強度抵抗型補強とする場合の補強壁 ( せん断壁 ) の設計フローを示す 周辺架構から補強壁に期待できる耐力の目安をつけ プロポーショ AP 工法 による増設壁補強計算例 (1) 設計フロー RC 耐震改修設計指針に示された 中低層鉄筋コンクリート造建物を対象とした開口付き増設壁に AP 工法 を用いて強度抵抗型補強とする場合の補強壁 ( せん断壁 ) の設計フローを示す 周辺架構から補強壁に期待できる耐力の目安をつけ プロポーション ( 壁厚さ 開口形状 寸法 ) ならびに配筋を仮定する 補強壁架構のせん断耐力を計算する せん断破壊するときのメカニズムは

More information

Microsoft PowerPoint - fuseitei_6

Microsoft PowerPoint - fuseitei_6 不静定力学 Ⅱ 骨組の崩壊荷重の計算 不静定力学 Ⅱ では, 最後の問題となりますが, 骨組の崩壊荷重の計算法について学びます 1 参考書 松本慎也著 よくわかる構造力学の基本, 秀和システム このスライドの説明には, 主にこの参考書の説明を引用しています 2 崩壊荷重 構造物に作用する荷重が徐々に増大すると, 構造物内に発生する応力は増加し, やがて, 構造物は荷重に耐えられなくなる そのときの荷重を崩壊荷重あるいは終局荷重という

More information

公開小委員会 鉄筋コンクリート構造計算規準の改定案

公開小委員会  鉄筋コンクリート構造計算規準の改定案 2012 年 8 月 24 日高知 耐震壁の設計法の過去, 現在 および将来 ( 現在 AIJ で検討している内容 ) 新潟大学工学部建設学科建築コース 教授 加藤大介 耐震壁の設計法の過去, 現在および将来 ( 現在 AIJ で検討している内容 ) 1. 耐震壁の設計法等の歴史 2.2010 年の RC 規準 11 次改定について 3.2013 年 (?) 発刊予定の保有水平耐力規準の作業について

More information

構造力学Ⅰ第12回

構造力学Ⅰ第12回 第 回材の座屈 (0 章 ) p.5~ ( 復習 ) モールの定理 ( 手順 ) 座屈とは 荷重により梁に生じた曲げモーメントをで除して仮想荷重と考える 座屈荷重 偏心荷重 ( 曲げと軸力 ) 断面の核 この仮想荷重に対するある点でのせん断力 たわみ角に相当する曲げモーメント たわみに相当する ( 例 ) 単純梁の支点のたわみ角 : は 図 を仮想荷重と考えたときの 点の支点反力 B は 図 を仮想荷重と考えたときのB

More information

PowerPoint プレゼンテーション

PowerPoint プレゼンテーション SALOME-MECA を使用した RC 構造物の弾塑性解析 終局耐力と弾塑性有限要素法解析との比較 森村設計信高未咲 共同研究者岐阜工業高等専門学校柴田良一教授 研究背景 2011 年に起きた東北地方太平洋沖地震により多くの建築物への被害がみられた RC 構造の公共建築物で倒壊まではいかないものの大きな被害を負った報告もあるこれら公共建築物は災害時においても機能することが求められている今後発生が懸念されている大地震を控え

More information

RC 規準 3 条改定案 平成 0 年 3 月 3 日 /4 月 日第 回公開小委員会提出用 5. 前各項の算定のほか, 梁は次の限度に従うこと. () 長期荷重時に正負最大曲げモーメントを受ける部分の引張鉄筋断面積は,0.004 bd または存在応力によって必要とされる量の 4/3 倍のうち, 小

RC 規準 3 条改定案 平成 0 年 3 月 3 日 /4 月 日第 回公開小委員会提出用 5. 前各項の算定のほか, 梁は次の限度に従うこと. () 長期荷重時に正負最大曲げモーメントを受ける部分の引張鉄筋断面積は,0.004 bd または存在応力によって必要とされる量の 4/3 倍のうち, 小 RC 規準 3 条改定案 平成 0 年 3 月 3 日 /4 月 日第 回公開小委員会提出用 3 条梁の曲げに対する断面算定 本文案 下線部は改定箇所を示す. 重取消線は削除した部分を示す. 梁の設計用曲げモーメントは, 以下の方法で計算する. () 使用性検討用の長期設計用曲げモーメントは, その部材に長期荷重が作用した場合の最大曲げモーメントとする. () 修復性検討用の短期設計用曲げモーメントは,

More information

CLT による木造建築物の設計法の開発 ( その 2)~ 構造設計法の開発 ~ 平成 26 年度建築研究所講演会 CLT による木造建築物の設計法の開発 ( その 2)~ 構造設計法の開発 ~ 構造研究グループ荒木康弘 CLT による木造建築物の設計法の開発 ( その 2)~ 構造設計法の開発 ~

CLT による木造建築物の設計法の開発 ( その 2)~ 構造設計法の開発 ~ 平成 26 年度建築研究所講演会 CLT による木造建築物の設計法の開発 ( その 2)~ 構造設計法の開発 ~ 構造研究グループ荒木康弘 CLT による木造建築物の設計法の開発 ( その 2)~ 構造設計法の開発 ~ CLT による木造建築物の設計法の開発 ( その 2)~ 構造設計法の開発 ~ 構造研究グループ荒木康弘 CLT 構造の特徴 構法上の特徴 構造上の特徴 講演内容 構造設計法の策定に向けた取り組み CLT 建物の現状の課題 設計法策定に向けた取り組み ( モデル化の方法 各種実験による検証 ) 今後の展望 2 構造の構法上の特徴軸組構法の建て方 鉛直荷重水平力 ( 自重 雪地震 風 ) 柱や梁で支持壁で抵抗

More information

Microsoft Word - 建築研究資料143-1章以外

Microsoft Word - 建築研究資料143-1章以外 4. ブレース接合部 本章では, ブレース接合部について,4 つの部位のディテールを紹介し, それぞれ問題となる点や改善策等を示す. (1) ブレースねらい点とガセットプレートの形状 (H 形柱, 弱軸方向 ) 対象部位の概要 H 形柱弱軸方向にガセットプレートタイプでブレースが取り付く場合, ブレースの傾きやねらい点に応じてガセットプレートの形状等を適切に設計する. 検討対象とする接合部ディテール

More information

施設・構造1-5b 京都大学原子炉実験所研究用原子炉(KUR)新耐震指針に照らした耐震安全性評価(中間報告)(原子炉建屋の耐震安全性評価) (その2)

施設・構造1-5b 京都大学原子炉実験所研究用原子炉(KUR)新耐震指針に照らした耐震安全性評価(中間報告)(原子炉建屋の耐震安全性評価) (その2) 原子炉建屋屋根版の水平地震応答解析モデル 境界条件 : 周辺固定 原子炉建屋屋根版の水平方向地震応答解析モデル 屋根版は有限要素 ( 板要素 ) を用い 建屋地震応答解析による最上階の応答波形を屋根版応答解析の入力とする 応答解析は弾性応答解析とする 原子炉建屋屋根版の上下地震応答解析モデル 7.E+7 6.E+7 実部虚部固有振動数 上下地盤ばね [kn/m] 5.E+7 4.E+7 3.E+7

More information

<4D F736F F D208D5C91A297CD8A7793FC96E591E6328FCD2E646F63>

<4D F736F F D208D5C91A297CD8A7793FC96E591E6328FCD2E646F63> -1 ポイント : 材料の応力とひずみの関係を知る 断面内の応力とひずみ 本章では 建築構造で多く用いられる材料の力学的特性について学ぶ 最初に 応力とひずみの関係 次に弾性と塑性 また 弾性範囲における縦弾性係数 ( ヤング係数 ) について 建築構造用材料として代表的な鋼を例にして解説する さらに 梁理論で使用される軸方向応力と軸方向ひずみ あるいは せん断応力とせん断ひずみについて さらにポアソン比についても説明する

More information

<4D F736F F D2096D88E4F BE095A88D C982E682E989A189CB8DDE8B7982D197C090DA8D878BE095A882CC8C9F92E8>

<4D F736F F D2096D88E4F BE095A88D C982E682E989A189CB8DDE8B7982D197C090DA8D878BE095A882CC8C9F92E8> 木三郎 4 金物工法による横架材及び梁接合金物の検定 -1- 木三郎 4 追加マニュアル本マニュアルでは 木三郎 Ver4.06 で追加 変更を行った項目について説明しています 1. 追加内容 (Ver4.06) (1) 追加項目 1 横架材のせん断を負担する金物の検討を追加 2 水平構面の許容せん断耐力の計算書で選定に用いる金物リストを追加 1 横架材のせん断を負担する金物の検討を追加一般財団法人日本住宅

More information

<8D5C91A28C768E5A8F91836C C768E5A8F A2E786C73>

<8D5C91A28C768E5A8F91836C C768E5A8F A2E786C73> スカイセイフティネット構造計算書 スカイテック株式会社 1. 標準寸法 2. 設計条件 (1) 荷重 通常の使用では スカイセーフティネットに人や物は乗せないことを原則とするが 仮定の荷重としてアスファルト ルーフィング1 巻 30kgが1スパンに1 個乗ったとした場合を考える ネットの自重は12kgf/1 枚 これに単管 (2.73kgf/m) を1m 辺り2 本考える 従ってネット自重は合計で

More information

事例に基づく耐震性能の評価と被災度区分判定および復旧計画

事例に基づく耐震性能の評価と被災度区分判定および復旧計画 被災した建物を実例とした日本の応急復旧技術の紹介 東北大学 Tohoku University 迫田丈志 Joji Sakuta 京都大学 Kyoto University 坂下雅信 Masanobu Sakashita 日本の応急復旧の流れ 1 応急危険度判定 危険 2 応急措置 軸力支持 水平抵抗力の確保 3 被災度区分判定 大破 4 準備計算 図面作成 建物重量 5 構造特性係数 Is の算定

More information

A-2

A-2 . 荷重および外力.1 クレーン荷重の考え方 よくある指摘事例 クレーン荷重の設定方法や建物の設計方法が不明確な事例がある. 関係法令等 令第 8 条, 第 83 条, 第 84 条平成 1 年国交省告示第 5 号 指摘の趣旨 クレーンを有する建物の構造設計を行うにあたり,015 年技術基準 1) にはクレーン荷重の設定方法や考え方 長期, 地震時 ) が示されておらず, また設計上の注意事項も記載されていない.

More information

Microsoft PowerPoint - zairiki_10

Microsoft PowerPoint - zairiki_10 許容応力度設計の基礎 はりの断面設計 前回までは 今から建てようとする建築物の設計において 建物の各部材断面を適当に仮定しておいて 予想される荷重に対してラーメン構造を構造力学の力を借りていったん解き その仮定した断面が適切であるかどうかを 危険断面に生じる最大応力度と材料の許容応力度を比較することによって検討するという設計手法に根拠を置いたものでした 今日は 前回までとは異なり いくつかの制約条件から

More information

<4D F736F F F696E74202D D834F D758F4B89EF977090E096BE8E9197BF2E707074>

<4D F736F F F696E74202D D834F D758F4B89EF977090E096BE8E9197BF2E707074> 資料 -5 構造計算プログラムの特性比較 愛知県建築技術支援センター ( 社 ) 日本建築構造技術者協会中部支部 建築構造計算プログラム審査能力向上事業 最近の構造計算の殆どは一貫構造計算プログラムを用いて行なわれている 構造設計に携わっておらず プログラムに精通していない構造審査者がいると思われる 一貫構造計算プログラムの普及によって構造計算の中身がブラックボックス化し 確認審査さえ通ればよしとする構造設計者がいると思われる

More information

技術基準改訂による付着検討・付着割裂破壊検討の取り扱いについてわかりやすく解説

技術基準改訂による付着検討・付着割裂破壊検討の取り扱いについてわかりやすく解説 技術基準改訂による付着検討 付着割裂破壊検討の取り扱いについてわかりやすく解説 2016 年 6 月 株式会社構造ソフト はじめに 2015 年に 建築物の構造関係技術基準解説書 ( 以下 技術基準と表記 ) が2007 年版から改訂されて 付着検討および付着割裂破壊検討に関して 2007 年版と2015 年版では記載に差がみられ お客様から様々な質問が寄せられています ここでは 付着検討や付着割裂破壊検討に関して

More information

< B795FB8C6094C28F6F97CD97E12E786477>

< B795FB8C6094C28F6F97CD97E12E786477> 長方形板の計算システム Ver3.0 適用基準 級数解法 ( 理論解析 ) 構造力学公式集( 土木学会発行 /S61.6) 板とシェルの理論( チモシェンコ ヴォアノフスキークリ ガー共著 / 長谷川節訳 ) 有限要素法解析 参考文献 マトリックス構造解析法(J.L. ミーク著, 奥村敏恵, 西野文雄, 西岡隆訳 /S50.8) 薄板構造解析( 川井忠彦, 川島矩郎, 三本木茂夫 / 培風館 S48.6)

More information

道路橋の耐震設計における鉄筋コンクリート橋脚の水平力 - 水平変位関係の計算例 (H24 版対応 ) ( 社 ) 日本道路協会 橋梁委員会 耐震設計小委員会 平成 24 年 5 月

道路橋の耐震設計における鉄筋コンクリート橋脚の水平力 - 水平変位関係の計算例 (H24 版対応 ) ( 社 ) 日本道路協会 橋梁委員会 耐震設計小委員会 平成 24 年 5 月 道路橋の耐震設計における鉄筋コンクリート橋脚の水平力 - 水平変位関係の計算例 (H24 版対応 ) ( 社 ) 日本道路協会 橋梁委員会 耐震設計小委員会 平成 24 年 5 月 目次 本資料の利用にあたって 1 矩形断面の橋軸方向の水平耐力及び水平変位の計算例 2 矩形断面 (D51 SD490 使用 ) 橋軸方向の水平耐力及び水平変位の計算例 8 矩形断面の橋軸直角方向の水平耐力及び水平変位の計算例

More information

付着割裂破壊の検討の概要と取り扱いの注意点

付着割裂破壊の検討の概要と取り扱いの注意点 付着割裂破壊の検討の概要と取り扱いの注意点 2014 年 2 月 株式会社構造ソフト 保有水平耐力計算における付着割裂破壊の検討について お客様や審査機関から様々な質問が寄せられています ここでは その付着割裂破壊の検討の概要や取り扱いの注意点について説明します 1. 付着割裂破壊の検討の必要性はじめに なぜ 保有水平耐力計算において付着割裂破壊の検討が必要かを説明します RC 造の柱 梁の種別区分に関しては

More information

<4D F736F F D C082CC8BC882B08B7982D182B982F192668E8E8CB12E646F63>

<4D F736F F D C082CC8BC882B08B7982D182B982F192668E8E8CB12E646F63> 6.1 目的 6.RC 梁の曲げ及びせん断試験 RC 梁の基本特性を 梁の曲げ せん断実験を通じて学ぶ RC 梁の断面解析を行い 実験で用いる梁の曲げ及びせん断耐力 荷重変形関係を予想する 梁のモデル試験体を用いた実験を通じて 荷重と変形の関係 ひび割れの進展状況 最終破壊性状等を観察する 解析の予想と実験結果とを比較し 解析手法の精度について考察する 梁の様々な耐力 変形能力 エネルギー吸収能力について考察し

More information

Microsoft PowerPoint - 構造設計学_2006

Microsoft PowerPoint - 構造設計学_2006 [8] 耐震設計 皆さんは 構造設計の手法として 許容応力度設計を学んできましたね この許容応力度設計は どこから生まれたのでしょうか また 許容応力度設計はわかりやすく 構造設計者にとっては便利な設計法ですが この設計法には欠点はないのでしょうか 許容応力度設計に欠点があるとすれば 建物の耐震設計は どのように考えるべきなのでしょうか ここでは 耐震設計の考え方と構造計画の重要性についてお話しします

More information

Microsoft PowerPoint - zairiki_11

Microsoft PowerPoint - zairiki_11 許容応力度設計の基礎 圧縮材の設計 ( 座屈現象 ) 構造部材には 圧縮を受ける部材があります 柱はその代表格みたいなものです 柱以外にも トラス材やブレース材 ラチス材といったものがあります ブレースは筋交いともいい はりや柱の構面に斜め材として設けられています この部材は 主に地震などの水平力に抵抗します 一方 ラチス材は 細長い平鋼 ( 鉄の板 ) を組み合わせて はりや柱をつくることがありますが

More information

1 建築物の概要使用プログラムの概要伏図 軸組図等 特別な調査又は研究の結果等説明書 2 荷重 外力等固定荷重積載荷重 荷重分布図 1 プログラムの出力メッセージに対するコメントの記載がない 2 貫通孔を有する梁部材において その仕様の明示や補強計算書の添付がない ( 既製品使用時は 構造計算概要書

1 建築物の概要使用プログラムの概要伏図 軸組図等 特別な調査又は研究の結果等説明書 2 荷重 外力等固定荷重積載荷重 荷重分布図 1 プログラムの出力メッセージに対するコメントの記載がない 2 貫通孔を有する梁部材において その仕様の明示や補強計算書の添付がない ( 既製品使用時は 構造計算概要書 よくある指摘事項 ( 一覧表 ) の公開について ( 改訂 ) 改 1 平成 23 年 8 月 1 日平成 21 年 10 月 5 日一般財団法人大阪建築防災センター構造計算適合性判定センター 改訂内容 1 指摘の頻度が減少した事項等を削除 ( 欠番としています ) 2 指摘の頻度が増加した事項等について新たに追加 ( 付番号で赤字で表示 ) 3 判定が長期化した事例でその要因となっている事項 (

More information

1.2 耐荷力の算定対象となる柱部材の危険断面における耐荷力を算定する場合, 曲げ耐力 ( 課題 1にて学習した方法 ) およびせん断耐力 ( 課題 2の方法 ) を求め, 両者のうち小なる耐荷力がその部材の終局耐荷力となる. 別途設定された設計外力に対して十分な耐荷力を有することはもちろんのこと,

1.2 耐荷力の算定対象となる柱部材の危険断面における耐荷力を算定する場合, 曲げ耐力 ( 課題 1にて学習した方法 ) およびせん断耐力 ( 課題 2の方法 ) を求め, 両者のうち小なる耐荷力がその部材の終局耐荷力となる. 別途設定された設計外力に対して十分な耐荷力を有することはもちろんのこと, 課題 3 柱部材の破壊モードと耐荷力の算定 ( 耐震設計入門 ). はじめに / 1. 単柱部材の構造特性 1.1 変形モードと断面力分布単柱形式の垂直柱部材には, 基本的に, 上載死荷重 ( 軸力 N として働く ) と地震力による水平荷重 P( 曲げモーメント, せん断力として働く ) が同時に作用し, 図 1のようにまとめることができる. 図 1では,(a) 上端自由片持ち梁形式 ( 土木橋梁構造物

More information

第 回日本地震工学シンポジウム (0) 2. 擬似全体崩壊メカニズムと応力推定 2. 基本的な考え方と検討の流れ本研究では C 造フレーム構造の全体崩壊メカニズムとして 倒壊に対する耐震安全性が高い梁曲げ降伏型全体崩壊メカニズム 2) を想定する その際 最上階の柱頭ヒンジと 階の柱脚ヒンジは許容す

第 回日本地震工学シンポジウム (0) 2. 擬似全体崩壊メカニズムと応力推定 2. 基本的な考え方と検討の流れ本研究では C 造フレーム構造の全体崩壊メカニズムとして 倒壊に対する耐震安全性が高い梁曲げ降伏型全体崩壊メカニズム 2) を想定する その際 最上階の柱頭ヒンジと 階の柱脚ヒンジは許容す GO26-Sat-AM-8 第 回日本地震工学シンポジウム (0) 静的非線形解析を用いた C フレーム構造の崩壊メカニズムと応力推定 ESTIMATION OF STESS AND COLLAPSE MECHANISM FO C FAME STUCTUE USING NONLINEA STATIC ANALYSIS 相羽均修 ) 木谷圭一 ) 秋田知芳 2) ) 和泉信之 Masanobu AIBA,

More information

<4D F736F F D208D7E959A82A882E682D18F498BC78BC882B B BE98C60816A2E646F63>

<4D F736F F D208D7E959A82A882E682D18F498BC78BC882B B BE98C60816A2E646F63> 降伏時および終局時曲げモーメントの誘導 矩形断面 日中コンサルタント耐震解析部松原勝己. 降伏時の耐力と変形 複鉄筋の矩形断面を仮定する また コンクリートの応力ひずみ関係を非線形 放物線型 とする さらに 引張鉄筋がちょうど降伏ひずみに達しているものとし コンクリート引張応力は無視する ⅰ 圧縮縁のひずみ

More information

技術基準およびRC規準改訂による開口補強筋の取り扱いについてわかりやすく解説

技術基準およびRC規準改訂による開口補強筋の取り扱いについてわかりやすく解説 技術基準および RC 規準改訂による開口補強筋の取り扱いについてわかりやすく解説 017 年 11 月 株式会社構造ソフト はじめに 015 年に 建築物の構造関係技術基準解説書 ( 以下 技術基準と表記 ) が007 年版から改訂されて 鉄筋コンクリート構造計算規準 ( 以下 RC 規準と表記 ) の010 年版が本格的に運用されるようになり 耐震壁の開口補強筋の計算についても RC 規準 (010)

More information

<4D F736F F D CC82E898678E77906A E DD8C7697E181698F4390B3816A312E646F63>

<4D F736F F D CC82E898678E77906A E DD8C7697E181698F4390B3816A312E646F63> 付録 1. 吹付枠工の設計例 グラウンドアンカー工と併用する場合の吹付枠工の設計例を紹介する 付録図 1.1 アンカー配置 開始 現地条件の設定現況安全率の設定計画安全率の設定必要抑止力の算定アンカー体の配置計画アンカー設計荷重の設定作用荷重および枠構造の決定設計断面力の算定安全性の照査 土質定数 (C φ γ) 等を設定 例 ) ここでは Fs0.95~1.05 を設定 例 ) ここでは Fsp1.20~1.50

More information

国土技術政策総合研究所資料

国土技術政策総合研究所資料 5. 鉄筋コンクリート橋脚の耐震補強設計における考え方 5.1 平成 24 年の道路橋示方書における鉄筋コンクリート橋脚に関する規定の改定のねらい H24 道示 Ⅴの改定においては, 橋の耐震性能と部材に求められる限界状態の関係をより明確にすることによる耐震設計の説明性の向上を図るとともに, 次の2 点に対応するために, 耐震性能に応じた限界状態に相当する変位を直接的に算出する方法に見直した 1)

More information

Microsoft PowerPoint - 課題S6スラブ協力幅_修正

Microsoft PowerPoint - 課題S6スラブ協力幅_修正 危険側実験目的平成 25 年度建築基準整備促進事業 S6. 鉄筋コンクリート造のスラブ協力幅に関する検討 ~ スラブによる梁曲げ耐力の増分と下端筋定着詳細の影響の評価 ~ 東京大学地震研究所壁谷澤寿海横浜国立大学大学院田才晃 楠浩一独立行政法人建築研究所 スラブ協力幅の算定 保有水平耐力計算 片側 1m のスラブを協力幅 梁耐力を過小評価する事は 架構水平耐力の評価安全側 全体崩壊型 柱の曲げ設計

More information

<82658C5E95578EAF928C208BAD93788C768E5A8F >

<82658C5E95578EAF928C208BAD93788C768E5A8F > 001 F 型標識柱強度計算書 ( 柱長 6.75m ) (1400 * 3800) (1400 * 3800) 略図 000 3800 300 300 6750 300 550 900 300 5700 STK-φ76.3x.8 STK-φ165.x4.5 STK-φ67.4x6.6 50 300 5000 1400 3000 100 1400 P. 1 1. 一般事項 1-1 概要 F 型 標識柱

More information

コンクリート実験演習 レポート

コンクリート実験演習 レポート . 鉄筋コンクリート (RC) 梁の耐力算定.1 断面諸元と配筋 ( 主鉄筋とスターラップ ) スターラップ :D D D 5 7 軸方向筋 ( 主筋 ) (a) 試験体 1 スターラップ :D D D 5 7 軸方向筋 ( 主筋 ) (b) 試験体 鉄筋コンクリート (RC) 梁の断面諸元と配筋 - 1 - . 載荷条件 P/ P/ L-a a = 5 = a = 5 L = V = P/ せん断力図

More information

と を原則とした構造計算を行う 具体的には, 時刻歴応答解析 を基本とする構造計算によって安全性を確かめる 第二号建築物は, 地震力によって建築物の地上部分の各階に生じる水平方向の変形を把握すること を原則とした構造計算を行う 具体的には, 建築物の規模や構造特性, あるいは設計者の判断などにより,

と を原則とした構造計算を行う 具体的には, 時刻歴応答解析 を基本とする構造計算によって安全性を確かめる 第二号建築物は, 地震力によって建築物の地上部分の各階に生じる水平方向の変形を把握すること を原則とした構造計算を行う 具体的には, 建築物の規模や構造特性, あるいは設計者の判断などにより, 鉄筋コンクリート造建築物の耐震設計の概要 *1 和泉信之 1. はじめに建築物の構造設計とは, 建築物に求められる要求性能に基づき, 適切な材料を選択 ( あるいは開発 ) して, 想定される荷重 外力に対して安全で合理的な骨組を創造する行為である 耐震設計は, 構造設計における骨組の耐震安全性を検証するプロセスであり, 世界有数の地震国であり, 大地震の発生が危惧される日本においては, 耐震設計は社会的にもたいへん重要な役割を担っている

More information

<4D F736F F D208D5C91A297CD8A7793FC96E591E631308FCD2E646F63>

<4D F736F F D208D5C91A297CD8A7793FC96E591E631308FCD2E646F63> 第 1 章モールの定理による静定梁のたわみ 1-1 第 1 章モールの定理による静定梁のたわみ ポイント : モールの定理を用いて 静定梁のたわみを求める 断面力の釣合と梁の微分方程式は良く似ている 前章では 梁の微分方程式を直接積分する方法で 静定梁の断面力と変形状態を求めた 本章では 梁の微分方程式と断面力による力の釣合式が類似していることを利用して 微分方程式を直接解析的に解くのではなく 力の釣合より梁のたわみを求める方法を学ぶ

More information

<4D F736F F F696E74202D F4390B3817A8C9A927A8AEE8F8090AE94F591A E28F958BE08E968BC F18D

<4D F736F F F696E74202D F4390B3817A8C9A927A8AEE8F8090AE94F591A E28F958BE08E968BC F18D 鉄筋コンクリート造の変断面部材の構造特性評価に関する実験 平成 21 年度応募課題名 袖壁を有する柱および腰壁 垂壁を有する梁の力学特性に関する実験と実用評価法の検証 東京大学地震研究所 横浜国立大学 福井大学 建築研究所 7. 鉄筋コンクリート造の変断面部材の構造特性評価に関する実験 袖壁を有する柱および腰壁 垂壁を有する梁の力学特性に関する実験と実用評価法の提案ー全体概要ー 研究目的 : 鉄筋コンクリ

More information

Slide 1

Slide 1 Release Note Release Date : Jun. 2015 Product Ver. : igen 2015 (v845) DESIGN OF General Structures Integrated Design System for Building and General Structures Enhancements Analysis & Design 3 (1) 64ビットソルバー及び

More information

要 約 本件建物は 構造上の安全性に問題がある 前回裁判で提出されている本件の問題点に加え 現地調査書 (( 株 ) 日本建築検査研究所岩山氏作成 ) 施工図及び竣工図をもとに再検討を行なった その結果下記に示すように建物の安全性を損なう重要な問題点が発覚した 発覚した問題点を反映し構造の再計算を行

要 約 本件建物は 構造上の安全性に問題がある 前回裁判で提出されている本件の問題点に加え 現地調査書 (( 株 ) 日本建築検査研究所岩山氏作成 ) 施工図及び竣工図をもとに再検討を行なった その結果下記に示すように建物の安全性を損なう重要な問題点が発覚した 発覚した問題点を反映し構造の再計算を行 要 約 本件建物は 構造上の安全性に問題がある 前回裁判で提出されている本件の問題点に加え 現地調査書 (( 株 ) 日本建築検査研究所岩山氏作成 ) 施工図及び竣工図をもとに再検討を行なった その結果下記に示すように建物の安全性を損なう重要な問題点が発覚した 発覚した問題点を反映し構造の再計算を行った 本件建物の問題点 1 屋上の増し打ち荷重が元設計の想定の限度を超えて打設されている 2 基礎梁の施工不良があり柱と基礎梁の接合部のコンクリートが一体化していない

More information

集水桝の構造計算(固定版編)V1-正規版.xls

集水桝の構造計算(固定版編)V1-正規版.xls 集水桝の構造計算 集水桝 3.0.5 3.15 横断方向断面の計算 1. 計算条件 11. 集水桝の寸法 内空幅 B = 3.000 (m) 内空奥行き L =.500 (m) 内空高さ H = 3.150 (m) 側壁厚 T = 0.300 (m) 底版厚 Tb = 0.400 (m) 1. 土質条件 土の単位体積重量 γs = 18.000 (kn/m 3 ) 土の内部摩擦角 φ = 30.000

More information

スライド 1

スライド 1 第 3 章 鉄筋コンクリート工学の復習 鉄筋によるコンクリートの補強 ( 圧縮 ) 鉄筋で補強したコンクリート柱の圧縮を考えてみよう 鉄筋とコンクリートの付着は十分で, コンクリートと鉄筋は全く同じように動くものとする ( 平面保持の仮定 ) l Δl 長さの柱に荷重を載荷したときの縮み量をとする 鉄筋及びコンクリートの圧縮ひずみは同じ量なのでで表す = Δl l 鉄筋及びコンクリートの応力はそれぞれの弾性定数を用いて次式で与えられる

More information

表 6.3 鉄筋のコンクリートに対する許容付着応力度 (N/mm 2 ) 長 期 短 期 異形鉄筋 かつ 5 上端筋 Fc 以下 75 0 その他の鉄筋 かつ.35 + Fc 以下 25 < 表を全面差し替えた > 長期に対する値の.5 倍 丸鋼 4 Fc かつ 0.9 以下 00

表 6.3 鉄筋のコンクリートに対する許容付着応力度 (N/mm 2 ) 長 期 短 期 異形鉄筋 かつ 5 上端筋 Fc 以下 75 0 その他の鉄筋 かつ.35 + Fc 以下 25 < 表を全面差し替えた > 長期に対する値の.5 倍 丸鋼 4 Fc かつ 0.9 以下 00 6 条許容応力度 下線部は修正した改定箇所 2 重取消線は削除した箇所を示す 本文案 鉄筋とコンクリートの許容応力度は, 通常の場合, 表 6.,6.2 および表 6.3 による. 普通コンクリート 軽量コンクリート 種および 2 種 表 6. コンクリートの許容応力度 (N/mm 2 ) 長期短期 圧縮引張せん断圧縮引張せん断 3-30 かつ 0.49 + Fc 以 00 下 普通コンクリートに対する値の

More information

<8F6F97CD8C8B89CA>

<8F6F97CD8C8B89CA> 構造計算チェックリスト 章項目記入欄 Ⅰ 建築物の規模 構造種別と計算ルート Ⅱ 建築物の形状 建築物名称 [ ] 建築場所 [ ] 用途 [ ] 階数 地上 ( ) 階 地下 ( ) 階 塔屋 ( ) 階 面積 建築面積 ( ) m2 延べ面積 ( ) m2 工事種別 新築 増築 改築 ; 増築計画 有 無 主要構造 X 方向 RC 造 ( ) 階 ~( ) 階 SRC 造 ( ) 階 ~( )

More information

. 軸力作用時における曲げ耐力基本式の算定 ) ここでは破壊包絡線の作成を前提としているので, コンクリートは引張領域を無視した RC 断面時を考える. 圧縮域コンクリートは応力分布は簡易的に, 降伏時は線形分布, 終局時は等価応力ブロック ( 図 -2) を考えることにする. h N ε f e

. 軸力作用時における曲げ耐力基本式の算定 ) ここでは破壊包絡線の作成を前提としているので, コンクリートは引張領域を無視した RC 断面時を考える. 圧縮域コンクリートは応力分布は簡易的に, 降伏時は線形分布, 終局時は等価応力ブロック ( 図 -2) を考えることにする. h N ε f e 課題 軸力と曲げモーメントの相互作用図. はじめに 骨組構造を形成する梁 柱構造部材には, 一般に軸力, 曲げモーメント, せん断力が作用するが, ここでは軸力と曲げモーメントの複合断面力を受ける断面の相互作用図 (interation urve) を考える. とくに, 柱部材では, 偏心軸圧縮力や, 地震 風などの水平力を受け ( 図 -), 軸力 + 曲げ荷重下の検討は, 設計上不可欠となる.

More information

POWER-直接基礎Ⅱの出力例(表形式)

POWER-直接基礎Ⅱの出力例(表形式) page < 出力例 > 地盤の支持力の計算 S01 (1F Y1@X1 ) BxL hf hw C,O r2 r1 基礎底面の形状 長方形 基礎最小幅 B 1.20 (m) 基礎の長さ L 2.60 (m) 基礎下端の深さ hf GL- 1.20 (m) 地下水位 hw GL- 3.90 (m) 根入れ深さ Df 1.20 (m) 土質定数 砂層 基礎下の土重量 γ1 18.14 (kn/m 3

More information

屋根ブレース偏心接合の研究開発

屋根ブレース偏心接合の研究開発 論文 報告 屋根ブレース偏心接合の研究開発 ~BT 接合ピースを用いた大梁 小梁 屋根ブレース接合部 ~ Research and Development of Eccentric Joints in Roof Brace 戸成建人 * Tatsuto TONARI 谷ヶ﨑庄二 * Shoji YAGASAKI 池谷研一 * Kenichi IKETANI 中澤潤 * Jun NAKAZAWA 川田工業システム建築の鉄骨生産ラインの特徴を活かして製作コストを低減するために,

More information

Microsoft Word - 建築研究資料143-1章以外

Microsoft Word - 建築研究資料143-1章以外 3.H 形断面柱を用いた柱梁接合部 本章では,H 形断面柱を用いた柱梁接合部に関して,6 つの部位の接合部ディテールを紹介し, それらについて, それぞれ問題となる点や改善策等を示す. (1) 柱梁接合部の標準ディテール 対象部位の概要 H 形柱を用いた柱梁接合部の標準ディテール 検討対象とする接合部ディテール 検討課題 各接合形式における柱梁接合部の各部位の材質 板厚を検討する. 34 検討課題に対応した接合部ディテールの例

More information

Microsoft Word - 技術資料Vol.2.docx

Microsoft Word - 技術資料Vol.2.docx 技術資料 Vol.2 Civil Engineering & Consultants 株式会社クレアテック東京都千代田区西神田 2 丁目 5-8 共和 15 番館 6 階 TEL:03-6268-9108 / FAX:03-6268-9109 http://www.createc-jp.com/ ( 株 ) クレアテック技術資料 Vol.2 P.1 解析種別キーワード解析の目的解析の概要 3 次元静的線形解析

More information

<4D F736F F D208D5C91A297CD8A7793FC96E591E631318FCD2E646F63>

<4D F736F F D208D5C91A297CD8A7793FC96E591E631318FCD2E646F63> 11-1 第 11 章不静定梁のたわみ ポイント : 基本的な不静定梁のたわみ 梁部材の断面力とたわみ 本章では 不静定構造物として 最も単純でしかも最も大切な両端固定梁の応力解析を行う ここでは 梁の微分方程式を用いて解くわけであるが 前章とは異なり 不静定構造物であるため力の釣合から先に断面力を決定することができない そのため 梁のたわみ曲線と同時に断面力を求めることになる この両端固定梁のたわみ曲線や断面力分布は

More information

第 14 章柱同寸筋かいの接合方法と壁倍率に関する検討 510

第 14 章柱同寸筋かいの接合方法と壁倍率に関する検討 510 第 14 章柱同寸筋かいの接合方法と壁倍率に関する検討 5 14.1 検討の背景と目的 9 mm角以上の木材のたすき掛け筋かいは 施行令第 46 条第 4 項表 1においてその仕様と耐力が規定されている 既往の研究 1では 9 mm角筋かい耐力壁の壁倍率が 5. を満たさないことが報告されているが 筋かい端部の仕様が告示第 146 号の仕様と異なっている 本報では告示どおりの仕様とし 9 mm角以上の筋かいたすき掛けの基礎的なデータの取得を目的として検討を行った

More information

水平打ち継ぎを行った RC 梁の実験 近畿大学建築学部建築学科鉄筋コンクリート第 2 研究室 福田幹夫 1. はじめに鉄筋コンクリート ( 以下 RC) 造建物のコンクリート打設施工においては 打ち継ぎを行うことが避けられない 特に 地下階の施工においては 山留め のために 腹起し や 切ばり があ

水平打ち継ぎを行った RC 梁の実験 近畿大学建築学部建築学科鉄筋コンクリート第 2 研究室 福田幹夫 1. はじめに鉄筋コンクリート ( 以下 RC) 造建物のコンクリート打設施工においては 打ち継ぎを行うことが避けられない 特に 地下階の施工においては 山留め のために 腹起し や 切ばり があ 水平打ち継ぎを行った RC 梁の実験 近畿大学建築学部建築学科鉄筋コンクリート第 2 研究室 福田幹夫 1. はじめに鉄筋コンクリート ( 以下 RC) 造建物のコンクリート打設施工においては 打ち継ぎを行うことが避けられない 特に 地下階の施工においては 山留め のために 腹起し や 切ばり があるために 高さ方向の型枠工事に制限が生じ コンクリートの水平打ち継ぎを余儀なくされる可能性が考えられる

More information

FC 正面 1. 地震入力 1-1. 設計基準 準拠基準は以下による 建築設備耐震設計 施工指針 (2005 年版 ): 日本建築センター FH = KH M G KH: 設計用水平震度 KH = Z KS W : 機械重量 FV = KV M G = 機械質量 (M) 重力加速度 (G) KV =

FC 正面 1. 地震入力 1-1. 設計基準 準拠基準は以下による 建築設備耐震設計 施工指針 (2005 年版 ): 日本建築センター FH = KH M G KH: 設計用水平震度 KH = Z KS W : 機械重量 FV = KV M G = 機械質量 (M) 重力加速度 (G) KV = FC 正面 1. 地震入力 1-1. 設計基準 準拠基準は以下による 建築設備耐震設計 施工指針 (2005 年版 ): 日本建築センター FH = KH M G KH: 設計用水平震度 KH = Z KS W : 機械重量 FV = KV M G = 機械質量 (M) 重力加速度 (G) KV = (1/2) KH Z : 地域係数 KS: 設計用標準震度 KV: 設計用鉛直震度 1-2. 設計条件耐震クラス

More information

Microsoft PowerPoint - zairiki_3

Microsoft PowerPoint - zairiki_3 材料力学講義 (3) 応力と変形 Ⅲ ( 曲げモーメント, 垂直応力度, 曲率 ) 今回は, 曲げモーメントに関する, 断面力 - 応力度 - 変形 - 変位の関係について学びます 1 曲げモーメント 曲げモーメント M 静定力学で求めた曲げモーメントも, 仮想的に断面を切ることによって現れる内力です 軸方向力は断面に働く力 曲げモーメント M は断面力 曲げモーメントも, 一つのモーメントとして表しますが,

More information

説明書 ( 耐震性 ) 在来木造一戸建て用 ( 第二面 ) 基礎根入れ深さ深さ ( mm ) 住宅工事仕様書 適 基礎の 立上り部分 高さ ( mm ) 厚さ ( mm ) 基礎伏図 不適 各部寸法底盤の寸法厚さ ( mm ) 幅 ( mm ) 基礎詳細図 基礎の配筋主筋 ( 径 mm ) 矩計図

説明書 ( 耐震性 ) 在来木造一戸建て用 ( 第二面 ) 基礎根入れ深さ深さ ( mm ) 住宅工事仕様書 適 基礎の 立上り部分 高さ ( mm ) 厚さ ( mm ) 基礎伏図 不適 各部寸法底盤の寸法厚さ ( mm ) 幅 ( mm ) 基礎詳細図 基礎の配筋主筋 ( 径 mm ) 矩計図 説明書 ( 耐震性 ) 在来木造一戸建て用 ( 第一面 ) 在来木造住宅において フラット35Sを利用する場合に記入してください 耐震等級 ( 構造躯体の倒壊等防止 )2 又は3の基準に適合する場合には Ⅰに記入してください 免震建築物の基準に適合する場合には Ⅱに記入してください Ⅰ 耐震等級 ( 構造躯体の倒壊等防止 )2 又は3の基準に適合する場合 説明欄項目評価方法基準記載図書確認 目標等級

More information

設計者のための構造計算書の作り方

設計者のための構造計算書の作り方 設計者のための構造計算書の作り方 住宅金融普及協会構造判定課 平成 19 年 6 月 20 日に国土交通省告示第 835 号 確認審査等に関する指針 が出されました この告示は 確認申請に際して 確認検査機関が 審査すべき事項 及び適合性判定機関が 判定すべき事項 を指示しています これら審査判定すべき事項は 建築基準法施行規則第 1 条の 3の表 3に規定されている 明示すべき事項 と対応しています

More information

Microsoft Word - 構造計算書例1.doc

Microsoft Word - 構造計算書例1.doc 構造計算書例 (1) 建物概要 :4 階建て共同住宅 設計ルート : ルート 3 1. はじめに 本計算例は 以下の点に重点をおいて作成した一例である 本例は計算の方針や方法を画一化するものではなく 個々の建物の特性や 設計者の設計方針によっては 本例よりもより最良な設計方法により設計することも考えられ そのような設計方針を示せて計算が可能な設計者にあっては 本設計例に縛られること無くよりよい設計を実現して頂きたい

More information

<4D F736F F F696E74202D BD E838A815B836791A28D9C916782CC94F190FC8C6089F090CD288C9A8CA4292E707074>

<4D F736F F F696E74202D BD E838A815B836791A28D9C916782CC94F190FC8C6089F090CD288C9A8CA4292E707074> 2011 年 6 月 9 日 ( 独 ) 建築研究所中国耐震構造研修 鉄筋コンクリート造骨組の非線形解析 曲げ挙動する RC 骨組の解析 せん断破壊 付着割裂破壊 定着破壊等の脆性破壊は設計段階で除外 東京大学名誉教授小谷俊介 コンクリートの応力度 - 歪度関係 影響因子 (1) コンクリートの調合 (2) 試験時の材令 (3) 供試体の養生方法 (4) 供試体の形状と大きさ (5) 載荷速度 圧縮強度

More information

静的載荷実験に基づく杭頭部の損傷度評価法の検討 柏尚稔 1) 坂下雅信 2) 向井智久 3) 平出務 4) 1) 正会員国土交通省国土技術政策総合研究所 主任研究員博士 ( 工学 ) 2) 正会員国立研究開発法人建築研究所 主任研

静的載荷実験に基づく杭頭部の損傷度評価法の検討 柏尚稔 1) 坂下雅信 2) 向井智久 3) 平出務 4) 1) 正会員国土交通省国土技術政策総合研究所 主任研究員博士 ( 工学 )   2) 正会員国立研究開発法人建築研究所 主任研 静的載荷実験に基づく杭頭部の損傷度評価法の検討 柏尚稔 ) 坂下雅信 ) 向井智久 ) 平出務 4) ) 正会員国土交通省国土技術政策総合研究所 主任研究員博士 ( 工学 ) e-mail : Kashiwa-h9ta@nilim.go.jp ) 正会員国立研究開発法人建築研究所 主任研究員博士 ( 工学 ) e-mail : m-saka@kenken.go.jp ) 正会員国立研究開発法人建築研究所

More information

Microsoft PowerPoint - zairiki_7

Microsoft PowerPoint - zairiki_7 許容応力度設計の基礎 曲げに対する設計 材料力学の後半は 許容応力度設計の基礎を学びます 構造設計の手法は 現在も進化を続けています 例えば 最近では限界耐力計算法という耐震設計法が登場しています 限界耐力計算法では 地震による建物の振動現象を耐震設計法の中に取り入れています しかし この設計法も 許容応力度設計法をベースにしながら 新しい概念 ( 限界設計法 ) を取り入れて発展させたものです ですから

More information

05設計編-標準_目次.indd

05設計編-標準_目次.indd 2012 年制定 コンクリート標準示方書 [ 設計編 : 本編 ] 目 次 1 章 総 則 1 1.1 適用の範囲 1 1.2 設計の基本 2 1.3 用語の定義 4 1.4 記 号 7 2 章 要求性能 13 2.1 一 般 13 2.2 耐久性 13 2.3 安全性 14 2.4 使用性 14 2.5 復旧性 14 2.6 環境性 15 3 章 構造計画 16 3.1 一 般 16 3.2 要求性能に関する検討

More information

Microsoft Word - 第5章.doc

Microsoft Word - 第5章.doc 第 5 章表面ひび割れ幅法 5-1 解析対象 ( 表面ひび割れ幅法 ) 表面ひび割れ幅法は 図 5-1 に示すように コンクリート表面より生じるひび割れを対象とした解析方法である. すなわち コンクリートの弾性係数が断面で一様に変化し 特に方向性を持たない表面にひび割れを解析の対象とする. スラブ状構造物の場合には地盤を拘束体とみなし また壁状構造物の場合にはフーチングを拘束体として それぞれ外部拘束係数を定める.

More information

<4D F736F F D2095BD90AC E8D918CF08D9091E D862E646F63>

<4D F736F F D2095BD90AC E8D918CF08D9091E D862E646F63> 建築基準法施行令第 36 条の 2 第五号の 国土交通大臣が指定指定するする建築物建築物を定めるめる件 平成 19 年国土交通省告示第 593 号改正 ) 平成 23 年国土交通省告示第 428 号 建築基準法施行令 ( 昭和 25 年政令第 338 号 以下 令 という ) 第 36 条の 2 第五号の規定に基づき その安全性を確かめるために地震力によって地上部分の各階に生ずる水平方向の変形を把握することが必要であるものとして

More information

2005年度修士論文

2005年度修士論文 25 年度修士論文 RC 建築物の免震化による 損傷レベル制御 25 年 1 月 指導教員 中田愼介 副指導教員 那須清吾 副指導教員 野尻洋一 高知工科大学大学院基盤工学専攻 社会システム工学コース 1759 伊藤瑞悦 修士論文要旨 RC 建築物の免震化による損傷レベル制御 高知工科大学大学院基盤工学専攻社会システム工学コース 1759 伊藤瑞悦 1: 研究背景 1995 年に兵庫県南部地震が発生して

More information

Microsoft Word - 1B2011.doc

Microsoft Word - 1B2011.doc 第 14 回モールの定理 ( 単純梁の場合 ) ( モールの定理とは何か?p.11) 例題 下記に示す単純梁の C 点のたわみ角 θ C と, たわみ δ C を求めよ ただし, 部材の曲げ 剛性は材軸に沿って一様で とする C D kn B 1.5m 0.5m 1.0m 解答 1 曲げモーメント図を描く,B 点の反力を求める kn kn 4 kn 曲げモーメント図を描く knm 先に得られた曲げモーメントの値を

More information

第三号の二様式 ( 第一条の三関係 ) 構造計算概要書 ( 保有水平耐力計算 / 許容応力度等計算 / 令第 82 条各号及び令第 82 条の 4 に定めるところによる構造計算 ) 1 建築物の概要 1. 建築物の名称 2. 構造計算を行つた者 イ. 資格 ( ) 建築士 ( ) 登録第 号 ロ.

第三号の二様式 ( 第一条の三関係 ) 構造計算概要書 ( 保有水平耐力計算 / 許容応力度等計算 / 令第 82 条各号及び令第 82 条の 4 に定めるところによる構造計算 ) 1 建築物の概要 1. 建築物の名称 2. 構造計算を行つた者 イ. 資格 ( ) 建築士 ( ) 登録第 号 ロ. 第三号の二様式 ( 第一条の三関係 ) 構造計算概要書 ( 保有水平耐力計算 / 許容応力度等計算 / 令第 82 条各号及び令第 82 条の 4 に定めるところによる構造計算 ) 1 建築物の概要 1. 建築物の名称 2. 構造計算を行つた者 イ. 資格 ( ) 建築士 ( ) 登録第 号 ロ. 氏名 ハ. 建築士事務所 ( ) 建築士事務所 ( ) 知事登録 号 ニ. 郵便番号 ホ. 所在地 ヘ.

More information

<4D F736F F F696E74202D D D4F93AE89F097E D F4390B32E B93C782DD8EE682E

<4D F736F F F696E74202D D D4F93AE89F097E D F4390B32E B93C782DD8EE682E DYMO を用いた動的解析例 単柱式鉄筋コンクリート橋脚の動的耐震設計例 解説のポイント DYMOを使った動的解析による耐震性能照査の流れ 構造のモデル化におけるポイント 固有振動解析 動的解析条件 動的解析結果 ( 各種応答 ) の見方 安全性の照査 形状寸法あるいは支承諸元の変更始め 橋梁構造のモデル作成 固有振動解析による橋梁の固有振動特性の把握 動的解析条件の設定 動的解析の実施及び解析結果の評価

More information

横浜市のマンション 耐震化補助制度について

横浜市のマンション 耐震化補助制度について 資料 4 マンションの 耐震設計の手法について 平成 28 年 10 月 31 日作成 ( 注 ) 耐震化補助制度の内容は 作成時点のものとなります 1 設計手法 地震の原因とプレートの配置 地震の原因 地球の表面は何枚かの岩盤 ( プレート ) にて構成されている それぞれのプレートが運動することで境界部にひずみが生じる 蓄積したひずみが限界に達し それが解放されたものが地震となる プレートテクトニクス理論

More information

<4D F736F F F696E74202D208D8790AC D5C91A28C768E5A934B8D8790AB94BB92E88E9E82CC97AF88D38E968D802E707074>

<4D F736F F F696E74202D208D8790AC D5C91A28C768E5A934B8D8790AB94BB92E88E9E82CC97AF88D38E968D802E707074> 合成スラブに関する 構造計算適合性判定時の留意事項 審査重点項目 (BCJ) では これまでに鉄骨造建築物に合成スラブを使用した場合の比較的多い質疑事例を収集しました. それらの対応事例について資料を作成しましたので 設計の参考にして頂ければ幸いです なお 本資料における指摘事項例は 日本建築センター 構造判定部の協力を受けて作成したものですが 本資料は一般的な建築物を想定しておりますので 場合によっては検討が不十分

More information

別添資料 地下階の耐震安全性確保の検討方法 大地震動に対する地下階の耐震安全性の検討手法は 以下のとおりとする BQ U > I BQ UN I : 重要度係数で構造体の耐震安全性の分類 Ⅰ 類の場合は.50 Ⅱ 類の場合は.25 Ⅲ 類の場合は.00 とする BQ U : 地下階の保有

別添資料 地下階の耐震安全性確保の検討方法 大地震動に対する地下階の耐震安全性の検討手法は 以下のとおりとする BQ U > I BQ UN I : 重要度係数で構造体の耐震安全性の分類 Ⅰ 類の場合は.50 Ⅱ 類の場合は.25 Ⅲ 類の場合は.00 とする BQ U : 地下階の保有 別添資料 4-4- 大地震動時の層間変形角の検討方法 大地震動時の層間変形角の算定方法は 次のとおりとする 保有水平耐力計算により構造設計を行う場合には 構造体の変形能力を考慮し 一次設計時の層間変形角より推定する 推定の方法としては 下式に示すエネルギー一定則に基づく方法を原則とする なお 変位一定則に基づく方法による場合は 適用の妥当性を検証すること δ D δ δp: 大地震動時における建築物の最大水平変形

More information

GEH-1011ARS-K GEH-1011BRS-K 1. 地震入力 参考 1-1. 設計基準 使用ワッシャー 準拠基準は以下による M10 Φ 30 内径 11 t2 建築設備耐震設計 施工指針 (2005 年版 ): 日本建築センター FH = KH M G KH: 設計用水平震度 KH =

GEH-1011ARS-K GEH-1011BRS-K 1. 地震入力 参考 1-1. 設計基準 使用ワッシャー 準拠基準は以下による M10 Φ 30 内径 11 t2 建築設備耐震設計 施工指針 (2005 年版 ): 日本建築センター FH = KH M G KH: 設計用水平震度 KH = GEH-1011ARS-K GEH-1011BRS-K 1. 地震入力 参考 1-1. 設計基準 使用ワッシャー 準拠基準は以下による M10 Φ 30 内径 11 t2 建築設備耐震設計 施工指針 (2005 年版 ): 日本建築センター FH = KH M G KH: 設計用水平震度 KH = Z KS W : 機械重量 FV = KV M G = 機械質量 (M) 重力加速度 (G) KV =

More information

Microsoft PowerPoint - 構造力学Ⅰ第03回.pptx

Microsoft PowerPoint - 構造力学Ⅰ第03回.pptx 分布荷重の合力 ( 効果 ) 前回の復習 ( 第 回 ) p. 分布荷重は平行な力が連続して分布していると考えられる 例 : 三角形分布 l dx P=ql/ q l qx q l 大きさ P dx x 位置 Px 0 x x 0 l ql 0 : 面積に等しい 0 l l 重心に等しいモーメントの釣合より ( バリノンの定理 ) l qx l qx ql q 3 l ql l xdx x0 xdx

More information

建築支保工一部1a計算書

建築支保工一部1a計算書 P7118088-(1) 型枠支保工 (1) 計算書 工事名称 (1) B1FL-3570~1FL (W1-W~WE~WF 間 ) 1 / 1 1: 条件 鉄筋コンクリートの単位重量 r 3.50 kn /m 3 (.400 t/m 3 ) 作業荷重 W 1 ( 作業荷重 :1.47kN/m + 衝撃荷重 :1.96kN/m) 3.430 kn /m (0.350 t/m ) 合板 (1mm) の許容曲げ応力度

More information

PowerPoint Presentation

PowerPoint Presentation H8 年度有限要素法 1 構造強度設計 1. 塑性崩壊 1.3 疲労設計 ( 一部修正版 ) H8-1/6 早川 (R : 夏学期の復習部分 ) 1. 塑性崩壊とその評価法 ( 極限解析 ) R 塑性崩壊 : 構造物として使用に耐えないほどの過度の塑性変形 全断面降伏 前提 : 弾完全塑性材モデル E ひずみ硬化ありひずみ硬化なし : 降伏強さ E : ヤング率 ε 図 1.3 弾完全塑性材モデルの応力

More information

参考資料 -1 補強リングの強度計算 1) 強度計算式 (2 点支持 ) * 参考文献土木学会昭和 56 年構造力学公式集 (p410) Mo = wr1 2 (1/2+cosψ+ψsinψ-πsinψ+sin 2 ψ) No = wr1 (sin 2 ψ-1/2) Ra = πr1w Rb = π

参考資料 -1 補強リングの強度計算 1) 強度計算式 (2 点支持 ) * 参考文献土木学会昭和 56 年構造力学公式集 (p410) Mo = wr1 2 (1/2+cosψ+ψsinψ-πsinψ+sin 2 ψ) No = wr1 (sin 2 ψ-1/2) Ra = πr1w Rb = π 番号 場所打ちコンクリート杭の鉄筋かご無溶接工法設計 施工に関するガイドライン 正誤表 (2015 年 7 月更新 ) Page 行位置誤正 1 p.3 下から 1 行目 場所打ちコンクリート杭施工指 針 同解説オールケーシング工法 ( 土木 ): 日本基礎建設協会 (2014) 2 p.16 上から 3 行目 1) 補強リングと軸方向主筋を固定する金具の計算 3 p.22 図 4-2-1 右下 200

More information

目 次 1. 構造計算の基本事項 ) 吹き抜け周辺での水平力伝達 修正 P ) 土間コンクリートによる 1 階壁 - 基礎間のせん断力伝達 修正 P ) 梁段差部の節点上下移動によるモデル化 荷重伝達 納まり 改定 P )

目 次 1. 構造計算の基本事項 ) 吹き抜け周辺での水平力伝達 修正 P ) 土間コンクリートによる 1 階壁 - 基礎間のせん断力伝達 修正 P ) 梁段差部の節点上下移動によるモデル化 荷重伝達 納まり 改定 P ) 資料 -1 構造計算適合性判定判定内容事例集解説編 ( 講習会版 ) 目 次 1. 構造計算の基本事項 1. 1. 5) 吹き抜け周辺での水平力伝達 修正 P. 1 1. 1. 13) 土間コンクリートによる 1 階壁 - 基礎間のせん断力伝達 修正 P. 2 1. 2. 7) 梁段差部の節点上下移動によるモデル化 荷重伝達 納まり 改定 P. 4 1. 5. 2) ピロティー的柱での柱及び下階耐力壁抜け枠梁の検討

More information

コンクリート工学年次論文集 Vol.32

コンクリート工学年次論文集 Vol.32 論文連層耐震壁のせん断強度に及ぼす枠柱の影響 田内浩喜 *1 中村聡宏 *1 勅使川原正臣 *2 *3 神谷隆 要旨 : 枠柱は, 連層耐震壁のせん断ひび割れの拡がりを抑制するために有効であると考えられているがその効果は明らかにされていない そこで, 連層耐震壁のせん断抵抗機構に及ぼす枠柱の影響を検証するために枠柱の有無と壁板の横筋量をパラメータとした実験を行い, 以下の知見を得た 1. 枠柱が無い場合には,

More information

<4D F736F F D208E9197BF A082C68E7B8D A815B82CC8D5C91A28AEE8F C4816A2E646F63>

<4D F736F F D208E9197BF A082C68E7B8D A815B82CC8D5C91A28AEE8F C4816A2E646F63> 資料 9 液化石油ガス法施行規則関係技術基準 (KHK0739) 地上設置式バルク貯槽に係るあと施工アンカーの構造等 ( 案 ) 地盤面上に設置するバルク貯槽を基礎と固定する方法として あと施工アンカーにより行う 場合の構造 設計 施工等は次の基準によるものとする 1. あと施工アンカーの構造及び種類あと施工アンカーとは アンカー本体又はアンカー筋の一端をコンクリート製の基礎に埋め込み バルク貯槽の支柱やサドル等に定着することで

More information

1

1 鉄筋コンクリート柱のせん断破壊実験 1 2 2-1 4 CS- 36N 2% CS-36A2 4% CS-36A4 2 CS-36HF -1 F C28 =36N/mm 2-1 CS-36N 普通コンクリート 36NC 2-3 CS-36A2 石炭灰 2% コンクリート 36CA2 2-4 2% CS-36A4 石炭灰 4% コンクリート 36CA4 2-5 4% CS-36HF 高流動コンクリート

More information

コンクリート工学年次論文集 Vol.32

コンクリート工学年次論文集 Vol.32 論文千鳥開口を有する RC 造連層耐震壁のせん断耐力評価に関する研究 土井公人 *1 坂下雅信 *2 河野進 *3 *4 田中仁史 要旨 : 本研究では, 開口周比が.4 前後で開口が多層に渡って千鳥配置された連層耐震壁の静的載荷実験を行い, 開口の位置および大きさが耐震壁のせん断抵抗機構に与える影響を把握した また FEM 解析により, 実験で得られた復元力特性の包絡線の形状や破壊性状の特徴を模擬することができた

More information

目次構成

目次構成 < 参考資料 5> 多雪地域の耐震診断法について 今回の実験の結果 既存建築物の耐力は診断結果の耐力を大きく上回るものであった これは 積雪を考慮した診断法と積雪時のの低減に問題があるものと考えられる 積雪地域では現行の耐震診断法は安全側にききすぎている可能性があることから 多雪地域における耐震診断法の精緻化の方向性について提案する () 多雪地域における耐震診断法の課題と精緻化の方向性 多雪地域における耐震診断法の課題積雪による鉛直荷重の押さえ込みにより

More information

コンクリート工学年次論文集 Vol.34

コンクリート工学年次論文集 Vol.34 論文実大四層 RC 骨組の三次元震動台実験の地震応答解析 劉奕歓 *1 塩原等 *2 長江拓也 *3 *3 松森泰造 要旨 : 防災科学技術研究所で実大四層鉄筋コンクリート建物の三次元震動破壊実験が実施された 本研究では, 試験体の寸法と配筋ならびに, 試験体材料の材料試験結果に基づきモデル化を行い, 減衰等のパラメータは, 実験に合うように調整は行わず, 既往の研究で一般に認められている値としている

More information

目次 1 章設計条件 形状寸法 上部工反力 設計水平震度 単位重量他 柱 使用材料 鉄筋 柱躯体自重 章柱の設計 ( レベル 1 地震

目次 1 章設計条件 形状寸法 上部工反力 設計水平震度 単位重量他 柱 使用材料 鉄筋 柱躯体自重 章柱の設計 ( レベル 1 地震 2013 年度 都市設計製図 RC 橋脚の耐震設計 課題 3:RC 橋脚の耐震設計 ( その 2) 2013/12/16 学籍番号 氏名 目次 1 章設計条件... 1 1.1 形状寸法... 1 1.2 上部工反力... 1 1.3 設計水平震度... 1 1.4 単位重量他... 1 1.5 柱... 2 1.5.1 使用材料... 2 1.5.2 鉄筋... 2 1.6 柱躯体自重... 3

More information

コンクリート工学年次論文集,Vol.36,No.2,2014 論文低強度コンクリート RC 部材の合理的なせん断設計法の構築 根口百世 *1 *2 南宏一 要旨 : 本論では, 圧縮強度 13.5N/mm 2 未満の低強度コンクリート RC 部材のせん断強度を, 合理的に評価する手法を提案する 提案

コンクリート工学年次論文集,Vol.36,No.2,2014 論文低強度コンクリート RC 部材の合理的なせん断設計法の構築 根口百世 *1 *2 南宏一 要旨 : 本論では, 圧縮強度 13.5N/mm 2 未満の低強度コンクリート RC 部材のせん断強度を, 合理的に評価する手法を提案する 提案 コンクリート工学年次論文集,Vol.36,No.,4 論文低強度コンクリート RC 部材の合理的なせん断設計法の構築 根口百世 * * 南宏一 要旨 : 本論では, 圧縮強度 3.N/ 未満の低強度コンクリート RC 部材のせん断強度を, 合理的に評価する手法を提案する 提案手法は, トラス機構とアーチ機構の累加によってせん断強度を評価するもので, トラス機構では, 主筋の付着強度, 主筋の降伏強度,

More information

施設・構造3-4c 京都大学原子炉実験所研究用原子炉(KUR)の耐震安全性評価の妥当性確認に係るクロスチェックについて(報告)

施設・構造3-4c 京都大学原子炉実験所研究用原子炉(KUR)の耐震安全性評価の妥当性確認に係るクロスチェックについて(報告) 機器配管系の確認 検討箇所 使用済み燃料貯蔵プール 生体遮へい体 制御棒駆動装置案内管 粗 微調整棒取付部分 炉心直下 1 次系冷却配管 炉心支持構造物 検討方法は 事業者と同じ 61 機器配管への水平入力地震動 1200.0 加速度(cm/sec/sec) 1000.0 500.0 最大値 =1116.0 最小値 =-1045.2 0.0 8000.0 絶対加速度応答スペクトル(cm/sec/sec)

More information

SPACEstJ User's Manual

SPACEstJ User's Manual 6-1 第 6 章部材の断面力計算 ポイント : 部材断面力の計算 両端の変位より両端外力を計算する 本章では 両端の変位を用いて部材両端の材端力を求め 断面内の応力との釣合より 断面力を求める方法を学ぶ ここでは 部材荷重は等分布荷重を考慮しているため 基本応力と節点荷重による断面力を重ね合わせて 実際の部材断面力を求める 6.1 はじめに キーワード 部材断面力の計算部材座標系の変位等分布荷重による基本応力

More information

コンクリート工学年次論文集,Vol.37,No.2,2015 論文 RC 造袖壁付き柱の曲げ挙動に及ぼす開口位置の影響に関する実験的研究 高松恭 *1 渡邉哲央 *2 田村良一 *3 *4 加藤大介 要旨 : 曲げ強度と変形能に及ぼす開口位置の影響を検討するために,2 体の RC 造袖壁付き柱の静加

コンクリート工学年次論文集,Vol.37,No.2,2015 論文 RC 造袖壁付き柱の曲げ挙動に及ぼす開口位置の影響に関する実験的研究 高松恭 *1 渡邉哲央 *2 田村良一 *3 *4 加藤大介 要旨 : 曲げ強度と変形能に及ぼす開口位置の影響を検討するために,2 体の RC 造袖壁付き柱の静加 コンクリート工学年次論文集,Vol.37,No.2,25 論文 RC 造袖壁付き柱の曲げ挙動に及ぼす開口位置の影響に関する実験的研究 高松恭 * 渡邉哲央 *2 田村良一 *3 *4 加藤大介 要旨 : 曲げ強度と変形能に及ぼす開口位置の影響を検討するために,2 体の RC 造袖壁付き柱の静加力実験を行った 2 体は形状 配筋とも同一で, 開口位置のみが異なる 開口位置は開口により曲げ強度が低下しない限界の位置を想定し,

More information

コンクリート工学年次論文集 Vol.29

コンクリート工学年次論文集 Vol.29 論文部分的に主筋の付着を切った RC 梁 RC 有孔梁に関する研究 真田暁子 *1 *2 丸田誠 要旨 : 危険断面からの一定区間の主筋の付着を切った, 部分アンボンド梁 RC 部材, 部分アンボンド RC 有孔梁部材の基本的な構造性能を把握するために, アンボンド区間長, 開孔の有無を因子とした部材実験を実施した 実験結果から, 主筋をアンボンド化することにより, 危険断面に損傷が集中してひびわれ本数が減少し,

More information

< D758F4B89EF D834F E48A7288EA97972E786C73>

< D758F4B89EF D834F E48A7288EA97972E786C73> 建築構造計算プログラムの特性比較項目一覧表 RC 造編 資料 -4 一般事項 1 共通構造階高 ( 注 ) はデフォルトを表す 2011 年 1 月時点 自動計算 X Y 方向ごとに梁せいを平均し 5cm 単位で丸めた値を求め X,Y 方向の平均値の 1/2 を部材心までの距離とし 階高 ( 梁天間距離 ) から構造階高を計算する 直接入力も可能 自動計算梁せいを平均し 5cm 単位で丸めた値を求め

More information

. 柱の断面計算式柱は軸方向力と曲げモーメントを同時に受けるので, 許容軸方向力 N と許容曲げモーメント M は連成して, 解図 14.3, 解図 14.4 に示すような M - N 曲線として得られる. よって, この曲線を求めるには, 軸方向力 ( 縦軸の値 ) を先に定めて許容曲げモーメント

. 柱の断面計算式柱は軸方向力と曲げモーメントを同時に受けるので, 許容軸方向力 N と許容曲げモーメント M は連成して, 解図 14.3, 解図 14.4 に示すような M - N 曲線として得られる. よって, この曲線を求めるには, 軸方向力 ( 縦軸の値 ) を先に定めて許容曲げモーメント 14 条柱の軸方向力と曲げに対する断面算定 本文案 下線部は改定箇所を示す. 重取消線は削除した部分を示す 1. 柱の設計用曲げモーメントは, 以下の方法で計算する. (1) 使用性検討用の長期設計用曲げモーメントは, その部材に長期荷重が作用した場合の最大曲げモーメントとする. () 修復性検討用の短期設計用曲げモーメントは, その部材に長期荷重と水平荷重が同時に作用した場合の最大曲げモーメントとする..

More information

耐震等級 ( 構造躯体の倒壊等防止 ) について 改正の方向性を検討する 現在の評価方法基準では 1 仕様規定 2 構造計算 3 耐震診断のいずれの基準にも適合することを要件としていること また現況や図書による仕様確認が難しいことから 評価が難しい場合が多い なお 評価方法基準には上記のほか 耐震等

耐震等級 ( 構造躯体の倒壊等防止 ) について 改正の方向性を検討する 現在の評価方法基準では 1 仕様規定 2 構造計算 3 耐震診断のいずれの基準にも適合することを要件としていること また現況や図書による仕様確認が難しいことから 評価が難しい場合が多い なお 評価方法基準には上記のほか 耐震等 耐震性 ( 倒壊等防止 ) に係る評価方法 基準改正の方向性の検討 耐震等級 ( 構造躯体の倒壊等防止 ) について 改正の方向性を検討する 現在の評価方法基準では 1 仕様規定 2 構造計算 3 耐震診断のいずれの基準にも適合することを要件としていること また現況や図書による仕様確認が難しいことから 評価が難しい場合が多い なお 評価方法基準には上記のほか 耐震等級 ( 構造躯体の損傷防止 ) 耐風等級

More information

目次 Ⅱ

目次 Ⅱ 平成 25 年度修士論文 中国の耐震基準により設計された RC 純ラーメン建物の耐震性評価 首都大学東京大学院都市環境科学研究科建築学域 12886440 李永根指導教授芳村学 目次 Ⅱ 目次 第 1 章序論 1 1.1 研究の目的 2 1.2 論文の構成 3 第 2 章中国の耐震基準法 5 2.1 中国の耐震設計基準法基本概念 6 2.1.1 地震烈度 6 2.1.2 耐震等級 7 2.1.3 基盤種類

More information

アンカーボルトの扱いとルート3における露出型柱脚の検討について分かりやすく解説

アンカーボルトの扱いとルート3における露出型柱脚の検討について分かりやすく解説 アンカーボルトの扱いとルート 3 における露出型柱脚の検討について分かりやすく解説 2014 年 10 月株式会社構造ソフトはじめにアンカーボルトには 建て方用アンカーボルトと構造用アンカーボルトがあります 建て方用アンカーボルトも構造用アンカーボルトもJIS 規格 ( 日本工業規格 ) 品があり 建築基準法第 37 条では建築物の主要構造部に使用する材料は日本工業規格又は日本農林規格に適合するものとされています

More information

9 0 方法 各図に関しての特徴 剛域の設定 内法スパンの算出法危険断面位置 図 Super Build/SS Ver...5 部材の寄りに係わらず 構造芯は全階一貫した位置となる 構造芯 = 柱芯として剛域 内法スパン 危険断面位置が定まる Ver..0(DB ) 部材の寄りに係わらず

9 0 方法 各図に関しての特徴 剛域の設定 内法スパンの算出法危険断面位置 図 Super Build/SS Ver...5 部材の寄りに係わらず 構造芯は全階一貫した位置となる 構造芯 = 柱芯として剛域 内法スパン 危険断面位置が定まる Ver..0(DB ) 部材の寄りに係わらず 建築構造計算プログラムの特性比較項目一覧表 RC 造編 ~ H5 年度版 ~ 資料 -- [ 編集メモ ] この資料は 平成 年度版に対して 各ソフトのバージョンアップを反映し その他項目の追加及び加筆 修正したものです SS: 9 項目修正 断面設計 に大項目 保有水平耐力 に大項目 小項目 追加 番号移動 H 版 BUS5: 9 項目修正 断面設計 に大項目 保有水平耐力 に大項目 小項目 追加

More information

Microsoft PowerPoint - 構造設計学_2006

Microsoft PowerPoint - 構造設計学_2006 構造設計学 講義資料 構造設計は 建築物に作用すると思われる荷重によって生じる構造物内部の抵抗力 ( 応力 ) を 各構造要素 ( 柱 はり 床 壁など ) が安全に支持するために 各構造要素の部材断面を具体的に決定するためのプロセスを言います 本講義では 1 鉛直荷重 ( 固定荷重 積載荷重 積雪荷重 ) に対するはりや柱の設計条件を解説します 2その設計条件を踏まえて 鉄筋コンクリート構造と鋼構造はりの構造原理を解説します

More information

Microsoft Word - 4_構造特性係数の設定方法に関する検討.doc

Microsoft Word - 4_構造特性係数の設定方法に関する検討.doc 第 4 章 構造特性係数の設定方法に関する検討 4. はじめに 平成 年度 年度の時刻歴応答解析を実施した結果 課題として以下の点が指摘 された * ) 脆性壁の評価法の問題 時刻歴応答解析により 初期剛性が高く脆性的な壁については現在の構造特性係数 Ds 評価が危険であることが判明した 脆性壁では.5 倍程度必要保有耐力が大きくなる * ) 併用構造の Ds の設定の問題 異なる荷重変形関係を持つ壁の

More information