[1][2] Lorente de No Rall [3][4][5][6] *2 *3 E m I m I m φ ( 1) ( ) SUA, MUA, LFP, ECoG, EEG 1 1) 1 ( ) φ(lfp,ecog) 2) 1 φ ECoG decoding 2 φ 2.1 φ 1)

Similar documents
passive passive active 1 ( ) LTP 1 1) 2) 1 1

dvi

untitled

臨床神経401-37_43.indd

1 7 ω ω ω 7.1 0, ( ) Q, 7.2 ( Q ) 7.1 ω Z = R +jx Z 1/ Z 7.2 ω 7.2 Abs. admittance (x10-3 S) RLC Series Circuit Y R = 20 Ω L = 100

2 A. Ramón y Cajal projectional brain map barrel Statview I I II II I I II II

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202E646F63>

MainOfManuscript.dvi

( ) fnirs ( ) An analysis of the brain activity during playing video games: comparing master with not master Shingo Hattahara, 1 Nobuto Fuji

修士論文

nsg02-13/ky045059301600033210

Vol.24 No.3

OPA134/2134/4134('98.03)

65-6 小泉・谷所・野村・楠本.pwd

平成14年度 本態性多種化学物質過敏状態の調査研究 研究報告書

PDF

Gmech08.dvi

26 Development of Learning Support System for Fixation of Basketball Shoot Form

II (No.2) 2 4,.. (1) (cm) (2) (cm) , (

LLG-R8.Nisus.pdf

LD

1 2 2 (Dielecrics) Maxwell ( ) D H

The Physics of Atmospheres CAPTER :


空気の屈折率変調を光学的に検出する超指向性マイクロホン

75 unit: mm Fig. Structure of model three-phase stacked transformer cores (a) Alternate-lap joint (b) Step-lap joint 3 4)

a) Extraction of Similarities and Differences in Human Behavior Using Singular Value Decomposition Kenichi MISHIMA, Sayaka KANATA, Hiroaki NAKANISHI a

untitled

main.dvi

4.4 R q s

0A_SeibutsuJyoho-RF.ppt

untitled

( ) : 1997

2 (March 13, 2010) N Λ a = i,j=1 x i ( d (a) i,j x j ), Λ h = N i,j=1 x i ( d (h) i,j x j ) B a B h B a = N i,j=1 ν i d (a) i,j, B h = x j N i,j=1 ν i

神経による筋収縮の指令-ニューロン

BH BH BH BH Typeset by FoilTEX 2

02.„o“φiflì„㙃fic†j

2 The Characteristics of Two Negative Peaks on Visual Evoked Potentials with Depth Perception Yoichi MIYAWAKI, Yasuyuki YANAGIDA, Taro MAEDA, and Susu

Sample function Re random process Flutter, Galloping, etc. ensemble (mean value) N 1 µ = lim xk( t1) N k = 1 N autocorrelation function N 1 R( t1, t1

64 3 g=9.85 m/s 2 g=9.791 m/s 2 36, km ( ) 1 () 2 () m/s : : a) b) kg/m kg/m k

,, 2. Matlab Simulink 2018 PC Matlab Scilab 2


, [g/cm 3 ] [m/s] 1 6 [kg m 2 s 1 ] ,58 1, ,56 1, , ,58 1,

charpter0.PDF

Microsoft PowerPoint - 02_資料.ppt [互換モード]

q π =0 Ez,t =ε σ {e ikz ωt e ikz ωt } i/ = ε σ sinkz ωt 5.6 x σ σ *105 q π =1 Ez,t = 1 ε σ + ε π {e ikz ωt e ikz ωt } i/ = 1 ε σ + ε π sinkz ωt 5.7 σ

85 4

AD8212: 高電圧の電流シャント・モニタ

MOSFET HiSIM HiSIM2 1

4/15 No.

QMI_09.dvi

QMI_10.dvi

02-量子力学の復習


ELECTRONIC IMAGING IN ASTRONOMY Detectors and Instrumentation 5 Instrumentation and detectors

pp d 2 * Hz Hz 3 10 db Wind-induced noise, Noise reduction, Microphone array, Beamforming 1

技術研究報告第26号


THE INSTITUTE OF ELECTRONICS, INFORMATION AND COMMUNICATION ENGINEERS TECHNICAL REPORT OF IEICE.

橡実験IIINMR.PDF

臨床神経45-1.indb

news

1 Visible spectroscopy for student Spectrometer and optical spectrum phys/ishikawa/class/index.html

Microsoft PowerPoint - 山形大高野send ppt [互換モード]

Gauss Gauss ɛ 0 E ds = Q (1) xy σ (x, y, z) (2) a ρ(x, y, z) = x 2 + y 2 (r, θ, φ) (1) xy A Gauss ɛ 0 E ds = ɛ 0 EA Q = ρa ɛ 0 EA = ρea E = (ρ/ɛ 0 )e

ver.1 / c /(13)

c y /2 ddy = = 2π sin θ /2 dθd /2 [ ] 2π cos θ d = log 2 + a 2 d = log 2 + a 2 = log 2 + a a 2 d d + 2 = l

Unidirectional Measurement Current-Shunt Monitor with Dual Comparators (Rev. B

2 (2016 3Q N) c = o (11) Ax = b A x = c A n I n n n 2n (A I n ) (I n X) A A X A n A A A (1) (2) c 0 c (3) c A A i j n 1 ( 1) i+j A (i, j) A (i, j) ã i

1

CM1-GTX

( ) e + e ( ) ( ) e + e () ( ) e e Τ ( ) e e ( ) ( ) () () ( ) ( ) ( ) ( )

5b_08.dvi

http : // ta/mathbio.html

(Jackson model) Ziman) (fluidity) (viscosity) (Free v


positron 1930 Dirac 1933 Anderson m 22Na(hl=2.6years), 58Co(hl=71days), 64Cu(hl=12hour) 68Ge(hl=288days) MeV : thermalization m psec 100

総研大恒星進化概要.dvi

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.

平成8年2月28日\(水\)

EQUIVALENT TRANSFORMATION TECHNIQUE FOR ISLANDING DETECTION METHODS OF SYNCHRONOUS GENERATOR -REACTIVE POWER PERTURBATION METHODS USING AVR OR SVC- Ju

Mott散乱によるParity対称性の破れを検証

Note.tex 2008/09/19( )

pp * Yw; Mq 1. 1L 20 cc [1] Sonoluminescence: Light emission from acoustic cavitation bubble. Pak-Kon Choi (Departm

B1 Ver ( ), SPICE.,,,,. * : student : jikken. [ ] ( TarouOsaka). (, ) 1 SPICE ( SPICE. *1 OrCAD

山梨大学医科学雑誌23-2

,,., (,, SiO 2, Si-N, ),,,,,.,.,,, (Schottky). [ ].,..,.,., 1 m µm 10., 10 5, [ ] (6N-103)..,.,. [ ] 1. (,, ) :,.,,.., (HF),.


OPA277/2277/4277 (2000.1)

untitled

fiš„v2.dvi


untitled

Isogai, T., Building a dynamic correlation network for fat-tailed financial asset returns, Applied Network Science (7):-24, 206,

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202E646F63>

IPSJ SIG Technical Report 1, Instrument Separation in Reverberant Environments Using Crystal Microphone Arrays Nobutaka ITO, 1, 2 Yu KITANO, 1

磁性物理学 - 遷移金属化合物磁性のスピンゆらぎ理論

2.2 h h l L h L = l cot h (1) (1) L l L l l = L tan h (2) (2) L l 2 l 3 h 2.3 a h a h (a, h)

untitled

vol5-honma (LSR: Local Standard of Rest) 2.1 LSR R 0 LSR Θ 0 (Galactic Constant) 1985 (IAU: International Astronomical Union) R 0 =8.5

Transcription:

2008 11 7 1) ( ) (LFP,ECoG) 2) ECoG decoding 1 ( 1) * 1 SUA MUA LFP ECoG EEG multiunit field cortico- local electro- activity potential gram singleunit activity electroencephalogram (AHP ) > 300Hz < 300Hz > 200KΩ 40k 120kΩ 200k 800kΩ < 2kΩ < 1kΩ tip 2 4mm 4 10mm ( ) < 50µm 50 350µm 0.5 3mm 5mm > 10mm 1 Hodgkin-Huxley http://www.nips.ac.jp/%7emyoshi/ http://pooneil.sakura.ne.jp/archives/permalink/001208.php pooneil68@gmail.com *1 1

[1][2] Lorente de No Rall [3][4][5][6] *2 *3 E m I m I m φ ( 1) ( ) SUA, MUA, LFP, ECoG, EEG 1 1) 1 ( ) φ(lfp,ecog) 2) 1 φ ECoG decoding 2 φ 2.1 φ 1) 2 a) φ I m r φ = 1 I m 4πσ r (1) σ conductance (1) φ ( ) current I m 2 b) (sink) *4 active passive *2 Lorente de No 1000 (J. Comp. Neurol. 300:1-4 (1990)) part 2 ch.16 p.384-477 *3 Nunez Electric fields of the brain 2 [7] 3 4 sculp EEG *4 2

a) b) Axon terminal Sink Source Pyramidal neuron Pyramidal neuron 2 a) dendrite I m φ b) φ active (sink) passive (source) (source) φ active, passive I m *5 φ = 1 4πσ n i=1 I m (i) r(i) (2) *6 n I m (i) = 0 (3) i=1 3 sink ( 2 ) E m V m *7 λ 2 2 V m z 2 + τ V m t + V m = E m (4) source sink *5 I m active sink passive source sink source 0 J J = I m source sink return current charge sink source J = 0 passive source sink return current ( passive current ) *6 dipole *7 (4) V m E m z t E m z = 0 non-zero 3

3 Passive (4) E m V m λ length constant V m ( ) ( ) τ time constant V m ( ) V m I m I m = g m V m + c m V m t (5) sink(= E m ) V m I m (2) I m φ 4 Passive volume conduction 4 (SUA, MUA, LFP, ECoG, EEG) (EEG σ ) 2.2 1: V m φ Single-unit activity φ V m 5 Rat CA1 4

([8] ) 5 V m φ [8] V m 1KHz (5) I m = g m V m + c m V m t c m V m t V m t (6) single-unit activity (< 50µm) sink r φ sink I m (1) (6)(7) φ = 1 I m 4πσ r I m (7) φ I m V m t (8) φ V m 2.3 2: φ φ 6 [9] 5

6 [9] Buzsaki Koch rat CA1 (Buzsaki) φ dendrite φ (Koch) φ 2.4 3: φ low-pass 7 Human ECoG hand movement rest low-frequency band (8-32Hz) High frequency band (76-100Hz) 7 Human ECoG low-frequency band high-frequency band [10] 1) low-frequency band High frequency band 2) (volume conduction ) RC low-pass 1) 2) Logothetis awake monkey V1 intracortical electrode 4*4 array (spacing 0.25-3 mm) LFP [11] coherence coherence population coherence 6

LFP frequency band 2-8Hz 2.9mm 65-120Hz 1.3mm Logothetis LFP ( 4) Volume conduction low-pass (2) σ Logothetis Neuron 2007[12] low-pass *8 12-25% low-pass volume conduction low-pass 4 (4) λ 1 f (9) space constant(λ) f [13] space constant passsive V m f I m φ f [7] ( 8) * 9 low-pass Passive volume conduction 8 ECoG,LFP *8 conductance σ 10Hz (conductance ) 26Ω/cm 1KHz 23Ω/cm 6µF/cm 100Hz *9 CA1 LFP Schaffer collateral Pyramidal layer sink (population spike) source stratum radiatum (Schaffer collateral apical dendrite ) sink source passive source 7

3 φ 3.1 φ φ ( 9) volume conduction 9 I m φ volume conduction φ = 1 4πσ n i=1 I m (i) r(i) φ I σ 2 φ = I 3.2 LFP CSD 10 a) φ(i) I m (j) φ(i) I m (j) 8

a) b) 10 a) b) ( ) ( 10 b)) ( ) I(i) φ(i) (10) * 10 σ 2 φ = I (10) mesoscopic : 1) Quasi-static (< 5KHz ) 2) Conductance(σ) EEG LFP ECoG intracortial (z) x, y z ( appendix A ) σ 2 φ = I (11) z2 φ 2 I CSD 2 2 CSD LFP *10 I E σ E = I E φ quasi-static E = φ σ 2 φ = I LFP local field potential (field) (potential) 9

MED EEG source localization 3.3 CSD CSD 1950 Walter Pitts John C. Eccles [14] 70 80 Mitzdorf [14] CSD LFP Source L3 L3 L4 Sink L4 L5 L5 11 CSD [14] cat optic radiation 17 50µm LFP ( 11 ) 2 CSD( 11 ) ( ( 2 3ms) layer 4 sink( ) layer 3 source( ) ( 5 10ms) layer 4 source-sink-source layer 4 sink layer 3 source layer 4 LGN ( 11 ) layer 5 sink source layer 5 pyramidal neuron apical dendrite *11 (< 10ms) CSD sink-source ( 12) *11 sink source 10

Source Sink Sink Source 12 CSD CSD recurrent 2 CSD LFP SGS SGI [15] SGS SGI reciprocal CSD I I m ( 13) CSD Mesoscopic CSD LFP Microscopic 13 / 1 1 dendrite 1( ) CSD1 2( modulation) CSD2 classifier Henry Markram blue brain project 1 1 gamma frequency simulation LFP CSD simulation [16] 11

3.4 ECoG dipole a) b) 14 a)ecog b)ecog current dipole localization ECoG ECoG φ ( 14 a)) CSD ECoG *12 sink sink I source I current dipole ( 14 b)) sink source I I m 0 (3) Dipole Id dipole moment I dipole d Pyramidal neuron( 15 a) apical dendrite sink source (open field) dipole moment Id basket cell( 15 b) dendrite sink source (closed field) dipole moment Id LFP ECoG pyramidal neuron Dipole φ volume conduction (2) (sink source ) dipole φ h d *13 *12 ECoG current source ECoG EEG localization φ 7 localization spacing *13 h d EEG (h > 10mm) ECoG ECoG dipole localization EEG ECoG 12

a) b) 15 Open field closed field φ Id 4πσh 2 (12) ( appendix B ) φ dipole moment Id dipole φ ECoG x h φ ( h x )3 φ (13) ( appendix C ) 2mm h = 1mm ECoG spacing 10mm x = 10mm φ 1/1000 *14 ECoG φ dipole moment Id ECoG spacing spacing source localization ( 5mm 2mm ) Dipole ECoG sink- source ECoG ( (12) ) source- sink ECoG ECoG movement-related potential potential [17] ECoG potential CSD current dipole *14 h = 1mm x = 10mm (2) d < 1 10 3 φ φ 13

4 ( 16) Passive volume conduction SUA Layer CSD CSD LFP Dipole ECoG Dipole moment 16 ECoG LFP LFP-ECoG LFP-SUA Logothetis LFP SUA LFP (90Hz ) SUA [18] SUA SUA source localization ECoG decode CSD 2 source localization decode φ decode 14

5 ( LFP MUA ) [1] Lemon R. Methods for neuronal recording in conscious animals. New York:. W iley, 1984 [2] Llinas R, Nicholson C (1974) Analysis of field potentials in the central nervous system. In: Handbook of EEG and clinical neurophysiology (Stevens CF, ed.), pp. 61-85. Amsterdam: Elsevier [3] Lorente de No, R. (1947a) A study of nerve physiology. Part 1 In: Studies from the Rockefeller Institute of Medical Research, 131:1-496. [4] Lorente de No, R. (1947b) A study of nerve physiology. Part 2 In: Studies from the Rockefeller Institute of Medical Research, 132:1-548. [5] Rall W. (1962) Electrophysiology of a dendritic neuron model. Biophys J. 2(2 Pt 2):145-167 [6] Rall W, Shepherd GM. (1968) Theoretical reconstruction of field potentials and dendrodendritic synaptic interactions in olfactory bulb. J Neurophysiol. 31(6):884-915 [7] Nunez, P.L., and Srinivasan, R. (2006). Electric fields of the brain : The neurophysics of EEG (2nd. ed.). New York : Oxford University Press. [8] Henze, D. et.al., (2000) Intracellular features predicted by extracellular recordings in the hippocampus in vivo. J Neurophysiol. 84, 390-400. [9] Gold C et.al., (2006) On the origin of the extracellular action potential waveform: A modeling study. J Neurophysiol. 95(5):3113-28. [10] Miller KJ et.al. (2007) Spectral changes in cortical surface potentials during motor movement. J Neurosci. 27(9):2424-2432. [11] Goense JB, Logothetis NK. (2008) Neurophysiology of the BOLD fmri signal in awake monkeys. Curr Biol. 6;18(9):631-640 [12] Logothetis NK, Kayser C, Oeltermann A. (2007) In vivo measurement of cortical impedance spectrum in monkeys: implications for signal propagation. Neuron 6;55(5):809-23. [13] Pettersen KH, Einevoll GT. (2008) Amplitude variability and extracellular low-pass filtering of neuronal spikes. Biophys J. 94(3):784-802 [14] Mitzdorf U. (1985) Current source-density method and application in cat cerebral cortex: investigation of evoked potentials and EEG phenomena. Physiol Rev. 65(1):37-100. [15] Phongphanphanee P, Kaneda K, Isa T. (2008) Spatiotemporal profiles of field potentials in mouse superior colliculus analyzed by multichannel recording. J Neurosci. 28(37):9309-9318 [16] Markram H. (2006) The blue brain project. Nat Rev Neurosci. 7(2):153-160 [17] Mehring C et.al. (2004) Comparing information about arm movement direction in single channels of local and epicortical field potentials from monkey and human motor cortex. J Physiol Paris. 98(4-6):498-506. [18] Rasch MJ et.al. (2008) Inferring spike trains from local field potentials. J Neurophysiol. 99(3):1461-76 Appendix A CSD x, y, z σ 2 φ = I σ ( 2 φ x 2 + 2 φ y 2 + 2 φ z 2 ) = I x, y 2 φ x 2 = 2 φ y 2 = 0 15

x, y activation σ 2 φ z 2 = I Appendix B Dipole moment φ +I, r h + 1 2 d I, r h 1 2 d (2) φ = I 4πσ ( 1 h + 1 2 d 1 h 1 2 d ) φ = Id 4πσ ( 1 h 2 ( d 2 )2 ) h d h 2 ( d 2 )2 h 2 φ Id 4πσh 2 Appendix C Dipole moment φ Dipole Dipole θ h d r cos θ = h φ φ Id cos θ 4πσr 2 Idh 4πσr 3 Dipole φ r = h φ Id 4πσh 2 φ r = x 2 + h 2 φ Idh 4πσ( x 2 + h 2 ) 3 x h x 2 + h 2 x φ = ( h ( x 2 + h 2 ) )3 φ φ φ = ( h x )3 16