$\mathfrak{u}_{1}$ $\frac{\epsilon_{1} }{1-\mathcal{E}_{1}^{J}}<\frac{\vee 1\prime}{2}$ $\frac{1}{1-\epsilon_{1} }\frac{1}{1-\epsilon_{\sim} }$ $\frac

Similar documents
14 6. $P179$ 1984 r ( 2 $arrow$ $arrow$ F 7. $P181$ 2011 f ( 1 418[? [ 8. $P243$ ( $\cdot P260$ 2824 F ( 1 151? 10. $P292

1 1.1 Excel Excel Excel log 1, log 2, log 3,, log 10 e = ln 10 log cm 1mm 1 10 =0.1mm = f(x) f(x) = n

ベクトルの近似直交化を用いた高階線型常微分方程式の整数型解法

42 1 ( ) 7 ( ) $\mathrm{s}17$ $-\supset$ 2 $(1610?\sim 1624)$ 8 (1622) (3 ), 4 (1627?) 5 (1628) ( ) 6 (1629) ( ) 8 (1631) (2 ) $\text{ }$ ( ) $\text{

Predator-prey (Tsukasa Shimada) (Tetsurou Fujimagari) Abstract Galton-Watson branching process 1 $\mu$ $\mu\leq 1$ 1 $\mu>1$ $\mu

Title DEA ゲームの凸性 ( 数理最適化から見た 凸性の深み, 非凸性の魅惑 ) Author(s) 中林, 健 ; 刀根, 薫 Citation 数理解析研究所講究録 (2004), 1349: Issue Date URL

$\mathrm{n}$ Interpolation solves open questions in discrete integrable system (Kinji Kimura) Graduate School of Science and Tec

可積分測地流を持つエルミート多様体のあるクラスについて (幾何学的力学系の新展開)

110 $\ovalbox{\tt\small REJECT}^{\mathrm{i}}1W^{\mathrm{p}}\mathrm{n}$ 2 DDS 2 $(\mathrm{i}\mathrm{y}\mu \mathrm{i})$ $(\mathrm{m}\mathrm{i})$ 2

44 $d^{k}$ $\alpha^{k}$ $k,$ $k+1$ k $k+1$ dk $d^{k}=- \frac{1}{h^{k}}\nabla f(x)k$ (2) $H^{k}$ Hesse k $\nabla^{2}f(x^{k})$ $ff^{k+1}=h^{k}+\triangle

5 / / $\mathrm{p}$ $\mathrm{r}$ 8 7 double 4 22 / [10][14][15] 23 P double 1 $\mathrm{m}\mathrm{p}\mathrm{f}\mathrm{u}\mathrm{n}/\mathrm{a

Title ウェーブレットのリモートセンシングへの応用 ( ウェーブレットの構成法と理工学的応用 ) Author(s) 新井, 康平 Citation 数理解析研究所講究録 (2009), 1622: Issue Date URL

$\mathrm{s}$ DE ( Kenta Kobayashi ), (Hisashi Okamoto) (Research Institute for Mathematical Sciences, Kyoto Univ.) (Jinghui Zhu)

Wolfram Alpha と CDF の教育活用 (数学ソフトウェアと教育 : 数学ソフトウェアの効果的利用に関する研究)

Title 疑似乱数生成器の安全性とモンテカルロ法 ( 確率数値解析に於ける諸問題,VI) Author(s) 杉田, 洋 Citation 数理解析研究所講究録 (2004), 1351: Issue Date URL

Archimedean Spiral 1, ( ) Archimedean Spiral Archimedean Spiral ( $\mathrm{b}.\mathrm{c}$ ) 1 P $P$ 1) Spiral S

$\hat{\grave{\grave{\lambda}}}$ $\grave{\neg}\backslash \backslash ^{}4$ $\approx \mathrm{t}\triangleleft\wedge$ $10^{4}$ $10^{\backslash }$ $4^{\math

9 1: $O$,,, ( ), BT $2W6$ 22,, BT [7] BT, 12, $\xi_{1}=$ $(x_{11}, x_{12}, \ldots,x_{112}),$ $\xi_{2}=(x_{21}, x_{22}, \ldots, x_{212})$ $i$ $

Wolfram Alpha と数学教育 (数式処理と教育)

可約概均質ベクトル空間の$b$-関数と一般Verma加群

Title Compactification theorems in dimens Topology and Related Problems) Author(s) 木村, 孝 Citation 数理解析研究所講究録 (1996), 953: Issue Date URL

105 $\cdot$, $c_{0},$ $c_{1},$ $c_{2}$, $a_{0},$ $a_{1}$, $\cdot$ $a_{2}$,,,,,, $f(z)=a_{0}+a_{1}z+a_{2}z^{2}+\cdots$ (16) $z=\emptyset(w)=b_{1}w+b_{2

a) \mathrm{e}.\mathrm{t}\mathrm{o}\mathrm{t}\mathrm{t}\mathrm{o}\mathrm{r}\mathrm{i}$ -u.ac $\mathrm{f}$ 0$ (Yoshinobu Tamura) D

超幾何的黒写像

8.1 Fubini 8.2 Fubini 9 (0%) 10 (50%) Carathéodory 10.3 Fubini 1 Introduction [1],, [2],, [3],, [4],, [5],, [6],, [7],, [8],, [1, 2, 3] 1980

$6\mathrm{V}\mathrm{I}\mathrm{I}\mathrm{I}$ (p (Kazuhiro Sakuma) Dept. of Math. and Phys., Kinki Univ.,. (,,.) \S 0. $C^{\infty

8.1 Fubini 8.2 Fubini 9 (0%) 10 (50%) Carathéodory 10.3 Fubini 1 Introduction 1 (1) (2) {f n (x)} n=1 [a, b] K > 0 n, x f n (x) K < ( ) x [a

$\sim 22$ *) 1 $(2R)_{\text{}}$ $(2r)_{\text{}}$ 1 1 $(a)$ $(S)_{\text{}}$ $(L)$ 1 ( ) ( 2:1712 ) 3 ( ) 1) 2 18 ( 13 :

(Masatake MORI) 1., $I= \int_{-1}^{1}\frac{dx}{\mathrm{r}_{2-x})(1-\mathcal{i}1}.$ (1.1) $\overline{(2-x)(1-\mathcal{i})^{1}/4(1

時間遅れをもつ常微分方程式の基礎理論入門 (マクロ経済動学の非線形数理)

4 4. A p X A 1 X X A 1 A 4.3 X p X p X S(X) = E ((X p) ) X = X E(X) = E(X) p p 4.3p < p < 1 X X p f(i) = P (X = i) = p(1 p) i 1, i = 1,, r + r

( )/2 hara/lectures/lectures-j.html 2, {H} {T } S = {H, T } {(H, H), (H, T )} {(H, T ), (T, T )} {(H, H), (T, T )} {1

$\mathrm{v}$ ( )* $*1$ $\ovalbox{\tt\small REJECT}*2$ \searrow $\mathrm{b}$ $*3$ $*4$ ( ) [1] $*5$ $\mathrm{a}\mathrm{c}

162 $\cdots$ 2, 3, 5, 7, 11, 13, ( deterministic ) $\mathbb{r}$ ( -1 3 ) ( ) $\text{ }$ ( ). straightforward ( ) $p$ version ( ) - 2 $\mathrm{n}$ $\om

(Kazuo Iida) (Youichi Murakami) 1,.,. ( ).,,,.,.,.. ( ) ( ),,.. (Taylor $)$ [1].,.., $\mathrm{a}1[2]$ Fermigier et $56\mathrm{m}

Title 脳波を記述する積分方程式について ( 関数方程式の定性的理論とその現象解析への応用 ) Author(s) 鈴木, 貴 ; 久保, 明達 Citation 数理解析研究所講究録 (2001), 1216: 1-12 Issue Date URL

: ( ) (Takeo Suzuki) Kakegawa City Education Center Sizuoka Prif ] [ 18 (1943 ) $A $ ( : ),, 1 18, , 3 $A$,, $C$

L \ L annotation / / / ; / ; / ;.../ ;../ ; / ;dash/ ;hyphen/ ; / ; / ; / ; / ; / ; ;degree/ ;minute/ ;second/ ;cent/ ;pond/ ;ss/ ;paragraph/ ;dagger/

3 3 i

$\bullet$ A Distributed Sorting Algorithm on a Line Network: Adopting the Viewpoint of Sequential and Parallel Sorting Atsushi SASA

(Keiko Harai) (Graduate School of Humanities and Sciences Ochanomizu University) $\overline{\mathrm{b} \rfloor}$ (Michie Maeda) (De

離散ラプラス作用素の反復力学系による蝶の翅紋様の実現とこれに基づく進化モデルの構成 (第7回生物数学の理論とその応用)

Explicit form of the evolution oper TitleCummings model and quantum diagonal (Dynamical Systems and Differential Author(s) 鈴木, 達夫 Citation 数理解析研究所講究録

$\overline{\circ\lambda_{\vec{a},q}^{\lambda}}f$ $\mathrm{o}$ (Gauge Tetsuo Tsuchida 1. $\text{ }..\cdot$ $\Omega\subset \mathrm{r}^

22 GG set GG 2 ( ) $N=\{12 \cdots\}$ ( ) ( ) Peano $1arrow^{o}Narrow^{s}N$ $1arrow Xarrow X$ $N$ $\mathrm{s}\mathrm{e}\mathrm{t}^{g}$ $N$ Dedekind $N$

中国古代の周率(上) (数学史の研究)

(Team 2 ) (Yoichi Aoyama) Faculty of Education Shimane University (Goro Chuman) Professor Emeritus Gifu University (Naondo Jin)

,, ( ), ( ), ( ), ( ) 2, ( 2 ) $L^{2}$ ( ) I, $L^{2}(-\infty, \infty)$ II, I, $L^{\infty}(-\infty, \infty)$ I 1 $n$ $f(t)\in L^{2

数学月間活動から見た教育数学

Hierarchical model and triviality of $\phi_{4}^{4}$ abstract (Takashi Hara) (Tetsuya Hattori) $\mathrm{w}\mathrm{a}\mathrm{t}\mat

『三才発秘』(陳文、1697年)と「阿蘭陀符帳」 : Napier's Bonesの日本伝来 (数学史の研究)

x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y)

40 $\mathrm{e}\mathrm{p}\mathrm{r}$ 45

$)\triangleleft\hat{g}$ $\mathcal{t}\mathcal{h}$ 106 ( ) - Einstein ( ) ( ) $R_{\mu\nu}- \frac{1}{2}g_{\mu\nu}r=\kappa T_{\mu\nu}$ bottom-up feedback

: , 2.0, 3.0, 2.0, (%) ( 2.

Title 二重指数関数型変数変換を用いたSinc 関数近似 ( 科学技術における数値計算の理論と応用 II) Author(s) 杉原, 正顯 Citation 数理解析研究所講究録 (1997), 990: Issue Date URL

76 20 ( ) (Matteo Ricci ) Clavius 34 (1606) 1607 Clavius (1720) ( ) 4 ( ) \sim... ( 2 (1855) $-$ 6 (1917)) 2 (1866) $-4$ (1868)

On moments of the noncentral Wishart distributions and weighted generating functions of matchings (Combinatorial Representation Theory and its Applica

(Kazuyuki Hasegawa) Department of Mathematics Faculty of Science Science University of Tokyo 1 ff ( ) ([2] [3] [4] [6]) $\nabla$

$2_{\text{ }}$ weight Duke-Imamogle weight Saito-Kurokawa lifting ( ) weight $2k-2$ ( : ) Siegel $k$ $k$ Hecke compatible liftin

1 Introduction 1 (1) (2) (3) () {f n (x)} n=1 [a, b] K > 0 n, x f n (x) K < ( ) x [a, b] lim f n (x) f(x) (1) f(x)? (2) () f(x)? b lim a f n (x)dx = b

Title 非線形シュレディンガー方程式に対する3 次分散項の効果 ( 流体における波動現象の数理とその応用 ) Author(s) 及川, 正行 Citation 数理解析研究所講究録 (1993), 830: Issue Date URL

$\mathrm{d}\mathrm{p}$ (Katsuhisa $\mathrm{o}\mathrm{m}\mathrm{o}$) Aichi Institute of Technology (Takahiro Ito) Nagoya Institute of Te

$\mathrm{i}\mathrm{d}$ 15 ) Authorization ( ) Accounting ( ) UNIX Authentication ID Authorization Accounting $\sim-$ UNIX Authentication BSD Flat Data


$w_{ij}^{\infty}(t)=\delta_{ij},$ $i\leq j,$ $w_{ij}^{0}(t)=0,$ $i>j$ $w_{ii}(t)\neq 0,$ $i=1,$ $\ldots,$ $n$ $W_{\infty}(t),$ $W_{0}(t)$ (14) $L(f)=W

(Osamu Ogurisu) V. V. Semenov [1] :2 $\mu$ 1/2 ; $N-1$ $N$ $\mu$ $Q$ $ \mu Q $ ( $2(N-1)$ Corollary $3.5_{\text{ }}$ Remark 3

Title 素数判定の決定的多項式時間アルゴリズム ( 代数的整数論とその周辺 ) Author(s) 木田, 雅成 Citation 数理解析研究所講究録 (2003), 1324: Issue Date URL


(SHOGO NISHIZAWA) Department of Mathematical Science, Graduate School of Science and Technology, Niigata University (TAMAKI TANAKA)

128 Howarth (3) (4) 2 ( ) 3 Goldstein (5) 2 $(\theta=79\infty^{\mathrm{o}})$ : $cp_{n}=0$ : $\Omega_{m}^{2}=1$ $(_{\theta=80}62^{\mathrm{o}})$

A

1 8, : 8.1 1, 2 z = ax + by + c ax by + z c = a b +1 x y z c = 0, (0, 0, c), n = ( a, b, 1). f = n i=1 a ii x 2 i + i<j 2a ij x i x j = ( x, A x), f =

Banach m- (Shigeru Iemoto), (Watalu Takahashi) (Department of Mathematical and Computing Sciences, Tokyo Institute of Technology) 1

Title$C^1$- 空間上のコロフキン定理 ( コロフキン型近似定理 ) Author(s) 渡邉, 誠治 Citation 数理解析研究所講究録 (2002), 1243: Issue Date URL

1 1 ( ) ( % mm % A B A B A 1

[bica]) our gmeff means Abel Milnor $K$ - motif (Mochizuki Satoshi) * Graduate School of Mathematical Sciences, the University o

a n a n ( ) (1) a m a n = a m+n (2) (a m ) n = a mn (3) (ab) n = a n b n (4) a m a n = a m n ( m > n ) m n 4 ( ) 552

* KISHIDA Masahiro YAGIURA Mutsunori IBARAKI Toshihide 1. $\mathrm{n}\mathrm{p}$ (SCP) 1,..,,,, $[1][5][10]$, [11], [4].., Fishe

web04.dvi

Part () () Γ Part ,

誤り訂正符号を用いた量子力学的性質の保護 : 量子誤り訂正符号入門 (諸分野との協働による数理科学のフロンティア)

$\mathbb{h}_{1}^{3}(-c^{2})$ 12 $([\mathrm{a}\mathrm{a}1 [\mathrm{a}\mathrm{a}3])$ CMC Kenmotsu-Bryant CMC $\mathrm{l}^{3}$ Minkowski $H(\neq 0)$ Kenm

REJECT}$ 11^{\cdot}\mathrm{v}\mathrm{e}$ virtual turning point II - - new Stokes curve - (Shunsuke SASAKI) RIMS Kyoto University 1

ii

USB 起動 KNOPPIX / Math / 2010 について (数式処理研究の新たな発展)

Milnor 1 ( ), IX,. [KN].,. 2 : (1),. (2). 1 ; 1950, Milnor[M1, M2]. Milnor,,. ([Hil, HM, IO, St] ).,.,,, ( 2 5 )., Milnor ( 4.1)..,,., [CEGS],. Ω m, P

MediaWiki for Kisorigaku

A generalized Cartan decomposition for connected compact Lie groups and its application (Topics in Combinatorial Representation Theory)

D 24 D D D

106 (2 ( (1 - ( (1 (2 (1 ( (1(2 (3 ( - 10 (2 - (4 ( 30 (? (5 ( 48 (3 (6 (

教科専門科目の内容を活用する教材研究の指導方法 III : TitleTeam 2 プロジェクト ( 数学教師に必要な数学能力に関連する諸問題 ) Author(s) 青山, 陽一 ; 神, 直人 ; 曽布川, 拓也 ; 中馬, 悟朗 Citation 数理解析研究所講究録 (2013), 1828

27.\..


December 28, 2018

$\circ$ MURAKAMI HIROSHI TOKYO METROPOLITAN COLLEGE, MANAGEMENT AND INFORMATION monic $P$ (x $f(x=0$ (pre-conditioning $f(x/p$ (

Title 改良型 S 字型風車についての数値シミュレーション ( 複雑流体の数理とシミュレーション ) Author(s) 桑名, 杏奈 ; 佐藤, 祐子 ; 河村, 哲也 Citation 数理解析研究所講究録 (2007), 1539: Issue Date URL

Connection problem for Birkhoff-Okubo equations (Yoshishige Haraoka) Department of Mathematics Kumamoto University 50. $\Lambda$ $n\c

$\bullet$ $\bullet$ $\bullet$ $\bullet$ $\bullet$ Wiki blog BrEdiMa 1 (NAKANO Yasuhiito) (MORIMITSU Daisuke) (MURAO Hirokazu) Univ.

$\ovalbox{\tt\small REJECT}$ SDE 1 1 SDE ;1) SDE 2) Burgers Model SDE $([4],[5],[7], [8])$ 1.1 SDE SDE (cf.[4],[5]) SDE $\{$ : $dx_

Transcription:

$\vee$ 1017 1997 92-103 92 $\cdot\mathrm{r}\backslash$ $GL_{n}(\mathbb{C}$ \S1 1995 Milnor Introduction to algebraic $\mathrm{k}$-theory $narrow \infty$ $GL_{n}(\mathbb{C}$ $\mathit{1}\mathrm{t}i_{n}(\mathbb{c}$ $GL$ 1997 $\vee$ $\mathit{1}\mathrm{t}ff_{\mathcal{r}}(\mathbb{c}$ $GL$ 1 $G_{n}=GL(n\mathbb{C} $ $G=cL( \mathbb{c}=\lim_{arrown}cl(n\mathbb{c}$ : $x\in G_{n}\text{ }\in G_{m}$ $I^{-}$

$\mathfrak{u}_{1}$ $\frac{\epsilon_{1} }{1-\mathcal{E}_{1}^{J}}<\frac{\vee 1\prime}{2}$ $\frac{1}{1-\epsilon_{1} }\frac{1}{1-\epsilon_{\sim} }$ $\frac{\epsilon_{3} }{1-\epsilon_{3} }<\frac{\epsilon_{3}}{2^{3}\prime}$ 93 $\underline{/}\mathrm{t}/i_{n}=m(n \mathbb{c}$ $M=M( \mathbb{c}\cdot=\limarrow nm(n \mathbb{c}$ $x\in\underline{/}\mathrm{w}_{n}\text{ }\in\lambda I_{m}$ 1 $\mathrm{u}_{1}=$ { $1\in U\subset G ^{\forall}n\in \mathrm{n}$ $U\cap G_{n}$ } M 1 1+M $GL$ $U( \{_{\overline{\mathrm{c}}_{n}}\}_{n}^{\infty}=1\mathrm{i}=\{1+\sum_{n}x_{n}$ $\in G x_{n}\in \mathit{1}\mathrm{w}_{n} \sum_{n}\frac{ x_{n} _{n}}{\epsilon_{n}}<1\}$ I2 $=\{U(\{\epsilon_{n}\}_{n}^{\infty}=1 \epsilon 1\geq\epsilon_{2}\geq\cdots>0\}$ ( $ x_{n} _{n}$ $GL(n_{J}\mathbb{C}$ 2 1 I2 $G$ (1 $-(5$ check (1 $1\in U(\{_{\dot{\overline{\mathrm{c}}}_{n}}\}$ (2 $U(\{{\rm Min}(_{\hat{\mathrm{C}}} n \dot{\overline{\circ}} \}n\subset U(\{_{\dot{\hat{\mathrm{c}}}_{n}}\}\mathrm{n}U(\{\epsilon_{n}\} $ (3 $\forall\{\epsilon_{n}\}^{\infty}n=1 \{\exists\epsilon^{;}n\}^{\infty}n=1 U(\{\epsilon_{n} \}-1\subset U(\{\epsilon_{n}\}$ \epsilon 1 $\geq\epsilon_{2}\geq\cdots>0$ $\exists_{\epsilon_{1} }>0$ $0<\epsilon_{2}\exists <\epsilon_{1} $ $\frac{1}{1-\in_{1} }\frac{\epsilon_{\sim} }{1-\epsilon }\underline <\frac{\epsilon_{\vee}}{2\sim}$ $0<\epsilon_{3}\exists;<\epsilon_{2} $ ; $x=1+$ $\sum x_{n}$ $\sum_{n}\frac{ x_{n} _{n}}{\epsilon_{n}}<1$ n: $x^{-1}=1+ \sum_{k=1}^{\infty}(-1^{k}(\sum nx_{n}k=1+\sum\infty$ $\sum n$ $(-x_{i_{1}}\cdots(-x_{i_{k}}$ $k=1i_{1}\cdots i_{k}=1$

94 ${\rm Max}(i_{1} \cdots i_{k}=n$ $ xi_{1}\ldots xi_{k} _{n}\leq x_{i_{1}} _{n}\cdots x_{i_{k}} _{n}= x_{i_{1}} _{i_{1}}\cdots x_{i_{k}} _{i_{k}}\leq$ $\cdot$ $\hat{\mathrm{c}}_{i_{1}} \cdots \mathrm{c}_{i_{k}}\prime l=\dot{\hat{\mathrm{c}}}_{1}\cdot\cdot\dot{\hat{\mathrm{c}}}\prime j_{1\prime n}j_{n}(j_{1}+\cdots j_{n}=k$ ( $i_{1}\cdots i_{k}$ 1 j14 $n$ jn k $1\leq k<\infty$ ${\rm Max}(i_{1} \cdots i_{k}=\gamma\gamma$ ( $x_{?l} $ $ x_{n} n\leq$ $\sum\infty$ $\epsilon_{1\gamma l}^{\prime j_{1}\ldots\prime\prime}\epsilon_{n}\epsilon=\overline{\circ}\square ^{n}\prime j_{n}n\frac{1}{1-\overline{\mathrm{c}}_{k} }<\frac{\epsilon_{n}}{2^{n}}$ $ _{1\backslash }\ldots n^{=0}$ $k=1$ $x^{-1}=1+ \sum_{n}x_{n} $ $\sum_{n}\frac{ x_{n} n}{\dot{\overline{\mathrm{c}}}_{n}}<\sum_{n=1}^{\infty}\frac{1}{2^{n}}=1$ $U(\{_{\overline{\mathrm{c}} }n\}^{-1}\subset U(\{\epsilon_{n}\}$ (4 $\forall\{\epsilon_{n}\}_{n=}^{\infty\exists}1 \{\hat{\mathrm{c}}_{n} \}^{\infty}n=1 U(\{^{r}\mathrm{c}_{n}\}r2\subset U(\{\epsilon_{n}\}$ \epsilon 1 $\geq\epsilon_{2}\geq\cdots>0$ $\exists_{\wedge\mathrm{c}_{1}} >0$ $2_{\overline{\mathrm{c}}_{1}} +\epsilon_{1}\prime 2<\epsilon_{1}/2$ $0<\epsilon_{2} \exists<\mathrm{c}_{1} $ $2\epsilon_{2} +2_{\dot{\hat{\circ}}\epsilon} ;\epsilon_{2}^{\prime 2}12^{+}<\epsilon_{2}/2^{2}$ $0<\epsilon_{3} \exists<\epsilon_{2} $ $2_{\mathrm{c}_{3} }^{\wedge+++}2\epsilon;;2\dot{\hat{\mathrm{c}}}l\prime 1^{\overline{\circ}}32\epsilon_{3}\overline{\mathrm{c}}_{3}^{\prime 2}<\epsilon_{3}/2^{3}$ $X=1+$ $n: \sum x_{n}$ : $y=1+n: \sum y_{n}$ $\sum_{n}\frac{ y_{n} _{n}}{\epsilon_{n\backslash }}<1$ n: n: $x_{n} =xn+y_{n}+n- \sum_{k=1}^{1}(x_{ky_{n}}+x_{n}y_{k}+x_{n^{y_{n}}}$ $xy=1+$ $\sum$ $x_{n} $ $n$ : $ X_{n} n \leq \mathit{2}\epsilon_{n} +2\sum_{1k=}^{1}\epsilon_{knn}n- \epsilon+ \epsilon f2<\epsilon_{n}/2^{n}=$ $U(\{_{\overline{\mathrm{c}}_{n}} \}^{2}\subset U(\{\epsilon_{n}\}$ (5 $\forall_{\mathit{9}}\in c$ $\forall\{\epsilon n\}_{n=}^{\infty}1 \{\exists\}_{n1}^{\infty}\overline{\mathrm{c}}_{n} =$ $gu(\{\epsilon_{n}l\}g-1\subset U(\{\epsilon_{n}\}$ $\eta g\in G$ $g\in GL(k\mathbb{C}$

$\supset$ $\forall_{u(\{\epsilon_{n}\}}\in \mathrm{u}_{2}$ 95 $\forall_{x=}1+\sum_{n}x_{n}\in U(\{\epsilon_{n} \}$ : $\epsilon_{n} =\frac{\overline{\mathrm{c}}_{{\rm Max}(nk}}{ g k g-1 _{k}}$ &R6 $\circ$ $x_{1} =\cdots=x_{k-1} =0$ $x_{k} =g(x_{1}+\cdots+x_{k}g^{-1}\prime x_{n} =gx_{n}g^{-1}(n\geq k+1$ $gxg^{-1}=1+ \sum_{n}x_{n}$ $ x_{n} n\leq X_{n} _{n} g _{k} g-1 _{k}$ $(n\geq k+1$ $ X_{k} k/ g _{k} g -1 _{k} \leq x_{1}+\cdots+xk _{k}\leq\sum_{i=1}^{k} _{X_{i}} _{k}=\sum_{i=1}^{k} _{X_{i}} _{i}$ $\sum_{n}\frac{ \chi_{n} n}{\epsilon_{n}}\leq\sum_{k<n}\frac{ g _{k} _{\mathit{9}}-1 _{k}}{\epsilon_{n}} _{X_{n}}\cdot n+\frac{1}{\epsilon_{k}}\sum_{1i=} X_{i} _{i} g k g-1 k _{k}$ $<1$ if $1+ \sum x_{n}\in U(\{_{6 }n\}$ $\epsilon_{n} =\frac{\epsilon_{n}}{ g _{k} g^{-}1 _{k}}$ for $n>k$ $\hat{\mathrm{c}}_{n} =\frac{\epsilon_{k}}{ g _{k} g^{-}1 _{k}}$ for $n\leq k$ $U(\{\epsilon_{n}\}\supset gu(\{\epsilon_{n} \}g-1$ 1 $G$ $\mu_{1}$ I2 check $\text{ }\forall u_{(}\{\epsilon_{n}\}\in u2$ $\forall_{n}$ $U( \{\epsilon_{n}\}\cap G_{n}=\{1+\sum_{=k1}x_{n}n\in G x_{k}\in_{\wedge^{/}}\mathrm{w}_{k} \sum_{k=!}^{n}\frac{ x_{k} _{k}}{\epsilon_{k}}<1\}$ $\subset$ $1+ \sum_{k=1}^{\lambda\overline{/}}x_{k}\in U(\{\epsilon_{n}\}\cap G_{n}$ $\underline{/}\mathrm{v}>n$ $x_{k} $ $=x_{k}(k<n x -n- \sum x_{k}n$ $\{\epsilon_{k}\}$ $k=n$ $1> \sum_{k}$ $\frac{ _{X_{k}} _{k}}{\in:k}>\sum_{k}=_{\mathrm{m}\mathrm{i}k}\frac{ x_{k} _{\mathrm{a}}}{\mathrm{n}(\cdot1l}\geq\sum_{k=1}^{n}\frac{ x_{k} k}{\overline{\mathrm{c}}_{k}}$ $\subset$

$\dot{\hat{\mathrm{c}}}_{n}<\frac{1}{2^{\eta}}$ $\dot{\overline{\mathrm{c}}}_{1}$ 96 $U(\{\epsilon_{n}\}\cap G_{n}$ 1 ({c-n} $G$ 1 1 $\mu_{2}$ $\forall u\in\mu_{1}$ $\exists_{u_{1}}\in \mathfrak{u}_{1}$ $L^{f_{1}^{2}}\subset U$ $\exists[t_{2}\in \mathfrak{u}_{1}$ $U_{2}^{2}\subset U_{1}$ $\exists_{u_{3}}\in \mathfrak{u}_{1}$ $[T_{3}^{2}\subset L^{\gamma_{2}}$ $\{U_{n}\}_{n=}^{\infty}1$ $U\supset U_{1}^{2}\supset U_{2}^{2}U_{1}\supset U_{3}^{2}c^{\gamma_{2}}L^{\gamma_{1}}\supset\cdots$ $\forall_{n}$ $\exists_{\dot{\overline{\mathrm{c}}}_{n}}>0$ $U_{n}\supset\{1+x x\in GL(n \mathbb{c} x _{n}<\epsilon_{n}\}$ $\epsilon_{1}>\dot{\overline{\mathrm{c}}}_{2}>\cdots>0$ $>\dot{\overline{\mathrm{c}}}_{1} \exists>0$ ${\rm Min}(\epsilon_{1\text{ ^{}\dot{\overline{\mathrm{c}}}}2} >\mathrm{c}\exists_{r}\prime 2>0$ $(1-\circ ;-1_{\wedge }\circ 12<\mathcal{E}_{2}$ ${\rm Min}(\epsilon_{2} \epsilon_{3}>\epsilon_{3} \exists>0$ $\{1-(\epsilon_{1} +\epsilon^{;}2\}^{-}1\dot{\hat{\circ}}_{3} <\epsilon_{3}$ ${\rm Min}(_{\mathcal{E}_{3}^{l}\epsilon}4>\epsilon_{4} \exists>0$ : $\forall_{x}\in U(\{\epsilon_{n} \}$ $\{1-(\epsilon_{1} +\mathrm{c}_{2} \wedge+\in\prime 3\}-1\hat{\mathrm{c}}_{4} <\dot{\hat{\mathrm{c}}}_{4}$ $x=1+ \sum_{n=1}x_{n}$ $x(1+ \Lambda 1n=\sum_{1}^{r_{-}}xn-1\in U_{N}$ $x(1+ \sum_{n=1}^{n-1}x_{n^{-1}}=1+x_{n}(1+\sum_{n=1}^{n-1}x_{n^{-1}}$ $ x_{n}(1^{\cdot}+ \sum_{n=1}^{n}x_{n} -1-1 _{N}\leq\overline{\mathrm{c}}_{N} (1-\sum_{=n1}^{N1}-\epsilon_{n} -1<\epsilon_{N}$ $\vee\supset$ \epsilon N $x(1+ \sum_{n=1}^{n-1}x_{n^{-1}}\in U_{N}$ $(1+ \sum_{=1l1}^{\mathit{1}\backslash \prime}x_{n}\mathrm{i}-1(1+\sum_{1n=}^{\wedge\overline{l}}x_{n}-2-1\in L/_{l\supset^{7}}^{\mathrm{v}}-1$

97 $x\in[^{\gamma}n^{\cdot}lr_{n1}-\cdots U_{1}\subset U$ $U(\{_{\overline{\mathrm{c}} \}}n\subset U$ 2 $\mathfrak{u}_{1}$ \S 2 $C\tau L(\Lambda$ $\Lambda=c(X \mathbb{c}$ \S $X$ A X $C(X \mathbb{c}$ A $ f = \max_{x\in x} f(x $ $\Lambda^{n}$ $a=(a_{i}\in\lambda^{n}$ $ a _{n}= \max_{i} a_{i} $ $\mathit{1}\mathrm{w}_{n}(\mathit{1}\iota$ 1 Banach algebra 1 Banach algebra $M(\mathbb{C}$ $\mathit{1}\mathrm{w}_{n}(\lambda$ $narrow\infty$ $M(\Lambda$ +1 1 $0$ $GL(\Lambda$ $GL(\Lambda$ $\underline{/}\mathrm{w}_{n}(\lambdaarrow C(X \mathit{1}\mathrm{w}_{n}(\mathbb{c}$ $(a_{ij}(x$ $x-\succ(a_{ij}(x$ Banach algebra $(a_{ij}(x$ $\mathit{1}\uparrow I_{n}(\Lambda$ $t\in\lambda^{n}$ $ t n \leq 1\mathrm{S}\mathrm{t}\iota \mathrm{p} \sum_{j=1}^{n}aij(xtj(x =\sum_{1}^{n}aij(xt(jx $ $= \sup\{ \sum_{j=1}^{ll}a_{ij}(xtj(x $ $(*\}$ $(*$ $1\leq i\leq n_{\text{ }}x\in X$ $\max t_{j}(x \leq nlax 1$ $C\{X\mathit{1}?j_{n}(\mathbb{C}$ $j$ $x\in X$ o $\tau\in \mathbb{c}^{n}$ $\max_{x\in\lambda} a_{i}j(x _{M_{\eta}(\mathbb{C}}=\max_{x\in_{d}\backslash _{n}} \mathcal{t} \max \leq 1 $ $\sum a_{ij}(_{\mathcal{i}}\mathcal{t}_{1}$ $=1$ $ _{n}= \max_{x \tau }\max \in\lambda\leq n1$ nlax i $ _{j=1} \sum^{n}aij(x\tau_{j} $

$\{\acute{\mathrm{c}}_{n}\}$ 98 $= \max\{ _{j=1}\sum^{n}aij(x\tau_{j} $ $(**\}$ $(**$ $1\leq i\leq n$ $x\in X_{J}\mathrm{m}\mathrm{a}\mathrm{x}j \tau_{j} \leq 1$ $t_{j}(x=\mathrm{c}\mathrm{o}\mathrm{n}\mathrm{s}\mathrm{t}=\mathcal{t}j$ $\wedge^{/\mathrm{w}_{n}}(\lambda$ (A $\mathrm{s}\mathrm{u}\mathrm{p}$ ( $i_{0}$ $x_{0}$ $\{t_{j}^{0}(x\}^{n_{=}}j1$ $t_{j}^{0}(x0=\mathcal{t}_{j}$ $C(X l\mathrm{t}l_{n}(\mathbb{c}$ $l\mathrm{w}_{n}(\lambda$ $C(X \underline{/}\mathrm{w}_{n}(\mathbb{c}$ $GL_{n}(\Lambda$ $C(X GL_{n^{(}}\mathbb{C}$ $narrow\infty$ $GL(\Lambda$ $C(X_{\text{ }}GL(\mathbb{C}$ $f\in C(X GL(\mathbb{C}$ $f(x$ $GL(\mathbb{C}$ $\exists_{n}\in \mathrm{n}$ $f(x$ $\subset GL_{n}(\mathbb{C}$ $f\in GL_{n}(\Lambda-\subset GL(\Lambda$ C $C-1$ $GL(\mathbb{C}$ $M(\mathbb{C}$ $\forall_{n}\in o \mathrm{n}$ $\exists c_{n}\in c$ $c_{n}\not\in GL_{n}(\mathbb{C}$ $\max$ $\epsilon_{n}>0$ $\epsilon_{n}$ $M(\mathbb{C}$ $0$ $ cij-n\delta ij >$ $\max(ij>n$ $V=V( \{\epsilon_{n}\}_{n=1}^{\infty}=\{\sum_{n}x_{n} x_{n}\in \mathit{1}m_{n}(\mathbb{c}$ $\sum_{n}\frac{ x_{n} _{n}}{\hat{c}_{n}}<1\}$ $m$ $n$ $c_{n}-c_{m}\not\in V$ $\{c_{n}-1\}$ $M(\mathbb{C}$ C $c_{m}\in GL_{k}(\mathbb{C}$ $n>k$ $c-ncm= \sum^{\iota}j=1x_{j}$ $x_{j}\in \mathit{1}\mathrm{w}_{j}(\mathbb{c}$ $l>n$ $c_{n}-1\in M_{n}(\mathbb{C}+x_{n}+1+\cdots+x\iota$ $\epsilon_{n}\leq _{X_{n+1}}+\cdots+x\iota l\leq _{X}n+1^{\cdot}n+1+\cdots+\cdotx_{l}\iota\cdot$ $arrow n-\wedge\leq x_{n+1}+\cdots+x\iota \iota\leq x_{n+1} _{n+1}+\cdots+ x_{l} l\cdot$ $j=n1 $\sum l\frac{ x_{j} _{j}}{c}\geq\frac{1}{c}\sum l$ \mathrm{x}\frac{\mathrm{l}\mathrm{l}^{--j^{\mathrm{l}}j}\mathrm{i}}{\epsilon_{j}}\geq\overline{\epsilon_{n_{j=n}}}-\geq xj _{j}+1\geq 1$ n cm $\not\in V$ $GL(\Lambda$ $C(x_{\ovalbox{\tt\small REJECT}}GL(\mathbb{C}$ $GL(\Lambda$ $\mathit{1}\mathrm{w}_{n}(\lambda$ $GL(\Lambda$ $C(X GL(\mathbb{C}$ $GL(\Lambda$ 1 $U_{1}( \{\epsilon_{n}\}^{\infty}n=1=\{1+\sum_{n}f_{n} f_{n}\in \mathit{1}\mathrm{w}_{n}(\lambda$ $\sum_{n}\frac{ f_{n} _{n}}{\epsilon_{n}}<1\}$

99 $\mathfrak{u}_{1}=\{u_{1}(\{\circ n\}^{\infty}\prime n=1 \epsilon 1\geq\epsilon_{2}\geq\cdots>0\}$ $C(X GL(\mathbb{C}$ 1 $U_{2}(\{_{\dot{\hat{\mathrm{c}}}_{n}}\}_{n=}^{\infty}1=\{f ^{\forall}x\in X f(x\in U(\{_{\dot{\hat{\circ}}}n\}n=1\infty\}$ $U( \{\mathcal{e}_{n}\}_{n}^{\infty}=1=\{y=1+\sum_{n}y_{7l} y_{n}\in\underline{/}\mathrm{w}_{n}(\mathbb{c}$ $\sum_{n}\frac{ y_{n} _{n}}{\dot{\overline{\circ}}n}<1\}$ $\mu_{2}=\{u_{2}(\mathrm{t}\hat{\mathrm{c}}n\}_{n1}\infty= \epsilon 1\geq\epsilon_{2}\geq\cdots>0\}$ $U_{1}(\{\dot{\hat{\circ}}n\}$ $U_{2}(\{\epsilon_{n}\}$ $f\in U_{1}(\{\epsilon_{n}\}$ $x\in X$ $y_{n}=f_{n}(x$ $U_{1}(\{\epsilon_{n}\}\subset U_{2}$ ( $\{\epsilon$ : $U_{2}( \{\frac{\epsilon_{n}}{2^{n}}\}\subset U_{1}(\{\epsilon_{n}\}$ $f \in U_{2}(\{\frac{\epsilon_{n}}{2^{n}}\}$ $f(x\subset GL_{N}(\mathbb{C}$ $\forall_{x}\in X$ $f(x=1+ \sum_{n=1}^{\lambda^{\gamma}}y_{n}$ $yn\in$ $\mathit{1}m_{n}(\mathbb{c}$ $ y_{n} _{n}< \frac{\epsilon:_{n}}{2^{n}}$ $x0\in X$ fix $\{y_{n}\}$ $n<\mathit{1}\mathrm{v}$ $y_{n}(x=y_{n}y_{n}(x=f(x-1- \sum yn-1n$ $yn(x0=yn$ $x_{0}$ [$T_{x_{0}}$ $A$ $\{U_{x_{\alpha}}\}_{\alpha\in A}$ 1 $f_{\alpha}(x$ $f_{\alpha}(x=0$ $\sumf_{\alpha}=1$ $n\leq l\mathrm{v}$ $n=1$ $X$ $ y_{n}(x _{N}< \frac{\epsilon_{n}}{2^{n}}$ $X$ $\{f_{\alpha}\}_{\alpha\in A}$ \not\in U $Xarrow[01]$ $x$ $(x= \sum_{\alpha}y_{\alpha}n(xf\alpha(x$ $n<\mathit{1}\mathrm{v}$ $ 1f_{n}(X \leq\sum_{\alpha}\alpha y_{\alphan} f_{\alpha}(x<\frac{\epsilon_{n}}{2^{n}}$ $ y_{\alphan}(x < \frac{\epsilon_{\mathit{1}\mathrm{v}}}{2^{\mathit{1}\mathrm{v}}}$ if $f_{\alpha}(x\neq 0$ $n=\underline{/}\mathrm{v}$ $f=1+ \sum_{n=\iota}^{n}f_{n}$ $n=1 \sum N\frac{ f_{n} _{n}}{\dot{\hat{\mathrm{c}}}_{n}}\leq\sum_{n=1}^{n}\frac{1}{\underline{\supset}n}<1$ $\text{ }\backslash \mathrm{z}^{arrow}\supset$ $\vee\supset \text{ }U_{2}(\{\frac{\epsilon_{n}}{2^{n}}\}\subset U_{1}(\{\epsilon_{n}\}i^{\grave{\grave{\mathrm{a}}}_{\overline{\text{ }\mathrm{t}^{\text{ }}} }}-\mathcal{x}l\sim \mathrm{o}\mathrm{r}$ \Rightarrow E \S 1 (PTA $\forall_{n}$ $\forall_{l\tau\exists_{v}}\subset \mathrm{l}^{\gamma VV^{-}WW}=1\forall_{n?77}\forall_{W}\exists> \prime\prime\prime V\subset\nu^{r}\nu V$

$\mathbb{q}^{n}$ 100 $\mathfrak{s}/v^{;}$ $\mathfrak{s}/v$ check ( $UV\text{ }$ $GL_{n}(\Lambda$ 1 $GL_{m}(\Lambda$ 1 $V$ $V\subset\{1+x x n<1\}$ $V=V^{-1}$ $\mathrm{t} V\supset\{1+y y _{m}<\overline{\mathrm{c}}\}$ $\nu V =\{1+y y _{m}<\overline{4j^{\underline{\wedge}}}\}$ $w=1+y\in W $ $ y _{m}< \frac{\vee\epsilon}{4}$ \sim $v\in V$ $u$ $v=v(v^{-1}wv$ $v^{-1}wv\in\nu V$ $v^{-1}u$ $v=1+v^{-1}y_{t^{}}$ $ v^{-l}yv m\leq$ $\mathrm{o}\mathrm{k}$ $ v^{-1} _{n} y _{m} v _{n}\leq 4 y _{m}<\mathrm{c}$ $( v _{n}\leq 1+ x _{n}<2$ $GL_{n}(\Lambda$ $G =1\mathrm{i}_{\ln c arrow}n$ $\mathbb{q}\cross \mathbb{r}^{n}$ ( - : M $Dif\cdot f_{0}(m$ A Banach algebra $GL_{n}(\Lambda$ \S \S 3 $n<m$ $G_{n}^{t}\llcornerarrow Gm$ $G= \bigcup_{n=1}^{\infty}gn$ $G_{n} $ $\cdot$ $\text{ }\forall_{\eta}$ $\exists U^{\exists_{m}}>7?$ $\overline{u}(m$ $\overline{u}^{(m}$ U 1 $G_{m}$ $U$ $m>n$ $77 \leq n_{j}m\leq m $ $(7\mathit{1} m $ $U\cap G_{n }$ $G_{n }$ 1 $\text{ }\overline{\mathrm{l}\gamma\cap C^{t}7rn}(m\subset\overline{L^{r^{(m}}}$

$\cdot$ : $(_{\backslash } C\tau_{n}$ $\subset$ 101 $\text{ }U^{(m}\overline \text{ }_{\text{ } $\text{ }\overline{\iota T}-m \overline{u}((m-$ $\{G_{n}\}$ }\overline{u}^{(m}$ $G_{m }$ 1 $U$ $G_{n+1}$ $\{G_{n}\}$ (PTA ( $\exists_{w} $ U 1 $G_{n+1}$ U $\subset UW$ $\nu V$ $UW$ open $\overline{u}$ $\nu V \overline{u}\subset U\nu V$ $W U\subset U\nu V$ $O$ 1 1 $C_{\tau_{n}}$ 1 $\{\nu V_{n}\}$ $U\supset W[1]$ $\forall_{n\nu V_{nn-}}\nu V1\ldots W2\nu V2\nu 1V2\ldots W- n-1\nu V_{n}\subset O_{n}(=O\cap G_{n}$ $O_{n}$ 1 $\text{ ^{}\exists}w1$ 1 $:G_{1}\cdot$ $\cdot\overline{\nu V}_{1}^{(2}\text{ _{ } }$ $(\overline{\nu V}_{1}^{(2}^{2}\subset O_{2}$ $G_{2}$ $V_{2}$ 1 $V_{2}^{3}\subset O_{2}\text{ _{ } }\overline{v^{2}2}(2\subset O_{2}$ $\overline{\nu V}_{1}^{(2}$ $(\overline{\nu V}_{1}^{(2}^{2}=\overline{\nu V_{1}^{2}}(2\subset\overline{V_{2}^{2}}(2\subset O_{2}$ $V_{2}\cap G_{1}\supset W_{1}(\text{ }$ $\overline{\nu V}^{(}\overline{\nu}n2n+1\ldots(3(2v^{\vee}(\overline{\nu V}_{1}^{2}\overline{\mathfrak{s}/V}^{(}23\ldots(n+1\overline{\mathrm{I}/V}n\subset O_{n+1}$ ( $W_{n}\cdots\nu V_{2}\nu V^{2}\nu 12V\cdots\nu V_{n}\subset O_{n+1}\cap G_{n}=O_{n}$ $I\dot{\mathrm{t}}_{n+1}^{r}$ $I\mathrm{i}_{n+1} $ $G_{n+1}$ $G_{n+2}$ $O_{n+2}$ open $\exists_{v_{n+}2gn+2}$ 1 $V_{n+2}^{\prime 2}\subset V_{n+2}2\text{ }\overline{v_{n+}\prime}(n+2$ $Vn+2\mathrm{A}_{n} +1V_{n}+2\subset O_{n+2}$ $\text{ }\overline{\nu V}_{n}^{(?l+}+12$ $\nu V_{n+1}$ ( $\overline{\nu V}_{n+1}^{(n+}2$ $\overline{\mathrm{t}/v}_{n}^{(2}in++11vni_{n+} \overline{\mathfrak{s}/}(n+2+1\subset O_{n+2}$ $\subset\subsetn+2\cdot V \frac{v}{v_{n+2}}(n+2\mathcal{r}+2\cap G_{n+}\text{ }$ Vn+2 $I\iota_{n+2} $ $c_{\tau_{n}}$ ( $c_{\tau_{n+1}}$ 1 $U$ $U^{(n+1}$ $G$ LT $(n$

102 $G_{n}\cdot \mathrm{c}_{arrow}g_{n+1}$ $G_{1}$ $n$ ( G $G_{n+1}$ open ( $\text{ }\exists\forall nm>n$ $\mathrm{o}\mathrm{p}\mathrm{e}\mathrm{n}\lrcorner$ $G_{m}$ $G_{1}$ $G_{1}$ 1 I 1 $\text{ }(1^{\forall}U\in \mathrm{u}$ $1\in U$ (2 $cv \in\mu_{j}\exists_{w}\in \mathrm{u}$ $W\subset U\cap V$ (3 $U\in\mu$ $\exists_{v}\in \mathrm{u}$ $V^{-1}\subset U\text{ }$ (4 $\forall u\in \mathrm{u}$ $\exists v\in \mathrm{u}$ $V^{2}\subset U$ (5 $\forall_{g}\in G\forall U \in \mathrm{u}_{:}\exists_{v}\in$ $\mu gvg^{-1}\subset U$ $G=\cup G_{n}$ $\exists_{n}\geq 1g\text{ }\in G_{n}$ $\mu$ 1 $n=1_{-}$ $\backslash \mathrm{z}^{\text{ }}$ $l$ : $\sim$ $\text{ }$ 1 $c_{n^{\mathrm{c}}}arrow c_{n+1}$ 1 (1 $\exists_{n_{0}}$ $\forall_{u}$ ( $G_{n_{0}}$ 1 $\forall_{m}>n_{0}$ $\overline{u}^{(m}$ $G_{m}$ (2 $\forall_{n}$ $\exists_{m}>n$ $G_{m}$ open =@ $G_{n+1}$ (1 $\underline{\equiv + \mathrm{q}- \mathrm{f}^{\mathrm{b}}\mathrm{r}}$ $\{G_{n}\}$ (1 $\text{ }G_{n}$ $no=1$ (2 open $G_{n+1}$ 1 $U$ 1 $V$ $V^{2}\subset U$ $V\cap c_{n}=vn$ 1 $V_{1}V_{n}\subset U\cap c_{\tau_{n}}$ $\lceil^{\exists}v_{1}$ ($C_{7}1$ $\forall_{n}$ $\exists_{v_{n}}$ 1 ( $G_{n} $ 1 $V_{1n}\tau^{\gamma}\subset U\cap G_{n}$ $L^{\gamma_{n}}$

$z= 103 $G_{1}$ $\text{ }1\in U_{1}$ $c\gamma \mathrm{n}n+1g=unn\ovalbox{\tt\small REJECT}1\forall_{V}$ ( $G_{1}$ 1 $\exists_{n}>1\forall V_{n} $ ( $\mathfrak{x}\grave{\circ}$ 1 $V_{1}V_{n}\not\subset U_{n}\text{ }$ 1 $\{V_{1j}\}_{j=1}\infty$ $U_{n}$ $\text{ ^{}\forall_{n>1}}$ $\forall V_{n}$ ( 1 $V_{1n}V_{n}$ $(\cdot\cdot$ $\forall_{v_{1}}$ \not\subset Un $(*$ : ( $G_{1}$ 1 $\text{ }$ $ \exists n$ $V1n\iota$ $G_{1}$ $U_{1}\ni 1$ $\subset V_{1}$ ( $L^{\gamma_{1}}=G_{1}$ $k<n$ [ $T_{k}$ $(*$ ( $n=1$ $k>1$ k $k\leq n$ $G_{n-1} $ open 1 $\text{ ^{}\exists}\{x;\}j=1\infty$ $x_{j}\in G_{n}\backslash G1n-1$ $jarrow\infty \mathrm{i}\mathrm{n}\mathrm{u}x_{j}=1$ $\ovalbox{\tt\small REJECT} \text{ _{}\overline{v_{1n}}}(n$ $\text{ _{ } $\{_{\sim j}7\}$ ( $G_{n}\text{ }-$ [ 1 }\exists\{yj\}_{j=1}^{\infty}$ $yj\in V_{1n}$ $\{y_{j}\}$ $z_{j}-$ -yjxj ( $\cdot\cdot$ \lim x_{j_{k}}$ y linl $x_{j}$ $=1$ $k^{\wedge}arrow\infty$ $karrow\infty$ $z= \lim y_{j_{k}}$ $\circ$ $Z=\{z_{j} 1\leq j<\infty\}$ $karrow\infty$ $\not\in G_{n-1}$ $(_{\vee}\cdot\cdot x_{j}\not\in G_{n-1} y_{j}\in G_{1}\subset G_{n-1}$ $Z\cap G_{n}-1=\phi$ $G\backslash Z\supset G_{n-1}\supset c^{\gamma_{n-1}}$ $U_{n} \cap G_{\mathcal{R}-1}=U_{\ovalbox{\tt\small REJECT}-1 \prime}$ $U_{n}=U_{n} \cap(g\backslash Z$ ( $G_{n-1}\llcorner+G_{n}$ $\exists_{u_{n} }$ $U_{n}\mathrm{n}G_{n}-1=U_{n-1}$ \forall $=y_{j^{x}j}\not\in[t_{n}$ $x_{j}arrow 1$ in $G_{n}$ $y_{j}\in V_{1n}$ $\overline{ }^{\forall}v_{n}(_{\backslash }G_{n}$ 1 $V_{1n}V_{n}\not\subset U_{n}$ [1] $\mathrm{j}\mathrm{w}$ $I\mathrm{i}^{r}$ Milnor: Introduction to Algebraic Pqess 1971 7 ( -theory Ann Math Stud Princeton Univ [2] : ( [3] HShimolnura and T $\mathrm{h}\mathrm{i}r\mathrm{a}\mathrm{i}$ $\text{ }$ : On Group Topologies on the Group of Diffeomorphisms