|
|
|
- みひな かみいしづ
- 9 years ago
- Views:
Transcription
1 Natural Language Processing Series 1
2
3 WWW WWW 1.
4 ii Foundations of Statistical NLPMIT Press a. b. c a. b. Web WWW
5 iii
6
7 v
8 i.i.d
9 vii n n n
10 viii k EM SVM SVM
11 ix HMM HMM
12 x A A.2 logsumexp A.3 KKT A
13 word segmentation part-of-speech tagging syntactic parsing A.1
14 2 1. text classification instance corpus
15 1.1 3 xyz x 1 x 2 x 3 x 4 x X x x (1) x (2) x (3) x (4) x (1) x (2) n(w, d) n w,d d w n(w, s) n w,s s w n(w, c) n w,c c w N(w, c) N w,c c w N(c) N c c n N ds δ(w, d) δ w,d d w 1 0 δ(w, s) δ w,s d s δ
16 optimization problem maximization problemminimization problem max. maximize min. 1.1 a max. x 1 x 2 s.t. x 1 x 2 a =0. x 2 = x 1 a x 1x 2 = x 1(x 1 a) = x ax 1. x 1 0 x 1 = a/2x 2 = a/2 x 1 x 2 objective function (x 1,x 2 )=(a/2, a/2) optimal solution max. f(x) (1.1) s.t. g(x) > = 0 (1.2) h(x) =0. (1.3)
17 1.2 5 f(x) g(x) > = 0h(x) =0 g(x) > = 0 inequality constrainth(x) =0 equality constraints.t. subject to feasible solutionx 1 x 2 a =0 feasible regionmax.f(x) min. f(x) x 1 = a/2x 2 = a/2 x 1 = closed-form 1 analytically solvable 2 convex programming problem
18 (a) (b) (a) (b) 1.1 A R d convex set 1 x (1) A x (2) A t [0, 1] tx (1) +(1 t)x (2) A tx (1) +(1 t)x (2) t [0, 1] x (1) x (2) A A A = {x m x + b =0, x R d } x (1), x (2) A m x (1) + b =0 m x (2) + b =0 t [0, 1] tx (1) +(1 t)x (2) m (tx (1) +(1 t)x (2) )+b = tm x (1) +(1 t)m x (2) + b 1 2 d R d R d R d
19 i.i.d. 42 IOB RBF EM HMM 148 Expectation-Maximization 87 n 62 F Q KL k / break-even
20 CRF 153 JS 54 JS n t
21 bag-of-ngrams 66 bag-of-words p MAP n , one-versus-rest 126 A accuracy 166 agglomerative clustering 78 analytically solvable 5 argument 180 arithmetic mean 25 attribute 64 attribute value 64 B Baum-Welch algorithm 160 Bayesian inference 58 Bayes theorem 28 belief propagation 161 Bernoulli distribution 31 bigram 62 binary classification
22 problem 165 binary vector 65 binary-class dataset 165 binomial distribution 33 bottom-up clustering 79 C categorization 100 category 100 centroid 81 character n-gram 63 chunking 159 class 100 classification 100 classification accuracy 166 classification rule 100 classifier 100 class label 100 closed-form 5 cluster 78 clustering 78 complete data 90 concave 7 conditionally independent 30 conditional entropy 51 conditional probability 27 conditional probability distribution 27 conditional random fields 153 context vector 72 context window 72 context window size 73 contingency table 167 continuous random variable 37 continuous variable 37 convex function 7 convex programming problem 5 convex set 6 corpus 2 CRF 153 cross-validation 164 D data sparseness problem 71 dendrogram 79 dependent 30 development data 164 dimension 180 direction vector 182 Dirichlet distribution 39 discrete random variable 22 dual problem 19 dummy word 63 E eleven point average precision 169 EM algorithm 87 entropy 49 equality constraint 5 event 21 event space 21 Expectation-Maximization algorithm 87 expected value 23 F feasible region 5 feasible solution 5 feature 64 feature function 132 feature selection 138 feature value 64 first-order convexity condition 10 forward-backward algorithm 157 frequency vector 65 function 180 functional distance 126 F-measure G Gaussian distribution 38 Gaussian mixture 85 gradient ascent method 13 gradient descent method 13 gradient method 13 H Hessian 11 hidden Markov model 148 HMM 148 I i.i.d. 42 incomplete data 90 independent 30 independently, identically distributed 42 inequality constraint 5 information gain 141 inner product 180 instance 2 IOB2 tag 159 J Jensen-Shannon divergence 54 joint probability 27 JS divergence 54 K Karush-Kuhn-Tucker condition 184 kernel function 128 kernel method 128 KL divergence 52 Kullback-Leibler divergence 52 k-means 82 L label 100
23 210 labeled data 100 Lagrange multiplier 14 Lagrangian 14 language model 76 latent variable 90 learning 78 learning data 78 learning rate 13 lemmatization 68 likelihood 42 log-likelihood 42 log-linear model 132 M macro average 172 MAP estimation 46 margin 119 marginal probability 29 margin maximization 119 maximization problem 4 maximum a posteriori estimation 46 maximum entropy model 132 maximum likelihood estimation 43 mean 23 mean vector 25 micro average 172 minimization problem 4 morphological analysis 70 multinomial distribution 35 multinomial model 110 multivariate Bernoulli distribution 32 multivariate Bernoulli model 102 multi-class classification problem 165 multi-class dataset 165 multi-label dataset 165 mutual information 57 N naive bayes classifier 101 negative class 118 negative example 118 negative instance 118 negative semi-definite 11 Newton s method 13 normal distribution 38 normal vector 183 null hypothesis 176 numerical method 12 n-gram 62 O objective function 4 observed variable 90 one-versus-rest method 126 optimal solution 4 optimization problem 4 P pairwise method 127 partial differentiation 180 part-of-speech tagging 1 PLSA 93 PLSI 93 PMI 56 pointwise mutual information 56 Poisson distribution 36 polynomial kernel 129 Porter s stemmer 68 positive class 118 positive example 118 positive instance 118 positive semi-definite 11 posterior distribution 46 posterior probability 85 precision 167 primal problem 19 prior distribution 46 probabilistic latent semantic analysis 93 probabilistic latent semantic indexing 93 probability density function 37 probability distribution 22 probability function 22 probability mass function 22 product model 98 p-value 176 Q quadratic programming problem 122 quasi-newton method 137 Q-function 88 R radial basis function kernel 130 random variable 21 RBF kernel 130 recall 167 recall-precision curve 167 recall/precision break-even point 169 regularization 134 rule-based method 100 S saddle point 18 sample mean 25 sample space 31 sample variance 26 scalar 180 scalar function 180 second-order convexity condition 10 semi-supervised learning 144 separating plane 119 sequence 147
24 sequential labeling 147 sequential minimal optimization 123 significance level 176 significant 176 sign test 177 single-label dataset 165 SMO 123 smoothing 110 sparse 71 spectral clustering 96 statistically significant 176 statistical test 175 stemming 68 stochastic gradient method 137 stopword 68 string kernel 129 supervised learning 101 Support Vector Machine 117 SVM 117 syntactic parsing 1 T test data 164 test instance 164 text classification 2 the method of Lagrange multipliers 15 token 62 training 78 training data 78 training instance 78 tree kernel 129 trigram 62 type 62 t-test 177 U unigram 62 unlabeled data unobserved variable 90 unsupervised learning 101 V value 180 variance 24 vector 180 vector function 180 Viterbi algorithm 150 W Wilcoxon s signed rank sum test 177 word segmentation 1 word sense disambiguation 70 word token 62 word type 62 word n-gram 63
25 Introduction to Machine Learning for Natural Language Processing c Hiroya Takamura CORONA PUBLISHING CO., LTD. Tokyo Japan :// ISBN Printed in Japan
…p…^†[…fiflF”¯ Pattern Recognition
Pattern Recognition Shin ichi Satoh National Institute of Informatics June 11, 2019 (Support Vector Machines) (Support Vector Machines: SVM) SVM Vladimir N. Vapnik and Alexey Ya. Chervonenkis 1963 SVM
第3章 非線形計画法の基礎
3 February 25, 2009 1 Armijo Wolfe Newton 2 Newton Lagrange Newton 2 SQP 2 1 2.1 ( ) S R n (n N) f (x) : R n x f R x S f (x ) = min x S R n f (x) (nonlinear programming) x 0 S k = 0, 1, 2, h k R n ɛ k
Microsoft PowerPoint - SSII_harada pptx
The state of the world The gathered data The processed data w d r I( W; D) I( W; R) The data processing theorem states that data processing can only destroy information. David J.C. MacKay. Information
パターン認識と機械学習 - ベイズ理論による統計的予測
AdaBoost 374, 375 adaline 194 ADF AIC ARD ARMA AR AR model Baum Welch Baum Welch algorithm 336 Bayes, Thomas 20 Bernoulli, Jacob 67 BIC Boltzmann, Ludwig Eduard 52 Box Muller Box Muller method 241 C4.5
k3 ( :07 ) 2 (A) k = 1 (B) k = 7 y x x 1 (k2)?? x y (A) GLM (k
2012 11 01 k3 (2012-10-24 14:07 ) 1 6 3 (2012 11 01 k3) [email protected] web http://goo.gl/wijx2 web http://goo.gl/ufq2 1 3 2 : 4 3 AIC 6 4 7 5 8 6 : 9 7 11 8 12 8.1 (1)........ 13 8.2 (2) χ 2....................
Drive-by-Download JavaScript
JAIST Reposi https://dspace.j Title Drive-by-Download 攻撃予測のための難読化 JavaScript の検知に関する研究 Author(s) 本田, 仁 Citation Issue Date 2016-03 Type Thesis or Dissertation Text version author URL http://hdl.handle.net/10119/13608
こんにちは由美子です
1 2 . sum Variable Obs Mean Std. Dev. Min Max ---------+----------------------------------------------------- var1 13.4923077.3545926.05 1.1 3 3 3 0.71 3 x 3 C 3 = 0.3579 2 1 0.71 2 x 0.29 x 3 C 2 = 0.4386
& 3 3 ' ' (., (Pixel), (Light Intensity) (Random Variable). (Joint Probability). V., V = {,,, V }. i x i x = (x, x,, x V ) T. x i i (State Variable),
.... Deeping and Expansion of Large-Scale Random Fields and Probabilistic Image Processing Kazuyuki Tanaka The mathematical frameworks of probabilistic image processing are formulated by means of Markov
確率論と統計学の資料
5 June 015 ii........................ 1 1 1.1...................... 1 1........................... 3 1.3... 4 6.1........................... 6................... 7 ii ii.3.................. 8.4..........................
tokei01.dvi
2. :,,,. :.... Apr. - Jul., 26FY Dept. of Mechanical Engineering, Saga Univ., JAPAN 4 3. (probability),, 1. : : n, α A, A a/n. :, p, p Apr. - Jul., 26FY Dept. of Mechanical Engineering, Saga Univ., JAPAN
フリーソフトではじめる機械学習入門 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.
フリーソフトではじめる機械学習入門 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/085211 このサンプルページの内容は, 初版 1 刷発行時のものです. Weka Weka 2014 2 i 1 1 1.1... 1 1.2... 3 1.3... 6 1.3.1 7 1.3.2 11
..,,,, , ( ) 3.,., 3.,., 500, 233.,, 3,,.,, i
25 Feature Selection for Prediction of Stock Price Time Series 1140357 2014 2 28 ..,,,,. 2013 1 1 12 31, ( ) 3.,., 3.,., 500, 233.,, 3,,.,, i Abstract Feature Selection for Prediction of Stock Price Time
浜松医科大学紀要
On the Statistical Bias Found in the Horse Racing Data (1) Akio NODA Mathematics Abstract: The purpose of the present paper is to report what type of statistical bias the author has found in the horse
Formal Model for Kana-Kanji Conversion (KKC) In Japanese input, users type in phonetic Hiragana, but proper Japanese is written in logographic Kanji K
NLP Programming Tutorial 6 - Kana-Kanji Conversion Graham Neubig Nara Institute of Science and Technology (NAIST) 1 Formal Model for Kana-Kanji Conversion (KKC) In Japanese input, users type in phonetic
フリーソフトでつくる音声認識システム ( 第 2 版 ) サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.
フリーソフトでつくる音声認識システム ( 第 2 版 ) サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/084712 このサンプルページの内容は, 第 2 版 1 刷発行時のものです. i 2007 10 1 Scilab 2 2017 2 1 2 1 ii 2 web 2007 9 iii
X X X Y R Y R Y R MCAR MAR MNAR Figure 1: MCAR, MAR, MNAR Y R X 1.2 Missing At Random (MAR) MAR MCAR MCAR Y X X Y MCAR 2 1 R X Y Table 1 3 IQ MCAR Y I
(missing data analysis) - - 1/16/2011 (missing data, missing value) (list-wise deletion) (pair-wise deletion) (full information maximum likelihood method, FIML) (multiple imputation method) 1 missing completely
<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202E646F63>
確率的手法による構造安全性の解析 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/55271 このサンプルページの内容は, 初版 1 刷発行当時のものです. i 25 7 ii Benjamin &Cornell Ang & Tang Schuëller 1973 1974 Ang Mathematica
2 1/2 1/4 x 1 x 2 x 1, x 2 9 3x 1 + 2x 2 9 (1.1) 1/3 RDA 1 15 x /4 RDA 1 6 x /6 1 x 1 3 x 2 15 x (1.2) (1.3) (1.4) 1 2 (1.5) x 1
1 1 [1] 1.1 1.1. TS 9 1/3 RDA 1/4 RDA 1 1/2 1/4 50 65 3 2 1/15 RDA 2/15 RDA 1/6 RDA 1 1/6 1 1960 2 1/2 1/4 x 1 x 2 x 1, x 2 9 3x 1 + 2x 2 9 (1.1) 1/3 RDA 1 15 x 1 + 2 1/4 RDA 1 6 x 1 1 4 1 1/6 1 x 1 3
1 IDC Wo rldwide Business Analytics Technology and Services 2013-2017 Forecast 2 24 http://www.soumu.go.jp/johotsusintokei/whitepaper/ja/h24/pdf/n2010000.pdf 3 Manyika, J., Chui, M., Brown, B., Bughin,
21 Pitman-Yor Pitman- Yor [7] n -gram W w n-gram G Pitman-Yor P Y (d, θ, G 0 ) (1) G P Y (d, θ, G 0 ) (1) Pitman-Yor d, θ, G 0 d 0 d 1 θ Pitman-Yor G
ol2013-nl-214 No6 1,a) 2,b) n-gram 1 M [1] (TG: Tree ubstitution Grammar) [2], [3] TG TG 1 2 a) ohno@ilabdoshishaacjp b) khatano@maildoshishaacjp [4], [5] [6] 2 Pitman-Yor 3 Pitman-Yor 1 21 Pitman-Yor
Dirichlet process mixture Dirichlet process mixture 2 /40 MIRU2008 :
Dirichlet Process : joint work with: Max Welling (UC Irvine), Yee Whye Teh (UCL, Gatsby) http://kenichi.kurihara.googlepages.com/miru_workshop.pdf 1 /40 MIRU2008 : Dirichlet process mixture Dirichlet process
医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.
医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/009192 このサンプルページの内容は, 第 2 版 1 刷発行時のものです. i 2 t 1. 2. 3 2 3. 6 4. 7 5. n 2 ν 6. 2 7. 2003 ii 2 2013 10 iii 1987
講義のーと : データ解析のための統計モデリング. 第2回
Title 講義のーと : データ解析のための統計モデリング Author(s) 久保, 拓弥 Issue Date 2008 Doc URL http://hdl.handle.net/2115/49477 Type learningobject Note この講義資料は, 著者のホームページ http://hosho.ees.hokudai.ac.jp/~kub ードできます Note(URL)http://hosho.ees.hokudai.ac.jp/~kubo/ce/EesLecture20
24 SPAM Performance Comparison of Machine Learning Algorithms for SPAM Discrimination
24 SPAM Performance Comparison of Machine Learning Algorithms for SPAM Discrimination 1130378 2013 3 9 SPAM SPAM SPAM SPAM SVM AdaBoost RandomForest SPAM SPAM UCI Machine Learning Repository Spambase 4601
/ 2 n n n n x 1,..., x n 1 n 2 n R n n ndimensional Euclidean space R n vector point R n set space R n R n x = x 1 x n y = y 1 y n distance dx,
1 1.1 R n 1.1.1 3 xyz xyz 3 x, y, z R 3 := x y : x, y, z R z 1 3. n n x 1,..., x n x 1. x n x 1 x n 1 / 2 n n n n x 1,..., x n 1 n 2 n R n n ndimensional Euclidean space R n vector point 1.1.2 R n set
kubostat2017c p (c) Poisson regression, a generalized linear model (GLM) : :
kubostat2017c p.1 2017 (c), a generalized linear model (GLM) : [email protected] http://goo.gl/76c4i 2017 11 14 : 2017 11 07 15:43 kubostat2017c (http://goo.gl/76c4i) 2017 (c) 2017 11 14 1 / 47 agenda
f(x) x S (optimal solution) f(x ) (optimal value) f(x) (1) 3 GLPK glpsol -m -d -m glpsol -h -m -d -o -y --simplex ( ) --interior --min --max --check -
GLPK by GLPK http://mukun mmg.at.infoseek.co.jp/mmg/glpk/ 17 7 5 : update 1 GLPK GNU Linear Programming Kit GNU LP/MIP ILOG AMPL(A Mathematical Programming Language) 1. 2. 3. 2 (optimization problem) X
kubostat2018d p.2 :? bod size x and fertilization f change seed number? : a statistical model for this example? i response variable seed number : { i
kubostat2018d p.1 I 2018 (d) model selection and [email protected] http://goo.gl/76c4i 2018 06 25 : 2018 06 21 17:45 1 2 3 4 :? AIC : deviance model selection misunderstanding kubostat2018d (http://goo.gl/76c4i)
¥ì¥·¥Ô¤Î¸À¸ì½èÍý¤Î¸½¾õ
2013 8 18 Table of Contents = + 1. 2. 3. 4. 5. etc. 1. ( + + ( )) 2. :,,,,,, (MUC 1 ) 3. 4. (subj: person, i-obj: org. ) 1 Message Understanding Conference ( ) UGC 2 ( ) : : 2 User-Generated Content [
( ) ? () 1.1 ( 3 ) j x j 10 j 1 10 j = 1,..., 10 x 1 + x x 10 =
5 1! (Linear Programming, LP) LP OR LP 1.1 1.1.1 1. 2. 3. 4. 5. ( ) ( ) 1.1 6 1 1.1 ( ) 1 110 2 98 3 85 4 90 5 73 6 62 7 92 8 88 9 79 10 75 1.1.2 4? 900 40 80 120 () 1.1 ( 3 ) j x j 10 j 1 10 j = 1,...,
1 Stata SEM LightStone 4 SEM 4.. Alan C. Acock, Discovering Structural Equation Modeling Using Stata, Revised Edition, Stata Press 3.
1 Stata SEM LightStone 4 SEM 4.. Alan C. Acock, 2013. Discovering Structural Equation Modeling Using Stata, Revised Edition, Stata Press 3. 2 4, 2. 1 2 2 Depress Conservative. 3., 3,. SES66 Alien67 Alien71,
音響モデル triphone 入力音声 音声分析 デコーダ 言語モデル N-gram bigram HMM の状態確率として利用 出力層 triphone: 3003 ノード リスコア trigram 隠れ層 2048 ノード X7 層 1 Structure of recognition syst
1,a) 1 1 1 deep neural netowrk(dnn) (HMM) () GMM-HMM 2 3 (CSJ) 1. DNN [6]. GPGPU HMM DNN HMM () [7]. [8] [1][2][3] GMM-HMM Gaussian mixture HMM(GMM- HMM) MAP MLLR [4] [3] DNN 1 1 triphone bigram [5]. 2
(b) BoF codeword codeword BoF (c) BoF Fergus Weber [11] Weber [12] Weber Fergus BoF (b) Fergus [13] Fergus 2. Fergus 2. 1 Fergus [3]
* A Multimodal Constellation Model for Generic Object Recognition Yasunori KAMIYA, Tomokazu TAKAHASHI,IchiroIDE, and Hiroshi MURASE Bag of Features (BoF) BoF EM 1. [1] Part-based Graduate School of Information
ii
NLAS 7 2 Excel Excel 2013 7 2 1 3 7 Excel 2012 1 78 2012 125 2008 10 28 6994.9 6 2 6 7 2015 8 i 2008 10 10 9 679 8579 9 29 778 8 29 1 1500 1 3000 10 881 8276 8 29 1 3007 4700 8 109 100 162 135 200 171
講義のーと : データ解析のための統計モデリング. 第5回
Title 講義のーと : データ解析のための統計モデリング Author(s) 久保, 拓弥 Issue Date 2008 Doc URL http://hdl.handle.net/2115/49477 Type learningobject Note この講義資料は, 著者のホームページ http://hosho.ees.hokudai.ac.jp/~kub ードできます Note(URL)http://hosho.ees.hokudai.ac.jp/~kubo/ce/EesLecture20
20 9 19 1 3 11 1 3 111 3 112 1 4 12 6 121 6 122 7 13 7 131 8 132 10 133 10 134 12 14 13 141 13 142 13 143 15 144 16 145 17 15 19 151 1 19 152 20 2 21 21 21 211 21 212 1 23 213 1 23 214 25 215 31 22 33
Microsoft PowerPoint - 03Weka.ppt
情報意味論 (3) Weka の紹介 WEKA: Explorer WEKA: Experimenter Preslav Nakov (October 6, 2004) http://www.sims.berkeley.edu/courses/is290-2/f04/lectures/lecture11.ppt WEKA: 使ってみよう Eibe Frank http://prdownloads.sourceforge.net/weka/weka.ppt
2 1 Introduction
1 24 11 26 1 E-mail: [email protected] 2 1 Introduction 5 1.1...................... 7 2 8 2.1................ 8 2.2....................... 8 2.3............................ 9 3 10 3.1.........................
JFE.dvi
,, Department of Civil Engineering, Chuo University Kasuga 1-13-27, Bunkyo-ku, Tokyo 112 8551, JAPAN E-mail : [email protected] E-mail : [email protected] SATO KOGYO CO., LTD. 12-20, Nihonbashi-Honcho
inkiso.dvi
Ken Urai May 19, 2004 5 27 date-event uncertainty risk 51 ordering preordering X X X (preordering) reflexivity x X x x transitivity x, y, z X x y y z x z asymmetric x y y x x = y X (ordering) completeness
[1] SBS [2] SBS Random Forests[3] Random Forests ii
Random Forests 2013 3 A Graduation Thesis of College of Engineering, Chubu University Proposal of an efficient feature selection using the contribution rate of Random Forests Katsuya Shimazaki [1] SBS
kubostat2017e p.1 I 2017 (e) GLM logistic regression : : :02 1 N y count data or
kubostat207e p. I 207 (e) GLM [email protected] https://goo.gl/z9ycjy 207 4 207 6:02 N y 2 binomial distribution logit link function 3 4! offset kubostat207e (https://goo.gl/z9ycjy) 207 (e) 207 4
数学の基礎訓練I
I 9 6 13 1 1 1.1............... 1 1................ 1 1.3.................... 1.4............... 1.4.1.............. 1.4................. 3 1.4.3........... 3 1.4.4.. 3 1.5.......... 3 1.5.1..............
ばらつき抑制のための確率最適制御
( ) http://wwwhayanuemnagoya-uacjp/ fujimoto/ 2011 3 9 11 ( ) 2011/03/09-11 1 / 46 Outline 1 2 3 4 5 ( ) 2011/03/09-11 2 / 46 Outline 1 2 3 4 5 ( ) 2011/03/09-11 3 / 46 (1/2) r + Controller - u Plant y
分布
(normal distribution) 30 2 Skewed graph 1 2 (variance) s 2 = 1/(n-1) (xi x) 2 x = mean, s = variance (variance) (standard deviation) SD = SQR (var) or 8 8 0.3 0.2 0.1 0.0 0 1 2 3 4 5 6 7 8 8 0 1 8 (probability
Studies of Foot Form for Footwear Design (Part 9) : Characteristics of the Foot Form of Young and Elder Women Based on their Sizes of Ball Joint Girth
Studies of Foot Form for Footwear Design (Part 9) : Characteristics of the Foot Form of Young and Elder Women Based on their Sizes of Ball Joint Girth and Foot Breadth Akiko Yamamoto Fukuoka Women's University,
% 2 3 [1] Semantic Texton Forests STFs [1] ( ) STFs STFs ColorSelf-Simlarity CSS [2] ii
2012 3 A Graduation Thesis of College of Engineering, Chubu University High Accurate Semantic Segmentation Using Re-labeling Besed on Color Self Similarity Yuko KAKIMI 2400 90% 2 3 [1] Semantic Texton
Convolutional Neural Network A Graduation Thesis of College of Engineering, Chubu University Investigation of feature extraction by Convolution
Convolutional Neural Network 2014 3 A Graduation Thesis of College of Engineering, Chubu University Investigation of feature extraction by Convolutional Neural Network Fukui Hiroshi 1940 1980 [1] 90 3
kut-paper-template.dvi
26 Discrimination of abnormal breath sound by using the features of breath sound 1150313 ,,,,,,,,,,,,, i Abstract Discrimination of abnormal breath sound by using the features of breath sound SATO Ryo
自然言語処理24_705
nwjc2vec: word2vec nwjc2vec nwjc2vec nwjc2vec 2 nwjc2vec 7 nwjc2vec word2vec nwjc2vec: Word Embedding Data Constructed from NINJAL Web Japanese Corpus Hiroyuki Shinnou, Masayuki Asahara, Kanako Komiya
Stata 11 Stata ts (ARMA) ARCH/GARCH whitepaper mwp 3 mwp-083 arch ARCH 11 mwp-051 arch postestimation 27 mwp-056 arima ARMA 35 mwp-003 arima postestim
TS001 Stata 11 Stata ts (ARMA) ARCH/GARCH whitepaper mwp 3 mwp-083 arch ARCH 11 mwp-051 arch postestimation 27 mwp-056 arima ARMA 35 mwp-003 arima postestimation 49 mwp-055 corrgram/ac/pac 56 mwp-009 dfgls
015 015 1 1 1 4 1.1.................................... 4 1.... 5 1.3... 6 1.4... 8 1.5... 8 10.1...................................... 10.... 10.3.................................... 10.4 1... 11.5...
kubostat2017b p.1 agenda I 2017 (b) probability distribution and maximum likelihood estimation :
kubostat2017b p.1 agenda I 2017 (b) probabilit distribution and maimum likelihood estimation [email protected] http://goo.gl/76c4i 2017 11 14 : 2017 11 07 15:43 1 : 2 3? 4 kubostat2017b (http://goo.gl/76c4i)
