Size: px
Start display at page:

Download ""

Transcription

1 M.Shimura Ver 0.97

2

3 / LF LU LDU QR SVD / /

4 Markov chain/ The input output model

5 5 19 E E Einheistsmatrix 1 I I XA 1 X 1 A X AB BA A t A,A t,a T A t J π,e 1p1.1x1 1r3 1 3 PC 8GB CPU

6

7 x y = ]D110= ,: cr D x y = ]D111= ,: cr D a 11 x 1 +a 12 x 2 + a 1n x n = b 1 a 21 x 1 +a 22 x 2 + a 2n x n = b a m1 x 1 +a m2 x 2 + a 2mn x n = b m a 11 a 12 a 1n b 1 x 1 a 21. a m1 + x 2 a 22. a m2 a 2n + + x n = a mn b 2. b m

8 8 1 a 11 a 12 a 1n x 1 b 1 A = a 21 a 22 a 2n... a m1 a m2 a mn Ax = b. x 2 b 2, x =, b =... x = b ( x = A 1 b) A x n b m Ax = b (A, b) Gabriel Cramer( ) Genova ax +by +cz = j dx +ey + f z = k gx +hy +iz = l a b c x j d e f y = k g h i z i = J a b c j d e f k x g h i l y = a b c z d e f g h i cr=: %.}:"1 cr D

9 1.1 9 x, y, x * Grammar / J ( J =. local) =:(global) =,:= <- J = raminate,:,: 1 1 1, ,: matrix-divide %. J primitive) }:"1 cr=: %. }:"1 J (tacit de f inition) (y) (Explicit de f inition) J 2 cr0=: 3 : y %. }:"1 y B J matrix diviode(%.) A Ax = B x = A 1 B, (or B A ) = = *1 0 e.g e 9 J

10 BC (1642?- 1708) (1683) (1685) ( ) ]D120=: 1 1,: det a c b d = a c b d = ad bc 2 -/. * a NB. determinant a b c a b c det d e f = d e f g h i g h i e f = a h i b d f g i + c d g e h a d g b e h c f i a d g b e h = aei a f h + b f g bdi + cdh ceg = aei + b f g + cdh a f h bdi ceg A A 1 deta 0, 0 (non-singular matrix) 2 2

11 a A = c A 1 = b d 1 a d c b d c b a = Grammar %. D120 2 _0.5 _1 0.5 *2 J * 3 determinant J ) - /. * permanent +/. * +/. * D120 NB. permanent 8 NB. 1*4*2*1 *2 2 2 *3 3 4

12 Carl Frierich Gauss( ) Duke o f Braunshuweig Gauss 1809 * y = 14 y = 7 x + 7 = 10 x = 3 Example 3 3 2x 1 +3x 2 x 3 = 5 4x 1 +4x 2 3x 3 = 3 2x 1 +3x 2 x 3 = x 3 = 3 2x 2 = 4 x 2 = 2 2x 1 = 2 x 1 = 1 *4

13 x 1 +3x 2 x 3 = 5 4x 1 +4x 2 3x 3 = 3 2x 1 +3x 2 x 3 = , x 3 = 3 10, x 2 = 20 x 2 = 2 4x 1 = 4, x 1 = 1 * Gauss Jordan Jordan William Jordan( ) Deutch aˆ 11 0 aˆ aˆ 12 x 1 x 2. x n = ˆ b 1 ˆ b 2. ˆ b n *5

14 14 1 Example gauss jordan D130=. 2 3 _1,4 4 _3,: _2 3 _1 D _1 4 4 _3 _2 3 _1 D130,.=/ i _ _ _2 3 _ Gauss jordan require system/packages /math/linear.ijs gauss_jordan D130,.=/ i _ _ _0.6 _0.2 J %. %.D _ _ _0.6 _0.2

15 David Salsburg [

16 / rank X (rank) [ = 0 ] [ = 15 ] 0 Example D _1 _ _ _1 0 _5 small_matrix D _ _ _5 _ _1 0 _5 11 _1 0 _ e_15 _

17 1.4 / 17 D non-singular matrix A 1 A = AA 1 = I =/ i J Charles Hermite( ) France A = A A A t A D141=. 1 3j1,: 3j_1 2 D141 : D j_1 1 3j1 3j1 2 3j_1 2 + D j_1 3j1 2

18 18 1 viewmat require viewmat viewmat [z=:. j. / i:2j viewmat A > 0 detd i > 0, i = 1,, n A Grammar 0 a i j 0, i, j = 1,, n A 0 j 3j2 conjugate + 3j2 detd i 0, i = 1,, n + 3j2 3j_2

19 1.4 / Chatelin C.Moler D a 22 D143 _149 _50 _ _27 _9 _ λ 6λ 2 + λ 3 = 0 Eigenvalue: D144 _149 _50 _ _27 _9 _ λ 6.01λ 2 + λ 3 = 0 Eigenvalue: D145 _149 _50 _ _27 _9 _ λ λ 2 + λ 3 = 0 Eigenvalue: ±j G 0 1

20 20 1 D146 3 _2 _1 _2 4 _1 1 _1 3,.{ : D _2 1 NB. X _2 4 _1 NB. X _1 _1 3 NB X X 1 X 1 X 1 X 2 X 1 X 3 X 2 X 1 X 2 X 2 X 2 X 3 X 3 X 1 X 3 X 2 X 3 X 3 gram_rank D _ _15 21 _5 2 _ Script small_matrix=: 3 : 0 NB. calc determinant of small matrix NB. Usage: u matrix SIZE=..{(;(<: # y), 2)$ 2#}. >: - i. # y NB. make size 2*2 3*3 4*4.. MAT=. SIZE {. L:0 y NB. take matrix 2*2 3*3 4*4... MAT,:(-/. * L:0 MAT) NB. calc determinant of each small matrix ) Reference F. / Springer-Verlag Tokyo 1993/2003( )

21 J.P.Gramm( ), E.S chmidt( ) 1 (orthogonal matrix) T t = T 1 A t A = AA t = I A t = A 1 U U = UU = I U = U v 1 = v 1 u 1 = v 1 v 1 v 2 = v 2 (v 2, u 1 )u 1 u 2 = v 2 v 2 v 3 = v 3 (v 3, u 2 )u 2 (v 3, u 1 )u 1 u 3 = v 3 v 3 v 4 = v 4 (v 4, u 3 )u 3 (v 4, u 2 )u 2 (v 4, u 1 )u 1 u 4 = v 4 v 4.. Example v 1 v 2 v v 1 = v 1 u 1 = v 1 v 1 = v 2 = v 2 (v 2, u 1 )u 1 = 3 3, = u 2 = v 2 v 2 = v 3 = v 3 (v 3, u 2 )u 2 (v 3, u 1 )u = 1 1, , = u 3 = v 3 v 3 = QR Q,R

22 22 1 D _ !:0 D _ _ _ NB. Q (shumit orthogonal) R a0 a1 =. 128!:0 D150 NB. Q and R a0 +/. * a1 NB. Q +/. * R _ Grammar 128!:0 QR *6 A = Q A 1 = Q 1 a _ _ %. a _ e_16 _ _ A t = Q t A0 A0 t A0 = I Q t Q = I : a _ _ ( : a0) +/. * a0 NB e_ e_ e_16 1 _ e_ e_16 _ e_17 1 *6 J 128!:

23 1.5 23

24 = = /transpose transpose 2 D160= ,: _1 3 1 D161= ,: D _1 3 1 D D160 +/. * D D161 +/. * D NB. AB NB. BA Grammar NB. /comment transpose : : D /. * AB BA AB BA {@> <"0 D

25 Hadamard products = = D162=: 1 2,: 3 1 D163=: 0 3,: 2 1 D162d D D162 * D Kronecher products = = ({@> D162) * L: D163

26 *7* A = 2 4 NB. D120 LF tr trace 1 1 A = 2 4, B = 2 4 P 1 = tr[b 1 ] = = B 2 = = = P 2 = 1 2 tr[b 2] = 2 P[λ] = λ 2 2 i=1 P 1 λ n 1 P[λ] = 2 5λ + λ 2 ( ) J p. p. 2 _ plot (i:10); 2 _5 1 &p. i:10 *7 NJ Joha Randoll *8 Mathematica

27 charactristic equation A 1 = 1 (B 1 P 2 I) P 2 A 1 = = = Grammar LF char_lf 2 2 $ _ LF det(a λi n ) = 0 λ p(λ) = det(a λi n ) Leverrir-Faddeev p(λ) c k p(λ) = λ n + c 1 λ n 1 + c 2 λ n c n t λ 2 + c n 1 λ + c n Tr[A] Tr[A] = a 1,1 + a 1,t + + a n,n

28 28 1 (Bk) n k=1 B 1 = A p 1 = Tr[B 1 ] B 2 = A(B 1 p 1 I) p 2 = 1 2 Tr[B 1] B k = A(B k 1 p k 1 I) p k = 1 k Tr[B k] B n = A(B n 1 p n 1 I) p n = 1 n Tr[B n] p(λ) = λ n p1λ n 1 p 2 λ n 2 p n t λ 2 p n 1 λ p n A A 1 = 1 p n (B n 1 p n 1 I) Newton x f (x) f (x) J D. APL "0 ˆ:_ (ˆ:100) new_1=: 1 : ] - x % x D.1 (ˆ:_)("0) 2 _5 1&p. new_1 i Grammar polinominal p. J 1 p. 2 _5 1 &p.i:10 i. i: i. n 0 n i: n n =/ i.3 tr trace,tra = n i=1 a ii,

29 1.8 LF LF , A = , B 1 = p 1 = Tr[B 1 ] = 2 B 2 = = p 2 = 1 2 Tr[B 2] = = 5 B 3 = = p 3 = 1 3 Tr[B 3] = 1 18 = 6 3 P[λ] = λ 3 3 i=1 p iλ n 1 p[λ] = 6 + 5λ 2λ 2 + λ 3 λ 1, ± p[λ] = 6 5λ 2λ 2 + λ 3 J p. p. 6 _5 _ _

30 *9 A 1 = 1 (B 3 1 p 3 1 I) p 3 A 1 = = = 4/6 7/6 5/6 2/6 5/6 1/6 2/6 8/6 4/6 %. D _ _ _ _ _ Script John Randoll LF tr=: (<0 1)& : NB. diag NB. umatrix=: (=/ )@i.@# char_lf=: 3 : 0 ANS=. TR_SUM=. +/ tr MAT=. y NB. sum of trace UMAT=. =/ i. # y for_lf. i.<: # y do. MAT=. y +/. * MAT - UMAT * TR_SUM TR_SUM=. (% 2+LF)* +/ tr MAT ANS=. ANS,TR_SUM end. (p. POL), (<POL=.(-ANS),1) ) n 1 LF 1 2 p k 2+LF p. λ p n 1 char_lf D _2 1 6 _5 _ f (λ) = 6 5λ 2λ 2 + λ 3 Eigenvalues (1) J p. *9 1 p.

31 ( ) ( ) 14 φ(λ) = A λ φ(λ) = 0 φ(λ) λ A φ(a) = O n Example λ 1 1 A = = 2 λ λ λi A = 1 5λ 3λ 2 + λ 3 = 0 I 5A 3A 2 + A 3 = O 3 λ A A n 1. LF 2. ch A n D190 char_lf D _1 _ _1 _5 _ = 1 5λ 3λ 2 + λ 3 ch D190 NB. 0 I A Aˆ2 Aˆ = I 5A 3A 2 + A 3 0

32 I 5A 3A 2 + A 3 = O 3 A 1 A 1 5I 3A + A 2 = O 3 A 1 = 5I 3A + A 2 D ch_inv D190 _1 _1 1 0 _ _2 %. D190 _1 _1 1 0 _ _ Script ch=: 3 : 0 NB. Cayley Hamilton theorem B EV CR =: char_lf y NB. CR is lambda KH0=:(<=/ i. # y), mp_matrix y NB. I A Aˆ2 Aˆ3.. (<+/ > KH0 * L:0 {@> CR),KH0 NB. ans is 0//correct ) mp_matrix=: 3 : 0 NB. matrix multiplication TMP=. y +/. * y ANS=. y ; TMP for_ctr. i.<:<: # y do. TMP=. y +/. * TMP ANS=.ANS,<TMP end. ) ch_inv=:3 : 0 NB. modified 05/06/2008 NB. Cayley Hamilton inverse matrix NB. e.g. Aˆ(-1)= -5I-3A+Aˆ2 EV CR =: }. char_lf y NB. CR is lambda CH0=:(<=/ i. # y), mp_matrix y NB. I A Aˆ2 Aˆ3.. CH1=:(+/ > (}: CH0) * L:0 {@> }. CR)

33 CH1 % {.CR NB. ans is 0//correct )

34 (C m ) (A λi)l = 0 char_lf D _2 1 6 _5 _ f (λ) = 6 5λ 2λ 2 + λ 3 Eigenvalues λ 2 3 B = A λi = 1 1 λ λ λ = l (A λ 1 I)l = m = n D180; (3 *=i.3);a1=.d180-3*=i.3 NB.D180 I D180-lamda I _ _1 _ _ _ _ A λi λ

35 Randoll 1990 B 11 = ( 1) 2 1 λ 1 = 3 1 λ λ 2 4 B 12 = ( 1) = 3 1 λ 2λ + 7 B 13 = ( 1) λ 1 3λ 5 = B 21 = ( 1) λ λ + 2 = B 22 = ( 1) 4 2 λ 3 = 1 1 λ λ 2 λ 5 B 23 = ( 1) 5 2 λ λ + 1 = B 31 = ( 1) 4 1 1λ = λ+ B 32 = ( 1) 5 2 λ λ 8 = B 33 = ( 1) 6 2 λ 2 = 1 1 λ λ 2 3λ + 4 λ 2 4 2λ + 7 3λ 5 ad j(b) = λ + 2 λ 2 λ 5 λ + 1 λ + 2 3λ 8 λ 2 3λ = λ λ char l f 2 3 LF λ

36 36 1 ( ) char_lf_evec_sub=: 3 : 0 TR_SUM=. +/ tr MAT=. y NB. sum of trace ANS=. <UMAT=. =/ i. # y for_lf. i.<: # y do. MAT=. y +/. * TMP=. MAT - UMAT * TR_SUM TR_SUM=. (% 2+LF)* +/ tr MAT ANS=. ANS,<TMP end. ) B k = A(B k 1 p k 1 I) (B k 1 p k 1 I) char_lf_evec_sub D _2 3 _4 7 _ _1 1 2 _ _3 2 _ EIGEN2 3 _ _ char_evec D _ _11 _3 5 _ _1 3 _ _ _ λ 2, λ, 1 char lf evec sub0 Script char_evec=: 3 : 0 EIGEN=: {@> ; 1{ char_lf y EIGEN2=:{@>L:0 EIGEN ˆ/L:0.i.# EIGEN ADJMAT=: char_lf_evec_sub y ANS=. < for_lf. i. # y do. TMP=. +/> ( > LF{ EIGEN2) * L:0 ADJMAT ANS=. ANS,<TMP end. EIGEN,:}. ANS )

37 Example 1 x = 1 2, y = a1 _1 1 2 a2 1 0 _1 Euclidean vecter norm x x x = n i=1 x 2 i x = x x %: a1 +/. * a = 6 distance x and y between x y = (x y) (x y) (a1 - a2) +/. * a1 - a2 14 %: (a1 - a2) +/. * a1 - a cosine o f angle between x and y cosθ = x 7 y x y _3 (a1 +/. * a2) %: a1 +/. * a %: a2 +/. * a = _ = 150 o

38 38 1 unit length x = y = 1 u x = x x a1 % %: a1 +/.* a1 _ KX cm KY (%) KX KY ( ) x x 1 (x x) 2 n stand KD _ _ _ _ _ _ _

39 x x dev=:-(+/%#) dev2=:-"1(+/%#)nb. rank 1 *10 Script stand=: dev % "1 sd dev2=: -"1(+/ % #) var=: # % ([:+/[: *: dev) NB. sd=. %:@var NB Reference 2000

40 x 1 x y 1 ȳ t XX C = N = 1 x 1 x x 2 x... x n x x 2 x y 2 ȳ N y 1 ȳ y 2 ȳ... y n ȳ x 3 x y 3 ȳ x n x y n ȳ 1 (x n x)(x n x) (x n x)(y n ȳ) N (y n ȳ)(x n x) (y n ȳ)(y n ȳ) = x / 1 ni=1 X i n am=: +/ % # Example am STYLE am2=: # % +/ dev2=. -"1 +/%# ( : dev2 STYLE) +/. * dev2 STYLE vartable STYLE _ _

41 cortable STYLE _ _ Grammar *: square 2 (ˆ2 ) %: square root 2 ( ) -"1(+/%#) x x [: Cap

42

43 LU LDU A A = LU A = LDU LU A = r T 1 = a 21 /a 11, a 31 /a T 2 = a (1) 32 /a(1) A (1) = T 1 A = r A (2) = T 2 A (1) = r T = T 2 T 1 = T 2, T 1 = L = T 1 =

44 A = r = LU P30 0 require system/packages/math/linear.ijs require system/packages/math/matfacto.ijs lud D _ _1r r2 5r r _7r pivot LDU U DU D U U U D A = r r2 1r = r r r2 1r2 A = = LDU r a3 % diag a3 NB. a3 is U0 1 _1r2 _1r2 0 1 _

45 And re Lous Cholesky( ) A L A = LL t A = LDL t LU A = A = T 1 UU(T 1 ) t V = T 1 U A = VV t T 1 = 1r r a 21 /a 11, a 31 /a T 2 = r3 1 a (1) 32 /a(1) A (1) = T 1 AT1 t = A (2) = T 2 A (1) T2 t = Σ = = U T = T 2 T 1 = r2 1 0 = 1r r3 1 3r r6 2r T 1 = 1r r2 2r (T 2 T 1 ) 1 U = 1r r2 2r V(choleski decomposition) = =

46 46 2 A = VV t = Ly = b LDL D220 4 _2 _6 _ _ v % _1r3 1 0 _3 2 1 diag v d diag v *=i.3 v _1 3 0 _3 2 1 c=. :( : v % 2 3 1) +/. * d _1 3 0 _3 2 1 choleski D220 c +/. * : c 4 _2 _6 _ _ c=v D220 DL t x = y J require system/packages/math/matfacto.ijs choleski D220 NB. A _1 3 0 _ Reference 2003

47 2.3 QR QR (R) Gram-shumit (Q) 1961 Francis Kublanovskaya * 1 QR Q,R D _ !:0 D _ _ _ NB. Q (shumit orthogonal) R a0 a1 =. 128!:0 D150 NB. Q and R a0 +/. * a _ NB. Q +/. * R *1 householder matrix

48 48 2 b [ ] [ ] 11 b 12 b 13 e1 e 2 e 3 = v1 v 2 v 3 0 b 22 b b 33 D150 %. a0 NB. A %. Q = R e_ _ QR QR Script 1,2 pwr=: ˆ:100 NB. repeat 100 times (change you like) eval_t=: (>&{: +/. * >&{.)&(128!:0) eval_t pwr D180 NB _ _ e_324 _2 _ e_324 1 char_lf D _2 1 6 _5 _ Grammar power ˆ: :_ 128!:0 QR

49 2.4 SVD SVD singular value decomposition J package/math svd.i js * 2 Jordan SVD SVD SVD * 3 P = U V T σ 1 σ 2 P = U... σ r V r, σ i = λ i, i = 1,, r P M = PP T N = P T P D D260 +/. * : D260 ( : D260) +/. * D M N 0 char_lf D260 +/. * : D _ char_lf ( : D260)+/. * D _ %: pick_evec D260 +/. * : D _ pick_evec ( :D260) +/. * D _ _ *2 LAPACK *3 m 2 m 2, m = SVD

50 50 2 svd D _ e_ _ U V T P P

51 A A A = T AT 1 * Example D180 2 _ _1 6 5λ 2λ 2 + λ 3 char_lf D _2 1 6 _5 _ av=. pick_evec D _ _ (%.av)+/. * D180 +/. * av e_ e_ e_16 _ e_ e_16 1 ( *4

52 52 2

53 (Jordan canonical f orm) Camille Jordan Example 3 3 D261 _1 2 0 _1 1 2 _1 _2 _1 _ _2 _ _1 _1 _1 _ J -/. * D261 %. D261 _1 _2 0 1

54 54 2 _1 _ _2 _1 _2 _6 2 3 small_matrix D _1 2 0 _1 2 _1 _ _1 _2 _1 0 1 _2 _5 _1 _ _2 _5 2 6 _2 _ _ gausss elimination/ J gauss elimination gauss_elimination D _2 _ _1 _ _0.6 _ _ LAPACK LAPACK require addons/math/lapack/lapack.ijs require addons/math/lapack/dgeev.ijs,. }. dgeev_jlapack_ D _1 _1 _1j e_8 _1j_ e_ _ e_ j_ e_ j e_10 _ _ j e_ j_ e_ _ j_ e_9 _ j e_9 _ _

55 *5 (%. ev ) +/. * D261 +/. * ev domain error ( %.ev)+/.*d261+/.*ev gausscp_sub D _ _ _ _ _ _0.4 _ _ Jordan 4 EXample -1 4 λ 1 1 λ 1 λ 1 1, λ 1 1 λ 1 1 λ 1 λ 1, λ 1 1 λ 1 λ 1 λ 1 2 λ 1 small_matrix a _1 3 _1 _2 1 1 *5 }. dgeev_jlapack_ D _ _ _ a1 is eigenvector (%. a1) +/. * D260 +/. * a e_9 _3.8002e_ _

56 _1 _2 _1 1 1 _2 _4 _1 _ _2 _4 2 6 _2 _ _ λ A ( 1)I, (A ( 1)I) 2 A ( 1)I= _1 1 3 _1 _2 _1 _ _2 _4 A ( 1)I) 2 = a1=._1 small_pol D261 a1 +/. * a1 2 *6 2 A ( 1)I a1 +/. * a1 +/. * P ev= , , , ev *6 128!:0 a domain error 128!:0 a

57 P 1 AP (%. ev) +/. * D261 +/. * ev _ _ _ _1 P 1

58

59 /2 1/ blue red A0 1 1r2 1r2 1 A0 plot_vfield 5 pd eps /temp/vfield2_0.eps EXample

60 60 3 ({@> ;("1),. 5# <i. 5), L:0 {@>. i.5 a1 +/. * L:0 a r r r2 3 5r2 7r2 7r2 4 9r2 9r2 11r r r r2 1 3r2 3r2 5r2 2 7r2 5r2 9r r r

61 , A P 1,.P r P k = (A λ 1 I) k }{{} (A λ ri) (λ k λ 1) k }{{} (λ k λ r ) P 1 = (A λ 2I)(A λ 3 I) (λ 1 λ 2 )(λ 1 λ 3 ) P 2 = (A λ 1I)(A λ 3 I) (λ 2 λ 1 )(λ 2 λ 3 ) P 3 = (A λ 1I)(A λ 2 I) (λ 3 λ 1 )(λ 3 λ 2 ) Example a=.2 _2 3,1 1 1,:1 3 _1 2 _ _1 1 1 P 1 = (A λ 2I)(A λ 3 I) (λ 1 λ 2 )(λ 1 λ 3 ) = 1 (3 ( 2))(3 1) P 2 = (A λ 1 I)(A λ 3 I) (λ 2 λ 1 )(λ 2 λ 3 ) P 3 = (A λ 1I)(A λ 2 I) (λ 3 λ 1 )(λ 3 λ 2 ) = 1 (1 3)(1 ( 2)) A λi MAT _1 _2 3 4 _2 3 1 _2 3 = char_lf a _2 1 6 _5 _ f x = 6 5λ 2 lambda 2 + λ 3 Eigenvalue: = ( 2 3)( 2 1) = 1 6 =

62 _ _ _ λ LAMBDA _2 1 _ _ spectol a r2 1r10 2r5 0 11r15 _11r15 1r2 _5r6 1r3 1r2 1r10 2r5 0 1r15 _1r15 _1r2 5r6 _1r3 1r2 1r10 2r5 0 _14r15 14r15 _1r2 5r6 _1r A = λ 1 P 1 + λ 2 P 2 + λ 3 P 31 LF LF char_evec a _ _11 _3 5 _ _1 3 _ _ _ Φ(λ) = g 1 (λ) (λ λ 1 ) + + g r (λ) m1 (λ λ r ) mr Example issue:

63 D _ _1 2 1 (λ 2) 2 (λ 3) 1 A = (λ 2) 2 (λ 3) λ 2 + B (λ 2) + C 2 λ 3 1 = A(λ 2)(λ 3) + B(λ 3) + C(λ 2) 2 1 = (A + C)λ 2 + ( 5A + B 4C)λ + 6A 3B + 4C A +C = 0 5A +B 4C = 0 6A 3B +4C = a0=.1 0 1,_5 1 _4,: 6 _3 4 a _5 1 _4 6 _ %. a0 _1 _1 1 1 (λ 2) 2 (λ 3) = 1 λ 2 + = λ + 1 (λ 2) λ 3 1 (λ 2) λ 3

64 64 3 char_lf D _12 16 _ A 2I 2 small_pol D _ _1 0 P 1 = ( A + I)(A 3I) P 1 = P 2 = (A 2I) , P 2 = S = 2P 1 + 3P 2 2P 1 + 3P 2 = N = (A 2I)P 1 A = S + N (A 2I)P 1 = A = S + N = Reference 1994

65 a A = b b c, X = x 1 x 2 Example x x2 2 + x x 1x 2 + 4x 2 x 3 + 4x 1 x A = b LAPACK require addons/math/lapack/lapack.ijs require addons/math/lapack/dgeev.ijs ] ev=. ;{: dgeev_jlapack_ b _ _ _ _ _ _ char_lf b _1 _1 _5 _9 _ f (x) = 5 9λ 3λ 2 + λ 3 = 0 5, -1( ( : ev) +/. * b1 +/. * ev _ e_ e_ e_ e_ e_ e_16 _ x t Ax = y y2 2 1y2 3

66 A f f in trans f orm ), 3.2 fern /2 ( ( ) x1 w(x) = w = x 2 θ n ( ) a b = c d ( a b ) ( x1 c d x 2 ) + ( e f ( ) r1 cosθ 1 r 2 sinθ 2 r 1 sinθ 1 r 2 cosθ 2 ) = Ax + t Burnslay IFS Burnslay s f ern parameter of fern by Burnsray w a b c d e f p p

67 parameter calc FERN _ _ _ calc_ifs0 FERN _ _ _ view_pixel calc_ifs0 FERN Script NB section calc_ifs0=:4 : 0 NB. Usage: 100 calc_ifs0 FERN X0=. x Y0=. (\:({:"1 y)){ y NB. sort by prob AD=. 2 2 $ L:0 { 4{."1 Y0 NB. a b c d/box EF=. {4 5{"1 Y0 NB. e,f/box RND=. (? 100)% 100 NB. rand P0= / \{:"1 Y0 NB. probability/0.01 adjustment origin ANS=.< TMP=.(;{.EF) +(>{. AD) +/. *"(1) 0 0 NB. first for_ctr. i. X0 do. IND=.{.(((?100)%100) < P0) # i. # y TMP=. (;IND{EF)+ (>IND{AD) +/. * "1 TMP ANS=. ANS,<TMP end. ;("1),. ANS ) view_pixel=:3 : 0 gopen

68 68 3 gclear glpixel adj_pixel_sub y ) adj_pixel_sub=:3 : 0 TMP=. y MINMAX=. ;("1),.(<./y); >./y TMP=. TMP + -<./ {. MINMAX MINMAX=. ;("1),.(<./TMP); >./TMP TMP * TIMES=. <.<./1000 % {: MINMAX ) Reference Michael F. Barnsley [Fractals Everywhere 2nd Edition] 1993 Morgan-Kaufmann

69 / Ax = b (A t A)x = A t b A t x = (A t A) 1 A t b A = (A t A) 1 A t A A t A J %. y A = (A t A) 1 A t * < SVD (SVD /OLS OLS(ordinaly reast aquare equation) y X X 1 y 1 X *1 K.E.Iverson IBM IBM Iverson v (E.Mcdanell

70 x 1 y 1 1 x 2 α.. β = y 2. 1 x n y n y i = α + βx i Y = α + βx i + u i Y = α + β 1 X 1 + β 2 X 2 u y X 1 y 1, X regx=:3 : ({:"1 y ) %. 1,.}:"1 y NB. y %. 1,X x,y 1 2 x 1, x 2,, x n, y y Example D410 ( issue : shirasago) t Q P I T 1000 yen man en h cortable D410

71 4.1 / _ _ {"1 D410 P I Q=Y {"1 D410 P T Q=y reg {"1 D410 _ _ y = P I reg {"1 D410 _ y = P Y native reg mreg

72 72 4 X 1 1,. 1 3{"1 D410 X1 X X Q estimˆq ({."1 D410),. estim_reg {"1 D410 AIC AIC AIC / AIC *2 AIC MLL = 1 2 log Q n AIC = nlog Q + 2 (k + 1) n Q k + 1 *2 e- ai ci-

73 4.1 / 73 reg0 reg_exam_ad {"1 D410 reg0 reg_exam_ad {"1 D f= _ _ f= _ corr=: corr=: AIC: _ AIC: DW= DW= t=: _ _ t=: _ reg0 reg_exam_ad {"1 D f= _ corr=: AIC: _ DW= t=: _ AIC 3 P t 1

74 / 18 ( George King s Law,is An estimate of by how much a deficiency in the supply of corn will raise the price of corn. 10% 30% 20% 80% 30% 160% 40% 280% 50% 450% 450 KING line,marker plot { : KING pd eps temp/king0.eps 4.2 kings rule OLS y i = c 0 + c 1 x 1 + c 2 x *3 1 x 1 x 2 1 c 0 y 1 y 2 1 x 2 x c 1 =.. 1 x n xn 2 y n *3 Vandermonde Matrix

75 4.2 / KIngs rule 2 estim_poly KING estim_poly KING f = x x x speed and breaki KING ˆ/ % ˆ/ _

76 poly2 KING 28 _ f = x + 0.2x 2 f = x x x 3 3 poly2 KING e_ * 4 3 poly2 a e_ y = x x 3 ({."1 a1),. 3 estim_poly a1 _50 _450 _ _40 _280 _ _30 _160 _ _20 _80 _ _10 _30 _ e_ actual estim kings law extend to minus 3 ({:"1 a1)%. 1,.{."1 a e_ y = x AIC AIC MLL = n 2 log Q n AIC = 2 MLL + 2 (k + 1) Script NB. polynominal *4

77 4.2 / 77 ({:"1 a1),. +/"1 (({:"1 a1)%. 1,.{."1 a1)&p.1,.{."1 a1 _50 _450 _ _40 _280 _ _30 _160 _ _20 _80 _ _10 _30 _ ({:"1 a1)%. 1,.{."1 a e_ exact estim kings law extend to minus NB. Usage: e.g. 3 reg_poly y reg_poly=: 4 : 0 if. 1= +/ * $ y. do. x. poly1 y. else. x. poly2 y. end. ) NB polynominal regression poly1=: 4 : y. %. (>:i. # y.) ˆ/ i. >: x. poly2=: 4 : ({:"1 y.) %. ({."1 y.)ˆ/("1)i.>: x. estim_poly=: 4 : 0 NB. single type/ double type is same NB. 2 estim_poly KING if. 1=+/*$ y do.y0=. y.,. ((>:i. # y.)ˆ/ i.>: x.) +/. * x. poly1 y. else. Y0=. ({:"1 y.),. ((;}:"1 y.)ˆ/ i.>: x.) +/. * x. poly2 y. end. Y0 ) NB. modified estim_poly 5/Dec./ Reference Meyberk/Vachenauer

78 D430=: , y n k y n k y n (autocovariance function) y n k (autocorrelation), ACF(k) = Σn t=k 1 (Y t Ȳ)(Y t k Ȳ) Σ n t=1 (Y t Ȳ) 2,X(t), Cov[X(t 1 ), X(t 2 )] t 1, t 2, τ = t 1 t 2 pre f ix, su f f ix D430 J pre f ix, su f f ix (<\. D430),..(<\D430 <\D430 NB. prefix <\.D430 NB. suffix prefix t Y t, Y t 1, Y t 2, Y t 3...,

79 ACF Ȳ tmp=: ((<\.D430),..@(<\ ) D430)- L:0 (+/%#) D _ _1.5 _ _ _1.5 _ _1.5 _ _ _1.5 _ _1.5 _ _ _ _1.5 _ _ _ _ _ */ L:0,. ({."1 tmp),: L:0 {:"1 tmp _ _ _ _6.25 _0.75 _3.75 _ _

80 _ = ) ;+/ L:0 TMP _5.25 _ _6.25 = TMP1 % (+/)@:( ˆ&2)@ dev y NB. 1 _ _ _ ACF acf D430 NB. Cov % Var 1 _ _ _ A t A t A t A t 1 A t A t 2 A t A t 3 A t A t 4 A t A t ACF Script, ACF(k) = Σn t=k 1 (Y t Ȳ)(Y t k Ȳ) Σ n t=1 (Y t Ȳ) 2 SCRIPT acf=:3 : 0 NB. refine ACF2 code NB. ACF autocorellation coefficients (many times at once) C1=. ( <\. y ),..@(<\)y C3=. C1 - L:0 C2=. mean y NB. dev C4=.> +/ L:0 */ L:0 <"2 >C3 NB. change box style

81 NB. sum (Y_t-Y )*(Y_(t-k) - Y ) C4 % +/ (y - mean y )ˆ2 NB. C4 % VAR y ) Autoregression (autoregressive model,ar) AR Yule-Walker,, Yule Walker Yule-Walker ACF Yull-Walker C M a M = c M ACF c(k) = 1 N N k s=1 x(s)x(s + k), (k = 0, 1, 2,..., M) Yull-Walker c(0) c(1)... c(m 2) c(m 1) C M = c(1) c(0) c(1)... c(m 2) c(m 2)... c(1) c(0) c(1) c(m 1) c(m 2)... c(1) c(0) c M = (c(1), c(2),...c(m)) T ACF(k) C M, Yull-Walker yull-walker AR a 1 a 2.. a p = C 1 C 2.. C p ACF ACF acf a=: _ _ _ Yull-Walker Yull-Walker Yull-walker acf 3 C M c M c(0) c(1) c(2) c(1) c(1) c(0) c(1) c(2) c(2) c(1) c(0) c(3)

82 yw a NB. YW 1 _ _ _ _ _ _ _ _ cr=: %.}:"1 YW NB. Cramer Method 3 yw a 1 _ e_ e_16 _ _ e_ e_16 _ _ e_16 _ e_ y(t) = x t x t x t 3 Script yw_sub0=:4 : 0 NB. Yull- Waker sub NB. make C(m) Matrix NB. for univariate AR T1=: (.}. M), M=: y. NB. reverce and connect T2=:> x. # < T1 NB. copy x. vertical T3=: ({. $ T2), <: {: $ T2 NB. decrease $ to (0 _1) T4=:(-x.) {. ("1) T3 $, T2 NB. take backward (_x.) column ) yw=:4 : 0 NB. Yule Walker Method(Univariate) NB. Data type is Yoko list NB. X(t)=X1(t-1)+ X2(t-2) + X3(t-3)... NB. Usage: x. jisuu // y. Data Y1=: acf y. Y3=:}. Y2=: (>: x.) {. Y1 Y4=: (x. yw_sub0 Y2),. Y3 Y5=: cr Y4 NB. cramer decomposition )

83 NB. y4=: 4 : (x. yw_sub0 Y2),. }. Y2=:(>: x.) {. acf y. Yull-Walker,,, Reference Stephen A. DeLurgio [Forcasting Principles and Applications] McGRAW-HILL 1998

84 Working Example Q t = α 0 + α 1 P t + α 2 Y t + u 1t Q t = β 0 + β 1 P t + β 2 T t + u 2t Q t = P t = Y t = T t = Example D410 : 1998/2007 Haavelmo *5 α 0 + α 1 P t + α 2 Y t + u 1t = β 0 + β 1 P t + β 2 T t + u 2t α 1 P t β 1 P t = α 0 α 2 Y t + u 1t + β 0 + β 2 T t + u 2t P t (α 1 β 1 ) = α 0 + β 0 α 2 Y t + β 2 T t u t1 + u 2t P t = α 0 + β 0 α 1 β 1 + α 2Y t + β 2T t + u t1 + u 2t α 1 β 1 α 1 β 1 α 1 β 1 P t Q t = α 0 + α 1 P t + α 2 Y t + u 1t ( α0 + β 0 = α 0 + α 1 α 1 β 1 + α 2Y t α 1 β 1 + β 2T t + u 1t + u 2t ) + α2 Y t + u 1t α 1 β 1 α 1 β 1 = α 0 + α 1( α 0 + β 0 ) + α 1( α 2 Y t ) + α 1(β 2 T t ) + α 1( u 1t + u 2t ) + α 2 Y t + u 1t α 1 β 1 α 1 β 1 α 1 β 1 α 1 β 1 *5 Trigve M.Haavelmo Norway 1989

85 = α 0(α 1 β 1 ) + α 1 ( α 0 + β 0 ) + α 1( α 2 Y t ) + α 2 Y t (α 1 β 1 ) α 1 β 1 α 1 β 1 + α 1(β 2 T t ) + ( α 1u 1t + α 1 u 2t ) + (α 1 u 1t β 1 u 1t ) α 1 β 1 α 1 β 1 = α 1β 0 + α 0 β 1 α 1 β 1 + α 2β 1 Y t α 1 β 1 + α 1β 2 T t α 1 β 1 + α 1u 2t β 1 u 1t α 1 β 1 π 10 = α 1β 0 α 0 β 1 α 1 β 1 π 11 = α 2β 1 α 1 β 1 π 12 = α 1β 2 α 1 β 1 π 20 = α 0 + β 0 α 1 β 1 π 21 = α 2 α 1 β 1 π 22 = u 1t = u t1 + u 2t α 1 β 1 u 2t = α 1u 2t β 1 u 1t α 1 β 1 β 2 α 1 β 1 Q t = α 0 + α 1 P t + α 2 Y t + u 1t Q t = β 0 + β 1 P t + β 2 T t + u 2t Q t = π 10 + π 11 Y t + π 12 T t + u 1t P t = π 20 + π 21 Y t + π 22 T t + u 2t * Q t = α 0 + α 1 P t + α 2 Y t + u 1t Q t = β 0 + β 1 P t + β 2 T t + u 2t Q t α 1 P t = α 0 + α 2 Y t + u 1t 1 Q t β 1 P t = β 0 + β 2 T t + u 2t 2 Q t = P t = Y t = T t = (X t 1 ) * 7 *6 W.H.Green II(2000)p835 *7

86 [ Qt P t ] [ 1 2 α 1 [ Qt P t ] [ 1 β 1 [ Qt P t ] [ 1 1 ] = [ 1 Y t T t ] [ α 0 α 2 0 ] = [ 1 Y t T t ] [ β 0 α 1 β 1 Q 1 P 1 Q 2 P [ α 1 β 1 Q n P n 0 β 2 ] + u 1t ] + u 2t ] = [ 1 Y t T t ] [ α 0 β 0 ] = 1 Y 1 T 1 1 Y 2 T Y n T n α β 2 [ α 0 β 0 α β 2 ] + (u 1 + u 2 ) t ] + (u 1 + u 2 ) t YB = ZΓ + E Y = ZΓB 1 + EB 1 Y = ZΓB 1 Y = ZΓ B J B B Γ Γ OLS [ Qt P t ] [ 1 1 α 1 β 1 ] [ 1 Yt T t ] [ α 0 β 0 α β 2 ] b=.shira_sub20 D _ g=.shira_sub30 D _

87 B Γ B Γ A/B B Γ 1 α 1 α 0 α β 1 β 0 0 β 2 OLS OLS ( ) Q = α 0 + α 1 P + α 2 Y Q = β 0 + β 1 P + β 2 T shira_sub0 D410 _ _ _ OLS Q = P Y Q = P T B [ 1 α1 1 β 1 ] b=.shira_sub2 D _ B 1 B 1 β 1 α 1 α 1 β %. shira_sub2 D _

88 88 4 Γ [ α0 α 2 0 β 0 0 β 2 ] g=.shira_sub3 D410 shira_sub3 D410 _ _ Z Z B 1 Γ ( ) (%. b) +/. * g _ _ Y T Y T ˆQ (1,. 2 3 {"1 D410) +/. * : (%. b) +/. * g

89 YB = ZΓ Y = ZΓ B. B B 1 OLS OLS B Γ 1 Γ OLS YB = ZΓ Y = ZΓ B shirasago_model D Q P shirasago_model D YB = ZΓ Y = ZΓ B ZΓ B Y (Ŷ), ZΓ%.B 1 %. B Γ

90 90 4 B 1 α 1 1 β 1 B 1 1 β 1 α 1 α 1 β b _ ( ) ( ) %. b _ [ ] 1 β 1 α 1 α0 α 2 0 α 1 β β 0 0 β 2 Γ ( β 1, +α 1 ) (α 0, β 0 ) = α 0 β 1 + α 1 beta 0 = π 10 ( β 1, +α 1 ) (α 2, 0) = α 2 β 1 = π 11 ( β 1, +α 1 ) (0, β 2 ) = α 1 β 2 = π 12 ( 1, +1) (α 0, β 0 ) = α 0 + β 0 = π 20 ( 1, +1) (α 2, 0) = α 2 = π 21 ( 1, +1) (0, β 2 ) = β 2 = π 22 1 α 1 β 1 ) Klein Model Klein(1950) *8 Lawrence Robert Klein, (1920-) USA 1920 UC Berkley MIT Oxford ( ) ( ) ( ) ( ) ( ) C t = α 0 + α 1 P t + α 2 P t 1 + α 3 (WP t + WG t ) + e 1t I t = β 0 + β 1 P t + β 2 P t 1 + β 3 K t 1 + e 2t WP t = γ 0 + γ 1 X t + γ 2 X t 1 + γ 3 A t + e 3t X t = C t + I t + G t P t = X t T t WP t *8 June4 1992

91 ( ) K t = K t 1 + I t G T + WG A 1930 K P X 1 C t α 1 P t α 3 WP t = α 0 + α 2 P t 1 + α 3 WG t + e 1t 2 I t β 1 P t = β 0 + β 2 P t 1 + β 3 K t 1 + e 2t 3 WP t γ 1 X t = γ 0 + γ 2 X t 1 + γ 3 A t + e 3t 4 X t C t I t = G t 5 P t X t + WP t = T t 6 K t I t = K t 1 ( ) B = B C 1 I t WP t X t P t K t C α 3 0 α 1 0 I t β 1 0 WP γ X t P t K t Γ = Γ 1 P t 1 WG t K t 1 X t 1 A t G t T t C 1 α 0 α 2 α I t β 0 β 2 0 β WP t γ γ2 γ X t P t K t U = +(u 1 + u 2 + u 3 )i

92 92 4 OLS ]a=. klein_sub0 KLEIN (1) (2) _ (3) B klein_sub2 KLEIN 1 0 _ _ _ _ _1 _ _ _ Γ klein_sub3 KLEIN _ _ REG : (%. klein_sub2 KLEIN) +/. * klein_sub3 KLEIN (1) (2) (3) (4) (5) (6) _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ transpose :

93 RMSE,. rmse klein_model KLEIN L.Klein Reference 1998/2007

94

95 Markov chain/ Andrei A.Markov( ) (1906) The Markov property means that,given present state,future states are independant of past state P(1, 1) P(1, 2) P(1, 3) P(2, 1) P(2, 2) P(3, 3) P = P(3, 1) P(2, 2) P(3, 3).... Example ] M0=. 1r2 1r4 1r4,1r2 0 1r2,:1r4 1r4 1r2 Rain Nice S now Rain 1r2 1r4 1r4 Nice 1r2 0 1r2 S now 1r4 1r4 1r2 _1 x: M0 ([ +/. * ])ˆ:10 M

96 96 5 issue:kemeny,snell,thompson[introduction to Finete Mathematics 3rd.ed.] 1974 Prentishall P n+1 = P n P n π = πp markov_loop M P n

97 5.1 Markov chain/ char_lf M r4 _1r4 1r16 _1r16 _ cahr_evec M r4 _1r r8 3r16 3r8 _3r16 0 3r16 1r16 _1r8 1r16 3r8 3r16 3r _1r4 1r2 _1r4 3r8 3r16 3r8 3r16 0 _3r16 1r16 _1r8 1r f (λ) = λ λ2 + λ 3 Eigenvalue is a1=. {.;{.{: char_evec D510 3r8 3r16 3r8 _1 x: a1 % +/ a * / (A,B,C,D) M3 *1

98 98 5 Beer A B C D A M3 =: B C D {: 100 markov_loop M3 A B C D (issue: 7.1) A 48% B 25%,C 18% D 9% [ ] M p 1 q q 2 0 q P = q q 3 0 q q 4 q p i + q i = 1 p 5 = 1

99 5.1 Markov chain/ 99 p 1, q i p 1 = 0.03 q 1 p 2 = 0.20 q 1 q 2 p 3 = 0.60 q 1 q 2 q 3 p 4 = 0.15 q 1 q 2 q 3 q 4 p 5 = 0.15 p 1, q i p 1, q i r_markov M ;{: 100 markov_loop r_markov M4 NB Reference Script ] M0=: 1r2 1r4 1r4,1r2 0 1r2,:1r4 1r4 1r2 mmp=: [ +/. * ] NB. M0 +/. * M0 +/. * M0 NB. M0 mmp (ˆ:10) M0 markov_loop=: 4 : 0 NB. markov chain NB. x is time of loop NB. y is markov matrix TMP=. y +/. * y ANS=. y ; TMP for_ctr. i. x do. TMP=. TMP +/. * y

100 100 5 ANS=.ANS,<TMP end. ANS=._1 x: L:0 ANS NB. rational to natural number TMP1=.reform_sub L:0 ANS NB. pick-off dust,.(;$ L:0 {. ANS)$ L:0 TMP1 NB. reform ) reform_sub=: 3 : (0) (I. (,y) < 1e_6)},y

101 ( 1 Q 1 Q n 0(n ) I + Q + Q 2 + = (I Q) 1 *2 issue: Hirashita p49 D524 age age mat sub D524 death age0 age1 age2 age3 death age age age age = 1 0 R Q Q = 0 r r r , Q 2 = 0 0 r 0 r r 1 r , Q 3 = r 0 r 1 r , r 0 + r 0 r 1 + r 0 r 1 r r 1 + r 1 r r *2

102 markov_loop a />2 markov_loop a alive D I Q (I Q) 1 NB. I Q matrix Q (I Q) 1 alive0 D524 N

103 P.H.Leslie( ) Oxford Oxford Bureau o f Animal Population 1940 Bxernardelli(1941),Lewis(1942),Leslie(1945) 1959 Leslie 1966 J.H. Pollard stocastic version time t t+1 n1 f1 n1 n2 n3 n-w-1 n-w f2 f3 fw-1 fw pw-2 p1 p2 p3 n2 n3 n-w-1 n-w n 1 n 2 f 1 f 2 f 3 f k 1 f k p n 1 n 2 n 3 n k 0 p 2 (t + 1) = 0 0 p 3 n P k 1 0 n k (t) RACCOON Leslie 5 RACCOON ; ; Leslie Matrix leslie_mat }. RACCOON

104 a4 * P NB. birth NB. die NB. die a4 +/. * P0 NB leslie_loop RACCOON t old total(n)

1 Leverrie Faddeev 1.1 2007 John Randell NJ Rutgers Univ. (characteristic equation) AX = λx λ : A X : λ (A λi n )X = 0 f (λ) = A λi n = 0 a 11 a 12 a

1 Leverrie Faddeev 1.1 2007 John Randell NJ Rutgers Univ. (characteristic equation) AX = λx λ : A X : λ (A λi n )X = 0 f (λ) = A λi n = 0 a 11 a 12 a Masato Shimura JCD02773@nifty.ne.jp 20 1 24 1 Leverrie Faddeev 2 1.1.......................... 2 1.2 LF....................... 3 1.2.1........................... 3 1.2.2.................. 6 1.3................................

More information

1 1.1 p(x n+1 x n, x n 1, x n 2, ) = p(x n+1 x n ) (x n ) (x n+1 ) * (I Q) 1 ( 1 Q 1 Q n 0(n ) I + Q + Q 2 + = (I Q) ] q q +/. * q

1 1.1 p(x n+1 x n, x n 1, x n 2, ) = p(x n+1 x n ) (x n ) (x n+1 ) * (I Q) 1 ( 1 Q 1 Q n 0(n ) I + Q + Q 2 + = (I Q) ] q q +/. * q Masato Shimura JCD02773@nifty.ne.jp 2008 7 23 1 2 1.1....................................... 2 1.2..................................... 2 2 3 2.1 Example...................................... 3 2.2 Script...........................................

More information

B.2 EXCEL B.3 tara B.4 CSV

B.2 EXCEL B.3 tara B.4 CSV Numeric Recipes for Econometrics(0) SHIMURA Masato jcd02773@nifty.com 2010 12 2 1 3-2 1.1...................................... 2 1.2 3........................... 8 1.3.......................................

More information

Numerical recipes f or Econometrics Part 2(J6 ) Masato Shimura

Numerical recipes f or Econometrics Part 2(J6 ) Masato Shimura Numerical recipes f or Econometrics Part 2(J6 ) Masato Shimura JCD02773@nifty.ne.jp 2008 8 28 3 II 2 137 6 3 139 6.1................................... 139 6.2..................... 146 6.3......................

More information

LINEAR ALGEBRA I Hiroshi SUZUKI Department of Mathematics International Christian University

LINEAR ALGEBRA I Hiroshi SUZUKI Department of Mathematics International Christian University LINEAR ALGEBRA I Hiroshi SUZUKI Department of Mathematics International Christian University 2002 2 2 2 2 22 2 3 3 3 3 3 4 4 5 5 6 6 7 7 8 8 9 Cramer 9 0 0 E-mail:hsuzuki@icuacjp 0 3x + y + 2z 4 x + y

More information

A11 (1993,1994) 29 A12 (1994) 29 A13 Trefethen and Bau Numerical Linear Algebra (1997) 29 A14 (1999) 30 A15 (2003) 30 A16 (2004) 30 A17 (2007) 30 A18

A11 (1993,1994) 29 A12 (1994) 29 A13 Trefethen and Bau Numerical Linear Algebra (1997) 29 A14 (1999) 30 A15 (2003) 30 A16 (2004) 30 A17 (2007) 30 A18 2013 8 29y, 2016 10 29 1 2 2 Jordan 3 21 3 3 Jordan (1) 3 31 Jordan 4 32 Jordan 4 33 Jordan 6 34 Jordan 8 35 9 4 Jordan (2) 10 41 x 11 42 x 12 43 16 44 19 441 19 442 20 443 25 45 25 5 Jordan 26 A 26 A1

More information

ATM M.Shimura JCD02773@nifty.ne.jp 2003 12 13 JAPLA2003 1 queue ATM ATM queue 1.1 ATM No (Sec (Sec 1 13 37 60 26 28 99 1 25 40 39 143 202 14 88 190 27 1 184 2 170 37 40 130 317 15 121 72 28 48 115 3 101

More information

0 2 SHIMURA Masato

0 2 SHIMURA Masato 0 2 SHIMURA Masato jcd02773@nifty.com 2009 12 8 1 1 1.1................................... 2 1.2.......................................... 3 2 2 3 2.1............................... 3 2.2.......................................

More information

example2_time.eps

example2_time.eps Google (20/08/2 ) ( ) Random Walk & Google Page Rank Agora on Aug. 20 / 67 Introduction ( ) Random Walk & Google Page Rank Agora on Aug. 20 2 / 67 Introduction Google ( ) Random Walk & Google Page Rank

More information

II 2 3.,, A(B + C) = AB + AC, (A + B)C = AC + BC. 4. m m A, m m B,, m m B, AB = BA, A,, I. 5. m m A, m n B, AB = B, A I E, 4 4 I, J, K

II 2 3.,, A(B + C) = AB + AC, (A + B)C = AC + BC. 4. m m A, m m B,, m m B, AB = BA, A,, I. 5. m m A, m n B, AB = B, A I E, 4 4 I, J, K II. () 7 F 7 = { 0,, 2, 3, 4, 5, 6 }., F 7 a, b F 7, a b, F 7,. (a) a, b,,. (b) 7., 4 5 = 20 = 2 7 + 6, 4 5 = 6 F 7., F 7,., 0 a F 7, ab = F 7 b F 7. (2) 7, 6 F 6 = { 0,, 2, 3, 4, 5 },,., F 6., 0 0 a F

More information

R/S.5.72 (LongTerm Strage 1965) NASA (?. 2? (-:2)> 2?.2 NB. -: is half

R/S.5.72 (LongTerm Strage 1965) NASA (?. 2? (-:2)> 2?.2 NB. -: is half SHIMURA Masato JCD2773@nifty.ne.jp 29 6 19 1 R/S 1 2 9 3 References 22 C.Reiter 5 1 R/S 1.1 Harold Edwin Hurst 188-1978 England) Leicester, Oxford 3 196 Sir Henry Lyons ( 1915 1946 Hurst Black Simaika

More information

チュートリアル:ノンパラメトリックベイズ

チュートリアル:ノンパラメトリックベイズ { x,x, L, xn} 2 p( θ, θ, θ, θ, θ, } { 2 3 4 5 θ6 p( p( { x,x, L, N} 2 x { θ, θ2, θ3, θ4, θ5, θ6} K n p( θ θ n N n θ x N + { x,x, L, N} 2 x { θ, θ2, θ3, θ4, θ5, θ6} log p( 6 n logθ F 6 log p( + λ θ F θ

More information

n ( (

n ( ( 1 2 27 6 1 1 m-mat@mathscihiroshima-uacjp 2 http://wwwmathscihiroshima-uacjp/~m-mat/teach/teachhtml 2 1 3 11 3 111 3 112 4 113 n 4 114 5 115 5 12 7 121 7 122 9 123 11 124 11 125 12 126 2 2 13 127 15 128

More information

1 4 1 ( ) ( ) ( ) ( ) () 1 4 2

1 4 1 ( ) ( ) ( ) ( ) () 1 4 2 7 1995, 2017 7 21 1 2 2 3 3 4 4 6 (1).................................... 6 (2)..................................... 6 (3) t................. 9 5 11 (1)......................................... 11 (2)

More information

ad bc A A A = ad bc ( d ) b c a n A n A n A A det A A ( ) a b A = c d det A = ad bc σ {,,,, n} {,,, } {,,, } {,,, } ( ) σ = σ() = σ() = n sign σ sign(

ad bc A A A = ad bc ( d ) b c a n A n A n A A det A A ( ) a b A = c d det A = ad bc σ {,,,, n} {,,, } {,,, } {,,, } ( ) σ = σ() = σ() = n sign σ sign( I n n A AX = I, YA = I () n XY A () X = IX = (YA)X = Y(AX) = YI = Y X Y () XY A A AB AB BA (AB)(B A ) = A(BB )A = AA = I (BA)(A B ) = B(AA )B = BB = I (AB) = B A (BA) = A B A B A = B = 5 5 A B AB BA A

More information

i I II I II II IC IIC I II ii 5 8 5 3 7 8 iii I 3........................... 5......................... 7........................... 4........................ 8.3......................... 33.4...................

More information

数学Ⅱ演習(足助・09夏)

数学Ⅱ演習(足助・09夏) II I 9/4/4 9/4/2 z C z z z z, z 2 z, w C zw z w 3 z, w C z + w z + w 4 t R t C t t t t t z z z 2 z C re z z + z z z, im z 2 2 3 z C e z + z + 2 z2 + 3! z3 + z!, I 4 x R e x cos x + sin x 2 z, w C e z+w

More information

4 4 4 a b c d a b A c d A a da ad bce O E O n A n O ad bc a d n A n O 5 {a n } S n a k n a n + k S n a a n+ S n n S n n log x x {xy } x, y x + y 7 fx

4 4 4 a b c d a b A c d A a da ad bce O E O n A n O ad bc a d n A n O 5 {a n } S n a k n a n + k S n a a n+ S n n S n n log x x {xy } x, y x + y 7 fx 4 4 5 4 I II III A B C, 5 7 I II A B,, 8, 9 I II A B O A,, Bb, b, Cc, c, c b c b b c c c OA BC P BC OP BC P AP BC n f n x xn e x! e n! n f n x f n x f n x f k x k 4 e > f n x dx k k! fx sin x cos x tan

More information

+ 1 ( ) I IA i i i 1 n m a 11 a 1j a 1m A = a i1 a ij a im a n1 a nj a nm.....

+   1 ( ) I IA i i i 1 n m a 11 a 1j a 1m A = a i1 a ij a im a n1 a nj a nm..... + http://krishnathphysaitama-uacjp/joe/matrix/matrixpdf 1 ( ) I IA i i i 1 n m a 11 a 1j a 1m A = a i1 a ij a im a n1 a nj a nm (1) n m () (n, m) ( ) n m B = ( ) 3 2 4 1 (2) 2 2 ( ) (2, 2) ( ) C = ( 46

More information

x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y)

x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y) x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 1 1977 x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y) ( x 2 y + xy 2 x 2 2xy y 2) = 15 (x y) (x + y) (xy

More information

J6 M.Shimura (1) 1 2 (2) (1824) ( (1842) 1 (1) 1.1 C.Reiter dwin require ad

J6 M.Shimura (1) 1 2 (2) (1824) ( (1842) 1 (1) 1.1 C.Reiter dwin require ad J6 M.Shimura JCD02773@nifty.ne.jp 2011 12 13 1 (1) 1 2 (2)- 12 3 14 4-20 5 24 6 33 60 (1824) ( 100 1760 1849 (1842) 1 (1) 1.1 C.Reiter dwin require addons/graphics/fvj3/dwin2.ijs 1 xy find_maxmin 4 5 calc_each_poly

More information

7 27 7.1........................................ 27 7.2.......................................... 28 1 ( a 3 = 3 = 3 a a > 0(a a a a < 0(a a a -1 1 6

7 27 7.1........................................ 27 7.2.......................................... 28 1 ( a 3 = 3 = 3 a a > 0(a a a a < 0(a a a -1 1 6 26 11 5 1 ( 2 2 2 3 5 3.1...................................... 5 3.2....................................... 5 3.3....................................... 6 3.4....................................... 7

More information

x x x 2, A 4 2 Ax.4 A A A A λ λ 4 λ 2 A λe λ λ2 5λ + 6 0,...λ 2, λ 2 3 E 0 E 0 p p Ap λp λ 2 p 4 2 p p 2 p { 4p 2 2p p + 2 p, p 2 λ {

x x x 2, A 4 2 Ax.4 A A A A λ λ 4 λ 2 A λe λ λ2 5λ + 6 0,...λ 2, λ 2 3 E 0 E 0 p p Ap λp λ 2 p 4 2 p p 2 p { 4p 2 2p p + 2 p, p 2 λ { K E N Z OU 2008 8. 4x 2x 2 2 2 x + x 2. x 2 2x 2, 2 2 d 2 x 2 2.2 2 3x 2... d 2 x 2 5 + 6x 0 2 2 d 2 x 2 + P t + P 2tx Qx x x, x 2 2 2 x 2 P 2 tx P tx 2 + Qx x, x 2. d x 4 2 x 2 x x 2.3 x x x 2, A 4 2

More information

( )

( ) 18 10 01 ( ) 1 2018 4 1.1 2018............................... 4 1.2 2018......................... 5 2 2017 7 2.1 2017............................... 7 2.2 2017......................... 8 3 2016 9 3.1 2016...............................

More information

20 9 19 1 3 11 1 3 111 3 112 1 4 12 6 121 6 122 7 13 7 131 8 132 10 133 10 134 12 14 13 141 13 142 13 143 15 144 16 145 17 15 19 151 1 19 152 20 2 21 21 21 211 21 212 1 23 213 1 23 214 25 215 31 22 33

More information

6. Euler x

6. Euler x ...............................................................................3......................................... 4.4................................... 5.5......................................

More information

28

28 y i = Z i δ i +ε i ε i δ X y i = X Z i δ i + X ε i [ ] 1 δ ˆ i = Z i X( X X) 1 X Z i [ ] 1 σ ˆ 2 Z i X( X X) 1 X Z i Z i X( X X) 1 X y i σ ˆ 2 ˆ σ 2 = [ ] y i Z ˆ [ i δ i ] 1 y N p i Z i δ ˆ i i RSTAT

More information

ii

ii ii iii 1 1 1.1..................................... 1 1.2................................... 3 1.3........................... 4 2 9 2.1.................................. 9 2.2...............................

More information

8.1 Fubini 8.2 Fubini 9 (0%) 10 (50%) 10.1 10.2 Carathéodory 10.3 Fubini 1 Introduction [1],, [2],, [3],, [4],, [5],, [6],, [7],, [8],, [1, 2, 3] 1980

8.1 Fubini 8.2 Fubini 9 (0%) 10 (50%) 10.1 10.2 Carathéodory 10.3 Fubini 1 Introduction [1],, [2],, [3],, [4],, [5],, [6],, [7],, [8],, [1, 2, 3] 1980 % 100% 1 Introduction 2 (100%) 2.1 2.2 2.3 3 (100%) 3.1 3.2 σ- 4 (100%) 4.1 4.2 5 (100%) 5.1 5.2 5.3 6 (100%) 7 (40%) 8 Fubini (90%) 2006.11.20 1 8.1 Fubini 8.2 Fubini 9 (0%) 10 (50%) 10.1 10.2 Carathéodory

More information

.3. (x, x = (, u = = 4 (, x x = 4 x, x 0 x = 0 x = 4 x.4. ( z + z = 8 z, z 0 (z, z = (0, 8, (,, (8, 0 3 (0, 8, (,, (8, 0 z = z 4 z (g f(x = g(

.3. (x, x = (, u = = 4 (, x x = 4 x, x 0 x = 0 x = 4 x.4. ( z + z = 8 z, z 0 (z, z = (0, 8, (,, (8, 0 3 (0, 8, (,, (8, 0 z = z 4 z (g f(x = g( 06 5.. ( y = x x y 5 y 5 = (x y = x + ( y = x + y = x y.. ( Y = C + I = 50 + 0.5Y + 50 r r = 00 0.5Y ( L = M Y r = 00 r = 0.5Y 50 (3 00 0.5Y = 0.5Y 50 Y = 50, r = 5 .3. (x, x = (, u = = 4 (, x x = 4 x,

More information

2 7 V 7 {fx fx 3 } 8 P 3 {fx fx 3 } 9 V 9 {fx fx f x 2fx } V {fx fx f x 2fx + } V {{a n } {a n } a n+2 a n+ + a n n } 2 V 2 {{a n } {a n } a n+2 a n+

2 7 V 7 {fx fx 3 } 8 P 3 {fx fx 3 } 9 V 9 {fx fx f x 2fx } V {fx fx f x 2fx + } V {{a n } {a n } a n+2 a n+ + a n n } 2 V 2 {{a n } {a n } a n+2 a n+ R 3 R n C n V??,?? k, l K x, y, z K n, i x + y + z x + y + z iv x V, x + x o x V v kx + y kx + ky vi k + lx kx + lx vii klx klx viii x x ii x + y y + x, V iii o K n, x K n, x + o x iv x K n, x + x o x

More information

2S III IV K A4 12:00-13:30 Cafe David 1 2 TA 1 appointment Cafe David K2-2S04-00 : C

2S III IV K A4 12:00-13:30 Cafe David 1 2 TA 1  appointment Cafe David K2-2S04-00 : C 2S III IV K200 : April 16, 2004 Version : 1.1 TA M2 TA 1 10 2 n 1 ɛ-δ 5 15 20 20 45 K2-2S04-00 : C 2S III IV K200 60 60 74 75 89 90 1 email 3 4 30 A4 12:00-13:30 Cafe David 1 2 TA 1 email appointment Cafe

More information

211 kotaro@math.titech.ac.jp 1 R *1 n n R n *2 R n = {(x 1,..., x n ) x 1,..., x n R}. R R 2 R 3 R n R n R n D D R n *3 ) (x 1,..., x n ) f(x 1,..., x n ) f D *4 n 2 n = 1 ( ) 1 f D R n f : D R 1.1. (x,

More information

(2016 2Q H) [ ] R 2 2 P = (a, b), Q = (c, d) Q P QP = ( ) a c b d (a c, b d) P = (a, b) O P ( ) a p = b P = (a, b) p = ( ) a b R 2 {( ) } R 2 x = x, y

(2016 2Q H) [ ] R 2 2 P = (a, b), Q = (c, d) Q P QP = ( ) a c b d (a c, b d) P = (a, b) O P ( ) a p = b P = (a, b) p = ( ) a b R 2 {( ) } R 2 x = x, y (2016 2Q H) [ ] R 2 2 P = (a, b), Q = (c, d) Q P QP = a c b d (a c, b d) P = (a, b) O P a p = b P = (a, b) p = a b R 2 { } R 2 x = x, y R y 2 a p =, c q = b d p + a + c q = b + d q p P q a p = c R c b

More information

a b GE(General Erectrics) 9 4 irr (JAPLA 2009/12) Example1 120 P = C r + C 2 (1 + r) C t 1 (1 + r) t 1 + C t + F (1 + r) t 10

a b GE(General Erectrics) 9 4 irr (JAPLA 2009/12) Example1 120 P = C r + C 2 (1 + r) C t 1 (1 + r) t 1 + C t + F (1 + r) t 10 1 SHIMURA Masato 2010 9 27 1 1 2 CF 6 3 10 *1 irr irr irr(inner rate of return)function is able to written only few lines,and it is very powerful and useful for simulate unprofitable business model. 1

More information

応用数学III-4.ppt

応用数学III-4.ppt III f x ( ) = 1 f x ( ) = P( X = x) = f ( x) = P( X = x) =! x ( ) b! a, X! U a,b f ( x) =! " e #!x, X! Ex (!) n! ( n! x)!x! " x 1! " x! e"!, X! Po! ( ) n! x, X! B( n;" ) ( ) ! xf ( x) = = n n!! ( n

More information

/ 2 n n n n x 1,..., x n 1 n 2 n R n n ndimensional Euclidean space R n vector point R n set space R n R n x = x 1 x n y = y 1 y n distance dx,

/ 2 n n n n x 1,..., x n 1 n 2 n R n n ndimensional Euclidean space R n vector point R n set space R n R n x = x 1 x n y = y 1 y n distance dx, 1 1.1 R n 1.1.1 3 xyz xyz 3 x, y, z R 3 := x y : x, y, z R z 1 3. n n x 1,..., x n x 1. x n x 1 x n 1 / 2 n n n n x 1,..., x n 1 n 2 n R n n ndimensional Euclidean space R n vector point 1.1.2 R n set

More information

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10%

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10% 1 2006.4.17. A 3-312 tel: 092-726-4774, e-mail: hara@math.kyushu-u.ac.jp, http://www.math.kyushu-u.ac.jp/ hara/lectures/lectures-j.html Office hours: B A I ɛ-δ ɛ-δ 1. 2. A 1. 1. 2. 3. 4. 5. 2. ɛ-δ 1. ɛ-n

More information

2 (2016 3Q N) c = o (11) Ax = b A x = c A n I n n n 2n (A I n ) (I n X) A A X A n A A A (1) (2) c 0 c (3) c A A i j n 1 ( 1) i+j A (i, j) A (i, j) ã i

2 (2016 3Q N) c = o (11) Ax = b A x = c A n I n n n 2n (A I n ) (I n X) A A X A n A A A (1) (2) c 0 c (3) c A A i j n 1 ( 1) i+j A (i, j) A (i, j) ã i [ ] (2016 3Q N) a 11 a 1n m n A A = a m1 a mn A a 1 A A = a n (1) A (a i a j, i j ) (2) A (a i ca i, c 0, i ) (3) A (a i a i + ca j, j i, i ) A 1 A 11 0 A 12 0 0 A 1k 0 1 A 22 0 0 A 2k 0 1 0 A 3k 1 A rk

More information

Part. 4. () 4.. () 4.. 3 5. 5 5.. 5 5.. 6 5.3. 7 Part 3. 8 6. 8 6.. 8 6.. 8 7. 8 7.. 8 7.. 3 8. 3 9., 34 9.. 34 9.. 37 9.3. 39. 4.. 4.. 43. 46.. 46..

Part. 4. () 4.. () 4.. 3 5. 5 5.. 5 5.. 6 5.3. 7 Part 3. 8 6. 8 6.. 8 6.. 8 7. 8 7.. 8 7.. 3 8. 3 9., 34 9.. 34 9.. 37 9.3. 39. 4.. 4.. 43. 46.. 46.. Cotets 6 6 : 6 6 6 6 6 6 7 7 7 Part. 8. 8.. 8.. 9..... 3. 3 3.. 3 3.. 7 3.3. 8 Part. 4. () 4.. () 4.. 3 5. 5 5.. 5 5.. 6 5.3. 7 Part 3. 8 6. 8 6.. 8 6.. 8 7. 8 7.. 8 7.. 3 8. 3 9., 34 9.. 34 9.. 37 9.3.

More information

arma dvi

arma dvi ARMA 007/05/0 Rev.0 007/05/ Rev.0 007/07/7 3. : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 3. : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 3.3 : : : :

More information

Appendix A BASIC BASIC Beginner s All-purpose Symbolic Instruction Code FORTRAN COBOL C JAVA PASCAL (NEC N88-BASIC Windows BASIC (1) (2) ( ) BASIC BAS

Appendix A BASIC BASIC Beginner s All-purpose Symbolic Instruction Code FORTRAN COBOL C JAVA PASCAL (NEC N88-BASIC Windows BASIC (1) (2) ( ) BASIC BAS Appendix A BASIC BASIC Beginner s All-purpose Symbolic Instruction Code FORTRAN COBOL C JAVA PASCAL (NEC N88-BASIC Windows BASIC (1 (2 ( BASIC BASIC download TUTORIAL.PDF http://hp.vector.co.jp/authors/va008683/

More information

January 27, 2015

January 27, 2015 e-mail : kigami@i.kyoto-u.ac.jp January 27, 205 Contents 2........................ 2.2....................... 3.3....................... 6.4......................... 2 6 2........................... 6

More information

,2,4

,2,4 2005 12 2006 1,2,4 iii 1 Hilbert 14 1 1.............................................. 1 2............................................... 2 3............................................... 3 4.............................................

More information

熊本県数学問題正解

熊本県数学問題正解 00 y O x Typed by L A TEX ε ( ) (00 ) 5 4 4 ( ) http://www.ocn.ne.jp/ oboetene/plan/. ( ) (009 ) ( ).. http://www.ocn.ne.jp/ oboetene/plan/eng.html 8 i i..................................... ( )0... (

More information

2 1 17 1.1 1.1.1 1650

2 1 17 1.1 1.1.1 1650 1 3 5 1 1 2 0 0 1 2 I II III J. 2 1 17 1.1 1.1.1 1650 1.1 3 3 6 10 3 5 1 3/5 1 2 + 1 10 ( = 6 ) 10 1/10 2000 19 17 60 2 1 1 3 10 25 33221 73 13111 0. 31 11 11 60 11/60 2 111111 3 60 + 3 332221 27 x y xy

More information

2012 A, N, Z, Q, R, C

2012 A, N, Z, Q, R, C 2012 A, N, Z, Q, R, C 1 2009 9 2 2011 2 3 2012 9 1 2 2 5 3 11 4 16 5 22 6 25 7 29 8 32 1 1 1.1 3 1 1 1 1 1 1? 3 3 3 3 3 3 3 1 1, 1 1 + 1 1 1+1 2 2 1 2+1 3 2 N 1.2 N (i) 2 a b a 1 b a < b a b b a a b (ii)

More information

ver 0.3 Chapter 0 0.1 () 0( ) 0.2 3 4 CHAPTER 0. http://www.jaist.ac.jp/~t-yama/k116 0.3 50% ( Wikipedia ) ( ) 0.4! 2006 0.4. 5 MIT OCW ( ) MIT Open Courseware MIT (Massachusetts Institute of Technology)

More information

Isogai, T., Building a dynamic correlation network for fat-tailed financial asset returns, Applied Network Science (7):-24, 206,

Isogai, T., Building a dynamic correlation network for fat-tailed financial asset returns, Applied Network Science (7):-24, 206, H28. (TMU) 206 8 29 / 34 2 3 4 5 6 Isogai, T., Building a dynamic correlation network for fat-tailed financial asset returns, Applied Network Science (7):-24, 206, http://link.springer.com/article/0.007/s409-06-0008-x

More information

Macdonald, ,,, Macdonald. Macdonald,,,,,.,, Gauss,,.,, Lauricella A, B, C, D, Gelfand, A,., Heckman Opdam.,,,.,,., intersection,. Macdona

Macdonald, ,,, Macdonald. Macdonald,,,,,.,, Gauss,,.,, Lauricella A, B, C, D, Gelfand, A,., Heckman Opdam.,,,.,,., intersection,. Macdona Macdonald, 2015.9.1 9.2.,,, Macdonald. Macdonald,,,,,.,, Gauss,,.,, Lauricella A, B, C, D, Gelfand, A,., Heckman Opdam.,,,.,,., intersection,. Macdonald,, q., Heckman Opdam q,, Macdonald., 1 ,,. Macdonald,

More information

(2018 2Q C) [ ] R 2 2 P = (a, b), Q = (c, d) Q P QP = ( ) a c b d (a c, b d) P = (a, b) O P ( ) a p = b P = (a, b) p = ( ) a b R 2 {( ) } R 2 x = x, y

(2018 2Q C) [ ] R 2 2 P = (a, b), Q = (c, d) Q P QP = ( ) a c b d (a c, b d) P = (a, b) O P ( ) a p = b P = (a, b) p = ( ) a b R 2 {( ) } R 2 x = x, y (2018 2Q C) [ ] R 2 2 P = (a, b), Q = (c, d) Q P QP = a c b d (a c, b d) P = (a, b) O P a p = b P = (a, b) p = a b R 2 { } R 2 x = x, y R y 2 a p =, c q = b d p + a + c q = b + d q p P q a p = c R c b

More information

1 Abstract 2 3 n a ax 2 + bx + c = 0 (a 0) (1) ( x + b ) 2 = b2 4ac 2a 4a 2 D = b 2 4ac > 0 (1) 2 D = 0 D < 0 x + b 2a = ± b2 4ac 2a b ± b 2

1 Abstract 2 3 n a ax 2 + bx + c = 0 (a 0) (1) ( x + b ) 2 = b2 4ac 2a 4a 2 D = b 2 4ac > 0 (1) 2 D = 0 D < 0 x + b 2a = ± b2 4ac 2a b ± b 2 1 Abstract n 1 1.1 a ax + bx + c = 0 (a 0) (1) ( x + b ) = b 4ac a 4a D = b 4ac > 0 (1) D = 0 D < 0 x + b a = ± b 4ac a b ± b 4ac a b a b ± 4ac b i a D (1) ax + bx + c D 0 () () (015 8 1 ) 1. D = b 4ac

More information

I L01( Wed) : Time-stamp: Wed 07:38 JST hig e, ( ) L01 I(2017) 1 / 19

I L01( Wed) : Time-stamp: Wed 07:38 JST hig e,   ( ) L01 I(2017) 1 / 19 I L01(2017-09-20 Wed) : Time-stamp: 2017-09-20 Wed 07:38 JST hig e, http://hig3.net ( ) L01 I(2017) 1 / 19 ? 1? 2? ( ) L01 I(2017) 2 / 19 ?,,.,., 1..,. 1,2,.,.,. ( ) L01 I(2017) 3 / 19 ? I. M (3 ) II,

More information

80 X 1, X 2,, X n ( λ ) λ P(X = x) = f (x; λ) = λx e λ, x = 0, 1, 2, x! l(λ) = n f (x i ; λ) = i=1 i=1 n λ x i e λ i=1 x i! = λ n i=1 x i e nλ n i=1 x

80 X 1, X 2,, X n ( λ ) λ P(X = x) = f (x; λ) = λx e λ, x = 0, 1, 2, x! l(λ) = n f (x i ; λ) = i=1 i=1 n λ x i e λ i=1 x i! = λ n i=1 x i e nλ n i=1 x 80 X 1, X 2,, X n ( λ ) λ P(X = x) = f (x; λ) = λx e λ, x = 0, 1, 2, x! l(λ) = n f (x i ; λ) = n λ x i e λ x i! = λ n x i e nλ n x i! n n log l(λ) = log(λ) x i nλ log( x i!) log l(λ) λ = 1 λ n x i n =

More information

December 28, 2018

December 28, 2018 e-mail : kigami@i.kyoto-u.ac.jp December 28, 28 Contents 2............................. 3.2......................... 7.3..................... 9.4................ 4.5............. 2.6.... 22 2 36 2..........................

More information

1 n A a 11 a 1n A =.. a m1 a mn Ax = λx (1) x n λ (eigenvalue problem) x = 0 ( x 0 ) λ A ( ) λ Ax = λx x Ax = λx y T A = λy T x Ax = λx cx ( 1) 1.1 Th

1 n A a 11 a 1n A =.. a m1 a mn Ax = λx (1) x n λ (eigenvalue problem) x = 0 ( x 0 ) λ A ( ) λ Ax = λx x Ax = λx y T A = λy T x Ax = λx cx ( 1) 1.1 Th 1 n A a 11 a 1n A = a m1 a mn Ax = λx (1) x n λ (eigenvalue problem) x = ( x ) λ A ( ) λ Ax = λx x Ax = λx y T A = λy T x Ax = λx cx ( 1) 11 Th9-1 Ax = λx λe n A = λ a 11 a 12 a 1n a 21 λ a 22 a n1 a n2

More information

1 SHIMURA Masato polynomial irr.xirr EXCEL irr

1 SHIMURA Masato polynomial irr.xirr EXCEL irr 1 SHIMURA Masato 2009 12 8 1 2 1.1................................... 2 1.2 polynomial......................... 4 2 irr.xirr EXCEL 5 2.1 irr............................................. 5 2.2 d f, pv...........................................

More information

Excel ではじめる数値解析 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

Excel ではじめる数値解析 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 初版 1 刷発行時のものです. Excel ではじめる数値解析 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/009631 このサンプルページの内容は, 初版 1 刷発行時のものです. Excel URL http://www.morikita.co.jp/books/mid/009631 i Microsoft Windows

More information

1 1 3 1.1 (Frequecy Tabulatios)................................ 3 1........................................ 8 1.3.....................................

1 1 3 1.1 (Frequecy Tabulatios)................................ 3 1........................................ 8 1.3..................................... 1 1 3 1.1 (Frequecy Tabulatios)................................ 3 1........................................ 8 1.3........................................... 1 17.1................................................

More information

<4D6963726F736F667420576F7264202D204850835483938376838B8379815B83578B6594BB2D834A836F815B82D082C88C60202E646F63>

<4D6963726F736F667420576F7264202D204850835483938376838B8379815B83578B6594BB2D834A836F815B82D082C88C60202E646F63> 誤 り 訂 正 技 術 の 基 礎 サンプルページ この 本 の 定 価 判 型 などは, 以 下 の URL からご 覧 いただけます http://wwwmorikitacojp/books/mid/081731 このサンプルページの 内 容 は, 第 1 版 発 行 時 のものです http://wwwmorikitacojp/support/ e mail editor@morikitacojp

More information

..3. Ω, Ω F, P Ω, F, P ). ) F a) A, A,..., A i,... F A i F. b) A F A c F c) Ω F. ) A F A P A),. a) 0 P A) b) P Ω) c) [ ] A, A,..., A i,... F i j A i A

..3. Ω, Ω F, P Ω, F, P ). ) F a) A, A,..., A i,... F A i F. b) A F A c F c) Ω F. ) A F A P A),. a) 0 P A) b) P Ω) c) [ ] A, A,..., A i,... F i j A i A .. Laplace ). A... i),. ω i i ). {ω,..., ω } Ω,. ii) Ω. Ω. A ) r, A P A) P A) r... ).. Ω {,, 3, 4, 5, 6}. i i 6). A {, 4, 6} P A) P A) 3 6. ).. i, j i, j) ) Ω {i, j) i 6, j 6}., 36. A. A {i, j) i j }.

More information

5 5.1 35

5 5.1 35 C: PC H19 A5 3.BUN 19 8 6 5 35 5.1............................ 35 5.2 1...................... 38 5.3 2...................... 39 5.4............................. 41 5.5 Thevenin................. 46 5.6.....................

More information

最小2乗法

最小2乗法 2 2012 4 ( ) 2 2012 4 1 / 42 X Y Y = f (X ; Z) linear regression model X Y slope X 1 Y (X, Y ) 1 (X, Y ) ( ) 2 2012 4 2 / 42 1 β = β = β (4.2) = β 0 + β (4.3) ( ) 2 2012 4 3 / 42 = β 0 + β + (4.4) ( )

More information

2 H23 BioS (i) data d1; input group patno t sex censor; cards;

2 H23 BioS (i) data d1; input group patno t sex censor; cards; H BioS (i) data d1; input group patno t sex censor; cards; 0 1 0 0 0 0 1 0 1 1 0 4 4 0 1 0 5 5 1 1 0 6 5 1 1 0 7 10 1 0 0 8 15 0 1 0 9 15 0 1 0 10 4 1 0 0 11 4 1 0 1 1 5 1 0 1 1 7 0 1 1 14 8 1 0 1 15 8

More information

0.,,., m Euclid m m. 2.., M., M R 2 ψ. ψ,, R 2 M.,, (x 1 (),, x m ()) R m. 2 M, R f. M (x 1,, x m ), f (x 1,, x m ) f(x 1,, x m ). f ( ). x i : M R.,,

0.,,., m Euclid m m. 2.., M., M R 2 ψ. ψ,, R 2 M.,, (x 1 (),, x m ()) R m. 2 M, R f. M (x 1,, x m ), f (x 1,, x m ) f(x 1,, x m ). f ( ). x i : M R.,, 2012 10 13 1,,,.,,.,.,,. 2?.,,. 1,, 1. (θ, φ), θ, φ (0, π),, (0, 2π). 1 0.,,., m Euclid m m. 2.., M., M R 2 ψ. ψ,, R 2 M.,, (x 1 (),, x m ()) R m. 2 M, R f. M (x 1,, x m ), f (x 1,, x m ) f(x 1,, x m ).

More information

Grund.dvi

Grund.dvi 24 24 23 411M133 i 1 1 1.1........................................ 1 2 4 2.1...................................... 4 2.2.................................. 6 2.2.1........................... 6 2.2.2 viterbi...........................

More information

V T n n = A r n A n r n U V m m n n UT U = I V T V = I : A = A = UΣV T A T AV = VΣ T Σ : AB T = B T A T V A T A V A V T V = I 3 V A V T V = I : A AK =

V T n n = A r n A n r n U V m m n n UT U = I V T V = I : A = A = UΣV T A T AV = VΣ T Σ : AB T = B T A T V A T A V A V T V = I 3 V A V T V = I : A AK = PLS Janes PLS PLS PCR MLR PCA singular value decomposition : m n A 3 A = U m n m m Σ m n VT n n U left singular matrix V Σ U = m m A m r Σ = m n σ σ r A m m r V T n n = A r n A n r n U V m m n n UT U =

More information

K E N Z U 2012 7 16 HP M. 1 1 4 1.1 3.......................... 4 1.2................................... 4 1.2.1..................................... 4 1.2.2.................................... 5................................

More information

こんにちは由美子です

こんにちは由美子です Sample size power calculation Sample Size Estimation AZTPIAIDS AIDSAZT AIDSPI AIDSRNA AZTPr (S A ) = π A, PIPr (S B ) = π B AIDS (sampling)(inference) π A, π B π A - π B = 0.20 PI 20 20AZT, PI 10 6 8 HIV-RNA

More information

ver Web

ver Web ver201723 Web 1 4 11 4 12 5 13 7 2 9 21 9 22 10 23 10 24 11 3 13 31 n 13 32 15 33 21 34 25 35 (1) 27 4 30 41 30 42 32 43 36 44 (2) 38 45 45 46 45 5 46 51 46 52 48 53 49 54 51 55 54 56 58 57 (3) 61 2 3

More information

Contents 1 Scilab

Contents 1 Scilab Scilab (Shuji Yoshikawa) December 18, 2017 Contents 1 Scilab 3 1.1..................................... 3 1.2..................................... 3 1.3....................................... 3 1.4............................

More information

2012年度HPCサマーセミナー_多田野.pptx

2012年度HPCサマーセミナー_多田野.pptx ! CCS HPC! I " tadano@cs.tsukuba.ac.jp" " 1 " " " " " " " 2 3 " " Ax = b" " " 4 Ax = b" A = a 11 a 12... a 1n a 21 a 22... a 2n...... a n1 a n2... a nn, x = x 1 x 2. x n, b = b 1 b 2. b n " " 5 Gauss LU

More information

I

I I 6 4 10 1 1 1.1............... 1 1................ 1 1.3.................... 1.4............... 1.4.1.............. 1.4................. 1.4.3........... 3 1.4.4.. 3 1.5.......... 3 1.5.1..............

More information

10

10 z c j = N 1 N t= j1 [ ( z t z ) ( )] z t j z q 2 1 2 r j /N j=1 1/ N J Q = N(N 2) 1 N j j=1 r j 2 2 χ J B d z t = z t d (1 B) 2 z t = (z t z t 1 ) (z t 1 z t 2 ) (1 B s )z t = z t z t s _ARIMA CONSUME

More information

1. A0 A B A0 A : A1,...,A5 B : B1,...,B

1. A0 A B A0 A : A1,...,A5 B : B1,...,B 1. A0 A B A0 A : A1,...,A5 B : B1,...,B12 2. 3. 4. 5. A0 A B f : A B 4 (i) f (ii) f (iii) C 2 g, h: C A f g = f h g = h (iv) C 2 g, h: B C g f = h f g = h 4 (1) (i) (iii) (2) (iii) (i) (3) (ii) (iv) (4)

More information

1 1 ( ) ( 1.1 1.1.1 60% mm 100 100 60 60% 1.1.2 A B A B A 1

1 1 ( ) ( 1.1 1.1.1 60% mm 100 100 60 60% 1.1.2 A B A B A 1 1 21 10 5 1 E-mail: qliu@res.otaru-uc.ac.jp 1 1 ( ) ( 1.1 1.1.1 60% mm 100 100 60 60% 1.1.2 A B A B A 1 B 1.1.3 boy W ID 1 2 3 DI DII DIII OL OL 1.1.4 2 1.1.5 1.1.6 1.1.7 1.1.8 1.2 1.2.1 1. 2. 3 1.2.2

More information

空き容量一覧表(154kV以上)

空き容量一覧表(154kV以上) 1/3 A. 電気所 ( 発電所, 変電所, 配電塔 ) における変圧器の空き容量 覧 < 留意事項 > (1) 空容量は 安であり 系統接続の前には 接続検討のお申込みによる詳細検討が必要となります その結果 空容量が変更となる場合があります (2) 熱容量を考慮した空き容量を記載しております その他の要因 ( や系統安定度など ) で連系制約が発 する場合があります (3) 表 は 既に空容量がないため

More information

1/68 A. 電気所 ( 発電所, 変電所, 配電塔 ) における変圧器の空き容量一覧 平成 31 年 3 月 6 日現在 < 留意事項 > (1) 空容量は目安であり 系統接続の前には 接続検討のお申込みによる詳細検討が必要となります その結果 空容量が変更となる場合があります (2) 特に記載

1/68 A. 電気所 ( 発電所, 変電所, 配電塔 ) における変圧器の空き容量一覧 平成 31 年 3 月 6 日現在 < 留意事項 > (1) 空容量は目安であり 系統接続の前には 接続検討のお申込みによる詳細検討が必要となります その結果 空容量が変更となる場合があります (2) 特に記載 1/68 A. 電気所 ( 発電所, 変電所, 配電塔 ) における変圧器の空き容量一覧 平成 31 年 3 月 6 日現在 < 留意事項 > (1) 空容量は目安であり 系統接続の前には 接続検討のお申込みによる詳細検討が必要となります その結果 空容量が変更となる場合があります (2) 特に記載のない限り 熱容量を考慮した空き容量を記載しております その他の要因 ( 電圧や系統安定度など ) で連系制約が発生する場合があります

More information

2/8 一次二次当該 42 AX 変圧器 なし 43 AY 変圧器 なし 44 BA 変圧器 なし 45 BB 変圧器 なし 46 BC 変圧器 なし

2/8 一次二次当該 42 AX 変圧器 なし 43 AY 変圧器 なし 44 BA 変圧器 なし 45 BB 変圧器 なし 46 BC 変圧器 なし 1/8 A. 電気所 ( 発電所, 変電所, 配電塔 ) における変圧器の空き容量一覧 < 留意事項 > (1) 空容量は目安であり 系統接続の前には 接続検討のお申込みによる詳細検討が必要となります その結果 空容量が変更となる場合があります (2) 特に記載のない限り 熱容量を考慮した空き容量を記載しております その他の要因 ( や系統安定度など ) で連系制約が発生する場合があります (3)

More information

基礎から学ぶトラヒック理論 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

基礎から学ぶトラヒック理論 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 初版 1 刷発行時のものです. 基礎から学ぶトラヒック理論 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/085221 このサンプルページの内容は, 初版 1 刷発行時のものです. i +α 3 1 2 4 5 1 2 ii 3 4 5 6 7 8 9 9.3 2014 6 iii 1 1 2 5 2.1 5 2.2 7

More information

31 4 MATLAB A, B R 3 3 A = , B = mat_a, mat_b >> mat_a = [-1, -2, -3; -4, -5, -6; -7, -8, -9] mat_a =

31 4 MATLAB A, B R 3 3 A = , B = mat_a, mat_b >> mat_a = [-1, -2, -3; -4, -5, -6; -7, -8, -9] mat_a = 3 4 MATLAB 3 4. A, B R 3 3 2 3 4 5 6 7 8 9, B = mat_a, mat_b >> mat_a = [-, -2, -3; -4, -5, -6; -7, -8, -9] 9 8 7 6 5 4 3 2 mat_a = - -2-3 -4-5 -6-7 -8-9 >> mat_b = [-9, -8, -7; -6, -5, -4; -3, -2, -]

More information

K E N Z OU

K E N Z OU K E N Z OU 11 1 1 1.1..................................... 1.1.1............................ 1.1..................................................................................... 4 1.........................................

More information

.1 A cos 2π 3 sin 2π 3 sin 2π 3 cos 2π 3 T ra 2 deta T ra 2 deta T ra 2 deta a + d 2 ad bc a 2 + d 2 + ad + bc A 3 a b a 2 + bc ba + d c d ca + d bc +

.1 A cos 2π 3 sin 2π 3 sin 2π 3 cos 2π 3 T ra 2 deta T ra 2 deta T ra 2 deta a + d 2 ad bc a 2 + d 2 + ad + bc A 3 a b a 2 + bc ba + d c d ca + d bc + .1 n.1 1 A T ra A A a b c d A 2 a b a b c d c d a 2 + bc ab + bd ac + cd bc + d 2 a 2 + bc ba + d ca + d bc + d 2 A a + d b c T ra A T ra A 2 A 2 A A 2 A 2 A n A A n cos 2π sin 2π n n A k sin 2π cos 2π

More information

15 P3 Pm C.Reiter dwin C.Reiter Fractal Visualization and J 4th edition fvj4 J 2D gl2 J addon Appendix (hokusai olympic0.ijs dwin * 1 coinsert *

15 P3 Pm C.Reiter dwin C.Reiter Fractal Visualization and J 4th edition fvj4 J 2D gl2 J addon Appendix (hokusai olympic0.ijs dwin * 1 coinsert * SHIMURA Masato JCD02773@nifty.ne.jp 2017 2 23 1 2 2 6 3 9 4 15 A J 21 2 3 45 1 15 P3 Pm 1 1.1 C.Reiter dwin C.Reiter Fractal Visualization and J 4th edition fvj4 J 2D gl2 J addon Appendix (hokusai olympic0.ijs

More information

X G P G (X) G BG [X, BG] S 2 2 2 S 2 2 S 2 = { (x 1, x 2, x 3 ) R 3 x 2 1 + x 2 2 + x 2 3 = 1 } R 3 S 2 S 2 v x S 2 x x v(x) T x S 2 T x S 2 S 2 x T x S 2 = { ξ R 3 x ξ } R 3 T x S 2 S 2 x x T x S 2

More information

1/1 lim f(x, y) (x,y) (a,b) ( ) ( ) lim limf(x, y) lim lim f(x, y) x a y b y b x a ( ) ( ) xy x lim lim lim lim x y x y x + y y x x + y x x lim x x 1

1/1 lim f(x, y) (x,y) (a,b) ( ) ( ) lim limf(x, y) lim lim f(x, y) x a y b y b x a ( ) ( ) xy x lim lim lim lim x y x y x + y y x x + y x x lim x x 1 1/5 ( ) Taylor ( 7.1) (x, y) f(x, y) f(x, y) x + y, xy, e x y,... 1 R {(x, y) x, y R} f(x, y) x y,xy e y log x,... R {(x, y, z) (x, y),z f(x, y)} R 3 z 1 (x + y ) z ax + by + c x 1 z ax + by + c y x +

More information

( 9 1 ) 1 2 1.1................................... 2 1.2................................................. 3 1.3............................................... 4 1.4...........................................

More information

http://www2.math.kyushu-u.ac.jp/~hara/lectures/lectures-j.html 2 N(ε 1 ) N(ε 2 ) ε 1 ε 2 α ε ε 2 1 n N(ɛ) N ɛ ɛ- (1.1.3) n > N(ɛ) a n α < ɛ n N(ɛ) a n

http://www2.math.kyushu-u.ac.jp/~hara/lectures/lectures-j.html 2 N(ε 1 ) N(ε 2 ) ε 1 ε 2 α ε ε 2 1 n N(ɛ) N ɛ ɛ- (1.1.3) n > N(ɛ) a n α < ɛ n N(ɛ) a n http://www2.math.kyushu-u.ac.jp/~hara/lectures/lectures-j.html 1 1 1.1 ɛ-n 1 ɛ-n lim n a n = α n a n α 2 lim a n = 1 n a k n n k=1 1.1.7 ɛ-n 1.1.1 a n α a n n α lim n a n = α ɛ N(ɛ) n > N(ɛ) a n α < ɛ

More information

Part () () Γ Part ,

Part () () Γ Part , Contents a 6 6 6 6 6 6 6 7 7. 8.. 8.. 8.3. 8 Part. 9. 9.. 9.. 3. 3.. 3.. 3 4. 5 4.. 5 4.. 9 4.3. 3 Part. 6 5. () 6 5.. () 7 5.. 9 5.3. Γ 3 6. 3 6.. 3 6.. 3 6.3. 33 Part 3. 34 7. 34 7.. 34 7.. 34 8. 35

More information

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y [ ] 7 0.1 2 2 + y = t sin t IC ( 9) ( s090101) 0.2 y = d2 y 2, y = x 3 y + y 2 = 0 (2) y + 2y 3y = e 2x 0.3 1 ( y ) = f x C u = y x ( 15) ( s150102) [ ] y/x du x = Cexp f(u) u (2) x y = xey/x ( 16) ( s160101)

More information

1 nakayama/print/ Def (Definition ) Thm (Theorem ) Prop (Proposition ) Lem (Lemma ) Cor (Corollary ) 1. (1) A, B (2) ABC

1   nakayama/print/ Def (Definition ) Thm (Theorem ) Prop (Proposition ) Lem (Lemma ) Cor (Corollary ) 1. (1) A, B (2) ABC 1 http://www.gem.aoyama.ac.jp/ nakayama/print/ Def (Definition ) Thm (Theorem ) Prop (Proposition ) Lem (Lemma ) Cor (Corollary ) 1. (1) A, B (2) ABC r 1 A B B C C A (1),(2),, (8) A, B, C A,B,C 2 1 ABC

More information

IA hara@math.kyushu-u.ac.jp Last updated: January,......................................................................................................................................................................................

More information

2009 4

2009 4 2009 4 LU QR Cholesky A: n n A : A = IEEE 754 10 100 = : 1 / 36 A A κ(a) := A A 1. = κ(a) = Ax = b x := A 1 b Ay = b + b y := A 1 (b + b) x = y x x x κ(a) b b 2 / 36 IEEE 754 = 1 : u 1.11 10 16 = 10 16

More information

meiji_resume_1.PDF

meiji_resume_1.PDF β β β (q 1,q,..., q n ; p 1, p,..., p n ) H(q 1,q,..., q n ; p 1, p,..., p n ) Hψ = εψ ε k = k +1/ ε k = k(k 1) (x, y, z; p x, p y, p z ) (r; p r ), (θ; p θ ), (ϕ; p ϕ ) ε k = 1/ k p i dq i E total = E

More information

1 Introduction 1 (1) (2) (3) () {f n (x)} n=1 [a, b] K > 0 n, x f n (x) K < ( ) x [a, b] lim f n (x) f(x) (1) f(x)? (2) () f(x)? b lim a f n (x)dx = b

1 Introduction 1 (1) (2) (3) () {f n (x)} n=1 [a, b] K > 0 n, x f n (x) K < ( ) x [a, b] lim f n (x) f(x) (1) f(x)? (2) () f(x)? b lim a f n (x)dx = b 1 Introduction 2 2.1 2.2 2.3 3 3.1 3.2 σ- 4 4.1 4.2 5 5.1 5.2 5.3 6 7 8. Fubini,,. 1 1 Introduction 1 (1) (2) (3) () {f n (x)} n=1 [a, b] K > 0 n, x f n (x) K < ( ) x [a, b] lim f n (x) f(x) (1) f(x)?

More information

x = a 1 f (a r, a + r) f(a) r a f f(a) 2 2. (a, b) 2 f (a, b) r f(a, b) r (a, b) f f(a, b)

x = a 1 f (a r, a + r) f(a) r a f f(a) 2 2. (a, b) 2 f (a, b) r f(a, b) r (a, b) f f(a, b) 2011 I 2 II III 17, 18, 19 7 7 1 2 2 2 1 2 1 1 1.1.............................. 2 1.2 : 1.................... 4 1.2.1 2............................... 5 1.3 : 2.................... 5 1.3.1 2.....................................

More information

ランダムウォークの境界条件・偏微分方程式の数値計算

ランダムウォークの境界条件・偏微分方程式の数値計算 B L06(2018-05-22 Tue) : Time-stamp: 2018-05-22 Tue 21:53 JST hig,, 2, multiply transf http://hig3.net L06 B(2018) 1 / 38 L05-Q1 Quiz : 1 M λ 1 = 1 u 1 ( ). M u 1 = u 1, u 1 = ( 3 4 ) s (s 0)., u 1 = 1

More information