尿素:人工合成有機分子第一号

Size: px
Start display at page:

Download "尿素:人工合成有機分子第一号"

Transcription

1 基礎現代化学 ~ 第 11 回 ~ 分子集合体とその性質 Ⅰ 通知 : 期末試験 (7 月 30 日 ( 水 )5 限 ) 教養学部統合自然科学科 小島憲道

2 第 1 章原子 1 元素の誕生 2 原子の電子構造と周期性第 2 章分子の形成 1 化学結合と分子の形成 2 分子の形と異性体第 3 章光と分子 1 分子の中の電子 2 物質の色の起源 3 分子を測る第 4 章化学反応 1 気相の反応 液相の反応 2 分子を創る第 5 章分子の集団 1 分子間に働く力 2 分子集合体とその性質 Ⅰ 3 分子集合体とその性質 Ⅱ 参考書 現代物性化学の基礎 小川桂一郎 小島憲道共編 ( 講談社サイエンティフィク ) 原子 分子の現代化学 田中政志 佐野充著 ( 学術図書 ) 2

3 分子軌道からバンドへ α: 原子軌道のエネルギー β: 原子間の結合エネルギー 3 現代物性化学の基礎 小川桂一郎 小島憲道共編 ( 講談社サイエンティフィク )

4 ベンゼンにおける分子軌道の対称性 ベンゼンの分子軌道 二次元の波の方位節 位相が入れ替わる節では 電子密度が 0 である 節数 :3 節数 : 節数 :1 節数 : 環状の六個の炭素上に π 電子が非局在化している 4

5 分子軌道の対称性と希ガスの共有結合分子 何故 Xe が F と結合するのか : 3 中心 4 電子結合 分子軌道の対称性の制約から Xe の 5p z 軌道が入ることが出来ない 5

6 分子軌道のエネルギーを表す α と β 6

7 一次元のシュレディンガー方程式 7

8 H = :Hamiltonian と呼ぶ HΨ = EΨ 波動関数のエネルギーを求める方程式 α: 原子軌道のエネルギー β: 原子間の結合エネルギー 8

9 金属結合の次元性とバンド幅 a b 9

10 C 金属結合結晶の構造 10

11 11

12 アルカリ土類元素の単体が金属になる原因 :np 軌道の寄与 3p e - 3s 12

13 13

14 気伝導度価電子帯電半導体 σ 伝導帯 低温 T ΔE σ = Aexp kt ΔE 伝導帯 価電子帯 高温 σ 度自由電子は格子振動 によって散乱される 電気抵抗の起源 電気伝導金属 価電子帯 自由電子 自由電子 格子振動 T 高温 低温 14

15 単体の凝集エネルギーと周期律 Pd 遷移元素単体の凝集エネルギーが高いのは d 軌道のバンドが凝集エネルギーに寄与しているためである 岩波講座現代化学 5 周期表の化学 p

16 放射光を用いた超高圧下での結晶構造解析放射光施設と放射光の発生原理 高エネルギー加速器研究機構 産業技術総合研究所地質調査総合センター 16

17 非金属元素の同素体と周期律 17

18 18

19 19

20 多重極端条件で眺めた固体ヨウ素 : 圧力誘起分子解離 1 気圧,7.4 万気圧,15.3 万気圧における固体ヨウ素の電子分布 高圧下 X 線構造解析によ る固体ヨウ素の電子分布 の圧力変化 固体ヨウ素は21 万気圧を超えると分子内と分子間の化学結合が等価になり 金属になる 1 GPa = 1 万気圧 藤久裕司, 高圧力の科学と技術, 5, 160 (1996). 20

21 固体ヨウ素は極低温 超高圧下で超伝導体となる ダイヤモンドを用いた高圧発生装置 50 mm マイスナー効果 電気抵抗 天谷喜一, 石塚守, 清水克哉, 他, 固体物理,28, 435 (1993). 21

22 固体酸素は高圧下で超伝導になる 電気抵抗 電気抵抗 100 万気圧かけると酸素は金属となり 0.5 K で超伝導体となる 清水克哉, 高圧力の科学と技術,10, 194 (2000). 22

23 超伝導を示す元素 ( 単体 ) 23 小川桂一郎 小島憲道編 新版 物性化学の基礎 講談社 (2010)

24 地球の内部構造と圧力 現在では ダイヤモンドの先端で地球の中心部の圧力を発生させることができる 24

25 物質の磁性 25

26 磁石 (magnet) の語源 古代ギリシャでは 鉄を引き寄せる石して磁石はすでに知られていた プラトンは その著書 イオン にて マギネシアの石 として磁石のことを言及している ローマ帝国の博物学者大プリニウスは 著書 博物誌 にて マグネスという羊飼いが磁石を偶然発見したと述べている この マグネシアの石 ないし 羊飼いマグネス が ヨーロッパの様々な言語で磁石を指す言葉である magnet の語源になったと考えられる 磁石に対し 近代的な科学の光をあてたのは エリザベス1 世の侍医であったウィリアム ギルバートである その著書 磁石及び磁性体ならびに大磁石としての地球の生理学 (De Magnete, Magneticisque Corporibvs,et De Magno Magnete Tellure) においてギルバートは 磁石に関する俗説や既知の現象について詳細に検証している 例えば 羅針盤の指北性を論じるにあたり 球形の磁石を作製し これに対する磁針の振舞いを観察している この結果 地球そのものが磁石であると結論付けている Magnesia Magnesia( マグネシア ) 磁石を意味する英語の マグネット ( magnet) は ギリシャ語で マグネシアの石 を意味する マグニティス リトス ( μαγνήτης λίθος) に由来するという説があるように この地域では鉄鉱石や磁鉄鉱だけでなく マグネシウムやマンガン ( 双方とも名称はこの地域に由来する ) が産出されることが 古くから錬金術師達に知られていた 紀元前 7 世紀以前の植民地時代には マグネシアの都市国家も植民都市を建設し イオニア地方に マグネシアという都市を建設した 26

27 常磁性と反磁性 物質が磁場中に置かれると, 磁気的な分極 ( 磁気モーメント ) が生じるが, 単位体積当りの磁気モーメントを磁化 (M) と呼ぶ 自発磁化を持つ強磁性体を除けば, 弱い磁場下では 磁化は磁場に比例しており,M = χh の関係がある 比例定数 (χ) を磁化率と呼び,χ が 正の場合を常磁性, 負の場合を反磁性という 常磁性の場合は χ が正であるから, 磁場 の強い方向へ力を受ける 言い換えれば常磁性物質は磁石から引力を受ける 逆に, 反磁性物質の場合は χ が負であるから, 磁石から斥力を受ける 磁気天秤 ( ファラデー法 ) 27

28 反磁性の起源 電磁誘導による誘導起電力 : 誘導起電力による電子の加速 誘導起電力によって発現する磁気モーメント 28

29 各軌道電子群の反磁性磁化率に対する寄与 単位は 10-6 cm 3 /mol Cs + 電子群計算値全体に対する比率計算値 I - 全体に対する比率 1s % % 1s,2s s,3p d s,4p d s,5p 計 % 計 % * w.r.maycrs,rev.mod.24,15,(1952),table III 29

30 反磁性 原子 ( または分子 ) に磁場をかけると 環状の導体の場合と同じく軌道に誘導電流が流れ 磁場が遮蔽される この時誘起される磁場は印加した磁場と逆向きなので 反磁性を示す いま, 質量 m の電子が原子核の周りを回っている場合を考え,z 方向に磁場をゼロから H まで磁場を印加すると誘導起電力によって生じる磁気モーメント (Δμ) は次式で表される Δμ = (e 2 H/6m) <r 2 > (1) 内殻電子の軌道運動は反磁性を与え その大きさは温度によらず一定である また 反磁性磁化率は軌道半径 (r) の 2 乗に比例するため, 最外殻の軌道が最も大きく寄与する 水の反磁性による磁場中でのモーセ効果 S. Ueno and M. Iwasaka, IEEE Trans. On Magnetics, Vol. 75, p (1994). モーセの出エジプト : 旧約聖書 ( 出エジプト記 (14:15-25) 30

31 常磁性 電子は自転運動に相当する運動の自由度があり, この自由度は角運動量で表される 電子のスピン角運動量は ħ/2 であり, この電子スピンに付随して電子 固有の磁気モーメントが存在するが, この磁気モーメントが常磁性の起源とな る 磁気モーメント μ s は電子スピン s と μ s = 2 (e ħ/2m)s の関係にある こ こで e は電子の電荷,m は電子の質量,s はスピン角運動量を ħ で割ったもので その大きさは 1/2 である 電子の磁気モーメントはボーア磁子 (Bohr magneton) μ B (= e ħ/2mc) が単位である 遷移金属錯体においてn 個の不対電子があると,n 個の不対電子による磁気モーメント (μ) は,μ= 2 S ( S + 1) μ B = n( n + 2) μ B となる 31

32 400 電子スピンの発見 : 電子スピンは磁石の最小単位 フラウンホーファー線 Na D 線 650 l 700 λ (nm) Na の D 線の分裂 電子スピン (S = 1/2) の発見 Uhlenbeck & Gouclsmit (1925) l 3P3/2 s -s 3P1/2 D nm D nm 右まわり軌道運動と右まわり自転する電子 ( 全角運動量 = l + s) 右まわり軌道運動と左まわり自転する電子 ( 全角運動量 = l s) 3S1/2 Na 原子の 3p 3s 遷移 軌道運動により電子が原子核から受ける磁場 32

33 常磁性の起源 : 電子スピン電子の軌道への詰まり方と スピンの向き μ e 磁気モーメント e I 電子スピン 核 電子 e 核 電子 e 電子は 小さな磁石として振舞う α スピン β スピン 一つの軌道に二個の電子 α β 二つの電子のスピンは逆並行スピン同士は打ち消しあう Hund 則 ふたつの軌道に二個の電子 α α 二つの電子のスピンは並行磁石としての性質が残る 液体酸素は磁石に引き寄せられる 33

34 O2 分子の常磁性 直交する 2 つの分子軌道にスピンを平行にして収容される ( フント則 ) 原子軌道分子軌道原子軌道 O2 の分子軌道 液体酸素は 沸点が 90K の淡青色の液体である 磁石に近づけると 液体酸素は磁石に吸い寄せられる 小川桂一郎 小島憲道編 新版 物性化学の基礎 講談社 (2010) 34

35 電子スピン : 常磁性状態と様々なスピン秩序状態 常磁性 強磁性 反強磁性 フェリ磁性 35

36 磁石の条件 : 強い保磁力 36

37 磁石の応用 : ファラデー効果による偏光面の回転 光の進行方向に対して磁化の方向が逆向きになると 偏光面の回転は逆回転になる M ファラデー効果を用いた磁区の直接観測 37

38 38

39 磁石の応用 : 磁気メモリー 電子スピンの方向 ( ) による情報の記録 巨大磁気抵抗効果を用いた磁気メモリーの読み出し 巨大磁気抵抗効果 (GMR: Giant Magneto Resistive effect) 普通の金属の磁気抵抗効果 ( 物質の電気抵抗率が磁場により変化する現象 ) は数 % だが 1nm 程度の強磁性薄膜 (F 層 ) と非強磁性薄膜 (NF 層 ) を重ねた多層膜には数十 % 以上の磁気抵抗比を示すものがある このような現象を巨大磁気抵抗効果と呼ぶ 1987 年にドイツのPeter Grünberg, フランスのAlbert Fertらによって発見された 巨大磁気抵抗効果は 多層膜の磁気構造が外部磁場によって変化するために生じる 磁気多層膜以外においても ペロブスカイト型マンガン酸化物においても見られる 巨大磁気抵抗効果を応用した磁気ヘッドの登場によって HDDの容量が飛躍的に増大した Peter GrünbergとAlbert Fertはこの発見によって 2007 年のノーベル物理学賞を受賞している 39

40 超伝導を利用した磁石と永久電流 超伝導材料で作った永久電流回路スイッチの温度を超 伝導転移温度よりも高い温度にして外部電源をかけ, 次 に外部電源をかけたままで転移温度よりも低い温度に永 久電流回路スイッチを冷やしたのち外部電源を切ると, 永 久電源回路には減衰することのない電流が流れ続ける これを永久電流といい超伝導材料にだけ起こる現象であ る 永久電流を利用すると, 磁場を保つための電力を必要としない電磁石 ( 超伝導磁石 ) を作ることができる 40

41 酸化鉄の磁性と地磁気の逆転 外から磁場をかけなくても物質が磁化を持つ場合, その物質は磁石として振舞う. 磁石の用途は様々であるが, ここでは鉄の酸化物が磁石になることを利用して 今から数十万年前に地磁気の極が逆転していたことを発見した日本の科学者のことを紹介する. 水中に溶解している鉄イオンは一部 酸化鉄の小さな粒子となって底に体積していく.Fe 3 O 4 や Fe 2 O 3 などの酸化鉄は, 磁場がなくても室温で鉄イオンのスピン同士が互いに整列し, 小さな磁石として振舞うため, 湖底や海底に沈殿として堆積するときには地磁気の方向を向いて沈殿し やがて堆積岩として固定される. したがって, 湖底や海底に堆積した酸化鉄を含む地層には, 古い時代の地磁気の方向が記録されていることになる 年, 日本の地球物理学者の松山基範 ( ) は, 溶岩が固まってできた火成岩に含まれる磁石 ( 酸化鉄 ) の向きを調べ, 約 70 万年以前の地球の磁場の向きが逆転していることを発見した. 発見当時, 地磁気が逆転するなどと考えるのはあまりにも非常識と思われ, 実験そのものに疑いを持たれた. その後, 松山博士の後継者達により, 琵琶湖の湖底や太平洋の海底の堆積物に含まれる磁石の方向が詳しく調べられ, 約 70 万年前を境に地磁気の向きが逆転していることが証明された. 今や, 世界各地で古い時代に地磁気が逆転していたことが確認された.69 万年前から 243 万年前までの時期は, 地磁気が逆転していた時期で 松山期 と呼ばれ, 日本人の名前が地質年代の区分に採用されている. 図に地磁気の逆転した時期を示す. 新生代後期の地磁気極性 黒い箇所は現在と同じ極性 白い部分は現在と逆の極性 AgeのMaは百万年 今から70 ~250 万年前は地磁気が殆ど逆転していた 41

42 Fe 3 O 4 の結晶構造 ( 逆スピネル構造 ) 42

43 太陽風とバンアレン帯 : 地磁気が消滅するとバンアレン帯が消滅し 地球は太陽風 ( 荷電粒子 ) 直接曝される フレミングの左手の法則 バンアレン帯 : 地球の赤道上空に 荷電粒子が地球の磁場にとらえられてたまっている場所があり 発見者の名を取ってそれをバンアレン帯という 1958 年アメリカが最初に打ち上げた人工衛星エクスプローラー 1 号のデータを解析したバン アレン博士が発見した この荷電粒子の起源は太陽風ばかりではなく 遠くの宇宙からのものも含まれる 43

44 古地磁気の解析による日本列島の折れ曲がり フォッサマグナ形成時期 日本列島の折れ曲がり時期の解明 1450 万年前 ( 第 3 紀中新世 ) 日本海が拡大した オホーツク海も拡大し 千島弧が出来始めた 1500 万年前になると日本海の拡大は完了した このとき 西南日本は時計方向に回転し 東北日本は反時計方向に回転したので日本列島の折れ曲がるところが陥没した これがフォッサマグナ ( ラテン語で 大きな溝 の意 ) である フォッサマグナの西端は糸魚川 - 静岡構造線である 44

尿素:人工合成有機分子第一号

尿素:人工合成有機分子第一号 基礎現代化学 ~ 第 12 回 ~ 分子集合体とその性質 : 物質の磁性 通知 : 期末試験 (7 月 30 日 ( 水 )5 限 ) 教養学部統合自然科学科 小島憲道 2014.06.25 1 第 1 章原子 1 元素の誕生 2 原子の電子構造と周期性第 2 章分子の形成 1 化学結合と分子の形成 2 分子の形と異性体第 3 章光と分子 1 分子の中の電子 2 物質の色の起源 3 分子を測る第 4

More information

2. 分子の形

2. 分子の形 基礎現代化学 ~ 第 4 回 ~ 分子の形と異性体 教養学部統合自然科学科 小島憲道 2014.04.30 第 1 章原子 1 元素の誕生 2 原子の電子構造と周期性第 2 章分子の形成 1 化学結合と分子の形成 2 分子の形と異性体第 3 章光と分子 1 分子の中の電子 2 物質の色の起源 3 分子を測る第 4 章化学反応 1 気相の反応 液相の反応 2 分子を創る第 5 章分子の集団 1 分子間に働く力

More information

尿素:人工合成有機分子第一号

尿素:人工合成有機分子第一号 基礎現代化学 ~ 第 10 回 ~ 分子間に働く力 通知 : 期末試験 (7 月 30 日 ( 水 )5 限 ) 通知 : レポート締切 (7 月 11 日 ( 金 )16:00 ) 教養学部統合自然科学科 小島憲道 2014.06.11 第 1 章原子 1 元素の誕生 2 原子の電子構造と周期性第 2 章分子の形成 1 化学結合と分子の形成 2 分子の形と異性体第 3 章光と分子 1 分子の中の電子

More information

Microsoft PowerPoint - summer_school_for_web_ver2.pptx

Microsoft PowerPoint - summer_school_for_web_ver2.pptx スピン流で観る物理現象 大阪大学大学院理学研究科物理学専攻 新見康洋 スピントロニクスとは スピン エレクトロニクス メモリ産業と深くつなが ている メモリ産業と深くつながっている スピン ハードディスクドライブの読み取りヘッド N 電荷 -e スピンの流れ ピ の流れ スピン流 S 巨大磁気抵抗効果 ((GMR)) from http://en.wikipedia.org/wiki/disk_readand-write_head

More information

Microsoft PowerPoint - 第2回半導体工学

Microsoft PowerPoint - 第2回半導体工学 17 年 1 月 16 日 月 1 限 8:5~1:15 IB15 第 回半導体工学 * バンド構造と遷移確率 天野浩 項目 1 章量子論入門 何故 Si は光らず GN は良く光るのか? *MOSFET ゲート SiO / チャネル Si 界面の量子輸送過程 MOSFET には どのようなゲート材料が必要なのか? http://www.iue.tuwien.c.t/ph/vsicek/noe3.html

More information

体状態を保持したまま 電気伝導の獲得という電荷が担う性質の劇的な変化が起こる すなわ ち電荷とスピンが分離して振る舞うことを示しています そして このような状況で実現して いる金属が通常とは異なる特異な金属であることが 電気伝導度の温度依存性から明らかにされました もともと電子が持っていた電荷やスピ

体状態を保持したまま 電気伝導の獲得という電荷が担う性質の劇的な変化が起こる すなわ ち電荷とスピンが分離して振る舞うことを示しています そして このような状況で実現して いる金属が通常とは異なる特異な金属であることが 電気伝導度の温度依存性から明らかにされました もともと電子が持っていた電荷やスピ 4. 発表内容 : 電子は電荷とスピンを持っており 電荷は電気伝導の起源 スピンは磁性の起源になって います 電荷同士の反発力が強い物質中では 結晶の格子点上に二つの電荷が同時に存在する ことができません その結果 結晶の格子点の数と電子の数が等しい場合は 電子が一つずつ各格子点上に止まったモット絶縁体と呼ばれる状態になります ( 図 1) モット絶縁体の多く は 隣接する結晶格子点に存在する電子のスピン同士が逆向きになろうとする相互作用の効果

More information

1-3. 電子の周期性 

1-3. 電子の周期性  基礎現代化学 ~ 第 3 回 ~ 化学結合と分子の形成 教養学部統合自然科学科 小島憲道 014.04.3 1 第 1 章原子 1 元素の誕生 原子の電子構造と周期性第 章分子の形成 1 化学結合と分子の形成 分子の形と異性体第 3 章光と分子 1 分子の中の電子 物質の色の起源 3 分子を測る第 4 章化学反応 1 気相の反応 液相の反応 分子を創る第 5 章分子の集団 1 分子間に働く力 分子集合体とその性質

More information

( 全体 ) 年 1 月 8 日,2017/1/8 戸田昭彦 ( 参考 1G) 温度計の種類 1 次温度計 : 熱力学温度そのものの測定が可能な温度計 どれも熱エネルギー k B T を

( 全体 ) 年 1 月 8 日,2017/1/8 戸田昭彦 ( 参考 1G) 温度計の種類 1 次温度計 : 熱力学温度そのものの測定が可能な温度計 どれも熱エネルギー k B T を ( 全体 htt://home.hiroshima-u.ac.j/atoda/thermodnamics/ 9 年 月 8 日,7//8 戸田昭彦 ( 参考 G 温度計の種類 次温度計 : 熱力学温度そのものの測定が可能な温度計 どれも熱エネルギー k T を単位として決められている 9 年 月 日 ( 世界計量記念日 から, 熱力学温度 T/K の定義も熱エネルギー k T/J に基づく. 定積気体温度計

More information

Microsoft Word - note02.doc

Microsoft Word - note02.doc 年度 物理化学 Ⅱ 講義ノート. 二原子分子の振動. 調和振動子近似 モデル 分子 = 理想的なバネでつながった原子 r : 核間距離, r e : 平衡核間距離, : 変位 ( = r r e ), k f : 力の定数ポテンシャルエネルギー ( ) k V = f (.) 古典運動方程式 [ 振動数 ] 3.3 d kf (.) dt μ : 換算質量 (m, m : 原子, の質量 ) mm

More information

Microsoft PowerPoint _量子力学短大.pptx

Microsoft PowerPoint _量子力学短大.pptx . エネルギーギャップとrllouゾーン ブリルアン領域,t_8.. 周期ポテンシャル中の電子とエネルギーギャップ 簡単のため 次元に間隔 で原子が並んでいる結晶を考える 右方向に進行している電子の波は 間隔 で規則正しく並んでいる原子が作る格子によって散乱され 左向きに進行する波となる 波長 λ が の時 r の反射条件 式を満たし 両者の波が互いに強め合い 定在波を作る つまり 式 式を満たす波は

More information

: (a) ( ) A (b) B ( ) A B 11.: (a) x,y (b) r,θ (c) A (x) V A B (x + dx) ( ) ( 11.(a)) dv dt = 0 (11.6) r= θ =

: (a) ( ) A (b) B ( ) A B 11.: (a) x,y (b) r,θ (c) A (x) V A B (x + dx) ( ) ( 11.(a)) dv dt = 0 (11.6) r= θ = 1 11 11.1 ψ e iα ψ, ψ ψe iα (11.1) *1) L = ψ(x)(γ µ i µ m)ψ(x) ) ( ) ψ e iα(x) ψ(x), ψ(x) ψ(x)e iα(x) (11.3) µ µ + iqa µ (x) (11.4) A µ (x) A µ(x) = A µ (x) + 1 q µα(x) (11.5) 11.1.1 ( ) ( 11.1 ) * 1)

More information

解法 1 原子の性質を周期表で理解する 原子の結合について理解するには まずは原子の種類 (= 元素 ) による性質の違いを知る必要がある 原子の性質は 次の 3 つによって理解することができる イオン化エネルギー = 原子から電子 1 個を取り除くのに必要なエネルギー ( イメージ ) 電子 原子

解法 1 原子の性質を周期表で理解する 原子の結合について理解するには まずは原子の種類 (= 元素 ) による性質の違いを知る必要がある 原子の性質は 次の 3 つによって理解することができる イオン化エネルギー = 原子から電子 1 個を取り除くのに必要なエネルギー ( イメージ ) 電子 原子 解法 1 原子の性質を周期表で理解する 原子の結合について理解するには まずは原子の種類 (= 元素 ) による性質の違いを知る必要がある 原子の性質は 次の 3 つによって理解することができる イオン化エネルギー = 原子から電子 1 個を取り除くのに必要なエネルギー ( イメージ ) 電子 原子 いやだ!! の強さ 電子親和力 = 原子が電子 1 個を受け取ったときに放出するエネルギー ( イメージ

More information

Microsoft PowerPoint - 第9回電磁気学

Microsoft PowerPoint - 第9回電磁気学 017 年 1 月 04 日 ( 月 ) 13:00-14:30 C13 平成 9 年度工 V 系 ( 社会環境工学科 ) 第 9 回電磁気学 Ⅰ 天野浩 mno@nuee.ngoy-u.c.jp 9 1 月 04 日 第 5 章 電流の間に働く力 磁場 微分形で表したア ンペールの法則 ビオ サバールの法則 第 5 章電流の作る場 http://www.ntt-est.co.jp/business/mgzine/netwok_histoy/0/

More information

<4D F736F F F696E74202D2088E B691CC8C7691AA F C82512E B8CDD8AB B83685D>

<4D F736F F F696E74202D2088E B691CC8C7691AA F C82512E B8CDD8AB B83685D> 前回の復習 医用生体計測磁気共鳴イメージング :2 回目 数理物質科学研究科電子 物理工学専攻巨瀬勝美 203-7-8 NMRとMRI:( 強い ) 静磁場と高周波 ( 磁場 ) を必要とする NMRとMRIの歴史 :952 年と2003 年にノーベル賞 ( 他に2 回 ) 数学的準備 : フーリエ変換 ( 信号の中に, どのような周波数成分が, どれだけ含まれているか ( スペクトル ) を求める方法

More information

論文の内容の要旨

論文の内容の要旨 論文の内容の要旨 2 次元陽電子消滅 2 光子角相関の低温そのまま測定による 絶縁性結晶および Si 中の欠陥の研究 武内伴照 絶縁性結晶に陽電子を入射すると 多くの場合 電子との束縛状態であるポジトロニウム (Ps) を生成する Ps は 電子と正孔の束縛状態である励起子の正孔を陽電子で置き換えたものにあたり いわば励起子の 同位体 である Ps は 陽電子消滅 2 光子角相関 (Angular

More information

ÿþŸb8bn0irt

ÿþŸb8bn0irt 折戸の物理 演習プリント N.15 43. 目的 : 電磁誘導は, 基本を理解すれば問題はそれほど難しくない! ということを学ぶ 問 1 の [ ] に適切な数値または数式を入れ, 問 に答えよ 図 1 のように, 紙面に垂直で一様な磁界が 0 の領域だけにある場合について考える 磁束密度は Wb/m で, 磁界は紙面の表から裏へ向かっている 図のように,1 辺の長さが m の正方形のコイル を,

More information

スライド 1

スライド 1 電流と磁場 目次 0. はじめにー物質の磁気的性質と磁場ー 1. 磁石と磁場 2. 電流のつくる磁場 (1) 3. 磁場中の運動する荷電粒子に働く磁気力 ( ローレンツ力 ) 4. 磁場中の電流に働く力 ( アンペアの力 ) 5. 平行または反平行電流の間に働く磁気力 6. 電流のつくる磁場 (2)- ビオ サバールの法則 7. アンペアの法則 ( アンペアの回路定理 ) 8. 磁場 に対するガウスの法則付録

More information

Microsoft PowerPoint - B3_magnetized_current_slide.pptx

Microsoft PowerPoint - B3_magnetized_current_slide.pptx v3.0 Nov.2018 磁化と磁化電流 1 s 2011/04/22 L s 2018/11/28 1 ヒト 0 水分子 -9 H 分子 1802 年 O 神経細胞の蛍光顕微鏡写真 ( 銀河団に似ている ) H 1897 年 古代エジプトから伝わることば 素粒子の大きさ 1911 年 宇宙のしくみ新星出版社 p.158 原子核 As above, so below 上に在るがごとく下もかく在り

More information

マスコミへの訃報送信における注意事項

マスコミへの訃報送信における注意事項 電子のスピンが量子液体状態にある特異な金属の発見 結晶中で独立に振る舞う電荷とスピン 1. 発表者 : 大池広志 ( 東京大学大学院工学系研究科物理工学専攻学術支援専門職員 : 研究当時 ) 鈴木悠司 ( 東京大学大学院工学系研究科物理工学専攻修士課程 1 年生 : 研究当時 ) 谷口弘三 ( 埼玉大学大学院理工学研究科物質科学部門准教授 ) 宮川和也 ( 東京大学大学院工学系研究科物理工学専攻助教

More information

Microsoft Word - JIKI03.DOC

Microsoft Word - JIKI03.DOC Ⅰ-5. 磁気工学実験 1. はじめに ビデオテープになぜ映像が映るの? テープに記録されるデータには 色信号, 明るさの輝度信号, 音声信号の3つ がある これらのデータをテープに記録するのは 磁気記録 と呼ばれる方法である. 磁気テープへの記録は 磁気ヘッドのコイルに電流を流して 先端にある狭いギャップに磁界を発生させることで実現されている 発生した磁界によってテープの磁性層は磁化されデータが記録される

More information

スピン流を用いて磁気の揺らぎを高感度に検出することに成功 スピン流を用いた高感度磁気センサへ道 1. 発表者 : 新見康洋 ( 大阪大学大学院理学研究科准教授 研究当時 : 東京大学物性研究所助教 ) 木俣基 ( 東京大学物性研究所助教 ) 大森康智 ( 東京大学新領域創成科学研究科物理学専攻博士課

スピン流を用いて磁気の揺らぎを高感度に検出することに成功 スピン流を用いた高感度磁気センサへ道 1. 発表者 : 新見康洋 ( 大阪大学大学院理学研究科准教授 研究当時 : 東京大学物性研究所助教 ) 木俣基 ( 東京大学物性研究所助教 ) 大森康智 ( 東京大学新領域創成科学研究科物理学専攻博士課 スピン流を用いて磁気の揺らぎを高感度に検出することに成功 スピン流を用いた高感度磁気センサへ道 1. 発表者 : 新見康洋 ( 大阪大学大学院理学研究科准教授 研究当時 : 東京大学物性研究所助教 ) 木俣基 ( 東京大学物性研究所助教 ) 大森康智 ( 東京大学新領域創成科学研究科物理学専攻博士課程 1 年 ) 顧波 ( 日本原子力研究開発機構先端基礎研究センター研究員 ) Timothy Ziman

More information

配信先 : 東北大学 宮城県政記者会 東北電力記者クラブ科学技術振興機構 文部科学記者会 科学記者会配付日時 : 平成 30 年 5 月 25 日午後 2 時 ( 日本時間 ) 解禁日時 : 平成 30 年 5 月 29 日午前 0 時 ( 日本時間 ) 報道機関各位 平成 30 年 5 月 25

配信先 : 東北大学 宮城県政記者会 東北電力記者クラブ科学技術振興機構 文部科学記者会 科学記者会配付日時 : 平成 30 年 5 月 25 日午後 2 時 ( 日本時間 ) 解禁日時 : 平成 30 年 5 月 29 日午前 0 時 ( 日本時間 ) 報道機関各位 平成 30 年 5 月 25 配信先 : 東北大学 宮城県政記者会 東北電力記者クラブ科学技術振興機構 文部科学記者会 科学記者会配付日時 : 平成 30 年 5 月 25 日午後 2 時 ( 日本時間 ) 解禁日時 : 平成 30 年 5 月 29 日午前 0 時 ( 日本時間 ) 報道機関各位 平成 30 年 5 月 25 日 東北大学材料科学高等研究所 (AIMR) 東北大学金属材料研究所科学技術振興機構 (JST) スピン流スイッチの動作原理を発見

More information

B. モル濃度 速度定数と化学反応の速さ 1.1 段階反応 ( 単純反応 ): + I HI を例に H ヨウ化水素 HI が生成する速さ は,H と I のモル濃度をそれぞれ [ ], [ I ] [ H ] [ I ] に比例することが, 実験により, わかっている したがって, 比例定数を k

B. モル濃度 速度定数と化学反応の速さ 1.1 段階反応 ( 単純反応 ): + I HI を例に H ヨウ化水素 HI が生成する速さ は,H と I のモル濃度をそれぞれ [ ], [ I ] [ H ] [ I ] に比例することが, 実験により, わかっている したがって, 比例定数を k 反応速度 触媒 速度定数 反応次数について. 化学反応の速さの表し方 速さとは単位時間あたりの変化の大きさである 大きさの値は 0 以上ですから, 速さは 0 以上の値をとる 化学反応の速さは単位時間あたりの物質のモル濃度変化の大きさで表すのが一般的 たとえば, a + bb c (, B, は物質, a, b, c は係数 ) という反応において,, B, それぞれの反応の速さを, B, とし,

More information

互作用によって強磁性が誘起されるとともに 半導体中の上向きスピンをもつ電子と下向きスピンをもつ電子のエネルギー帯が大きく分裂することが期待されます しかし 実際にはこれまで電子のエネルギー帯のスピン分裂が実測された強磁性半導体は非常に稀で II-VI 族である (Cd,Mn)Te において極低温 (

互作用によって強磁性が誘起されるとともに 半導体中の上向きスピンをもつ電子と下向きスピンをもつ電子のエネルギー帯が大きく分裂することが期待されます しかし 実際にはこれまで電子のエネルギー帯のスピン分裂が実測された強磁性半導体は非常に稀で II-VI 族である (Cd,Mn)Te において極低温 ( スピン自由度を用いた次世代半導体デバイス実現へ大きな進展 ~ 強磁性半導体において大きなスピン分裂をもつ電子のエネルギー状態を初めて観測 ~ 1. 発表者 : レデゥックアイン ( 東京大学大学院工学系研究科電気系工学専攻 附属総合研究機構助教 ) ファムナムハイ ( 東京工業大学工学院電気電子系准教授 ) 田中雅明 ( 東京大学大学院工学系研究科電気系工学専攻教授 スピントロニクス学術連携研究教育センターセンター長

More information

Microsoft PowerPoint EM2_15.ppt

Microsoft PowerPoint EM2_15.ppt ( 第 5 回 ) 鹿間信介摂南大学理工学部電気電子工学科 後半部 (4~5 章 ) のまとめ 4. 導体 4.3 誘電体 5. 磁性体 5. 電気抵抗 演習 導体表面の電界強度 () 外部電界があっても導体内部の電界は ( ゼロ ) になる () 導体の電位は一定 () 導体表面は等電位面 (3) 導体表面の電界は導体に垂直 導体表面と平行な成分があると, 導体表面の電子が移動 導体表面の電界は不連続

More information

報道発表資料 2007 年 4 月 12 日 独立行政法人理化学研究所 電流の中の電子スピンの方向を選り分けるスピンホール効果の電気的検出に成功 - 次世代を担うスピントロニクス素子の物質探索が前進 - ポイント 室温でスピン流と電流の間の可逆的な相互変換( スピンホール効果 ) の実現に成功 電流

報道発表資料 2007 年 4 月 12 日 独立行政法人理化学研究所 電流の中の電子スピンの方向を選り分けるスピンホール効果の電気的検出に成功 - 次世代を担うスピントロニクス素子の物質探索が前進 - ポイント 室温でスピン流と電流の間の可逆的な相互変換( スピンホール効果 ) の実現に成功 電流 60 秒でわかるプレスリリース 2007 年 4 月 12 日 独立行政法人理化学研究所 電流の中の電子スピンの方向を選り分けるスピンホール効果の電気的検出に成功 - 次世代を担うスピントロニクス素子の物質探索が前進 - 携帯電話やインターネットが普及した情報化社会は さらに 大容量で高速に情報を処理する素子開発を求めています そのため エレクトロニクス分野では さらに便利な技術革新の必要性が日増しに高まっています

More information

Microsoft PowerPoint - qchem3-9

Microsoft PowerPoint - qchem3-9 008 年度冬学期 量子化学 Ⅲ 章量子化学の応用 4.4. 相対論的効果 009 年 月 8 日 担当 : 常田貴夫准教授 相対性理論 A. Einstein 特殊相対論 (905 年 ) 相対性原理: ローレンツ変換に対して物理法則の形は不変 光速度不変 : 互いに等速運動する座標系で光速度は常に一定 ミンコフスキーの4 次元空間座標系 ( 等速系のみ ) 一般相対論 (96 年 ) 等価原理

More information

多次元レーザー分光で探る凝縮分子系の超高速動力学

多次元レーザー分光で探る凝縮分子系の超高速動力学 波動方程式と量子力学 谷村吉隆 京都大学理学研究科化学専攻 http:theochem.kuchem.kyoto-u.ac.jp TA: 岩元佑樹 iwamoto.y@kuchem.kyoto-u.ac.jp ベクトルと行列の作法 A 列ベクトル c = c c 行ベクトル A = [ c c c ] 転置ベクトル T A = [ c c c ] AA 内積 c AA = [ c c c ] c =

More information

化学 1( 応用生物 生命健康科 現代教育学部 ) ( 解答番号 1 ~ 29 ) Ⅰ 化学結合に関する ⑴~⑶ の文章を読み, 下の問い ( 問 1~5) に答えよ ⑴ 塩化ナトリウム中では, ナトリウムイオン Na + と塩化物イオン Cl - が静電気的な引力で結び ついている このような陽イ

化学 1( 応用生物 生命健康科 現代教育学部 ) ( 解答番号 1 ~ 29 ) Ⅰ 化学結合に関する ⑴~⑶ の文章を読み, 下の問い ( 問 1~5) に答えよ ⑴ 塩化ナトリウム中では, ナトリウムイオン Na + と塩化物イオン Cl - が静電気的な引力で結び ついている このような陽イ 化学 1( 応用生物 生命健康科 現代教育学部 ) ( 解答番号 1 ~ 29 ) Ⅰ 化学結合に関する ⑴~⑶ の文章を読み, 下の問い ( 問 1~5) に答えよ ⑴ 塩化ナトリウム中では, ナトリウムイオン Na + と塩化物イオン Cl - が静電気的な引力で結び ついている このような陽イオンと陰イオンの静電気的な引力による結合を 1 1 という ⑵ 2 個の水素原子は, それぞれ1 個の価電子を出し合い,

More information

Microsoft PowerPoint EM2_15.ppt

Microsoft PowerPoint EM2_15.ppt ( 第 5 回 ) 鹿間信介摂南大学理工学部電気電子工学科 後半部 (4~5 章 ) のまとめ 4. 導体 4.3 誘電体 5. 磁性体 5. 電気抵抗 演習 静電誘導電界とその重ね合わせ 導体内部の電荷 : 外部電界 誘導電界の重ね合わせ電界を感じる () 内部電荷自身が移動することで作り出した電界にも反応 () さらに移動場所を変える (3) 上記 ()~() の繰り返し 最終的に落ち着く状態

More information

素粒子物理学2 素粒子物理学序論B 2010年度講義第4回

素粒子物理学2 素粒子物理学序論B 2010年度講義第4回 素粒子物理学 素粒子物理学序論B 010年度講義第4回 レプトン数の保存 崩壊モード 寿命(sec) n e ν 890 崩壊比 100% Λ π.6 x 10-10 64% π + µ+ νµ.6 x 10-8 100% π + e+ νe 同上 1. x 10-4 Le +1 for νe, elμ +1 for νμ, μlτ +1 for ντ, τレプトン数はそれぞれの香りで独立に保存

More information

有機4-有機分析03回配布用

有機4-有機分析03回配布用 NMR( 核磁気共鳴 ) の基本原理核スピンと磁気モーメント有機分析化学特論 + 有機化学 4 原子核は正の電荷を持ち その回転 ( スピン ) により磁石としての性質を持つ 外部磁場によって核スピンのエネルギー準位は変わる :Zeeman 分裂 核スピンのエネルギー準位 第 3 回 (2015/04/24) m : 磁気量子数 [+I,, I ] I: スピン量子数 ( 整数 or 半整数 )]

More information

物性基礎

物性基礎 水素様原子 水素原子 水素様原子 エネルギー固有値 波動関数 主量子数 角運動量 方位量子数 磁気量子数 原子核 + 電子 個 F p F = V = 水素様原子 古典力学 水素様原子 量子力学 角運動量 L p F p L 運動方程式 d dt p = d d d p p = p + dt dt dt = p p = d dt L = 角運動量の保存則 ポテンシャルエネルギー V = 4πε =

More information

プランクの公式と量子化

プランクの公式と量子化 Planck の公式と量子化 埼玉大学理学部物理学科 久保宗弘 序論 一般に 量子力学 と表現すると Schrödinger の量子力学などの 後期量子力学 を指すことが多い 本当の量子概念 には どうアプローチ? 何故 エネルギーが量子化されるか という根本的な問いにどうこたえるか? どのように 量子 の扉は叩かれたのか? 序論 統計力学 熱力学 がことの始まり 総括的な動き を表現するための学問である

More information

ニュートン重力理論.pptx

ニュートン重力理論.pptx 3 ニュートン重力理論 1. ニュートン重力理論の基本 : 慣性系とガリレイ変換不変性 2. ニュートン重力理論の定式化 3. 等価原理 4. 流体力学方程式とその基礎 3.1 ニュートン重力理論の基本 u ニュートンの第一法則 = 力がかからなければ 等速直線運動を続ける u 等速直線運動に見える系を 慣性系 と呼ぶ ² 直線とはどんな空間の直線か? ニュートン理論では 3 次元ユークリッド空間

More information

<4D F736F F F696E74202D A E90B6979D89C8816B91E63195AA96EC816C82DC82C682DF8D758DC03189BB8A7795CF89BB82C68CB48E AA8E E9197BF2E >

<4D F736F F F696E74202D A E90B6979D89C8816B91E63195AA96EC816C82DC82C682DF8D758DC03189BB8A7795CF89BB82C68CB48E AA8E E9197BF2E > 中学 2 年理科まとめ講座 第 1 分野 1. 化学変化と原子 分子 物質の成り立ち 化学変化 化学変化と物質の質量 基本の解説と問題 講師 : 仲谷のぼる 1 物質の成り立ち 物質のつくり 物質をつくる それ以上分けることができない粒を原子という いくつかの原子が結びついてできたものを分子という いろいろな物質のうち 1 種類の原子からできている物質を単体 2 種類以上の原子からできている物質を化合物という

More information

Microsoft PowerPoint - 物質の磁性090918配布

Microsoft PowerPoint - 物質の磁性090918配布 物質の磁性 - 計算しないでわかることと計算でわかること - 大阪大学名誉教授山田科学振興財団理事長金森順次郎 1. 元素と磁性 2. 単体 合金 化合物の電子構造 3. 世界最強のネオジム磁石 4.CMDの意義 5. ナノ物質設計の今後 2009 9 18 CMD 1 2 1. 元素と磁性 なぜ 遷移元素でもとくに 3d 元素が磁性の主役を演じるか? なぜ 希土類元素でもとくに 4f 電子は局在しているか?

More information

マスコミへの訃報送信における注意事項

マスコミへの訃報送信における注意事項 磁性体が乱れによって量子スピン液体に生まれ変わる 1. 発表者 : 古川哲也 ( 東京理科大学理学部第一部応用物理学科助教 / 東京大学大学院工学系研究科物理工学専攻学術支援専門職員 : 研究当時 ) 宮川和也 ( 東京大学大学院工学系研究科物理工学専攻助教 ) 伊藤哲明 ( 東京理科大学理学部第一部応用物理学科准教授 ) 伊藤美穂 ( 埼玉大学大学院理工学研究科物質科学部門大学院生 : 研究当時

More information

高校電磁気学 ~ 電磁誘導編 ~ 問題演習

高校電磁気学 ~ 電磁誘導編 ~ 問題演習 高校電磁気学 ~ 電磁誘導編 ~ 問題演習 問 1 磁場中を動く導体棒に関する問題 滑車 導体棒の間隔 L m a θ (1) おもりの落下速度が のとき 導体棒 a に生じる誘導起電力の 大きさを求めよ 滑車 導体棒の間隔 L m a θ 導体棒の速度 水平方向の速度 cosθ Δt の時間に回路を貫く磁束の変化 ΔΦ は ΔΦ = ΔS = LcosθΔt ΔΦ ファラデーの法則 V = N より

More information

スライド 1

スライド 1 基礎無機化学第 回 分子構造と結合 (IV) 原子価結合法 (II): 昇位と混成 本日のポイント 昇位と混成 s 軌道と p 軌道を混ぜて, 新しい軌道を作る sp 3 混成 : 正四面体型 sp 混成 : 三角形 (p 軌道が つ残る ) sp 混成 : 直線形 (p 軌道が つ残る ) 多重結合との関係炭素などでは以下が基本 ( たまに違う ) 二重結合 sp 混成三重結合 sp 混成 逆に,

More information

ÿþŸb8bn0irt

ÿþŸb8bn0irt 折戸の物理 スペシャル補習 http://orito-buturi.com/ NO.3 今日の目的 : 1 微分方程式をもう一度 三角関数の近似について学ぶ 3 微分の意味を考える 5. 起電力 の電池, 抵抗値 の抵抗, 自己インダクタンス のコイルとスイッチを用いて右図のような回路をつくった 始めスイッチは 開かれている 時刻 t = でスイッチを閉じた 以下の問に答えよ ただし, 電流はコイルに

More information

三重大学工学部

三重大学工学部 反応理論化学 ( その 軌道相互作用 複数の原子が相互作用して分子が形成される複数の原子軌道 ( または混成軌道 が混合して分子軌道が形成される原子軌道 ( または混成軌道 が混合して分子軌道に変化すると軌道エネルギーも変化する. 原子軌道 原子軌道は3つの量子数 ( nlm,, の組合せにより指定される量子数の取り得る値の範囲 n の値が定まる l の範囲は n の値に依存して定まる m の範囲は

More information

論文の内容の要旨 論文題目 複数の物性が共存するシアノ架橋型磁性金属錯体の合成と新奇現象の探索 氏名高坂亘 1. 緒言分子磁性体は, 金属や金属酸化物からなる従来の磁性体と比較して, 結晶構造に柔軟性があり分子や磁気特性の設計が容易である. この長所を利用して, 当研究室では機能性を付与した分子磁性

論文の内容の要旨 論文題目 複数の物性が共存するシアノ架橋型磁性金属錯体の合成と新奇現象の探索 氏名高坂亘 1. 緒言分子磁性体は, 金属や金属酸化物からなる従来の磁性体と比較して, 結晶構造に柔軟性があり分子や磁気特性の設計が容易である. この長所を利用して, 当研究室では機能性を付与した分子磁性 論文の内容の要旨 論文題目 複数の物性が共存するシアノ架橋型磁性金属錯体の合成と新奇現象の探索 氏名高坂亘 1. 緒言分子磁性体は, 金属や金属酸化物からなる従来の磁性体と比較して, 結晶構造に柔軟性があり分子や磁気特性の設計が容易である. この長所を利用して, 当研究室では機能性を付与した分子磁性体の設計 合成が進められている. 機能性を発現させる上では, 分子磁性体の示す磁気特性に加えて, 他の物性を共存させることが鍵となる.

More information

Microsoft Word - 2_0421

Microsoft Word - 2_0421 電気工学講義資料 直流回路計算の基礎 ( オームの法則 抵抗の直並列接続 キルヒホッフの法則 テブナンの定理 ) オームの法則 ( 復習 ) 図 に示すような物体に電圧 V (V) の直流電源を接続すると物体には電流が流れる 物体を流れる電流 (A) は 物体に加えられる電圧の大きさに比例し 次式のように表すことができる V () これをオームの法則 ( 実験式 ) といい このときの は比例定数であり

More information

物性物理学I_2.pptx

物性物理学I_2.pptx The University of Tokyo, Komaba Graduate School of Arts and Sciences I 凝縮系 固体 をデザインする 銅()面上の鉄原子の 量子珊瑚礁 IBM Almaden 許可を得て掲載 www.almaden.ibm.com/vis/stm/imagesstm5.jpg&imgrefurl=http://www.almaden.ibm.com/vis/

More information

コバルトとパラジウムから成る薄膜界面にて磁化を膜垂直方向に揃える界面電子軌道の形が明らかに -スピン軌道工学に道 1. 発表者 : 岡林潤 ( 東京大学大学院理学系研究科附属スペクトル化学研究センター准教授 ) 三浦良雄 ( 物質材料研究機構磁性 スピントロニクス材料研究拠点独立研究者 ) 宗片比呂

コバルトとパラジウムから成る薄膜界面にて磁化を膜垂直方向に揃える界面電子軌道の形が明らかに -スピン軌道工学に道 1. 発表者 : 岡林潤 ( 東京大学大学院理学系研究科附属スペクトル化学研究センター准教授 ) 三浦良雄 ( 物質材料研究機構磁性 スピントロニクス材料研究拠点独立研究者 ) 宗片比呂 コバルトとパラジウムから成る薄膜界面にて磁化を膜垂直方向に揃える界面電子軌道の形が明らかに -スピン軌道工学に道 1. 発表者 : 岡林潤 ( 東京大学大学院理学系研究科附属スペクトル化学研究センター准教授 ) 三浦良雄 ( 物質材料研究機構磁性 スピントロニクス材料研究拠点独立研究者 ) 宗片比呂夫 ( 東京工業大学科学技術創成研究院未来産業技術研究所教授 ) 2. 発表のポイント : 薄膜のコバルト層とパラジウム層の界面にて

More information

Microsoft Word - プレス原稿_0528【最終版】

Microsoft Word - プレス原稿_0528【最終版】 報道関係各位 2014 年 5 月 28 日 二酸化チタン表面における陽電子消滅誘起イオン脱離の観測に成功 ~ 陽電子を用いた固体最表面の改質に道 ~ 東京理科大学研究戦略 産学連携センター立教大学リサーチ イニシアティブセンター 本研究成果のポイント 二酸化チタン表面での陽電子の対消滅に伴って脱離する酸素正イオンの観測に成功 陽電子を用いた固体最表面の改質に道を拓いた 本研究は 東京理科大学理学部第二部物理学科長嶋泰之教授

More information

<4D F736F F F696E74202D E8EA58FEA82C982E682E997CD82C68EA590AB91CC>

<4D F736F F F696E74202D E8EA58FEA82C982E682E997CD82C68EA590AB91CC> 第 25 章磁場による力と磁性体 ローレンツ力 磁界の強さ 磁界と電界の違いは? 電界 単位面積当たりの電気力線の本数に比例 力 = 電荷 電界の強さ F = qe 磁界 単位面積当たりの磁力線の本数に比例 力 = 磁荷? 磁界の強さ F = qvb ( 後述 ) 電界と力の関係から調べてみる 磁界中のコイルと磁束 S B S B S: コイルの断面積 : コイルを貫く磁力線 ( 磁束 ) : コイル面と磁界のなす角

More information

磁気光学の基礎と最近の展開(3)

磁気光学の基礎と最近の展開(3) 千葉大学理学部物理学科特別講義 7.6.4-6.5 磁気光学の基礎と最近の展開 3 佐藤勝昭 東京農工大学特任教授 3. 磁気光学効果の電子論 3. 磁気光学効果の古典電子論 3. 磁気光学効果の量子論 3. 磁気光学効果の古典電子論 電子を古典的な粒子として扱い 磁場中の古典的運動方程式を解いて電子の変位を求め 分極や誘電率を計算します 次回は量子論にもとづく扱いをお話しします 光と磁気第 4 章

More information

スライド 1

スライド 1 分子性物質 ー磁性体ー ( 物性研究所 新物質科学研究部門 ) 森初果 磁化率と磁気モーメント * 磁化率 χ M (emu mol - ) M: mol あたりの磁化 常磁性と反磁性の寄与 : 磁場 * 電子の磁気モーメントスピン電子の自転 スピン角運動量 ħs/ħ (s; スピン量子数 /) スピンの磁気モーメント µ s -µ s (s/ µ s -µ ) 上向き 下向きスピン状態の占有数の差に由来

More information

2. コンデンサー 極板面積 S m 2, 極板間隔 d m で, 極板間の誘電率が ε F/m の平行板コンデンサー 容量 C F は C = ( )(23) 容量 C のコンデンサーの極板間に電圧をかけたとき 蓄えられる電荷 Q C Q = ( )(24) 蓄えられる静電エネルギー U J U

2. コンデンサー 極板面積 S m 2, 極板間隔 d m で, 極板間の誘電率が ε F/m の平行板コンデンサー 容量 C F は C = ( )(23) 容量 C のコンデンサーの極板間に電圧をかけたとき 蓄えられる電荷 Q C Q = ( )(24) 蓄えられる静電エネルギー U J U 折戸の物理 簡単復習プリント 電磁気 1 基本事項の簡単な復習電磁気 1. 電場 クーロンの法則 電気量 q1,q2 C の電荷が距離 r m で置かれているとき働く 静電気力 F N は, クーロンの法則の比例定数を k N m 2 /s 2 として 電場 F = ( )(1) 力の向きは,q1,q2 が, 同符号の時 ( )(2) 異符号の時 ( )(3) 大きさ E V/m の電場に, 電気量

More information

電子配置と価電子 P H 2He 第 4 回化学概論 3Li 4Be 5B 6C 7N 8O 9F 10Ne 周期表と元素イオン 11Na 12Mg 13Al 14Si 15P 16S 17Cl 18Ar 価電子数 陽

電子配置と価電子 P H 2He 第 4 回化学概論 3Li 4Be 5B 6C 7N 8O 9F 10Ne 周期表と元素イオン 11Na 12Mg 13Al 14Si 15P 16S 17Cl 18Ar 価電子数 陽 電子配置と価電子 P11 1 2 13 14 15 16 17 18 1H 2He 第 4 回化学概論 3Li 4Be 5B 6C 7N 8O 9F 10Ne 周期表と元素イオン 11Na 12Mg 13Al 14Si 15P 16S 17Cl 18Ar 1 2 3 4 5 6 7 0 陽性元素陰性元素安定電子を失いやすい電子を受け取りやすい 原子番号と価電子の数 P16 元素の周期表 P17 最外殻の電子配置と周期表

More information

木村の物理小ネタ ケプラーの第 2 法則と角運動量保存則 A. 面積速度面積速度とは平面内に定点 O と動点 P があるとき, 定点 O と動点 P を結ぶ線分 OP( 動径 OP という) が単位時間に描く面積を 動点 P の定点 O に

木村の物理小ネタ   ケプラーの第 2 法則と角運動量保存則 A. 面積速度面積速度とは平面内に定点 O と動点 P があるとき, 定点 O と動点 P を結ぶ線分 OP( 動径 OP という) が単位時間に描く面積を 動点 P の定点 O に ケプラーの第 法則と角運動量保存則 A. 面積速度面積速度とは平面内に定点 O と動点 P があるとき, 定点 O と動点 P を結ぶ線分 OP( 動径 OP という が単位時間に描く面積を 動点 P の定点 O に関する面積速度の大きさ という 定点 O まわりを回る面積速度の導き方導き方 A ( x( + D, y( + D v ( q r ( A ( x (, y( 動点 P が xy 座標平面上を時刻

More information

Microsoft PowerPoint _トポロジー理工学_海住2-upload用.pptx

Microsoft PowerPoint _トポロジー理工学_海住2-upload用.pptx 平成 5 年度大学院共通授業 トポロジー理工学特別講義 Ⅱ 44 スピントロニクスの基礎とその応用 本日の講義内容 スピントロニクスとは? スピンの発見 ( 世紀前半 磁性の歴史 ( 世紀前半 世紀後半 電荷 S -ee N スピン 北海道大学電子科学研究所海住英生 4 スピントロニクスの誕生とその基礎と応用 巨大磁気抵抗 (GM 効果 トンネル磁気抵抗 (TM 効果 スピン注入磁化反転 磁壁の電流駆動

More information

ÿþŸb8bn0irt

ÿþŸb8bn0irt 折戸の物理 スペシャル補習 http://oritobuturi.co/ NO.5(009..16) 今日の目的 : 1 物理と微分 積分について 微分方程式について学ぶ 3 近似を学ぶ 10. 以下の文を読み,[ ア ]~[ ク ] の空欄に適当な式をいれよ 物体物体に一定の大きさの力を加えたときの, 物体の運動について考え よう 右図のように, なめらかな水平面上で質量 の物体に水平に一定の大きさ

More information

 

  1) 放射光による元素選択的磁気測定とそのナノ物質科学への期待 堀秀信 1) 山本良之 北陸先端科学技術大学院大学 マテリアルサイエンス研究科, 923-1292 石川県能美市旭台 1-1 2) 秋田大学 工学資源学部, 010-8502 秋田市手形学園町 1-1 2) 1. はじめに最近ナノサイズの科学研究が盛んである 我々は ナノ科学の最大の特徴が イオンなど原子の電子構造が中心となって表現される物性とも

More information

Microsoft PowerPoint - 04.誘導起電力 [互換モード]

Microsoft PowerPoint - 04.誘導起電力 [互換モード] 第 4 章誘導起電力 Φ 磁界中のコイルと磁束 ( 復習 ) : コイルの断面積 Φ : コイルを貫く磁 力線 ( 磁束 ) B B θ : コイル面と磁界 Φ θ のなす角 B: 磁束密度 a) 磁界に対して垂直 b) 傾きθ の位置図 a) のように, 面積 の1 回巻きコイルをΦ の磁力線が貫くときを考える このような磁力線の数を磁束 (magnetic flux) と呼び,[Wb( ウェーバー

More information

スライド 1

スライド 1 平成 24 年度大学院共通授業科目トポロジー理工学特別講義 Ⅱ 有機導体における密度波状態 応用物理学専攻トポロジー工学研究室 DC1 上遠野一広 目次 低次元導体, 有機導体の特徴について ゆらぎと次元性の関係と朝永 -Luttinger 液体 (g-gology) 私の研究について 目次 低次元導体, 有機導体の特徴について ゆらぎと次元性の関係と朝永 -Luttinger 液体 (g-gology)

More information

線形弾性体 線形弾性体 応力テンソル とひずみテンソルソル の各成分が線形関係を有する固体. kl 応力テンソル O kl ひずみテンソル

線形弾性体 線形弾性体 応力テンソル とひずみテンソルソル の各成分が線形関係を有する固体. kl 応力テンソル O kl ひずみテンソル Constitutive equation of elasti solid Hooke s law λδ μ kk Lame s onstant λ μ ( )( ) ( ) linear elasti solid kl kl Copyright is reserved. No part of this doument may be reprodued for profit. 線形弾性体 線形弾性体

More information

Microsoft PowerPoint - siryo7

Microsoft PowerPoint - siryo7 . 化学反応と溶液 - 遷移状態理論と溶液論 -.. 遷移状態理論 と溶液論 7 年 5 月 5 日 衝突論と遷移状態理論の比較 + 生成物 原子どうしの反応 活性錯体 ( 遷移状態 ) は 3つの並進 つの回転の自由度をもつ (1つの振動モードは分解に相当 ) 3/ [ ( m m) T] 8 IT q q π + π tansqot 3 h h との並進分配関数 [ πmt] 3/ [ ] 3/

More information

予定 (川口担当分)

予定 (川口担当分) 予定 ( 川口担当分 ) (1)4 月 13 日 量子力学 固体の性質の復習 (2)4 月 20 日 自由電子モデル (3)4 月 27 日 結晶中の電子 (4)5 月 11 日 半導体 (5)5 月 18 日 輸送現象 金属絶縁体転移 (6)5 月 25 日 磁性の基礎 (7)6 月 1 日 物性におけるトポロジー 今日 (5/11) の内容 ブロッホ電子の運動 電磁場中の運動 ランダウ量子化 半導体

More information

2018/6/12 表面の電子状態 表面に局在する電子状態 表面電子状態表面準位 1. ショックレー状態 ( 準位 ) 2. タム状態 ( 準位 ) 3. 鏡像状態 ( 準位 ) 4. 表面バンドのナローイング 5. 吸着子の状態密度 鏡像力によるポテンシャル 表面からzの位置の電子に働く力とポテン

2018/6/12 表面の電子状態 表面に局在する電子状態 表面電子状態表面準位 1. ショックレー状態 ( 準位 ) 2. タム状態 ( 準位 ) 3. 鏡像状態 ( 準位 ) 4. 表面バンドのナローイング 5. 吸着子の状態密度 鏡像力によるポテンシャル 表面からzの位置の電子に働く力とポテン 表面の電子状態 表面に局在する電子状態 表面電子状態表面準位. ショックレー状態 ( 準位. タム状態 ( 準位 3. 鏡像状態 ( 準位 4. 表面バンドのナローイング 5. 吸着子の状態密度 鏡像力によるポテンシャル 表面からzの位置の電子に働く力とポテンシャル e F z ( z z e V ( z ( Fz dz 4z e V ( z 4z ( z > ( z < のときの電子の運動を考える

More information

Microsoft Word - Chap17

Microsoft Word - Chap17 第 7 章化学反応に対する磁場効果における三重項機構 その 7.. 節の訂正 年 7 月 日. 節 章の9ページ の赤枠に記載した説明は間違いであった事に気付いた 以下に訂正する しかし.. 式は 結果的には正しいので安心して下さい 磁場 の存在下でのT 状態のハミルトニアン は ゼーマン項 と時間に依存するスピン-スピン相互作用の項 との和となる..=7.. g S = g S z = S z g

More information

2 図微小要素の流体の流入出 方向の断面の流体の流入出の収支断面 Ⅰ から微小要素に流入出する流体の流量 Q 断面 Ⅰ は 以下のように定式化できる Q 断面 Ⅰ 流量 密度 流速 断面 Ⅰ の面積 微小要素の断面 Ⅰ から だけ移動した断面 Ⅱ を流入出する流体の流量 Q 断面 Ⅱ は以下のように

2 図微小要素の流体の流入出 方向の断面の流体の流入出の収支断面 Ⅰ から微小要素に流入出する流体の流量 Q 断面 Ⅰ は 以下のように定式化できる Q 断面 Ⅰ 流量 密度 流速 断面 Ⅰ の面積 微小要素の断面 Ⅰ から だけ移動した断面 Ⅱ を流入出する流体の流量 Q 断面 Ⅱ は以下のように 3 章 Web に Link 解説 連続式 微分表示 の誘導.64 *4. 連続式連続式は ある領域の内部にある流体の質量の収支が その表面からの流入出の合計と等しくなることを定式化したものであり 流体における質量保存則を示したものである 2. 連続式 微分表示 の誘導図のような微小要素 コントロールボリューム の領域内の流体の増減と外部からの流体の流入出を考えることで定式化できる 微小要素 流入

More information

平成18年2月24日

平成18年2月24日 解禁時間 ( テレヒ ラシ オ WEB) : 平成 19 年 9 月 21 日 ( 金 ) 午前 3 時 ( 新聞 ) : 平成 19 年 9 月 21 日 ( 金 ) 付朝刊 平成 1 9 年 9 月 1 9 日 科学技術振興機構 (JST) 電話 (03)5214-8404( 広報 ホ ータル部広報課 ) 国立大学法人 東北大学 電話 (022)217-5422( 電気通信研究所総務課研究協力係

More information

19年度一次基礎科目計算問題略解

19年度一次基礎科目計算問題略解 9 年度機械科目 ( 計算問題主体 ) 略解 基礎科目の解析の延長としてわかる範囲でトライしてみたものです Coprigh (c) 7 宮田明則技術士事務所 Coprigh (c) 7 宮田明則技術士事務所 Ⅳ- よってから は許容荷重として は直径をロ - プの断面積 Ⅳ- cr E E E I, から Ⅳ- Ⅳ- : q q q q q q q q q で絶対値が最大 で絶対値が最大モーメントはいずれも中央で最大となる

More information

(Microsoft PowerPoint _4_25.ppt [\214\335\212\267\203\202\201[\203h])

(Microsoft PowerPoint _4_25.ppt [\214\335\212\267\203\202\201[\203h]) 平成 25 年度化学入門講義スライド 第 3 回テーマ : 熱力学第一法則 平成 25 年 4 月 25 日 奥野恒久 よく出てくる用語 1 熱力学 (thermodynamcs) 系 (system) 我々が注意を集中したい世界の特定の一部分外界 (surroundngs) 系以外の部分 系 外界 系に比べてはるかに大きい温度 体積 圧力一定系の変化の影響を受けない よく出てくる用語 2 外界との間で開放系

More information

PowerPoint プレゼンテーション

PowerPoint プレゼンテーション 光が作る周期構造 : 光格子 λ/2 光格子の中を運動する原子 左図のように レーザー光を鏡で反射させると 光の強度が周期的に変化した 定在波 ができます 原子にとっては これは周期的なポテンシャルと感じます これが 光格子 です 固体 : 結晶格子の中を運動する電子 隣の格子へ 格子の中を運動する粒子集団 Quantum Simulation ( ハバードモデル ) J ( トンネル ) 移動粒子間の

More information

F コンデンサーの静電容量高校物理において コンデンサーは合同な 2 枚の金属板を平行に並べたものである 電池を接続すると 電圧の高い方 (+ 極 ) に接続された金属板には正の電気量 Q(C) が 低い方には負の電気量 -Q(C) が蓄積される 正負の電気量の絶対値は等しい 蓄積された電気量 Q

F コンデンサーの静電容量高校物理において コンデンサーは合同な 2 枚の金属板を平行に並べたものである 電池を接続すると 電圧の高い方 (+ 極 ) に接続された金属板には正の電気量 Q(C) が 低い方には負の電気量 -Q(C) が蓄積される 正負の電気量の絶対値は等しい 蓄積された電気量 Q 電磁気の公式の解説 更新日 :2017 年 5 月 11 日 A 電気量電荷と電気量は何が違うのだろうか? 簡単に言うと 電気を帯びたものを電荷といい その電荷の大きさを数字で表すものが電気量である 電荷と電気量の本来の意味は少し違うが 実際には同じ意味で使われることが多い 電気量は次のように決められる ファラデー定数 9.65 10 4 (C /mol ) より電子 6.02 10 23 個が電気量

More information

Microsoft PowerPoint - 第5回電磁気学I 

Microsoft PowerPoint - 第5回電磁気学I  1 年 11 月 8 日 ( 月 ) 1:-1: Y 平成 年度工 系 ( 社会環境工学科 ) 第 5 回電磁気学 Ⅰ 天野浩 項目 電界と電束密度 ガウスの発散定理とガウスの法則の積分形と微分形 * ファラデーの電気力線の使い方をマスターします * 電界と電束密度を定義します * ガウスの発散定理を用いて ガウスの法則の積分形から微分形をガウスの法則の積分形から微分形を導出します * ガウスの法則を用いて

More information

P.1 1. はじめに 加速器とは 電気を持った電子や陽子 または原子から電子をはぎ取ったイオンなどを荷電粒子といい そのような荷電粒子を電磁力によって加速する装置 をいいます 加速器は 物質や生命の謎を解き明かすとともに 新材料の開発 農作物の品種改良 医療への利用など わたくしたちの身近な分野で

P.1 1. はじめに 加速器とは 電気を持った電子や陽子 または原子から電子をはぎ取ったイオンなどを荷電粒子といい そのような荷電粒子を電磁力によって加速する装置 をいいます 加速器は 物質や生命の謎を解き明かすとともに 新材料の開発 農作物の品種改良 医療への利用など わたくしたちの身近な分野で 013 年 3 月 一般社団法人日本電機工業会 加速器特別委員会 P.1 1. はじめに 加速器とは 電気を持った電子や陽子 または原子から電子をはぎ取ったイオンなどを荷電粒子といい そのような荷電粒子を電磁力によって加速する装置 をいいます 加速器は 物質や生命の謎を解き明かすとともに 新材料の開発 農作物の品種改良 医療への利用など わたくしたちの身近な分野で社会に役立っています 以下に 加速器とはどのような原理で動作するものかを説明していきます.

More information

Microsoft PowerPoint - 学内講演会.ppt

Microsoft PowerPoint - 学内講演会.ppt Force-free トルクと縦磁界効果 超伝導体内の電磁現象 大学院情報工学研究院松下照男 2009 年 6 月 17 日 内容 はじめに 横磁界下の電磁現象 通常の超伝導体内の電磁現象 縦磁界下の電磁現象 従来の考え方新しい考え方 超伝導と電磁気学 まとめ 1. はじめに 通常の横磁界下の超伝導体に電流を流す場合磁束に歪が生じ 復元力 (Lorentz 力 J B ) が働く ( 金属でも同様

More information

要旨 遷移金属の合金系の電子伝導率や帯磁率を測定することで 液体中の電子及びイオンの性質やスピン相互作用がわかる 本論文では V1-cGec 合金について c = まで 0.1 ずつ組成を変えて帯磁率測定を行った 純粋な Ge は温度によりほとんど帯磁率の変化は見られなかったが V

要旨 遷移金属の合金系の電子伝導率や帯磁率を測定することで 液体中の電子及びイオンの性質やスピン相互作用がわかる 本論文では V1-cGec 合金について c = まで 0.1 ずつ組成を変えて帯磁率測定を行った 純粋な Ge は温度によりほとんど帯磁率の変化は見られなかったが V 液体 V-Ge 合金の磁気的性質に関する研究 Studies on liquid Ge-V metal alloys magnetic susceptibility 物理学研究室 6 年 09P160 瀬谷幸季映 ( 指導教員 : 大野智 ) 要旨 遷移金属の合金系の電子伝導率や帯磁率を測定することで 液体中の電子及びイオンの性質やスピン相互作用がわかる 本論文では V1-cGec 合金について c

More information

【最終版・HP用】プレスリリース(徳永准教授)

【最終版・HP用】プレスリリース(徳永准教授) 未来の磁気メモリー材料開発につながる新たな電気分極成分を発見 1. 発表者 : 徳永将史 ( 東京大学物性研究所准教授 ) 赤木暢 ( 東京大学物性研究所 PD: 現在大阪大学理学研究科助教 ) 伊藤利充 ( 産業技術総合研究所電子光技術研究部門上級主任研究員 ) 宮原慎 ( 福岡大学理学部准教授 ) 三宅厚志 ( 東京大学物性研究所助教 ) 桑原英樹 ( 上智大学理工学部教授 ) 古川信夫 ( 青山学院大学理工学部教授

More information

氏 名 田 尻 恭 之 学 位 の 種 類 博 学 位 記 番 号 工博甲第240号 学位与の日付 平成18年3月23日 学位与の要件 学位規則第4条第1項該当 学 位 論 文 題 目 La1-x Sr x MnO 3 ナノスケール結晶における新奇な磁気サイズ 士 工学 効果の研究 論 文 審 査

氏 名 田 尻 恭 之 学 位 の 種 類 博 学 位 記 番 号 工博甲第240号 学位与の日付 平成18年3月23日 学位与の要件 学位規則第4条第1項該当 学 位 論 文 題 目 La1-x Sr x MnO 3 ナノスケール結晶における新奇な磁気サイズ 士 工学 効果の研究 論 文 審 査 九州工業大学学術機関リポジトリ Title La1-xSrxMnO3ナノスケール結晶における新奇な磁気サイズ効果の研究 Author(s) 田尻, 恭之 Issue Date 2006-06-30 URL http://hdl.handle.net/10228/815 Rights Kyushu Institute of Technology Academic Re 氏 名 田 尻 恭 之 学 位

More information

図は ( 上 ) ローレンツ像の模式図と ( 下 ) パーマロイ磁性細線の実際のローレンツ像

図は ( 上 ) ローレンツ像の模式図と ( 下 ) パーマロイ磁性細線の実際のローレンツ像 60 秒でわかるプレスリリース 2007 年 12 月 26 日 独立行政法人理化学研究所 電子の流れで磁性体のスピンの向きを反転させる - スピン流を用いたメモリーなどの次世代電子素子が大きく前進 - キロ (10 3 ) メガ (10 6 ) ギガ (10 9 ) と 私たちが気軽に扱うことができる情報量は 巨大化しています これに伴って メモリーカード スティックメモリー 光ディスク ハードディスクなどの情報を記録する媒体は

More information

CERT化学2013前期_問題

CERT化学2013前期_問題 [1] から [6] のうち 5 問を選んで解答用紙に解答せよ. いずれも 20 点の配点である.5 問を超えて解答した場合, 正答していれば成績評価に加算する. 有効数字を適切に処理せよ. 断りのない限り大気圧は 1013 hpa とする. 0 C = 273 K,1 cal = 4.184 J,1 atm = 1013 hpa = 760 mmhg, 重力加速度は 9.806 m s 2, 気体

More information

磁気でイオンを輸送する新原理のトランジスタを開発

磁気でイオンを輸送する新原理のトランジスタを開発 同時発表 : 筑波研究学園都市記者会 ( 資料配布 ) 文部科学記者会 ( 資料配布 ) 科学記者会 ( 資料配布 ) 磁気でイオンを輸送する新原理のトランジスタを開発 ~ 電圧をかけずに動作する電気化学デバイス実現へ前進 ~ 配布日時 : 平成 29 年 9 月 7 日 14 時国立研究開発法人物質 材料研究機構 (NIMS) 概要 1.NIMS は 電圧でなく磁気でイオンを輸送するという 従来と全く異なる原理で動作するトランジスタの開発に成功しました

More information

交流 のための三角関数 1. 次の変数 t についての関数を微分しなさい ただし A および ω は定数とする 1 f(t) = sin t 2 f(t) = A sin t 3 f(t) = A sinωt 4 f(t) = A cosωt 2. 次の変数 t についての関数を積分しなさい ただし

交流 のための三角関数 1. 次の変数 t についての関数を微分しなさい ただし A および ω は定数とする 1 f(t) = sin t 2 f(t) = A sin t 3 f(t) = A sinωt 4 f(t) = A cosωt 2. 次の変数 t についての関数を積分しなさい ただし 交流 のための三角関数 1. 次の変数 t についての関数を微分しなさい ただし A および ω は定数とする 1 f(t) = sin t 2 f(t) = A sin t 3 f(t) = A sinωt 4 f(t) = A cosωt 2. 次の変数 t についての関数を積分しなさい ただし 積分定数を 0 とすること 1 f(t) = sin t 2 f(t) = A sin t 3 f(t)

More information

Microsoft PowerPoint - 熱力学Ⅱ2FreeEnergy2012HP.ppt [互換モード]

Microsoft PowerPoint - 熱力学Ⅱ2FreeEnergy2012HP.ppt [互換モード] 熱力学 Ⅱ 第 章自由エネルギー システム情報工学研究科 構造エネルギー工学専攻 金子暁子 問題 ( 解答 ). 熱量 Q をある系に与えたところ, 系の体積は膨張し, 温度は上昇した. () 熱量 Q は何に変化したか. () またこのとき系の体積がV よりV に変化した.( 圧力は変化無し.) 内部エネルギーはどのように表されるか. また, このときのp-V 線図を示しなさい.. 不可逆過程の例を

More information

Microsoft PowerPoint - 第4回電磁気学I 

Microsoft PowerPoint - 第4回電磁気学I  00 年 月 0 日 月 3:00-4:30 SY 平成 年度工 V 系 社会環境工学科 第 4 回平成 年度工 V 系 社会環境工学科 第 4 回電磁気学 Ⅰ 天野浩項目クーロンの法則と静電界クンの法則と静電界 * 荷電した粒子同士に働くクーロン力クーロンの法則の発見定式 * 荷電した粒子同士に働くクロン力 クロンの法則の発見 定式化及び実際の解析法について学びます * 関数電卓を持参すること 本日の計算に必要な物理量真空の誘電率

More information

diode_revise

diode_revise 2.3 pn 接合の整流作用 c 大豆生田利章 2015 1 2.3 pn 接合の整流作用 2.2 節では外部から電圧を加えないときの pn 接合について述べた. ここでは, 外部か らバイアス電圧を加えるとどのようにして電流が流れるかを電子の移動を中心に説明す る. 2.2 節では熱エネルギーの存在を考慮していなかったが, 実際には半導体のキャリアは 周囲から熱エネルギーを受け取る その結果 半導体のキャリヤのエネルギーは一定でな

More information

領域シンポ発表

領域シンポ発表 1 次元の減衰運動の中の強制振動 ) ( f d d d d d e f e ce ) ( si ) ( 1 ) ( cos ω =ω -γ とおくと 一般解は 外力 f()=f siω の場合 f d d d d si f ce f ce si ) cos( cos si ) cos( この一般解は 1 φ は外力と変位との間の位相差で a 時間が経つと 第 1 項は無視できる この場合の振幅を

More information

の実現は この分野の最大の課題となってい (a) た ゲージ中の 酸素イオンを 電子で置換 筆 者 ら の 研 究 グ ル ー プ は 23 年 に 12CaO 7Al2O3 結 晶 以 下 C12A7 を用 い て 安定なエレクトライド C12A7: を実現3) Al3+ O2 Cage wall O2 In cage その電子状態や物性を解明してきた4) 図 1 のように C12A7 の結晶構造は

More information

2_分子軌道法解説

2_分子軌道法解説 2. 分子軌道法解説 分子軌道法計算を行ってその結果を正しく理解するには, 計算の背景となる理論を勉強 する必要がある この演習では詳細を講義する時間的な余裕がないので, それはいろいろ な講義を通しておいおい学んで頂くこととして, ここではその概要をごく簡単に説明しよう 2.1 原子軌道原子はその質量のほとんどすべてを占める原子核と, その周囲をまわっている何個かの電子からなっている 原子核は最も軽い水素の場合でも電子の約

More information

Microsoft PowerPoint - 11MAY06

Microsoft PowerPoint - 11MAY06 基礎量子化学 年 4 月 ~8 月 5 月 6 日第 4 回 章原子構造と原子スペクトル 3 分光学的遷移と選択律 多電子原子の構造 4 オービタル近似 (b) パウリの排他原理 (c) 浸透と遮蔽 (d) 構成原理 (Aufbu pincipe) (f) イオン化エネルギーと電子親和力 担当教員 : 福井大学大学院工学研究科生物応用化学専攻准教授 前田史郎 E-mi:smed@u-fukui.c.jp

More information

う特性に起因する固有の量子論的効果が多数現れるため 基礎学理の観点からも大きく注目されています しかし 特にゼロ質量電子系における電子相関効果については未だ十分な検証がなされておらず 実験的な解明が待たれていました 東北大学金属材料研究所の平田倫啓助教 東京大学大学院工学系研究科の石川恭平大学院生

う特性に起因する固有の量子論的効果が多数現れるため 基礎学理の観点からも大きく注目されています しかし 特にゼロ質量電子系における電子相関効果については未だ十分な検証がなされておらず 実験的な解明が待たれていました 東北大学金属材料研究所の平田倫啓助教 東京大学大学院工学系研究科の石川恭平大学院生 質量がゼロの電子がしめす新規なスピンのゆらぎを発見 ~ 電子が自発的に質量を獲得する新現象の解明に期待 ~ 1. 発表者 : 平田倫啓 ( 東北大学金属材料研究所助教 ) 石川恭平 ( 東京大学大学院工学系研究科物理工学専攻修士課程 ( 研究当時 )) 松野元樹 ( 名古屋大学大学院理学研究科物質理学専攻物理系博士課程 3 年生 ) 小林晃人 ( 名古屋大学大学院理学研究科物質理学専攻物理系准教授

More information

共同研究グループ理化学研究所創発物性科学研究センター強相関量子伝導研究チームチームリーダー十倉好紀 ( とくらよしのり ) 基礎科学特別研究員吉見龍太郎 ( よしみりゅうたろう ) 強相関物性研究グループ客員研究員安田憲司 ( やすだけんじ ) ( 米国マサチューセッツ工科大学ポストドクトラルアソシ

共同研究グループ理化学研究所創発物性科学研究センター強相関量子伝導研究チームチームリーダー十倉好紀 ( とくらよしのり ) 基礎科学特別研究員吉見龍太郎 ( よしみりゅうたろう ) 強相関物性研究グループ客員研究員安田憲司 ( やすだけんじ ) ( 米国マサチューセッツ工科大学ポストドクトラルアソシ PRESS RELEASE 2018 年 12 月 4 日理化学研究所東京大学東北大学科学技術振興機構 マルチフェロイクス材料における電流誘起磁化反転を実現 - 低消費電力エレクトロニクスへの新原理を構築 - 理化学研究所 ( 理研 ) 創発物性科学研究センター強相関量子伝導研究チームの吉見龍太郎基礎科学特別研究員 十倉好紀チームリーダー 安田憲司客員研究員( マサチューセッツ工科大学ポストドクトラルアソシエイト

More information

PowerPoint プレゼンテーション

PowerPoint プレゼンテーション 反応工学 Raction Enginring 講義時間 ( 場所 : 火曜 限 (8-A 木曜 限 (S-A 担当 : 山村 火 限 8-A 期末試験中間試験以降 /7( 木 まで持ち込みなし要電卓 /4( 木 質問受付日講義なし 授業アンケート (li campus の入力をお願いします 晶析 (crystallization ( 教科書 p. 濃度 溶解度曲線 C C s A 安定 液 ( 気

More information

Techniques for Nuclear and Particle Physics Experiments Energy Loss by Radiation : Bremsstrahlung 制動放射によるエネルギー損失は σ r 2 e = (e 2 mc 2 ) 2 で表される為

Techniques for Nuclear and Particle Physics Experiments Energy Loss by Radiation : Bremsstrahlung 制動放射によるエネルギー損失は σ r 2 e = (e 2 mc 2 ) 2 で表される為 Techniques for Nuclear and Particle Physics Experiments.. Energy Loss by Radiation : Bremsstrahlung 制動放射によるエネルギー損失は σ r e = (e mc ) で表される為 質量に大きく依存する Ex) 電子の次に質量の小さいミューオンの制動放射によるエネルギー損失 m e 0.5 MeV, m

More information

H AB φ A,1s (r r A )Hφ B,1s (r r B )dr (9) S AB φ A,1s (r r A )φ B,1s (r r B )dr (10) とした (S AA = S BB = 1). なお,H ij は共鳴積分 (resonance integra),s ij は重

H AB φ A,1s (r r A )Hφ B,1s (r r B )dr (9) S AB φ A,1s (r r A )φ B,1s (r r B )dr (10) とした (S AA = S BB = 1). なお,H ij は共鳴積分 (resonance integra),s ij は重 半経験量子計算法 : Tight-binding( 強結合近似 ) 計算の基礎 1. 基礎 Tight-binding 近似 ( 強結合近似, TB 近似あるいは TB 法などとも呼ばれる ) とは, 電子が強く拘束されており隣り合う軌道へ自由に移動できない, とする近似であり, 自由電子近似とは対極にある. 但し, 軌道間はわずかに重なり合っているので, 全く飛び移れないわけではない. Tight-binding

More information

Microsoft PowerPoint - 低温科学1.ppt

Microsoft PowerPoint - 低温科学1.ppt 金属中の電子と超伝導入門 理学部理学研究科物理学教室 池田隆介 講義日程 5/21, 5/28, 6/4 6/11 講義内容 使用するファイル I 量子力学の導入 No.2 ~ 8 II 原子と固体中の電子 7 ~ 14 III 超伝導と Bose-Einstein 凝縮 10 ~ 21 IV 磁場下の超伝導 15 ~ 24 I 量子力学の導入 古典論と量子論 ( 古典 ) 荷電粒子の加速度運動 -

More information

スライド 1

スライド 1 暫定版修正 加筆の可能性あり ( 付録 ) 電磁波 ( 光 ) の角運動量. 復習 : 電磁波 ( 光 ) のエネルギー. 運動量 角運動量 ( 実空間 ) 3. 軌道 スピン角運動量 4. 円偏光状態 5. 螺旋状態 付録 8 のアプローチ. 本付録では電磁波 ( 光 ) の軌道 スピン角運動量ついて古典的に扱う. スピン角運動量は直線偏光状態では零 円偏光状態では非零 右 左回りで大きさは同じ

More information

スライド 1

スライド 1 気体の性質と状態方程式 気体の物理的性質の一般性を理解する気体の物理的性質は気体の種類に依存しない気体分子運動論 気体の圧力, 体積, 温度の関係を理解する気体の圧力, 体積, 温度は一定の式を満たす状態方程式 理想気体と実在気体の違いを理解する気体分子の分子構造が気体の物理的性質に影響を与える分子間力 気体の反応 2リットルの水素と1リットルの酸素が反応すると 2? リットルの水 水蒸気 が生成する

More information

4. 発表内容 : 超伝導とは 低温で電子がクーパー対と呼ばれる対状態を形成することで金属の電気抵抗がゼロになる現象です これを室温で実現することができれば エネルギー損失のない送電や蓄電が可能になる等 工業的な応用の観点からも重要視され これまで盛んに研究されてきました 超伝導発現のメカニズム す

4. 発表内容 : 超伝導とは 低温で電子がクーパー対と呼ばれる対状態を形成することで金属の電気抵抗がゼロになる現象です これを室温で実現することができれば エネルギー損失のない送電や蓄電が可能になる等 工業的な応用の観点からも重要視され これまで盛んに研究されてきました 超伝導発現のメカニズム す 電子軌道の量子揺らぎによる新しい超伝導 1. 発表者 : 松本洋介 ( 東京大学物性研究所新物質科学研究部門助教 ) 辻本真規 ( 東京大学大学院新領域創成科学研究科基盤科学研究系物質系専攻博士課程 1 年 ) 冨田崇弘 ( 東京大学物性研究所新物質科学研究部門特任研究員 ) 酒井明人 ( アウグスブルグ大学日本学術振興会海外特別研究員 東京大学物性研究所新物質科学研究部門元博士課程学生 ) 中辻知

More information

改訂版 セミナー化学基礎 第Ⅰ章

改訂版 セミナー化学基礎 第Ⅰ章 原子の構成と元素の周期表 原子の構成 ❶ 原子物質を構成する最小の粒子 原子は電気的に中性 元素記号で表される 原子の半径 原子核の半径 ❷ 原子の構成表示 約 3 0 0 m (0. 0.3 nm) 約 0 5 m ( 0 nm) 質量数 = 陽子の数 + 中性子の数原子番号 = 陽子の数 (= 電子の数 ) 陽子の数は, 原子の種類によって決まっている 陽子の数 = 電子の数 陽子の質量 中性子の質量

More information

PowerPoint プレゼンテーション

PowerPoint プレゼンテーション 東北大学サイクロトロン ラジオアイソトープセンター測定器研究部内山愛子 2 電子の永久電気双極子能率 EDM : Permanent Electric Dipole Moment 電子のスピン方向に沿って生じる電気双極子能率 標準模型 (SM): クォークを介した高次の効果で電子 EDM ( d e ) が発現 d e SM < 10 38 ecm M. Pospelov and A. Ritz,

More information

Microsoft PowerPoint プレゼン資料(基礎)Rev.1.ppt [互換モード]

Microsoft PowerPoint プレゼン資料(基礎)Rev.1.ppt [互換モード] プレゼン資料 腐食と電気防食 本資料は当社独自の技術情報を含みますが 公開できる範囲としています より詳細な内容をご希望される場合は お問い合わせ よりご連絡願います 腐食とは何か? 金属材料は金や白金などの一部の貴金属を除き, 自然界にそのままの状態で存在するものではありません 多くは酸化物や硫化物の形で存在する鉱石から製造して得られるものです 鉄の場合は鉄鉱石を原料として精錬することにより製造されます

More information

無機化学 II 2018 年度期末試験 1. 窒素を含む化合物にヒドラジンと呼ばれる化合物 (N2H4, 右図 ) がある. この分子に関し, 以下の問いに答えよ.( 計 9 点 ) (1) N2 分子が 1 mol と H2 分子が 2 mol の状態と, ヒドラジン 1 mol となっている状態

無機化学 II 2018 年度期末試験 1. 窒素を含む化合物にヒドラジンと呼ばれる化合物 (N2H4, 右図 ) がある. この分子に関し, 以下の問いに答えよ.( 計 9 点 ) (1) N2 分子が 1 mol と H2 分子が 2 mol の状態と, ヒドラジン 1 mol となっている状態 無機化学 II 2018 年度期末試験 1. 窒素を含む化合物にヒドラジンと呼ばれる化合物 (N2H4, 右図 ) がある. この分子に関し, 以下の問いに答えよ.( 計 9 点 ) (1) N2 分子が 1 mol と H2 分子が 2 mol の状態と, ヒドラジン 1 mol となっている状態を比較すると, どちらの分子がどの程度エネルギーが低いか (= 安定か ) を平均結合エンタルピーから計算して答えよ.

More information

スライド 0

スライド 0 熱 学 Ⅲ 講義資料 化学反応のエクセルギー解析 京都 芸繊維 学 学院 芸科学研究科機械システム 学部 耕介准教授 2014/5/13 2014/5/9 1/23 なぜ, 化学反応を伴うエクセルギーを学ぶのか?? 従来までに学んだ熱 学 エンジンやガスタービンの反応器は, 外部加熱過程 ( 外部から熱を加える過程 ) に置き換えていた. 実際には化学反応を伴うため, 現実的. 化学反応 を伴う熱

More information