. T ::= x f n t 1 t n F n,m (x(t 1 t n )t 1 t m) x, f n n, F n,m n, m-., F n,m (x(t 1 t n )t 1 t m), x, t 1,..., t n, t 1,..., t m. F n,m (x(t 1 t n )

Similar documents
x = a 1 f (a r, a + r) f(a) r a f f(a) 2 2. (a, b) 2 f (a, b) r f(a, b) r (a, b) f f(a, b)

Akito Tsuboi June 22, T ϕ T M M ϕ M M ϕ T ϕ 2 Definition 1 X, Y, Z,... 1

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

ii

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

2 1 κ c(t) = (x(t), y(t)) ( ) det(c (t), c x (t)) = det (t) x (t) y (t) y = x (t)y (t) x (t)y (t), (t) c (t) = (x (t)) 2 + (y (t)) 2. c (t) =

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

2011de.dvi

ax 2 + bx + c = n 8 (n ) a n x n + a n 1 x n a 1 x + a 0 = 0 ( a n, a n 1,, a 1, a 0 a n 0) n n ( ) ( ) ax 3 + bx 2 + cx + d = 0 4

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google


V 0 = + r pv (H) + qv (T ) = + r ps (H) + qs (T ) = S 0 X n+ (T ) = n S n+ (T ) + ( + r)(x n n S n ) = ( + r)x n + n (d r)s n = ( + r)v n + V n+(h) V

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

x (x, ) x y (, y) iy x y z = x + iy (x, y) (r, θ) r = x + y, θ = tan ( y ), π < θ π x r = z, θ = arg z z = x + iy = r cos θ + ir sin θ = r(cos θ + i s

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y

II Time-stamp: <05/09/30 17:14:06 waki> ii


1 R n (x (k) = (x (k) 1,, x(k) n )) k 1 lim k,l x(k) x (l) = 0 (x (k) ) 1.1. (i) R n U U, r > 0, r () U (ii) R n F F F (iii) R n S S S = { R n ; r > 0


r 1 m A r/m i) t ii) m i) t B(t; m) ( B(t; m) = A 1 + r ) mt m ii) B(t; m) ( B(t; m) = A 1 + r ) mt m { ( = A 1 + r ) m } rt r m n = m r m n B

18 ( ) I II III A B C(100 ) 1, 2, 3, 5 I II A B (100 ) 1, 2, 3 I II A B (80 ) 6 8 I II III A B C(80 ) 1 n (1 + x) n (1) n C 1 + n C

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

DVIOUT

生活設計レジメ

44 4 I (1) ( ) (10 15 ) ( 17 ) ( 3 1 ) (2)

I II III 28 29


1: *2 W, L 2 1 (WWL) 4 5 (WWL) W (WWL) L W (WWL) L L 1 2, 1 4, , 1 4 (cf. [4]) 2: 2 3 * , , = , 1

( ) Loewner SLE 13 February

II (10 4 ) 1. p (x, y) (a, b) ε(x, y; a, b) 0 f (x, y) f (a, b) A, B (6.5) y = b f (x, b) f (a, b) x a = A + ε(x, b; a, b) x a 2 x a 0 A = f x (

6. Euler x

x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y)


I, II 1, A = A 4 : 6 = max{ A, } A A 10 10%

Mathematical Logic I 12 Contents I Zorn

III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F

6.1 (P (P (P (P (P (P (, P (, P.

A, B, C. (1) A = A. (2) A = B B = A. (3) A = B, B = C A = C. A = B. (3)., f : A B g : B C. g f : A C, A = C. 7.1, A, B,. A = B, A, A A., A, A

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0

lecture

y = f(x) y = f( + h) f(), x = h dy dx f () f (derivtive) (differentition) (velocity) p(t) =(x(t),y(t),z(t)) ( dp dx dt = dt, dy dt, dz ) dt f () > f x

Z[i] Z[i] π 4,1 (x) π 4,3 (x) 1 x (x ) 2 log x π m,a (x) 1 x ϕ(m) log x 1.1 ( ). π(x) x (a, m) = 1 π m,a (x) x modm a 1 π m,a (x) 1 ϕ(m) π(x)

Note.tex 2008/09/19( )

i

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d

数学Ⅱ演習(足助・09夏)

6.1 (P (P (P (P (P (P (, P (, P.101

2 7 V 7 {fx fx 3 } 8 P 3 {fx fx 3 } 9 V 9 {fx fx f x 2fx } V {fx fx f x 2fx + } V {{a n } {a n } a n+2 a n+ + a n n } 2 V 2 {{a n } {a n } a n+2 a n+

2000年度『数学展望 I』講義録

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt

1 variation 1.1 imension unit L m M kg T s Q C QT 1 A = C s 1 MKSA F = ma N N = kg m s 1.1 J E = 1 mv W = F x J = kg m s 1 = N m 1.

1 8, : 8.1 1, 2 z = ax + by + c ax by + z c = a b +1 x y z c = 0, (0, 0, c), n = ( a, b, 1). f = n i=1 a ii x 2 i + i<j 2a ij x i x j = ( x, A x), f =

December 28, 2018

I: 2 : 3 +

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT


16 B


() n C + n C + n C + + n C n n (3) n C + n C + n C 4 + n C + n C 3 + n C 5 + (5) (6 ) n C + nc + 3 nc n nc n (7 ) n C + nc + 3 nc n nc n (

CALCULUS II (Hiroshi SUZUKI ) f(x, y) A(a, b) 1. P (x, y) A(a, b) A(a, b) f(x, y) c f(x, y) A(a, b) c f(x, y) c f(x, y) c (x a, y b)

solutionJIS.dvi

Riemann-Stieltjes Poland S. Lojasiewicz [1] An introduction to the theory of real functions, John Wiley & Sons, Ltd., Chichester, 1988.,,,,. Riemann-S

mugensho.dvi

24 I ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x

9 2 1 f(x, y) = xy sin x cos y x y cos y y x sin x d (x, y) = y cos y (x sin x) = y cos y(sin x + x cos x) x dx d (x, y) = x sin x (y cos y) = x sin x

( ) P, P P, P (negation, NOT) P ( ) P, Q, P Q, P Q 3, P Q (logical product, AND) P Q ( ) P, Q, P Q, P Q, P Q (logical sum, OR) P Q ( ) P, Q, P Q, ( P

201711grade1ouyou.pdf

keisoku01.dvi

1. (Naturau Deduction System, N-system) 1.1,,,,, n- R t 1,..., t n Rt 1... t n atomic formula : x, y, z, u, v, w,... : f, g, h,... : c, d,... : t, s,

pdf


meiji_resume_1.PDF

koji07-01.dvi

1 a b = max{a, b}, a b = mi{a, b} a 1 a 2 a a 1 a = max{a 1,... a }, a 1 a = mi{a 1,... a }. A sup A, if A A A A A sup A sup A = + A if A = ± y = arct

newmain.dvi

D xy D (x, y) z = f(x, y) f D (2 ) (x, y, z) f R z = 1 x 2 y 2 {(x, y); x 2 +y 2 1} x 2 +y 2 +z 2 = 1 1 z (x, y) R 2 z = x 2 y

1.2 y + P (x)y + Q(x)y = 0 (1) y 1 (x), y 2 (x) y 1 (x), y 2 (x) (1) y(x) c 1, c 2 y(x) = c 1 y 1 (x) + c 2 y 2 (x) 3 y 1 (x) y 1 (x) e R P (x)dx y 2


Jacobson Prime Avoidance

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4

Fubini


renshumondai-kaito.dvi

i


Wide Scanner TWAIN Source ユーザーズガイド

A

.3. (x, x = (, u = = 4 (, x x = 4 x, x 0 x = 0 x = 4 x.4. ( z + z = 8 z, z 0 (z, z = (0, 8, (,, (8, 0 3 (0, 8, (,, (8, 0 z = z 4 z (g f(x = g(

I 1

?


..3. Ω, Ω F, P Ω, F, P ). ) F a) A, A,..., A i,... F A i F. b) A F A c F c) Ω F. ) A F A P A),. a) 0 P A) b) P Ω) c) [ ] A, A,..., A i,... F i j A i A

untitled


.1 z = e x +xy y z y 1 1 x 0 1 z x y α β γ z = αx + βy + γ (.1) ax + by + cz = d (.1') a, b, c, d x-y-z (a, b, c). x-y-z 3 (0,

基礎数学I

e a b a b b a a a 1 a a 1 = a 1 a = e G G G : x ( x =, 8, 1 ) x 1,, 60 θ, ϕ ψ θ G G H H G x. n n 1 n 1 n σ = (σ 1, σ,..., σ N ) i σ i i n S n n = 1,,

第1部 一般的コメント

II K116 : January 14, ,. A = (a ij ) ij m n. ( ). B m n, C n l. A = max{ a ij }. ij A + B A + B, AC n A C (1) 1. m n (A k ) k=1,... m n A, A k k

Transcription:

Kazuki Nakamura Department of Mathematical and Computing Science, Tokyo Institute of Technology * 1 Kashima Ryo Department of Mathematical and Computing Science, Tokyo Institute of Technology 1,,., Σ,..,. [1] 2 2.1. x, y, z,.... f, g, h,.... F, G,.... p, q,.... =,,,,,,, (, ), 1 2 (0 ), n-, n- n, m-. 0- c. V ar.,,. 2.1 *1 kashima@is.titech.ac.jp ( ) 1

. T ::= x f n t 1 t n F n,m (x(t 1 t n )t 1 t m) x, f n n, F n,m n, m-., F n,m (x(t 1 t n )t 1 t m), x, t 1,..., t n, t 1,..., t m. F n,m (x(t 1 t n )t 1 t m) t 1,..., t n x, t 1,..., t m., n k=1 (k + c) 1, 2- Σ Σ(k(k + c)1 n)., s, t. 2.2. φ ::= t = s pt 1 t n ( φ) (φ ψ) (φ ψ) (φ ψ) ( xφ) ( xφ), φ, ψ, ρ.... 2.3 t F (x(t 1 t n )t 1 t m) t 1,..., t n, t 1,..., t m, t 1,..., t m x t., t, φ, BV ar(t), BV ar(φ), F V ar(t), F V ar(φ).,. 2.4 t φ x s, t, φ x s., t[s/x], φ[s/x]. 2.2,.. x(t 1 = s 1 ) x(t 2 = s 2 ) x(t n = s n ) F (x(t 1 t n )t 1 t m) = F (y(s 1 [y/x] s n [y/x])t 1 t m) ( ) ( y x, s 1,..., s n x ) ( ) Σ. x f(x) = g(x) n n f(x) = g(y) x=1 y=1 2

, Γ φ Γ φ Γ φ. 3 3.1. 3.1. D (D ) f F p f M, F M, p M. n, m- F M F M., Σ.,,. n, m- F n,m F M n,m. F M n,m : (D D) n D m D,.,,.. Σ(k(k + c)1 n) k + c, k, k + c k., [2]. V ar D,. σ. 1. 3.2 σ x V ar, a D, σ(x a). { a (y = x) σ(x a)(y) = σ(y) (y x). 2.. σ(x a)(x b) = σ(x b) σ(x a)(y b) = σ(y b)(x a). 3.3 M σ t M σ (t) D. 3

(1) t = x(x ), M σ (x) = σ(x) (2) t = ft 1 t n, M σ (ft 1 t n ) = f M (M σ (t 1 ),..., M σ (t n )) (3) t = F n,m (x(t 1 t n )t 1 t m), M σ (F n,m (x(t 1 t n )t 1 t m)) = Fn,m((M M x σ (t 1 ),..., Mx σ (t n )), (M σ (t 1),..., M σ (t m))) Mx σ (t) a Mx σ (t)(a) = M σ(x a) (t) D. M σ. 3.4 M σ φ M σ (φ) {T rue, F alse} M σ ( ) = F alse M σ (t = s) = T rue M σ (t) = M σ (s) M σ (p n t 1 t n ) = T rue p M n (M σ (t 1 ),..., M σ (t n )) M σ ( ψ) = T rue M σ (ψ) = F alse M σ (ψ 1 ψ 2 ) = T rue M σ (ψ 1 ) = T rue M σ (ψ 2 ) = T rue M σ (ψ 1 ψ 2 ) = T rue M σ (ψ 1 ) = T rue M σ (ψ 2 ) = T rue M σ (ψ 1 ψ 2 ) = T rue M σ (ψ 1 ) = T rue M σ (ψ 2 ) = T rue M σ ( xψ) = T rue a D M σ(x a) (ψ) = T rue M σ ( xψ) = T rue a D M σ(x a) (ψ) = T rue, =. 3.5 Γ, M σ, ψ Γ M σ (ψ) = T rue, Γ, M, σ. 3.6 Γ, φ. Γ = φ. Γ M, σ M σ (φ) = T rue 3.2.. 3.7 M, σ M. (1) t t x. a M σ (t) = M σ(x a) (t) (2) φ φ x. a, M σ (φ) = T rue M σ(x a) (φ) = T rue 4

3.8 M, σ. s M σ (s) = a. (1) t. M σ (t[s/x]) M σ(x a) (t) (2) φ. M σ (φ[s/x]) T rue M σ(x a) (φ) = T rue 3.9 M, σ M. (1) t t x s 1, s 2. M σ (s 1 ) = M σ (s 2 ) M σ (t[s 1 /x]) = M σ (t[s 2 /x]) (2) φ φ x s 1, s 2. M σ (s 1 ) = M σ (s 2 ), (M σ (φ[s 1 /x]) = T rue M σ (φ[s 2 /x]) = T rue) 3.10 M, σ M. (1) t t y a. M σ(x a) (t) = M σ(y a) (t[y/x]) (2) φ φ y a. M σ(x a) (φ) = T rue M σ(y a) (φ[y/x]) = T rue 4 4.1 4.1 ( ) Γ, φ. Γ φ = Γ = φ Proof. Γ φ φ A. A.., 3.9 NK. ( I) Γ = ψ[t/x] Γ M, σ M σ (ψ[t/x]) = T rue. M σ (t) = a 3.8 M σ(x a) (ψ) = T rue M σ ( xψ) = T rue. 5

( E).. (A 1) xψ ρ [ψ[y/x]]. (A 2) ρ ( E) Γ 1, Γ 2 Γ A 1, A 2. A 1 Γ 1 = xψ. Γ M, σ M σ ( xψ) = T rue, a M σ(x a) (ψ) = T rue. 3.10 M σ(y a) (ψ[y/x]) = T rue. y Γ 2 3.7 M, σ(y a) Γ 2 {ψ[y/x]}. A 2 M σ(y a) (ρ) = T rue, y ρ M σ (ψ) = T rue. ( I) Γ. Γ Γ Γ M, σ Γ. y Γ, a M, σ(y a) Γ. M σ(y a) (φ[y/x]) = T rue, 3.10 M σ(x a) (φ) = T rue. M σ ( xφ) = T rue. ( E) Γ M, σ, M σ ( xφ) = T rue, a M σ(x a) (φ) = T rue. a M σ (t) = a 3.8 M σ (φ[t/x]) = T rue. ( ) Γ M, σ, 1 i n i M σ ( x(t i = s i )) = T rue. a M σ(x a) (t i ) = M σ(x a) (s i ). 3.10 M σ(x a) (s i ) = M σ(y a) (s i [y/x]), M σ(x a) (t i ) = M σ(y a) (s i [y/x]). a Mx σ (t i ) My σ (s i [y/x]).,, M σ (F (x(t 1 t i t n )t 1 t m)) = M σ (F (x(s 1 s i s n )t 1 t m)) M σ (F (x(t 1 t n )t 1 t m) = F (y(s 1 [y/x] s n [y/x])t 1 t m)) = T rue.. 4.2 4.2 ( ) Γ, φ. Γ = φ = Γ φ. [1],.,.,,. 6

4.3 Γ, Γ, Γ, Γ. 4.4 ( ) Γ. Γ = Γ.,. [1], V ar F B. F B., F, B.,,. Term F,B = {t F V ar(t) F, BV ar(t) B} Fomula F,B = {φ F V ar(φ) F, BV ar(φ) B} Γ Fomula F,B Γ F Γ.,. 4.5 Γ Fomula F,B. Γ φ Fomula F,B, φ Γ φ Γ xφ Γ t Term F,B φ[t/x] Γ. 4.6 Γ. Γ φ φ Γ 4.7 Γ. ψ Γ M σ (ψ) Γ ψ 1 ψ 2 Γ ψ 1 Γ ψ 2 Γ ψ 1 ψ 2 Γ ψ 1 Γ ψ 2 Γ ψ 1 ψ 2 Γ ψ 1 Γ ψ 2 Γ xψ Γ s Term F,B ψ[s/x] Γ xψ Γ s Term F,B ψ[s/x] Γ 7

Γ Fomula F,B Γ Γ + Γ +. Fomula F,B, φ 1, φ 2,. Γ 0 = Γ, Γ n. Γ n Γ n+1 = Γ n { xψ, ψ[y/x]} Γ n {φ n+1 } ((Γ n {φ n+1 } ) ) Γn {φ n+1 } φ n+1 xψ ( ) ( y Γ n xψ F ) Γ + = n=1 Γ n,. Term F,B t s def t = s Γ +, D. t [[t]].. f M ([[t 1 ]],..., [[t n ]]) := [[ft 1 t n ]] p M ([[t 1 ]],..., [[t n ]]) = T rue pt 1 t n Γ +, well-defined. [1]. D,.,. 4.8 x B. D g x, F V ar(t ) F {x}, BV ar(t ) B T, s T erm F,B. g([[s]]) = [[T [s/x]]] x g, T T g,x, g x. 4.9 M F F M ( x F M ((g 1,..., g n ), ([[t 1]],..., [[t [[F (x(t m]])) = g1,x T gn,x)t 1 t m)]] g i [[y]] (otherwise) ) ( y F ) well-defined..,. 4.10 T gi,x g i x, T g g i,y i y,. [[F (x(t g1,x T gn,x)t 1 t m)]] = [[F (y(t g 1,y T g n,y)t 1 t m)]] 8

Proof. T g1,x,..., T gn,x, T g 1,y,..., T g n,y, B z. z T g1,x,..., T gn,x x, T g 1,y,..., T g n,y y. 3. [[F (x(t g1,x T gn,x)t 1 t m)]] = [[F (z(t g1,x[z/x] T gn,x[z/x])t 1 t m)]] (4.1) [[F (y(t g 1,y T g n,y)t 1 t m)]] = [[F (z(t g 1,y[z/y] T g n,y[z/y])t 1 t m)]] (4.2) [[F (z(t g1,x[z/x] T gn,x[z/x])t 1 t m)]] = [[F (z(t g 1,y[z/y] T g n,y[z/y])t 1 t m)]] (4.3) (4.1) x(t gi,x = T gi,x), Γ + x(t gi,x = T gi,x). 4.6, x(t gi,x = T gi,x) Γ +. z T gi,x x,, Γ + F (x(t g1,x T gn,x)t 1 t m) = F (z(t g1,x[z/x] T gn,x[z/x])t 1 t m), 4.6 F (x(t g1,x T gn,x)t 1 t m) = F (z(t g1,x[z/x] T gn,x[z/x])t 1 t m) Γ +. (4.1). (4.2). (4.3) T gi,x, T g i,y g i x, y, s Term F,B, [[T gi,x[s/x]]] = [[T g i,y[s/y]]]. z T gi,x x T g i,y y, [[T gi,x[z/x][s/z]]] = [[T g i,y[z/y][s/z]]], T gi,x[z/x][s/z] = T g i,y[z/y][s/z] Γ +., s, 4.7(6), z(t gi,x[z/x] = T g i,y[z/y]) Γ +., Γ + F (z(t g1,x[z/x] T gn,x[z/x])t 1 t m) = F (z(t g 1,y[z/y] T g n,y[z/y])t 1 t m). 4.6 F (z(t g1,x[z/x] T gn,x[z/x])t 1 t m) = F (z(t g 1,y[z/y] T g n,y[z/y])t 1 t m) Γ + (4.3). M, σ, x F σ(x) = [[x]]. M, σ Γ. σ. 9

4.11 x 1,..., x n B. FVar(s) F {x 1,..., x n }, BVar(s) B s M σ (s) = [[s ]] σ(x i ) = [[t i ]] (t i Term F,B ) [t 1 /x 1 ][t 2 /x 2 ] [t n /x n ]. Proof. s.. 1,1-.,. M σ (F (x(t)t )) = F M (Mx σ (t), M σ (t )) = F M (Mx σ (t), [[t ]]) Mx σ (t). x, a Term F,B,. Mx σ (t)([[a]]) = M σ(x [a ]) (t) = [[t [a/x]]] ( ), t Mx σ (t) x., M σ (F (x(t)t )) = F M (Mx σ (t), [[t ]]) = [[F (x(t )t )]] = [[(F (x(t)t )) ]]. M σ (s) = [[s ]]. 4.12 φ Formula F,B. φ Γ + M σ (φ) = T rue Proof. φ. (i) φ. (ii) φ t = s, t = s Γ + [[t]] = [[s]]. 4.11 M σ (t) = M σ (s), M σ (t = s) = T rue (iii) φ pt 1 pt n, pt 1 pt n Γ + p M ([[t 1 ]],..., [[t n ]]) = T rue p M (M(t 1 ),..., M(t n )) = T rue ( 4.11) M σ (pt 1 pt n ) = T rue (iv) φ ψ, ψ 1 ψ 2, ψ 1 ψ 2, ψ 1 ψ 2, 4.7. 10

(v) φ xψ, xψ,, xψ, 4.7 xψ Γ + t Term F,B ψ[t/x] Γ + (4.4) t Term F,B, M σ (ψ[t/x]) = T rue (4.5). (4.5), a t Term F,B [[t]], 4.11 M σ (t) = [[t]], 3.8 a M σ(x a) (ψ) = T rue (4.6). (4.6), t, 3.8 (4.5). (4.5) (4.6). (4.6), M σ ( xψ) = T rue,. xψ. Γ Γ + 4.12 M, σ Γ.,. 5,,.,.,,. standard semantics Henkin semantics 2 ( [3] ).,, 4.9., standard semantics. [1],, 2009 [2], :, 1999 [3] Väänänen, Jouko. Second-order logic and foundations of mathematics. Bulletin of Symbolic Logic 7.4 (2001): 504-520. 11