情報処理論 第2回 情報の符号化 2004/10/8

Size: px
Start display at page:

Download "情報処理論 第2回 情報の符号化 2004/10/8"

Transcription

1 数学 第 5 回群の構造 : 正規部分群 009/10/8 数学 #5 009/10/8 いろいろなシンメトリーを考える話はまだ続くのですが 今回は間を入れて 群自体についての考察 です 1. 部分群 正三角形は三角形として最大にシンメトリックな図形です これに対して二等辺三角形は 回転のシンメトリーは失われていますが 鏡映のシンメトリーを残しています 逆に考えると 正三角形は二等辺三角形のシンメトリーを 部分的 に持つといえます まあしかし 正三角形は二等辺三角形の一種だから当たりまえといえば当たりまえですね しかし 例えば正六角形のシンメトリーを考えてみましょう 図を見てわかるように 正六角形は内部に正三角形を 隠し持って いますから 正三角形のシンメトリーを 部分的 に持っていることになります 図形のシンメトリー群 というのは 図形の形を変えない操作の集まりでしたから 正六角形のシンメトリー群 は 正三角形のシンメトリー群 を含んでいるはずです このような 大きな群の中にある小さな群 を部分群といいます ある群のなかにまた群があるという意味は 群がノッペラボーなものではなく ある種の構造があることを示しています その構造を調べるのが群論の目的のひとつです さて 群というのは 端的にいうと何らかの 操作の集まり のことであり 特に操作を続けて行う ことをある種の掛け算 ( 積 ) と考えるのでした これを抽象的に定義すると 定義 集合 G の任意の つの要素 x y に対して以下の 4 条件が成り立つときとき G を群といいます (1) 積 x yがあり 積の結果はGの要素の一つ : 閉じた演算 ()(x y) z=x (y z) が成り立つ : 結合法則 (3)x 1=1 x=x を満たすGの要素 1 すなわち単位元( 何もしない操作 ) が存在する (4)x x -1 =x -1 x=1 をみたすGの要素 x -1 すなわちxの逆元( 逆操作 ) が存在する 1

2 数学 #5 009/10/8 となります 群のなかの群 すなわち部分群も群である以上はこの定義 ( 公理 ) を満足するものでなけ ればなりません ( 例 1)3 次置換のシンメトリー群 (3 次の対称群 ) す これはこれまで何度か登場した群ですが 改めて述べておきましょう 3 次の置換操作は次の 6 つで 1= σ= 3 1 τ= 3 1 a= 1 b= 3 1 c= 3 この 6 つの置換の集まりが 3 次置換のシンメトリー群 です G の乗積表は次の表 1 のようになりま す : 1 σ τ a b c 1 1 σ τ a b c σ σ τ 1 c a b τ τ 1 σ b c a a a b c 1 σ τ b b c a τ 1 σ c c a b σ τ 1 ( 左端の列 ) ( 上端の行 ) を計算した表です 例 )σ b=a 表 1 3 次置換のシンメトリー群 G の乗積表 乗積表 ( 表 1) を見ると 表の左上隅の操作 1 σ τ の部分には 1 σ τ しか出てきていませんよね? つまり 巡回置換操作 1 σ τ 同士で掛け算しても他の3つの互換操作 a b c は出てきません( 図形的には 回転で鏡映像を作ることができない ことを表しています ) 3つの操作 N={1 σ τ} は 全部で6 個ある操作の集まりの中で 閉じた グループ ( 巡回派閥?) を形成しているわけで すなわちNはGの部分群なわけです ところで このような閉じたグループは 巡回置換グループ だけではありません 例えば 恒等置 換 1と互換 a のつの置換操作は このつ同士でいくら掛け算しても 1とa 以外の構成員は 出てきませんから 閉じた小グループになっています 念のため 1とa の乗積表を書いておきまし ょう : 1 a 1 1 a a a 1

3 数学 #5 009/10/8 結局 H={1 と a} は G の部分群です 同様に 1 と b 1 と c も G の部分群となります もちろん Gからテキトーに要素を選んだだけで それらが部分群になるとは限りません 例えば 1とσ で乗積表をつくると 1 σ 1 1 σ σ σ τ となって 仲間外れ の τ が出てきてしまうから閉じていません また 1 σ a だと 1 a σ 1 1 a σ a a 1 b σ σ c τ となって 全然閉じていないのでこれもだめです こうやって調べていくと G の部分群は N={1 σ τ} H={1 a} H'={1 b} H''={1 c} の4つしかないことがわかります と言いたいところですが ちょっと待ってください 恒等置換( 単位元 ) のみ ={1} というのは 一応群の公理を満たしていますから これも部分群として扱うべきです また いま考えているのはGの 部分 であって G 自体は 全体 なのですが しかし G 自身を 部分群 のひとつと数えておくと何かと便利です そんなわけで Gの全部分群は G N={1 σ τ} H={1 a} H'={1 b} H''={1 c} 1 の 6 つとなります どんな群でも 群それ自体 と 単位元のみ という部分群を必ず持ちます しかし この つは部 分群としてはあたりまえすぎて あまりおもしろいものではないので 自明な部分群 と呼び この つ以外の部分群を 真部分群 と呼んで区別することがあります ( つまり G の真部分群は 4 つ ) さて 今の例ではなんだかあっさりと全ての部分群を書き出しましたが 実際は 何か群が与えられたとき その部分群を見つけるのは結構難しい作業となります 直接的な方法としては 群のすべての要素の組み合わせについて その乗積表を作って閉じているかどうかをチェックすればいいのですが 3

4 群の要素数がちょっとでも多くなると これは膨大な作業となってしまいます 数学 #5 009/10/8 しかし いくらなんでもそこまではしなくてもよく 次のようなありがたい定理があります ラグランジュの定理 : 部分群の要素数は 親の群の要素数の約数になります ( ただし ( 残念ながら ) 約数の要素数の部分群がいつでもあるとは限りません ) ( 例 ) 正方形のシンメトリー群 は全部で8 個の操作 ( 回転 4+ 鏡映 4) からなります 8の約数は ですから 部分群があるとすれば その要素数はこのうちのどれかでなければなりません このうち 要素数 1と8の部分群は 自明な部分群 です ( 例 ) 4 次置換のシンメトリー群 は全部で 4!=4 個の置換からなります 4 の約数は ですから 部分群があるとすれば その要素数はこのうちのどれかでなければなりません ( 例 ) 5 次置換のシンメトリー群 は全部で5!=10 個の置換からなります 10の約数は ですから 部分群があるとすれば その要素数はこのうちのどれかでなければなりません ( 実は の部分群は存在しません ). 巡回群 巡回置換を思い出しておきましょう A B C D E さん 5 人がこの順で円テーブルに座っ ているとします 各人がいっせいに左隣の人で置き換えるという操作を行いますと各人の席位置は B CDEA となります A B E B A C D C E D このような置換を 巡回置換 というのでした 今の置換を σ という記号で表し 置換操作による 席位置の変化を σ( ABCDE )= BCDEA 4

5 数学 #5 009/10/8 という式で表すことにしましょう さて 同じσ 操作をもう一度行うと席位置は CDEAB 式で書くと σ σ( ABCDE )=σ ( ABCDE )= CDEAB となりますが 元の ABCDE からみると これは いっせいにつ左隣の人で置き換える という操作になっていることがわかります 席位置は変わったものの 隣接する人の順番は変わっていませんから σ も巡回置換の1つです さらに σの置換を何度も続けて行うと σは隣接する人の順番を変えませんから いつか元の席位置 ABCDE に戻ります( つまり人がぐるぐる 巡回 するわけです これは正 5 角形の回転操作と完全に対応します ) σ 3 ( ABCDE )= DEABC σ 4 ( ABCDE )= EABCD σ 5 ( ABCDE )= ABCDE こうして 1 つの巡回置換から 5 つの巡回置換が作り出されました これを全て集めたもの C={1 σ σ σ 3 σ 4 } (σ 5 =1= 恒等置換に注意!) は群の公理を満足します この群を (5 次の ) 巡回群 cyclic group といって C 5 などと表記し ます 巡回群が大事なのは 次のような性質を持つからです (1) 巡回群は ( 上の例のように )1つの要素から作られる () 巡回群では掛け算の順番は関係ない (3) 要素数が素数の群は必ず巡回群である (4) 巡回群の部分群は 必ず巡回群 (5) 巡回群の要素数の約数には 対応する部分群が必ずある ( 例 ) 正六角形の回転シンメトリー群 (6 次巡回群 ) 正六角形は60 度回したら同じ形に重なります そこで 60 度回転操作 をσとしましょう すると σ = 10 度回転 σ 3 = 180 度回転 σ 4 = 40 度回転 σ 5 = 300 度回転 σ 6 = 360 度回転 = 何もしない となります これは結局 6 人が円テーブル に座っているのと同じことなので は巡回群になります 乗積表を作ってみると C6={1 σ σ σ 3 σ 4 σ 5 } 5

6 数学 #5 009/10/8 1 σ σ σ 3 σ 4 σ σ σ σ 3 σ 4 σ 5 σ σ σ σ σ σ 3 σ 3 σ 4 σ 4 σ 5 σ 5 空欄を埋めてね! 表 6 次の巡回群 C 6 この巡回群の要素数は6ですので その約数,3の要素数の部分群があるはずです これは 回転を考えればすぐわかるように {1 σ 3 } {1 σ σ 4 } です 3. 群の分解と正規部分群 3 次の置換シンメトリー群 G は部分群 H H={1 a} ( 互換の 1 つ ) と N={1 σ τ} ( 巡回置換 ) というのを持っていました この つの部分群の違いは 見た目まず要素数が違うというのがあります が それ以上に重要な性質上の違いがあります まず H です H 以外の G の残りの要素は {σ τ b c} の4つで ( そもそも恒等置換がないから ) これらだけで群をつくることはできませんが ただの 余り ではなく 部分群 Hとそれなりに関係しています 余り の要素の中から ( どれでもいいのですが ) 置換 bを取り出して これをHの各要素に右から 6

7 掛け算してみます ( 乗積表をみて計算してね ) すると 数学 #5 009/10/8 Hb={1 b a b}={b σ} となって 余り のうちの つが H から出てきました さらに H の各要素に右から c を掛け算して みると 今度は Hc={1 c a c}={c τ} となります つまり S 3 は H によって H+Hb+Hc と 仲間わけ されることがわかりました ( これを部分群 H による G の右分解といいます ) これはちょうど 整数を 偶数 + 奇数 と仲間わけ すること あるいは 3 で割った余りで 0 の数 +1 の数 + の数 と仲間わけできるのと似た状況です ところで 今は要素を 右から 掛け算しましたが 普通の数とは違って 群では掛け算の順番を変 えると結果が異なることがあります そこで 今度は 左から 要素をかけてみましょう すると bh=={b 1 b a}={b τ} ch={1 c c a}={c σ} となって 先の 右掛け と同様 G の 仲間わけ H+bH+cH ( 部分群 H による G の左分解と いいます ) ができました しかし よく見ると その構成員は右分解の場合とは違ったものとなってい ますね さて 今と同じことを 今度はもう一つの部分群 N={1 σ τ} に対しても行ってみましょう N を除いた G の残りは {a b c} です そこで要素 a を N に右から掛けてみましょう : Na={1 a σ a τ a}={a c b} となって G は N と Na の つに 仲間わけ されました 次に 左掛けしてみると an={a 1 a σ a τ}={a b c} となって 今度は H の場合と違って 右分解と左分解が一致しました これが この説の初めの方で述べた 部分群の性質の違い です Nのように ( 親の群 )Gの要素を右掛け 左掛けしたとき 構成要素が一致するような部分群を 正規部分群 Nomal subgroup といいます 何が 正規 =ノーマル なのかはこれだけではよくわかりませんが この部分群はいろいろと ( 数学者にとって ) 良い性質を持っていて そんな良い性質のものは ( 数学者にとって ) ノーマルなわけです ( 説明になってませんが 要するに 左右を区別しなくてもよいので 整数と似た性質を持 7

8 数学 #5 009/10/8 つ というのがノーマルなのです ) 実は この 正規部分群 こそ 方程式が解けるか否かのカギな のです ともかく 多くの群が部分群を持ちますが その中には正規な部分群と非正規な部分群があるわけです いささかあたりまえの例としては 自明な部分群 すなわち 群自分自身 と 単位元 というのが正規部分群で このつはどんな群でも持つ正規部分群です 特に このつしか正規部分群を持たない群は 単純群 と呼ばれます 整数が素数の掛け算で書けるように すべての群は単純群の合成で書くことができます つまり 単純群は群の世界の 素数 の役割を持ちます 練習問題 1 本文では 3 次置換のシンメトリー群 の部分群 N={1 σ τ} が正規部分群であることを 示すとき N に a を掛けただけでしたが b c をかけたらどうなるでしょうか? 1 次の巡回群 C 1 ={1 σ σ σ 11 } の部分群を列挙してください 8

数学2 第3回 3次方程式:16世紀イタリア 2005/10/19

数学2 第3回 3次方程式:16世紀イタリア 2005/10/19 数学 第 9 回方程式とシンメトリ - 010/1/01 数学 #9 010/1/01 1 前回紹介した 次方程式 の解法は どちらかというと ヒラメキ 的なもので 一般的と言えるものではありませんでした というのは 次方程式 の解法を知っても 5 次方程式 の問題に役立てることはできそうもないからです そこで より一般的な別解法はないものかと考えたのがラグランジュという人です ラグランジュの仕事によって

More information

<4D F736F F D208C51985F82CD82B682DF82CC88EA95E A>

<4D F736F F D208C51985F82CD82B682DF82CC88EA95E A> 群論はじめの一歩 (6) 6. 指数 2の定理と2 面体群 命題 H を群 G の部分群とする そして 左剰余類全体 G/ H 右剰 余類全体 \ H G ともに指数 G: H 2 と仮定する このとき H は群 G の正規部分群である すなわち H 注意 ) 集合 A と B があるとき A から B を引いた差集合は A \ B と書かれるが ここで書いた H \ Gは差集合ではなく右剰余類の集合の意味である

More information

Microsoft PowerPoint - 9.pptx

Microsoft PowerPoint - 9.pptx 9. 線形写像 ここでは 行列の積によって 写像を定義できることをみていく また 行列の積によって定義される写像の性質を調べていく 行列演算と写像 ( 次変換 3 拡大とスカラー倍 p ' = ( ', ' = ( k, kk p = (, k 倍 k 倍 拡大後 k 倍拡大の関係は スカラー倍を用いて次のように表現できる ' = k ' 拡大前 拡大 4 拡大と行列の積 p ' = ( ', '

More information

Microsoft PowerPoint - 9.pptx

Microsoft PowerPoint - 9.pptx 9/7/8( 水 9. 線形写像 ここでは 行列の積によって 写像を定義できることをみていく また 行列の積によって定義される写像の性質を調べていく 拡大とスカラー倍 行列演算と写像 ( 次変換 拡大後 k 倍 k 倍 k 倍拡大の関係は スカラー倍を用いて次のように表現できる p = (, ' = k ' 拡大前 p ' = ( ', ' = ( k, k 拡大 4 拡大と行列の積 拡大後 k 倍

More information

Microsoft PowerPoint - 2.ppt [互換モード]

Microsoft PowerPoint - 2.ppt [互換モード] 0 章数学基礎 1 大学では 高校より厳密に議論を行う そのために 議論の議論の対象を明確にする必要がある 集合 ( 定義 ) 集合 物の集まりである集合 X に対して X を構成している物を X の要素または元という 集合については 3 セメスタ開講の 離散数学 で詳しく扱う 2 集合の表現 1. 要素を明示する表現 ( 外延的表現 ) 中括弧で 囲う X = {0,1, 2,3} 慣用的に 英大文字を用いる

More information

4 3. (a) 2 (b) 1 2 xy xz- x , 4 R1 R2 R1 R xz- 2(a) 2(b) B 1 B 2 B 1 B 2 2

4 3. (a) 2 (b) 1 2 xy xz- x , 4 R1 R2 R1 R xz- 2(a) 2(b) B 1 B 2 B 1 B 2 2 2017 Vol. 16 1-33 1 2 1. 2. 21 [5], 1 2 2 [1] [2] [3] 1 4 3. (a) 2 (b) 1 2 xy- 2 1. xz- x 2. 3. 1 3 3, 4 R1 R2 R1 R2 3 1 4 2 xz- 2(a) 2(b) 1 4 2 B 1 B 2 B 1 B 2 2 5 8 7 6 5(a) 5(b) 9 7 8 2 (a) 5 (b) 1

More information

線形代数とは

線形代数とは 線形代数とは 第一回ベクトル 教科書 エクササイズ線形代数 立花俊一 成田清正著 共立出版 必要最低限のことに限る 得意な人には物足りないかもしれません 線形代数とは何をするもの? 線形関係 y 直線 yもも 次式で登場する (( 次の形 ) 線形 ただし 次元の話世の中は 3 次元 [4[ 次元 ] 次元 3 次元 4 次元 はどうやって直線を表すの? ベクトルや行列の概念 y A ベクトルを使うと

More information

2014年度 千葉大・医系数学

2014年度 千葉大・医系数学 04 千葉大学 ( 医系 ) 前期日程問題 解答解説のページへ 袋の中に, 赤玉が 3 個, 白玉が 7 個が入っている 袋から玉を無作為に つ取り出し, 色を確認してから, 再び袋に戻すという試行を行う この試行を N 回繰り返したときに, 赤玉を A 回 ( ただし 0 A N) 取り出す確率を p( N, A) とする このとき, 以下の問いに答えよ () 確率 p( N, A) を N と

More information

離散数学

離散数学 離散数学 ブール代数 落合秀也 前回の復習 : 命題計算 キーワード 文 複合文 結合子 命題 恒真 矛盾 論理同値 条件文 重条件文 論法 論理含意 記号 P(p,q,r, ),,,,,,, 2 今日のテーマ : ブール代数 ブール代数 ブール代数と束 そして 順序 加法標準形とカルノー図 3 今日のテーマ : ブール代数 ブール代数 ブール代数と束 そして 順序 加法標準形とカルノー図 4 ブール代数の法則

More information

数学の世界

数学の世界 東京女子大学文理学部数学の世界 (2002 年度 ) 永島孝 17 6 行列式の基本法則と効率的な計算法 基本法則 三次以上の行列式についても, 二次の場合と同様な法則がなりたつ ここには三次の場合を例示するが, 四次以上でも同様である 1 単位行列の行列式の値は 1 である すなわち 1 0 0 0 1 0 1 0 0 1 2 二つの列を入れ替えると行列式の値は 1 倍になる 例えば a 13 a

More information

Microsoft Word docx

Microsoft Word docx 有限図形の代数的表現について 三角形や星型を式で表現したいという思いから以下のことを 考察をしまし た 有限個の点と辺で 構成される図形を 関数で表現する そのため 基礎 体として 素数の有限体を考える 但し 扱うのは 点の数と辺の数が等しい 特別場合である 先ず P5 のときから 始めることにします. グラフと写像と関数について ( 特別な場合 ) 集合 F {,,,, } について 写像 f :

More information

PowerPoint Presentation

PowerPoint Presentation 付録 2 2 次元アフィン変換 直交変換 たたみ込み 1.2 次元のアフィン変換 座標 (x,y ) を (x,y) に移すことを 2 次元での変換. 特に, 変換が と書けるとき, アフィン変換, アフィン変換は, その 1 次の項による変換 と 0 次の項による変換 アフィン変換 0 次の項は平行移動 1 次の項は座標 (x, y ) をベクトルと考えて とすれば このようなもの 2 次元ベクトルの線形写像

More information

二等辺三角形の性質 (2) 次の図の の大きさを求めなさい () = P=Q P=R Q 68 R P (2) (3) 五角形 は正五角形 = F 50 F (4) = = (5) === = 80 2 二等辺三角形の頂角の外角を 底角を y で表すとき y を の式で表しなさい y 2-5-2

二等辺三角形の性質 (2) 次の図の の大きさを求めなさい () = P=Q P=R Q 68 R P (2) (3) 五角形 は正五角形 = F 50 F (4) = = (5) === = 80 2 二等辺三角形の頂角の外角を 底角を y で表すとき y を の式で表しなさい y 2-5-2 三角形 四角形 二等辺三角形の性質 () 二等辺三角形と正三角形 二等辺三角形 2つの辺が等しい三角形( 定義 ) 二等辺三角形の性質定理 二等辺三角形の底角は等しい 定理 2 二等辺三角形の頂点の二等分線は 底辺を直角に2 等分する 正三角形 3 辺が等しい三角形 ( 定義 ) 次の図で 同じ印をつけた辺や角が等しいとき の大きさを求めなさい () (2) (3) 65 40 25 (4) (5)

More information

Matrix and summation convention Kronecker delta δ ij 1 = 0 ( i = j) ( i j) permutation symbol e ijk = (even permutation) (odd permutation) (othe

Matrix and summation convention Kronecker delta δ ij 1 = 0 ( i = j) ( i j) permutation symbol e ijk = (even permutation) (odd permutation) (othe Matr ad summato covto Krockr dlta δ ( ) ( ) prmutato symbol k (v prmutato) (odd prmutato) (othrs) gvalu dtrmat dt 6 k rst r s kt opyrght s rsrvd. No part of ths documt may b rproducd for proft. 行列 行 正方行列

More information

<4D F736F F D2094F795AA95FB92F68EAE82CC89F082AB95FB E646F63>

<4D F736F F D2094F795AA95FB92F68EAE82CC89F082AB95FB E646F63> 力学 A 金曜 限 : 松田 微分方程式の解き方 微分方程式の解き方のところが分からなかったという声が多いので プリントにまとめます 数学的に厳密な話はしていないので 詳しくは数学の常微分方程式を扱っているテキストを参照してください また os s は既知とします. 微分方程式の分類 常微分方程式とは 独立変数 と その関数 その有限次の導関数 がみたす方程式 F,,, = のことです 次までの導関数を含む方程式を

More information

オートマトン 形式言語及び演習 4. 正規言語の性質 酒井正彦 正規言語の性質 反復補題正規言語が満たす性質 ある与えられた言語が正規言語でないことを証明するために その言語が正規言語であると

オートマトン 形式言語及び演習 4. 正規言語の性質 酒井正彦   正規言語の性質 反復補題正規言語が満たす性質 ある与えられた言語が正規言語でないことを証明するために その言語が正規言語であると オートマトン 形式言語及び演習 4. 正規言語の性質 酒井正彦 www.trs.css.i.nagoya-u.ac.jp/~sakai/lecture/automata/ 正規言語の性質 正規言語が満たす性質 ある与えられた言語が正規言語でないことを証明するために その言語が正規言語であると仮定してを使い 矛盾を導く 閉包性正規言語を演算により組み合わせて得られる言語が正規言語となる演算について調べる

More information

æœ•å¤§å–¬ç´—æŁ°,æœ•å°‘å–¬å•“æŁ°,ã…¦ã…¼ã‡¯ã…ªã……ã…›ã†®äº™éŽ¤æ³Ł

æœ•å¤§å–¬ç´—æŁ°,æœ•å°‘å–¬å•“æŁ°,ã…¦ã…¼ã‡¯ã…ªã……ã…›ã†®äº™éŽ¤æ³Ł 最大公約数, 最小公倍数, ユークリッドの互除法 最大公約数, 最小公倍数とは つ以上の正の整数に共通な約数 ( 公約数 ) のうち最大のものを最大公約数といいます. と 8 の公約数は,,,,6 で, 6 が最大公約数 つ以上の正の整数の共通な倍数 ( 公倍数 ) のうち最小のものを最小公倍数といいます. と の公倍数は, 6,,8,,... で, 6 が最小公倍数 最大公約数, 最小公倍数の求め方

More information

Microsoft PowerPoint - 10.pptx

Microsoft PowerPoint - 10.pptx m u. 固有値とその応用 8/7/( 水 ). 固有値とその応用 固有値と固有ベクトル 行列による写像から固有ベクトルへ m m 行列 によって線形写像 f : R R が表せることを見てきた ここでは 次元平面の行列による写像を調べる とし 写像 f : を考える R R まず 単位ベクトルの像 u y y f : R R u u, u この事から 線形写像の性質を用いると 次の格子上の点全ての写像先が求まる

More information

Microsoft Word - thesis.doc

Microsoft Word - thesis.doc 剛体の基礎理論 -. 剛体の基礎理論初めに本論文で大域的に使用する記号を定義する. 使用する記号トルク撃力力角運動量角速度姿勢対角化された慣性テンソル慣性テンソル運動量速度位置質量時間 J W f F P p .. 質点の並進運動 質点は位置 と速度 P を用いる. ニュートンの運動方程式 という状態を持つ. 但し ここでは速度ではなく運動量 F P F.... より質点の運動は既に明らかであり 質点の状態ベクトル

More information

座標変換におけるテンソル成分の変換行列

座標変換におけるテンソル成分の変換行列 座標変換におけるテンソル成分の変換行列 座標変換におけるテンソル成分の変換関係は 次元数によらず階数によって定義される変換行列で整理することができる 位置ベクトルの変換行列を D としてそれを示そう D の行列式を ( = D ) とするとき 鏡映や回映といった pseudo rotation に対しては = -1 である が問題になる基底は 対称操作に含まれる pseudo rotation に依存する

More information

2015-2018年度 2次数学セレクション(整数と数列)解答解説

2015-2018年度 2次数学セレクション(整数と数列)解答解説 015 次数学セレクション問題 1 [ 千葉大 文 ] k, m, n を自然数とする 以下の問いに答えよ (1) k を 7 で割った余りが 4 であるとする このとき, k を 3 で割った余りは であることを示せ () 4m+ 5nが 3 で割り切れるとする このとき, mn を 7 で割った余りは 4 ではないことを示せ -1- 015 次数学セレクション問題 [ 九州大 理 ] 以下の問いに答えよ

More information

<8D828D5A838A817C A77425F91E6318FCD2E6D6364>

<8D828D5A838A817C A77425F91E6318FCD2E6D6364> 4 1 平面上のベクトル 1 ベクトルとその演算 例題 1 ベクトルの相等 次の問いに答えよ. ⑴ 右の図 1 は平行四辺形 である., と等しいベクトルをいえ. ⑵ 右の図 2 の中で互いに等しいベクトルをいえ. ただし, すべてのマス目は正方形である. 解 ⑴,= より, =,= より, = ⑵ 大きさと向きの等しいものを調べる. a =d, c = f d e f 1 右の図の長方形 において,

More information

Microsoft PowerPoint - 基礎IV演習1-8.pptx

Microsoft PowerPoint - 基礎IV演習1-8.pptx 地球惑星科学基礎 V 演習 群の概念 結晶系とブラベー格 の関係 第 3 回 瀬 雄介 http://pmsl.planet.sci.kobe-u.ac.jp/~seto 並進を伴わないもの 対称 ( 点対称 ) Center of symmetry, Inversion center 鏡映 ( 鏡 ) mirror 対称 鏡映 表記 : 1 (one bar) 表記 : m (mirror) 並進を伴わないもの

More information

ï¼™æ¬¡å¼‘ã†®åł€æŁ°å‹ƒè§£

ï¼™æ¬¡å¼‘ã†®åł€æŁ°å‹ƒè§£ == 次式の因数分解 == [1]~[IV] の公式は中学校の復習となっているが, 高校では 置き換え による因数分解などやや高度なものも含まれている 共通因数でくくる [I] ma+mb=m(a+b) [I] の例 (1) () 5y+0y =5( y+4y )=5y(+4y) 注意途中経過として (1) のような式を書くのは自由である ( 解答者が思いついた順序によっては y(5+0y) など他の形となる場合もあり得る

More information

æœ•å¤§å–¬ç´—æŁ°,æœ•å°‘å–¬å•“æŁ°,ã…¦ã…¼ã‡¯ã…ªã……ã…›ã†®äº™éŽ¤æ³Ł

æœ•å¤§å–¬ç´—æŁ°,æœ•å°‘å–¬å•“æŁ°,ã…¦ã…¼ã‡¯ã…ªã……ã…›ã†®äº™éŽ¤æ³Ł 最大公約数, 最小公倍数, ユークリッドの互除法 最大公約数, 最小公倍数とは つ以上の正の整数に共通な約数 ( 公約数 ) のうち最大のものを最大公約数といいます. 1 と 18 の公約数は, 1,,,6 で, 6 が最大公約数 つ以上の正の整数の共通な倍数 ( 公倍数 ) のうち最小のものを最小公倍数といいます. と の公倍数は, 6,1,18,,... で, 6 が最小公倍数 最大公約数, 最小公倍数の求め方

More information

2 場合の数次の問いに答えよ (1) 表裏がわかる 3 種類のコイン a,b,c を投げて, 表が出た枚数が奇数となる場合は何通りあるか (2) ソファ, テーブル, カーペットがそれぞれ 3 種類,4 種類,2 種類ある それぞれ 1 つずつ選ぶとすると, 選び方は何通りあるか 要点和の法則 2

2 場合の数次の問いに答えよ (1) 表裏がわかる 3 種類のコイン a,b,c を投げて, 表が出た枚数が奇数となる場合は何通りあるか (2) ソファ, テーブル, カーペットがそれぞれ 3 種類,4 種類,2 種類ある それぞれ 1 つずつ選ぶとすると, 選び方は何通りあるか 要点和の法則 2 場合の数 この分野の学習にあたっては, 数学 Ⅰ の 集合と論理 はあらかじめ学習しているものとする 1 集合の要素の個数 1 から 40 までの整数のうち, 次の個数を求めよ (1) 3 または 4 で割り切れる整数 (2) 3 で割り切れない整数 (3) 3 で割り切れるが 4 で割り切れない整数 要 点 和集合の要素の個数 n(a B)=n(A)+n(B)-n(A B) 特に,A B=φ のとき

More information

Microsoft Word - 201hyouka-tangen-1.doc

Microsoft Word - 201hyouka-tangen-1.doc 数学 Ⅰ 評価規準の作成 ( 単元ごと ) 数学 Ⅰ の目標及び図形と計量について理解させ 基礎的な知識の習得と技能の習熟を図り それらを的確に活用する機能を伸ばすとともに 数学的な見方や考え方のよさを認識できるようにする 評価の観点の趣旨 式と不等式 二次関数及び図形と計量における考え方に関 心をもつとともに 数学的な見方や考え方のよさを認識し それらを事象の考察に活用しようとする 式と不等式 二次関数及び図形と計量における数学的な見

More information

Microsoft Word - ミクロ経済学02-01費用関数.doc

Microsoft Word - ミクロ経済学02-01費用関数.doc ミクロ経済学の シナリオ 講義の 3 分の 1 の時間で理解させる技術 国際派公務員養成所 第 2 章 生産者理論 生産者の利潤最大化行動について学び 供給曲線の導出プロセスを確認します 2-1. さまざまな費用曲線 (1) 総費用 (TC) 固定費用 (FC) 可変費用 (VC) 今回は さまざまな費用曲線を学んでいきましょう 費用曲線にはまず 総費用曲線があります 総費用 TC(Total Cost)

More information

memo

memo 数理情報工学特論第一 機械学習とデータマイニング 4 章 : 教師なし学習 3 かしまひさし 鹿島久嗣 ( 数理 6 研 ) kashima@mist.i.~ DEPARTMENT OF MATHEMATICAL INFORMATICS 1 グラフィカルモデルについて学びます グラフィカルモデル グラフィカルラッソ グラフィカルラッソの推定アルゴリズム 2 グラフィカルモデル 3 教師なし学習の主要タスクは

More information

Microsoft PowerPoint - mp11-02.pptx

Microsoft PowerPoint - mp11-02.pptx 数理計画法第 2 回 塩浦昭義情報科学研究科准教授 shioura@dais.is.tohoku.ac.jp http://www.dais.is.tohoku.ac.jp/~shioura/teaching 前回の復習 数理計画とは? 数理計画 ( 復習 ) 数理計画問題とは? 狭義には : 数理 ( 数学 ) を使って計画を立てるための問題 広義には : 与えられた評価尺度に関して最も良い解を求める問題

More information

学習指導要領

学習指導要領 (1) 数と式 学習指導要領ア数と集合 ( ア ) 実数数を実数まで拡張する意義を理解し 簡単な無理数の四則計算をすること 都立大江戸高校学力スタンダード 平方根の意味を理解し 平方根の計算法則に従って平方根を簡単にすることができる ( 例 1) 次の値を求めよ (1)5 の平方根 () 81 ( 例 ) 次の数を簡単にせよ (1) 5 () 7 1 (3) 49 無理数の加法や減法 乗法公式を利用した計算がで

More information

学習指導要領

学習指導要領 (1) 数と式 ア数と集合 ( ア ) 実数数を実数まで拡張する意義を理解し 簡単な無理数の四則計算をすること 自然数 整数 有理数 無理数の包含関係など 実数 の構成を理解する ( 例 ) 次の空欄に適当な言葉をいれて, 数の集合を表しなさい ア イ 無理数 整数 ウ 無理数の加法及び減法 乗法公式などを利用した計 算ができる また 分母だけが二項である無理数の 分母の有理化ができる ( 例 1)

More information

学習指導要領

学習指導要領 (1) いろいろな式 学習指導要領紅葉川高校学力スタンダードア式と証明展開の公式を用いて 3 乗に関わる式を展開すること ( ア ) 整式の乗法 除法 分数式の計算ができるようにする 三次の乗法公式及び因数分解の公式を理解し そ 3 次の因数分解の公式を理解し それらを用いて因数れらを用いて式の展開や因数分解をすること また 分解することができるようにする 整式の除法や分数式の四則計算について理解し

More information

2015年度 京都大・理系数学

2015年度 京都大・理系数学 05 京都大学 ( 理系 ) 前期日程問題 解答解説のページへ つの関数 y= si( x+ ) と y = six のグラフの 0 x の部分で囲まれる領域 を, x 軸のまわりに 回転させてできる立体の体積を求めよ ただし, x = 0 と x = は領域を囲む線とは考えない -- 05 京都大学 ( 理系 ) 前期日程問題 解答解説のページへ次の つの条件を同時に満たす四角形のうち面積が最小のものの面積を求めよ

More information

学習指導要領

学習指導要領 (1) 数と式 学習指導要領ア数と集合 ( ア ) 実数数を実数まで拡張する意義を理解し 簡単な無理数の四則計算をすること 千早高校学力スタンダード 自然数 整数 有理数 無理数の用語の意味を理解す る ( 例 ) 次の数の中から自然数 整数 有理 数 無理数に分類せよ 3 3,, 0.7, 3,,-, 4 (1) 自然数 () 整数 (3) 有理数 (4) 無理数 自然数 整数 有理数 無理数の包含関係など

More information

PowerPoint プレゼンテーション

PowerPoint プレゼンテーション 天下一プログラマーコンテスト 2014 決勝解説 AtCoder 株式会社代表取締役 高橋直大 2014/9/8 1 A 問題塙さん 1. 問題概要 2. アルゴリズム 2014/9/8 AtCoder Inc. All rights reserved. 2 A 問題問題概要 正の整数 X の h 進数での表現が以下の条件を満たすとき X は塙さんであるという 同じ文字の出現回数は n 回以下である

More information

補足 中学で学習したフレミング左手の法則 ( 電 磁 力 ) と関連付けると覚えやすい 電磁力は電流と磁界の外積で表される 力 F 磁 電磁力 F li 右ねじの回転の向き電 li ( l は導線の長さ ) 補足 有向線分とベクトル有向線分 : 矢印の位

補足 中学で学習したフレミング左手の法則 ( 電 磁 力 ) と関連付けると覚えやすい 電磁力は電流と磁界の外積で表される 力 F 磁 電磁力 F li 右ねじの回転の向き電 li ( l は導線の長さ ) 補足 有向線分とベクトル有向線分 : 矢印の位 http://totemt.sur.ne.p 外積 ( ベクトル積 ) の活用 ( 面積, 法線ベクトル, 平面の方程式 ) 3 次元空間の つのベクトルの積が つのベクトルを与えるようなベクトルの掛け算 ベクトルの積がベクトルを与えることからベクトル積とも呼ばれる これに対し内積は符号と大きさをもつ量 ( スカラー量 ) を与えるので, スカラー積とも呼ばれる 外積を使うと, 平行四辺形や三角形の面積,

More information

オートマトン 形式言語及び演習 1. 有限オートマトンとは 酒井正彦 形式言語 言語とは : 文字列の集合例 : 偶数個の 1 の後に 0 を持つ列からなる集合 {0, 110, 11110,

オートマトン 形式言語及び演習 1. 有限オートマトンとは 酒井正彦   形式言語 言語とは : 文字列の集合例 : 偶数個の 1 の後に 0 を持つ列からなる集合 {0, 110, 11110, オートマトン 形式言語及び演習 1 有限オートマトンとは 酒井正彦 wwwtrscssinagoya-uacjp/~sakai/lecture/automata/ 形式言語 言語とは : 文字列の集合例 : 偶数個の 1 の後に 0 を持つ列からなる集合 {0, 110, 11110, } 形式言語 : 数学モデルに基づいて定義された言語 認識機械 : 文字列が該当言語に属するか? 文字列 機械 受理

More information

< 中 3 分野例題付き公式集 > (1)2 の倍数の判定法は 1 の位が 0 又は偶数 ( 例題 )1~5 までの 5 つの数字を使って 3 ケタの数をつくるとき 2 の倍数は何通りできるか (2)5 の倍数の判定法は 1 の位が 0 又は 5 ( 例題 )1~9 までの 9 個の数字を使って 3

< 中 3 分野例題付き公式集 > (1)2 の倍数の判定法は 1 の位が 0 又は偶数 ( 例題 )1~5 までの 5 つの数字を使って 3 ケタの数をつくるとき 2 の倍数は何通りできるか (2)5 の倍数の判定法は 1 の位が 0 又は 5 ( 例題 )1~9 までの 9 個の数字を使って 3 () の倍数の判定法は の位が 0 又は偶数 ~ までの つの数字を使って ケタの数をつくるとき の倍数は何通りできるか () の倍数の判定法は の位が 0 又は ~9 までの 9 個の数字を使って ケタの数をつくるとき の倍数は何通りできるか () の倍数の判定法は 下 ケタが 00 又は の倍数 ケタの数 8 が の倍数となるときの 最小の ケタの数は ( 解 ) 一の位の数は の 通り 十の位は一の位の数以外の

More information

1999年度 センター試験・数学ⅡB

1999年度 センター試験・数学ⅡB 99 センター試験数学 Ⅱ 数学 B 問題 第 問 ( 必答問題 ) [] 関数 y cos3x の周期のうち正で最小のものはアイウ 解答解説のページへ 0 x 360 のとき, 関数 y cos3x において, y となる x はエ個, y となる x はオ 個ある また, y sin x と y cos3x のグラフより, 方程式 sin x cos3x は 0 x 360のときカ個の解をもつことがわかる

More information

行列、ベクトル

行列、ベクトル 行列 (Mtri) と行列式 (Determinnt). 行列 (Mtri) の演算. 和 差 積.. 行列とは.. 行列の和差 ( 加減算 ).. 行列の積 ( 乗算 ). 転置行列 対称行列 正方行列. 単位行列. 行列式 (Determinnt) と逆行列. 行列式. 逆行列. 多元一次連立方程式のコンピュータによる解法. コンピュータによる逆行列の計算.. 定数項の異なる複数の方程式.. 逆行列の計算

More information

Microsoft PowerPoint - zairiki_3

Microsoft PowerPoint - zairiki_3 材料力学講義 (3) 応力と変形 Ⅲ ( 曲げモーメント, 垂直応力度, 曲率 ) 今回は, 曲げモーメントに関する, 断面力 - 応力度 - 変形 - 変位の関係について学びます 1 曲げモーメント 曲げモーメント M 静定力学で求めた曲げモーメントも, 仮想的に断面を切ることによって現れる内力です 軸方向力は断面に働く力 曲げモーメント M は断面力 曲げモーメントも, 一つのモーメントとして表しますが,

More information

, 1. x 2 1 = (x 1)(x + 1) x 3 1 = (x 1)(x 2 + x + 1). a 2 b 2 = (a b)(a + b) a 3 b 3 = (a b)(a 2 + ab + b 2 ) 2 2, 2.. x a b b 2. b {( 2 a } b )2 1 =

, 1. x 2 1 = (x 1)(x + 1) x 3 1 = (x 1)(x 2 + x + 1). a 2 b 2 = (a b)(a + b) a 3 b 3 = (a b)(a 2 + ab + b 2 ) 2 2, 2.. x a b b 2. b {( 2 a } b )2 1 = x n 1 1.,,.,. 2..... 4 = 2 2 12 = 2 2 3 6 = 2 3 14 = 2 7 8 = 2 2 2 15 = 3 5 9 = 3 3 16 = 2 2 2 2 10 = 2 5 18 = 2 3 3 2, 3, 5, 7, 11, 13, 17, 19.,, 2,.,.,.,?.,,. 1 , 1. x 2 1 = (x 1)(x + 1) x 3 1 = (x 1)(x

More information

1/10 平成 29 年 3 月 24 日午後 1 時 37 分第 5 章ローレンツ変換と回転 第 5 章ローレンツ変換と回転 Ⅰ. 回転 第 3 章光速度不変の原理とローレンツ変換 では 時間の遅れをローレンツ変換 ct 移動 v相対 v相対 ct - x x - ct = c, x c 2 移動

1/10 平成 29 年 3 月 24 日午後 1 時 37 分第 5 章ローレンツ変換と回転 第 5 章ローレンツ変換と回転 Ⅰ. 回転 第 3 章光速度不変の原理とローレンツ変換 では 時間の遅れをローレンツ変換 ct 移動 v相対 v相対 ct - x x - ct = c, x c 2 移動 / 平成 9 年 3 月 4 日午後 時 37 分第 5 章ローレンツ変換と回転 第 5 章ローレンツ変換と回転 Ⅰ. 回転 第 3 章光速度不変の原理とローレンツ変換 では 時間の遅れをローレンツ変換 t t - x x - t, x 静止静止静止静止 を導いた これを 図の場合に当てはめると t - x x - t t, x t + x x + t t, x (5.) (5.) (5.3) を得る

More information

2015年度 2次数学セレクション(整数と数列)

2015年度 2次数学セレクション(整数と数列) 05 次数学セレクション問題 [ 千葉大 文 ] k, m, を自然数とする 以下の問いに答えよ () k を 7 で割った余りが 4 であるとする このとき, k を 3 で割った余りは であることを示せ () 4m+ 5が 3 で割り切れるとする このとき, m を 7 で割った余りは 4 ではないことを示せ -- 05 次数学セレクション問題 [ 九州大 理 ] 以下の問いに答えよ () が正の偶数のとき,

More information

<4D F736F F F696E74202D208AF489BD8A7782C CF97CA82A882DC82AF2E B8CDD8AB B83685D>

<4D F736F F F696E74202D208AF489BD8A7782C CF97CA82A882DC82AF2E B8CDD8AB B83685D> 幾何学と不変量 数学オリンピックの問題への応用 北海道大学 高等教育推進機構西森敏之 この講演では, 数学の長い歴史の中で見つけられた, 不変量 とよばれるものの考え方を, 実際に数学オリンピックの問題を解きながら, 紹介します 1. ウオーミング アップ まず, 少し脳細胞のウオーミング アップをします 定義 ( 分割合同 ) 平面上の 2 つの多角形 P と Q が分割合同とは, 多角形 P をいくつかの直線で切って小片に分けてから,

More information

Microsoft PowerPoint - 09re.ppt [互換モード]

Microsoft PowerPoint - 09re.ppt [互換モード] 3.1. 正則表現 3. 正則表現 : 正則表現 ( または正規表現 ) とは 文字列の集合 (= 言語 ) を有限個の記号列で表現する方法の 1 つ 例 : (01)* 01 を繰り返す文字列 つまり 0(0+1)* 0 の後に 0 か 1 が繰り返す文字列 (01)* = {,01,0101,010101,01010101, } 0(0+1)*={0,00,01,000,001,010,011,0000,

More information

Microsoft Word - ‚f’fl.doc

Microsoft Word - ‚f’fl.doc 素数いろいろ H1 下尾知 1 素数 (1) 素数の定義知っているとは思いますが 素数の定義をあらためて確認しましょう 素数 :1およびその数自身の他に約数を有しない正の整数 広辞苑第五版 より例えば 13は1と13と-1と-13でのみ割り切れますが 約数も正の整数ですので -1や-13は13の約数ではありません ゆえに13は素数です 誤解がないために書いておきますが 1 およびその数自身の他に約数を有しない正の整数

More information

1/20 平成 29 年 3 月 25 日午前 11 時 7 分第 1 章 :U(N) 群 SU(N) 群 ( 学部 4 年次向 ) 第 1 章 :U(N) 群 SU(N) 群 Ⅰ. 標準模型の素粒子 素粒子の分類図 3 世代 素粒子の標準理論に含まれる素粒子は 素粒子の分類図 から R, G, B

1/20 平成 29 年 3 月 25 日午前 11 時 7 分第 1 章 :U(N) 群 SU(N) 群 ( 学部 4 年次向 ) 第 1 章 :U(N) 群 SU(N) 群 Ⅰ. 標準模型の素粒子 素粒子の分類図 3 世代 素粒子の標準理論に含まれる素粒子は 素粒子の分類図 から R, G, B / 平成 9 年 3 月 5 日午前 時 7 分第 章 :U() 群 SU() 群 ( 学部 4 年次向 ) 第 章 :U() 群 SU() 群 Ⅰ. 標準模型の素粒子 素粒子の分類図 3 世代 素粒子の標準理論に含まれる素粒子は 素粒子の分類図 から R, G, B R, G, B R, G, B u : 5 c :, 6 t :75,e 3 クォーク( quark ) : R, G, B R,

More information

2018年度 東京大・理系数学

2018年度 東京大・理系数学 08 東京大学 ( 理系 ) 前期日程問題 解答解説のページへ関数 f ( ) = + cos (0 < < ) の増減表をつくり, + 0, 0 のと sin きの極限を調べよ 08 東京大学 ( 理系 ) 前期日程問題 解答解説のページへ n+ 数列 a, a, を, Cn a n = ( n =,, ) で定める n! an qn () n とする を既約分数 an p として表したときの分母

More information

千葉大学 ゲーム論II

千葉大学 ゲーム論II 千葉大学ゲーム論 II 第五, 六回 担当 上條良夫 千葉大学ゲーム論 II 第五 六回上條良夫 本日の講義内容 前回宿題の問題 3 の解答 Nash の交渉問題 Nash 解とその公理的特徴づけ 千葉大学ゲーム論 II 第五 六回上條良夫 宿題の問題 3 の解答 ホワイトボードでやる 千葉大学ゲーム論 II 第五 六回上條良夫 3 Nash の二人交渉問題 Nash の二人交渉問題は以下の二つから構成される

More information

2011年度 東京大・文系数学

2011年度 東京大・文系数学 東京大学 ( 文系 ) 前期日程問題 解答解説のページへ x の 次関数 f( x) = x + x + cx+ d が, つの条件 f () =, f ( ) =, ( x + cx+ d) dx= をすべて満たしているとする このような f( x) の中で定積分 I = { f ( x) } dx を最小にするものを求め, そのときの I の値を求めよ ただし, f ( x) は f ( x)

More information

Microsoft PowerPoint - 基礎IV演習1-8.pptx

Microsoft PowerPoint - 基礎IV演習1-8.pptx 地球惑星科学基礎 V 演習 3 次元の空間群 第 6 回 瀬 雄介 http://pmsl.plnet.si.koe-u..jp/~seto 2 次元空間群 3 次元空間群 2 次元空間群 格 並進 (p, ) 回転 (1, 2, 3, 4, 6) 鏡映 (m) 映進 (g) 3 次元空間群 格 並進 (P, I, F, A, B, C, R) 回転 (1, 2, 3, 4, 6) 回反 * (-1

More information

ギリシャ文字の読み方を教えてください

ギリシャ文字の読み方を教えてください 埼玉工業大学機械工学学習支援セミナー ( 小西克享 ) 慣性モーメント -1/6 テーマ 01: 慣性モーメント (Momet of ietia) コマ回しをすると, 長い時間回転させるには重くて大きなコマを選ぶことや, ひもを早く引くことが重要であることが経験的にわかります. 遊びを通して, 回転の運動エネルギーを増やせば, 回転の勢いが増すことを学習できるので, 機械系の学生にとってコマ回しも大切な体験学習のひとつと言えます.

More information

学習指導要領

学習指導要領 (1) 数と式 ア整式 ( ア ) 式の展開と因数分解二次の乗法公式及び因数分解の公式の理解を深め 式を多面的にみたり目的に応じて式を適切に変形したりすること (ax b)(cx d) acx (ad bc)x bd などの基本的な公式を活用して 二次式の展開や因数分解ができる また 式の置き換えや一文字に着目するなどして 展開 因数分解ができる ( 例 ) 次の問に答えよ (1) (3x a)(4x

More information

Microsoft Word - 断面諸量

Microsoft Word - 断面諸量 応用力学 Ⅱ 講義資料 / 断面諸量 断面諸量 断面 次 次モーメントの定義 図 - に示すような形状を有する横断面を考え その全断面積を とする いま任意に定めた直交座標軸 O-, をとり また図中の斜線部の微小面積要素を d とするとき d, d () で定義される, をそれぞれ与えられた横断面の 軸, 軸に関する断面 次モーメント (geometrcal moment of area) という

More information

国語科学習指導案様式(案)

国語科学習指導案様式(案) 算数科学習指導案 日時平成 23 年 6 月 5 日 ( 水 ) 5 校時 2 学年第 6 学年 5 名 単元名 対称な形 ( 第 6 学年第 6 時 ) 単元の目標 対称な図形の観察や構成を通して, その意味や性質を理解し, 図形に対する感覚を豊かにする C 図形 (3) ア : 縮図や拡大図について理解することイ : 対称な図形について理解すること 教材について 第 6 学年では, 平面図形を対称という新しい観点から考察し,

More information

学習指導要領

学習指導要領 (1 ) 数と式 ア数と集合 ( ア ) 実数数を実数まで拡張する意義を理解し 簡単な無理数の四則計算をすること 自然数 整数 有理数 無理数の包含関係など 実 数の構成を理解する ( 例 ) 次の空欄に適当な言葉をいれて, 数の集合を表しなさい 実数の絶対値が実数と対応する点と原点との距離で あることを理解する ( 例 ) 次の値を求めよ (1) () 6 置き換えなどを利用して 三項の無理数の乗法の計

More information

体積の意味 辺が cm の立方体の積み木を使って, 右のような形をつくりました ( 8 個分 ( 8cm 直方体 立方体の体積の公式次の体積を求める公式をかきましょう. 体積 辺が cm の立方体こが何個分ありますか たいせき この形の体積は何 cm ですか 直方体の体積 = たて 横 立方体の体積

体積の意味 辺が cm の立方体の積み木を使って, 右のような形をつくりました ( 8 個分 ( 8cm 直方体 立方体の体積の公式次の体積を求める公式をかきましょう. 体積 辺が cm の立方体こが何個分ありますか たいせき この形の体積は何 cm ですか 直方体の体積 = たて 横 立方体の体積 倍, 倍, 倍した数の求め方次の数かきましょう. 整数と小数. の 倍の数 分の, 分の, 分の にした数の求め方次の数をかきましょう 7.8 の の数..78. の 倍の数 9. の の数.9.8 の 倍の数 8 の の数 8.8 もとの数の 倍, 倍, 倍の数 次の数は,.78 を何倍した数ですか もとの数の 分の, 分の, 分の の数 次の数は,9. の何分の の数ですか 7.8 ( 倍 78

More information

2018年度 筑波大・理系数学

2018年度 筑波大・理系数学 筑波大学 ( 理系 ) 前期日程問題 解答解説のページへ < < とする 放物線 上に 点 (, ), A (ta, ta ), B( - ta, ta ) をとる 三角形 AB の内心の 座標を p とし, 外心の 座標を q とする また, 正の実数 a に対して, 直線 a と放物線 で囲まれた図形の面積を S( a) で表す () p, q を cos を用いて表せ S( p) () S(

More information

Microsoft Word - K-ピタゴラス数.doc

Microsoft Word - K-ピタゴラス数.doc - ピタゴラス数の代数と幾何学 津山工業高等専門学校 菅原孝慈 ( 情報工学科 年 ) 野山由貴 ( 情報工学科 年 ) 草地弘幸 ( 電子制御工学科 年 ) もくじ * 第 章ピタゴラス数の幾何学 * 第 章ピタゴラス数の代数学 * 第 3 章代数的極小元の幾何学の考察 * 第 章ピタゴラス数の幾何学的研究の動機 交点に注目すると, つの曲線が直交しているようにみえる. これらは本当に直交しているのだろうか.

More information

2019年度 千葉大・理系数学

2019年度 千葉大・理系数学 9 千葉大学 ( 理系 ) 前期日程問題 解答解説のページへ a, a とし, のとき, a+ a + a - として数列 { a } () のとき a+ a a a - が成り立つことを証明せよ () åai aaa + が成り立つような自然数 を求めよ i を定める -- 9 千葉大学 ( 理系 ) 前期日程問題 解答解説のページへ 三角形 ABC は AB+ AC BCを満たしている また,

More information

Microsoft PowerPoint - 7.pptx

Microsoft PowerPoint - 7.pptx 通信路 (7 章 ) 通信路のモデル 情報 送信者 通信路 受信者 A a,, a b,, b B m = P( b ),, P( b m ) 外乱 ( 雑音 ) n = P( a,, P( a ) n ) 送信情報源 ( 送信アルファベットと生成確率 ) 受信情報源 ( 受信アルファベッと受信確率 ) でもよい 生成確率 ) 受信確率 ) m n 2 イメージ 外乱 ( 雑音 ) により記号 a

More information

Microsoft Word - no11.docx

Microsoft Word - no11.docx 3. 関数 3.1 関数関数は数学の関数と同じようなイメージを持つと良いでしょう 例えば三角関数の様に一つの実数値 ( 角度 ) から値を求めますし 対数関数の様に二つの値から一つの値を出すものもあるでしょう これをイメージしてもらえば結構です つまり 何らかの値を渡し それをもとに何かの作業や計算を行い その結果を返すのが関数です C 言語の関数も基本は同じです 0 cos 1 cos(0) =

More information

学習指導要領

学習指導要領 (1) 数と式 ア数と集合 ( ア ) 実数数を実数まで拡張する意義を理解し 簡単な無理数の四則計算をすること 絶対値の意味を理解し適切な処理することができる 例題 1-3 の絶対値をはずせ 展開公式 ( a + b ) ( a - b ) = a 2 - b 2 を利用して根号を含む分数の分母を有理化することができる 例題 5 5 + 2 の分母を有理化せよ 実数の整数部分と小数部分の表し方を理解している

More information

複素数平面への誘い

複素数平面への誘い いざな複素数平面への誘い GRS による複素数平面の表現 複素数平面への第一歩 - 複素数モード - 点と複素数 -3 複素数の四則演算 -4 絶対値と偏角, 共役複素数 -5 絶対値と偏角による複素数の表現 複素数平面の変換 4 - 回転移動と相似拡大 - 直線 に関する対称変換 -3 単位円に関する反転変換 -4 複素数平面の変換と曲線 3 入試問題に挑戦 6 3- 陰関数を利用した図形の表示

More information

統計学的画像再構成法である

統計学的画像再構成法である OSEM アルゴリズムの基礎論 第 1 章 確率 統計の基礎 1.13 最尤推定 やっと本命の最尤推定という言葉が出てきました. お待たせしました. この節はいままでの中で最も長く, 少し難しい内容も出てきます. がんばってください. これが終わるといよいよ本命の MLEM,OSEM の章です. ところで 尤 なる字はあまり見かけませんね. ゆう と読みます. いぬ ではありません!! この意味は

More information

Taro-プログラミングの基礎Ⅱ(公

Taro-プログラミングの基礎Ⅱ(公 0. 目次 2. プログラムの作成 2. 1 コラッツ問題 自然数 n から出発して n が偶数ならば 2 で割り n が奇数ならば 3 倍して 1 を足す操作を行う この操作を繰り返すと最後に 1 になると予想されている 問題 1 自然数 aの操作回数を求めよ 問題 2 自然数 aから bまでのなかで 最大操作回数となる自然数を求めよ 2. 2 耐久数 正整数の各桁の数字を掛け 得られた結果についても同様の操作を繰り返す

More information

数学の学び方のヒント

数学の学び方のヒント 数学 Ⅱ における微分単元の 指導法の改善に関する研究 2017 年 10 月北数教旭川大会で発表した内容です 北海道札幌国際情報高等学校和田文興 1 Ⅰ. 研究の動機と背景 高校では極限を厳密に定義できず, 曖昧でわかりにくい. 私自身は, はじめて微分と出会ったとき, 極限の考え方等が納得できなかった. y () a h 接線 a 傾き (a) 2 Ⅰ. 研究の動機と背景 微分の指導改善に関する優れた先行研究がいくつかあるが,

More information

DVIOUT

DVIOUT 第 3 章 フーリエ変換 3.1 フーリエ積分とフーリエ変換 第 章では 周期を持つ関数のフーリエ級数について学びました この章では 最初に 周期を持つ関数のフーリエ級数を拡張し 周期を持たない ( 一般的な ) 関数のフーリエ級数を導きましょう 具体的には 関数 f(x) を区間 L x L で考え この L を限りなく大きくするというアプローチを取ります (L ) なお ここで扱う関数 f(x)

More information

DVIOUT-17syoze

DVIOUT-17syoze 平面の合同変換と相似変換 岩瀬順一 要約 : 平面の合同変換と相似変換を論じる いま大学で行列を学び始めている大学一年生を念頭に置いている 高等学校で行列や一次変換を学んでいなくてもよい 1. 写像 定義 1.1 X, Y を集合とする X の各元 x に対し Y のただ一つの元 y を対応させる規則 f を写像とよび,f : X! Y のように書く f によって x に対応する Y の元を f(x)

More information

構造化プログラミングと データ抽象

構造化プログラミングと データ抽象 計算の理論 後半第 3 回 λ 計算と型システム 本日の内容 λ 計算の表現力 ( 前回の復習 ) データの表現 不動点演算子と再帰 λ 計算の重要な性質 チャーチ ロッサー性 簡約戦略 型付き λ 計算 ブール値 組 ブール値と組の表現 true, false を受け取り 対応する要素を返す関数 として表現 T = λt.λf.t F = λt.λf.f if e 1 then e 2 else

More information

Microsoft PowerPoint - 第3回2.ppt

Microsoft PowerPoint - 第3回2.ppt 講義内容 講義内容 次元ベクトル 関数の直交性フーリエ級数 次元代表的な対の諸性質コンボリューション たたみこみ積分 サンプリング定理 次元離散 次元空間周波数の概念 次元代表的な 次元対 次元離散 次元ベクトル 関数の直交性フーリエ級数 次元代表的な対の諸性質コンボリューション たたみこみ積分 サンプリング定理 次元離散 次元空間周波数の概念 次元代表的な 次元対 次元離散 ベクトルの直交性 3

More information

<4D F736F F F696E74202D2091E6824F82538FCD8CEB82E88C9F8F6F814592F990B382CC8CB4979D82BB82CC82505F D E95848D8682CC90B69

<4D F736F F F696E74202D2091E6824F82538FCD8CEB82E88C9F8F6F814592F990B382CC8CB4979D82BB82CC82505F D E95848D8682CC90B69 第 章 誤り検出 訂正の原理 その ブロック符号とその復号 安達文幸 目次 誤り訂正符号化を用いる伝送系誤り検出符号誤り検出 訂正符号 7, ハミング符号, ハミング符号生成行列, パリティ検査行列の一般形符号の生成行列符号の生成行列とパリティ検査行列の関係符号の訂正能力符号多項式 安達 : コミュニケーション符号理論 安達 : コミュニケーション符号理論 誤り訂正符号化を用いる伝送系 伝送システム

More information

< 染色体地図 : 細胞学的地図 > 組換え価を用いることで連鎖地図を書くことができる しかし この連鎖地図はあくまで仮想的なものであって 実際の染色体と比較すると遺伝子座の順序は一致するが 距離は一致しない そこで実際の染色体上での遺伝子の位置を示す細胞学的地図が作られた 図 : 連鎖地図と細胞学

< 染色体地図 : 細胞学的地図 > 組換え価を用いることで連鎖地図を書くことができる しかし この連鎖地図はあくまで仮想的なものであって 実際の染色体と比較すると遺伝子座の順序は一致するが 距離は一致しない そこで実際の染色体上での遺伝子の位置を示す細胞学的地図が作られた 図 : 連鎖地図と細胞学 グループ A- : 染色体地図とは 染色体地図とは 染色体上での遺伝子の配置を示したものである 連鎖地図と細胞学的地図の 2 種類がある < 染色体地図 : 連鎖地図 ) > 染色体地図 : 染色体上の遺伝子座 ( または遺伝子 ) の位置関係を示した地図ある遺伝子座がどの染色体上にあるのか その染色体のどの位置にあるのかこれらを明らかにすれば染色体地図が書ける A C F R 14% 12% 4%

More information

数学 Ⅲ 無限等比級数の問題解答 問 1 次の無限級数の和を求めよ (1) (5) (2) (6) (7) (3) ( 解 )(1) 初項 < 公比 < の無限等比級数より収束し (4) (2) (3) その和は ( 答 ) であるから 初項 < 公比 となっている よって 収束し その和は よって

数学 Ⅲ 無限等比級数の問題解答 問 1 次の無限級数の和を求めよ (1) (5) (2) (6) (7) (3) ( 解 )(1) 初項 < 公比 < の無限等比級数より収束し (4) (2) (3) その和は ( 答 ) であるから 初項 < 公比 となっている よって 収束し その和は よって 問 1 次の無限級数の和を求めよ (1) (5) (2) (6) (7) (3) ( 解 )(1) 初項 < 公比 < の無限等比級数より収束し (4) (2) (3) その和は であるから 初項 < 公比 となっている よって 収束し その和は よって 収束し その和は < の無限等比級数 であるから 初項 < 公比

More information

2016年度 九州大・理系数学

2016年度 九州大・理系数学 0 九州大学 ( 理系 ) 前期日程問題 解答解説のページへ 座標平面上の曲線 C, C をそれぞれ C : y logx ( x > 0), C : y ( x-)( x- a) とする ただし, a は実数である を自然数とするとき, 曲線 C, C が 点 P, Q で交わり, P, Q の x 座標はそれぞれ, + となっている また, 曲線 C と直線 PQ で囲まれた領域の面積を S,

More information

学習指導要領

学習指導要領 (1) 数と式 学習指導要領ア数と集合 ( ア ) 実数数を実数まで拡張する意義を理解し 簡単な無理数の四則計算をすること 第 1 章第 節実数 東高校学力スタンダード 4 実数 (P.3~7) 自然数 整数 有理数 無理数 実数のそれぞれの集 合について 四則演算の可能性について判断できる ( 例 ) 下の表において, それぞれの数の範囲で四則計算を考えるとき, 計算がその範囲で常にできる場合には

More information

学習指導要領

学習指導要領 (1) 数と式 学習指導要領 数と式 (1) 式の計算二次の乗法公式及び因数分解の公式の理解を深め 式を多面的にみたり目的に応じて式を適切に変形したりすること 東京都立町田高等学校学力スタンダード 整式の加法 減法 乗法展開の公式を利用できる 式を1 つの文字におき換えることによって, 式の計算を簡略化することができる 式の形の特徴に着目して変形し, 展開の公式が適用できるようにすることができる 因数分解因数分解の公式を利用できる

More information

2-1 / 語問題 項書換え系 4.0. 準備 (3.1. 項 代入 等価性 ) 定義 3.1.1: - シグネチャ (signature): 関数記号の集合 (Σ と書く ) - それぞれの関数記号は アリティ (arity) と呼ばれる自然数が定められている - Σ (n) : アリ

2-1 / 語問題 項書換え系 4.0. 準備 (3.1. 項 代入 等価性 ) 定義 3.1.1: - シグネチャ (signature): 関数記号の集合 (Σ と書く ) - それぞれの関数記号は アリティ (arity) と呼ばれる自然数が定められている - Σ (n) : アリ 2-1 / 32 4. 語問題 項書換え系 4.0. 準備 (3.1. 項 代入 等価性 ) 定義 3.1.1: - シグネチャ (signature): 関数記号の集合 (Σ と書く ) - それぞれの関数記号は アリティ (arity) と呼ばれる自然数が定められている - Σ (n) : アリティ n を持つ関数記号からなる Σ の部分集合 例 : 群 Σ G = {e, i, } (e Σ

More information

Microsoft PowerPoint - H21生物計算化学2.ppt

Microsoft PowerPoint - H21生物計算化学2.ppt 演算子の行列表現 > L いま 次元ベクトル空間の基底をケットと書くことにする この基底は完全系を成すとすると 空間内の任意のケットベクトルは > > > これより 一度基底を与えてしまえば 任意のベクトルはその基底についての成分で完全に記述することができる これらの成分を列行列の形に書くと M これをベクトル の基底 { >} による行列表現という ところで 行列 A の共役 dont 行列は A

More information

キュートでかわいいイラストでハロウィーンにまつわるイラストに挑 まずはハロウィーンではおなじみのかぼちゃの ランタン です ランタン ( かぼちゃの部分 ) を描きます 基本図形 楕円 をクリックし 縦長の楕円形を描きます 図形を選択し右クリック 図形の書式設定 塗りつぶし 塗りつぶし ( グラデー

キュートでかわいいイラストでハロウィーンにまつわるイラストに挑 まずはハロウィーンではおなじみのかぼちゃの ランタン です ランタン ( かぼちゃの部分 ) を描きます 基本図形 楕円 をクリックし 縦長の楕円形を描きます 図形を選択し右クリック 図形の書式設定 塗りつぶし 塗りつぶし ( グラデー キュートでかわいいイラストでハロウィーンにまつわるイラストに挑 まずはハロウィーンではおなじみのかぼちゃの ランタン です ランタン ( かぼちゃの部分 ) を描きます 基本図形 楕円 をクリックし 縦長の楕円形を描きます 図形を選択し右クリック 図形の書式設定 塗りつぶし 塗りつぶし ( グラデーション ) グラデーションの分岐点 0% 色オレンジ 100% 色黄 ( 色はユーザー設定です ) (A)

More information

構造化プログラミングと データ抽象

構造化プログラミングと データ抽象 計算の理論 後半第 3 回 λ 計算と型システム 本日の内容 λ 計算の表現力 ( 前回のつづき ) 前回の復習 不動点演算子と再帰 λ 計算の重要な性質 チャーチ ロッサー性 簡約戦略 型付き λ 計算 ブール値 組 ブール値と組の表現 ( 復習 ) true, false を受け取り 対応する要素を返す関数 として表現 T = λt.λf.t F = λt.λf.f if e 1 then e

More information

喨微勃挹稉弑

喨微勃挹稉弑 == 全微分方程式 == 全微分とは 変数の関数 z=f(, ) について,, の増分を Δ, Δ とするとき, z の増分 Δz は Δz z Δ+ z Δ で表されます. この式において, Δ 0, Δ 0 となる極限を形式的に dz= z d+ z d (1) で表し, dz を z の全微分といいます. z は z の に関する偏導関数で, を定数と見なし て, で微分したものを表し, 方向の傾きに対応します.

More information

授業のあとで 情報処理工学 : 第 3 回 10 進数を 16 進数に変換する方法と 16 進数を 10 進数に変換する方法は 標準的な方法でも良いですか? 履修申告は済みましたか? 割り算 方法 ) 54 余り 6 16 ) 3 余り 3 ) 0 第 4 回へ 201

授業のあとで 情報処理工学 : 第 3 回 10 進数を 16 進数に変換する方法と 16 進数を 10 進数に変換する方法は 標準的な方法でも良いですか? 履修申告は済みましたか? 割り算 方法 ) 54 余り 6 16 ) 3 余り 3 ) 0 第 4 回へ 201 授業のあとで 情報処理工学 : 第 3 回 10 進数を 16 進数に変換する方法と 16 進数を 10 進数に変換する方法は 標準的な方法でも良いですか? 履修申告は済みましたか? 割り算 方法 54 10 36 16 16 ) 54 余り 6 16 ) 3 余り 3 ) 0 第 4 回へ 2013/10/30 2 授業のあとで (#2) したがって 54 10 36 16 ここまでの復習 2/10/16

More information

1/30 平成 29 年 3 月 24 日 ( 金 ) 午前 11 時 25 分第三章フェルミ量子場 : スピノール場 ( 次元あり ) 第三章フェルミ量子場 : スピノール場 フェルミ型 ボーズ量子場のエネルギーは 第二章ボーズ量子場 : スカラー場 の (2.18) より ˆ dp 1 1 =

1/30 平成 29 年 3 月 24 日 ( 金 ) 午前 11 時 25 分第三章フェルミ量子場 : スピノール場 ( 次元あり ) 第三章フェルミ量子場 : スピノール場 フェルミ型 ボーズ量子場のエネルギーは 第二章ボーズ量子場 : スカラー場 の (2.18) より ˆ dp 1 1 = / 平成 9 年 月 日 ( 金 午前 時 5 分第三章フェルミ量子場 : スピノール場 ( 次元あり 第三章フェルミ量子場 : スピノール場 フェルミ型 ボーズ量子場のエネルギーは 第二章ボーズ量子場 : スカラー場 の (.8 より ˆ ( ( ( q -, ( ( c ( H c c ë é ù û - Ü + c ( ( - に限る (. である 一方 フェルミ型は 成分をもち その成分を,,,,

More information

スライド 1

スライド 1 暫定版修正 加筆の可能性あり ( 付録 ) 点群基礎 (). 三回転対称 2. 表現行列. 基底変換 4. 具体例 5. 簡約化 6. 指標表 7. 直積 付録 (75 76) のアプローチ : 群論 (group thor) の基礎. アンモニア (NH) でお馴染みの点群 (point group) について検討する 2. ダイヤモンド窒素空孔 (nitrogn acanc cntr in diamond)

More information

母平均 母分散 母標準偏差は, が連続的な場合も含めて, すべての個体の特性値 のすべての実現値 の平均 分散 標準偏差であると考えてよい 有限母集団で が離散的な場合, まさにその意味になるが, そうでない場合も, このように理解してよい 5 母数 母集団から定まる定数のこと 母平均, 母分散,

母平均 母分散 母標準偏差は, が連続的な場合も含めて, すべての個体の特性値 のすべての実現値 の平均 分散 標準偏差であると考えてよい 有限母集団で が離散的な場合, まさにその意味になるが, そうでない場合も, このように理解してよい 5 母数 母集団から定まる定数のこと 母平均, 母分散, . 無作為標本. 基本的用語 推測統計における基本的な用語を確認する 母集団 調査の対象になる集団のこと 最終的に, 判断の対象になる集団である 母集団の個体 母集団を構成する つ つのもののこと 母集団は個体の集まりである 個体の特性値 個体の特性を表す数値のこと 身長や体重など 特性値は, 変量ともいう 4 有限母集団と無限母集団 個体の個数が有限の母集団を 有限母集団, 個体の個数が無限の母集団を

More information

< 文字式問題文の意味を文字式で表す > No. 桁 ( ケタ ) の整数 自然数 例 ) 8 という整数は が つ が 8 つ集まってできている整数である これを踏まえて 8 = + 8 と表すことができる (1) 十の位の数字が χ 一の位の数字が у である 桁の整数は χ と у を用いてど

< 文字式問題文の意味を文字式で表す > No. 桁 ( ケタ ) の整数 自然数 例 ) 8 という整数は が つ が 8 つ集まってできている整数である これを踏まえて 8 = + 8 と表すことができる (1) 十の位の数字が χ 一の位の数字が у である 桁の整数は χ と у を用いてど < 文字式問題文の意味を文字式で表す > No. 1 なに算? (1) 兄はχ 円 弟はу 円持っています 人合わせて何円持っていますか ( 円 ) () a 円のケーキと b 円のケーキを買って 10 円の箱に入れてもらう時の代金の合計はいくらか ( 円 ) () A 中学校には r 人 B 中学校には s 人 C 中学校には t 人の生徒がいる 校全てで何人の生徒がいるか ( 人 ) つまり (

More information

Microsoft Word - no103.docx

Microsoft Word - no103.docx 次は 数える例です ex19.c /* Zeller の公式によって 1 日の曜日の分布を求めるプログラム */ int year, month, c, y, m, wnumber, count[7] = {0, i; for(year = 2001; year

More information

融合規則 ( もっとも簡単な形, 選言的三段論法 ) ll mm ll mm これについては (ll mm) mmが推論の前提部になり mmであるから mmは常に偽となることがわかり ll mmはllと等しくなることがわかる 機械的には 分配則より (ll mm) mm (ll mm) 0 ll m

融合規則 ( もっとも簡単な形, 選言的三段論法 ) ll mm ll mm これについては (ll mm) mmが推論の前提部になり mmであるから mmは常に偽となることがわかり ll mmはllと等しくなることがわかる 機械的には 分配則より (ll mm) mm (ll mm) 0 ll m 知識工学 ( 第 5 回 ) 二宮崇 ( ninomiya@cs.ehime-u.ac.jp ) 論理的エージェント (7 章のつづき ) 証明の戦略その 3 ( 融合法 ) 証明の戦略その 1 やその 2 で証明できたときは たしかにKKKK ααとなることがわかるが なかなか証明できないときや 証明が本当にできないときには KKKK ααが成り立つのか成り立たないのかわからない また どのような証明手続きを踏めば証明できるのか定かではない

More information

数学 ⅡB < 公理 > 公理を論拠に定義を用いて定理を証明する 1 大小関係の公理 順序 (a > b, a = b, a > b 1 つ成立 a > b, b > c a > c 成立 ) 順序と演算 (a > b a + c > b + c (a > b, c > 0 ac > bc) 2 図

数学 ⅡB < 公理 > 公理を論拠に定義を用いて定理を証明する 1 大小関係の公理 順序 (a > b, a = b, a > b 1 つ成立 a > b, b > c a > c 成立 ) 順序と演算 (a > b a + c > b + c (a > b, c > 0 ac > bc) 2 図 数学 Ⅱ < 公理 > 公理を論拠に定義を用いて定理を証明する 大小関係の公理 順序 >, =, > つ成立 >, > > 成立 順序と演算 > + > + >, > > 図形の公理 平行線の性質 錯角 同位角 三角形の合同条件 三角形の合同相似 量の公理 角の大きさ 線分の長さ < 空間における座漂とベクトル > ベクトルの演算 和 差 実数倍については 文字の計算と同様 ベクトルの成分表示 平面ベクトル

More information

1 1. はじめに ポンスレの閉形定理 Jacobi の証明 June 5, 2013 Akio Arimoto ヤコビは [2] においてポンスレの閉形定理に初等幾何を用いた証明を与え ている 大小 2つの円があり 一方が他方を完全に含んでいるとする 大小 2 円の半径をそれぞれ Rr, とする

1 1. はじめに ポンスレの閉形定理 Jacobi の証明 June 5, 2013 Akio Arimoto ヤコビは [2] においてポンスレの閉形定理に初等幾何を用いた証明を与え ている 大小 2つの円があり 一方が他方を完全に含んでいるとする 大小 2 円の半径をそれぞれ Rr, とする . はじめに ポンスレの閉形定理 Jcobi の証明 Jue 5 03 Akio Aimoto ヤコビは [] においてポンスレの閉形定理に初等幾何を用いた証明を与え ている 大小 つの円があり 一方が他方を完全に含んでいるとする 大小 円の半径をそれぞれ とする 中心間の距離を とすれば 0 < + < が成立している 大きい円の周上の点 A から小さい円に接線を引く 接線と大きい円の周上に交わる

More information

高ゼミサポSelectⅢ数学Ⅰ_解答.indd

高ゼミサポSelectⅢ数学Ⅰ_解答.indd 数と式 ⑴ 氏点00 次の式を展開せよ ( 各 6 点 ) ⑴ (a-)(a -a+) ⑵ (x+y+)(x+y-5) 次の式を因数分解せよ (⑴⑵ 各 6 点, ⑶⑷ 各 8 点 ) ⑴ x y+x -x-6y ⑵ x -x - ⑶ a +5b ⑷ (x+y+z+)(x+)+yz 数と式 ⑵ 氏点00 次の問いに答えよ ( 各 6 点 ) ⑴ 次の循環小数を分数で表せ. a-5 = ⑵ 次の等式を満たす実数

More information

超入門対称座標法 皆様こん は今回の御題は 対称座標法 です この解析手法を解説したものは沢山有りますが ヨクワカラン! というものが多いと思います そこで毎度の事ですが 骨流トンデモ解説擬き を作りました この記載が何かの参考になる事を期待します サイタマ ドズニーランド 大学 SDU 学長鹿の骨

超入門対称座標法 皆様こん は今回の御題は 対称座標法 です この解析手法を解説したものは沢山有りますが ヨクワカラン! というものが多いと思います そこで毎度の事ですが 骨流トンデモ解説擬き を作りました この記載が何かの参考になる事を期待します サイタマ ドズニーランド 大学 SDU 学長鹿の骨 超入門対称座標法 皆様こん は今回の御題は 対称座標法 です この解析手法を解説したものは沢山有りますが ヨクワカラン! というものが多いと思います そこで毎度の事ですが 骨流トンデモ解説擬き を作りました この記載が何かの参考になる事を期待します サイタマ ドズニーランド 大学 SDU 学長鹿の骨記平成鹿年骨月吉日一説に依ると SDU はさいたまドスケベ大学ではないか? と言う話が有るが あながち間違いでは無い

More information

オートマトン 形式言語及び演習 3. 正規表現 酒井正彦 正規表現とは 正規表現 ( 正則表現, Regular Expression) オートマトン : 言語を定義する機械正規表現 : 言語

オートマトン 形式言語及び演習 3. 正規表現 酒井正彦   正規表現とは 正規表現 ( 正則表現, Regular Expression) オートマトン : 言語を定義する機械正規表現 : 言語 オートマトン 形式言語及び演習 3. 酒井正彦 www.trs.css.i.nagoya-u.ac.jp/~sakai/lecture/automata/ とは ( 正則表現, Regular Expression) オートマトン : 言語を定義する機械 : 言語を記号列で定義 - 記述しやすい ( ユーザフレンドリ ) 例 :01 + 10 - UNIX の grep コマンド - UNIX の

More information

Fibonacci_square_pdf

Fibonacci_square_pdf 1/81 ページ フィボナッチ数列に現れる平方数 1 と 144 だけであることの証明 フィボナッチ数列と フィボナッチ数列と, 前の 2 つの数を加えると次の数になる という数列です ただし,1 番目と 2 番目の数両方とも 1 です 1, 1, 1 + 1 = 2 ですから,3 番目の数 2 になります 1, 1, 2, 1 + 2 = 3 ですから,4 番目の数 3 です 1, 1, 2, 3,

More information

学力スタンダード(様式1)

学力スタンダード(様式1) (1) 数と式 学習指導要領ア数と集合 ( ア ) 実数数を実数まで拡張する意義を理解し 簡単な無理数の四則計算をすること 稔ヶ丘高校学力スタンダード 有理数 無理数の定義や実数の分類について理解し ている 絶対値の意味と記号表示を理解している 実数と直線上の点が一対一対応であることを理解 し 実数を数直線上に示すことができる 例 実数 (1) -.5 () π (3) 数直線上の点はどれか答えよ

More information

5. 単元指導目標単元の目標 ( 子どもに事前に知らせる ) 三角形を辺や角に目をつけて分類整理して それぞれの性質を見つけよう 二等辺三角形や正三角形のかき方やつくり方を知ろう 二等辺三角形や正三角形の角を比べよう 子どもに事前に知らせる どうまとめるのか 何を ( どこを ) どうするのか (

5. 単元指導目標単元の目標 ( 子どもに事前に知らせる ) 三角形を辺や角に目をつけて分類整理して それぞれの性質を見つけよう 二等辺三角形や正三角形のかき方やつくり方を知ろう 二等辺三角形や正三角形の角を比べよう 子どもに事前に知らせる どうまとめるのか 何を ( どこを ) どうするのか ( 学年 :3 年単元名 :10. 三角形 1. 単元目標 ( 全 7 時間 ) 二等辺三角形 正三角形について理解す 図形の構成要素の目をつけて三角形を分類整理しようる とする 二等辺三角形 正三角形をかくことがで 図形の構成要素の目をつけて三角形の性質を考える きる 角の概念をつくる 2. 指導内容 ストローやひごを使った三角形づくり 三角形の分類と二等辺三角形 正三角形の定義( 二等辺三角形 正三角形

More information