ルベーグ積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

Similar documents
微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ =

f(x) = f(x ) + α(x)(x x ) α(x) x = x. x = f (y), x = f (y ) y = f f (y) = f f (y ) + α(f (y))(f (y) f (y )) f (y) = f (y ) + α(f (y)) (y y ) ( (2) ) f

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.

B [ 0.1 ] x > 0 x 6= 1 f(x) µ 1 1 xn 1 + sin sin x 1 x 1 f(x) := lim. n x n (1) lim inf f(x) (2) lim sup f(x) x 1 0 x 1 0 (

newmain.dvi

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

1 I

1 a b = max{a, b}, a b = mi{a, b} a 1 a 2 a a 1 a = max{a 1,... a }, a 1 a = mi{a 1,... a }. A sup A, if A A A A A sup A sup A = + A if A = ± y = arct

1 Introduction 1 (1) (2) (3) () {f n (x)} n=1 [a, b] K > 0 n, x f n (x) K < ( ) x [a, b] lim f n (x) f(x) (1) f(x)? (2) () f(x)? b lim a f n (x)dx = b

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202E646F63>

2 2 ( Riemann ( 2 ( ( 2 ( (.8.4 (PDF 2

untitled

2012 IA 8 I p.3, 2 p.19, 3 p.19, 4 p.22, 5 p.27, 6 p.27, 7 p

B2 ( 19 ) Lebesgue ( ) ( ) 0 This note is c 2007 by Setsuo Taniguchi. It may be used for personal or classroom purposes, but not for commercia

³ÎΨÏÀ

04.dvi

, 1 ( f n (x))dx d dx ( f n (x)) 1 f n (x)dx d dx f n(x) lim f n (x) = [, 1] x f n (x) = n x x 1 f n (x) = x f n (x) = x 1 x n n f n(x) = [, 1] f n (x

8.1 Fubini 8.2 Fubini 9 (0%) 10 (50%) Carathéodory 10.3 Fubini 1 Introduction 1 (1) (2) {f n (x)} n=1 [a, b] K > 0 n, x f n (x) K < ( ) x [a

() Remrk I = [0, ] [x i, x i ]. (x : ) f(x) = 0 (x : ) ξ i, (f) = f(ξ i )(x i x i ) = (x i x i ) = ξ i, (f) = f(ξ i )(x i x i ) = 0 (f) 0.

I (Analysis I) Lebesgue (Lebesgue Integral Theory) 1 (Seiji HIRABA) 1 ( ),,, ( )

1 = = = (set) (element) a A a A a A a A a A {2, 5, (0, 1)}, [ 1, 1] = {x; 1 x 1}. (proposition) A = {x; P (x)} P (x) x x a A a A Remark. (i) {2, 0, 0,


(iii) 0 V, x V, x + 0 = x. 0. (iv) x V, y V, x + y = 0., y x, y = x. (v) 1x = x. (vii) (α + β)x = αx + βx. (viii) (αβ)x = α(βx)., V, C.,,., (1)

Basic Math. 1 0 [ N Z Q Q c R C] 1, 2, 3,... natural numbers, N Def.(Definition) N (1) 1 N, (2) n N = n +1 N, (3) N (1), (2), n N n N (element). n/ N.

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google

, x R, f (x),, df dx : R R,, f : R R, f(x) ( ).,, f (a) d f dx (a), f (a) d3 f dx 3 (a),, f (n) (a) dn f dx n (a), f d f dx, f d3 f dx 3,, f (n) dn f

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10%

r 1 m A r/m i) t ii) m i) t B(t; m) ( B(t; m) = A 1 + r ) mt m ii) B(t; m) ( B(t; m) = A 1 + r ) mt m { ( = A 1 + r ) m } rt r m n = m r m n B

,,,,., = (),, (1) (4) :,,,, (1),. (2),, =. (3),,. (4),,,,.. (1) (3), (4).,,., () : = , ( ) : = F 1 + F 2 + F 3 + ( ) : = i Fj j=1 2

IA 2013 : :10722 : 2 : :2 :761 :1 (23-27) : : ( / ) (1 /, ) / e.g. (Taylar ) e x = 1 + x + x xn n! +... sin x = x x3 6 + x5 x2n+1 + (

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)

A S- hara/lectures/lectures-j.html r A = A 5 : 5 = max{ A, } A A A A B A, B A A A %


I y = f(x) a I a x I x = a + x 1 f(x) f(a) x a = f(a + x) f(a) x (11.1) x a x 0 f(x) f(a) f(a + x) f(a) lim = lim x a x a x 0 x (11.2) f(x) x

u = u(t, x 1,..., x d ) : R R d C λ i = 1 := x 2 1 x 2 d d Euclid Laplace Schrödinger N := {1, 2, 3,... } Z := {..., 3, 2, 1,, 1, 2, 3


f(x) = x (1) f (1) (2) f (2) f(x) x = a y y = f(x) f (a) y = f(x) A(a, f(a)) f(a + h) f(x) = A f(a) A x (3, 3) O a a + h x 1 f(x) x = a

<4D F736F F D B B BB2D834A836F815B82D082C88C60202D B2E646F63>


I A A441 : April 15, 2013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida )

2000年度『数学展望 I』講義録

III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F


i

Part () () Γ Part ,

1 yousuke.itoh/lecture-notes.html [0, π) f(x) = x π 2. [0, π) f(x) = x 2π 3. [0, π) f(x) = x 2π 1.2. Euler α

II (10 4 ) 1. p (x, y) (a, b) ε(x, y; a, b) 0 f (x, y) f (a, b) A, B (6.5) y = b f (x, b) f (a, b) x a = A + ε(x, b; a, b) x a 2 x a 0 A = f x (

(1) (2) (1) (2) 2 3 {a n } a 2 + a 4 + a a n S n S n = n = S n

I, II 1, 2 ɛ-δ 100 A = A 4 : 6 = max{ A, } A A 10

Lebesgue Fubini L p Banach, Hilbert Höld

応用数学特論.dvi

untitled

i

2

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt

基礎数学I

koji07-02.dvi

A S hara/lectures/lectures-j.html ϵ-n 1 ϵ-n lim n a n = α n a n α 2 lim a n = 0 1 n a k n n k= ϵ

II 2 3.,, A(B + C) = AB + AC, (A + B)C = AC + BC. 4. m m A, m m B,, m m B, AB = BA, A,, I. 5. m m A, m n B, AB = B, A I E, 4 4 I, J, K

ÄêÀÑʬ¤ÎÄêµÁ¤Ë¤Ä¤¤¤Æ

function2.pdf

II ( : )

1/1 lim f(x, y) (x,y) (a,b) ( ) ( ) lim limf(x, y) lim lim f(x, y) x a y b y b x a ( ) ( ) xy x lim lim lim lim x y x y x + y y x x + y x x lim x x 1

(2 X Poisso P (λ ϕ X (t = E[e itx ] = k= itk λk e k! e λ = (e it λ k e λ = e eitλ e λ = e λ(eit 1. k! k= 6.7 X N(, 1 ϕ X (t = e 1 2 t2 : Cauchy ϕ X (t

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0

leb224w.dvi

¿ô³Ø³Ø½øÏÀ¥Î¡¼¥È


No2 4 y =sinx (5) y = p sin(2x +3) (6) y = 1 tan(3x 2) (7) y =cos 2 (4x +5) (8) y = cos x 1+sinx 5 (1) y =sinx cos x 6 f(x) = sin(sin x) f 0 (π) (2) y

( [1]) (1) ( ) 1: ( ) 2 2.1,,, X Y f X Y (a mapping, a map) X ( ) x Y f(x) X Y, f X Y f : X Y, X f Y f : X Y X Y f f 1 : X 1 Y 1 f 2 : X 2 Y 2 2 (X 1

meiji_resume_1.PDF


y = f(x) y = f( + h) f(), x = h dy dx f () f (derivtive) (differentition) (velocity) p(t) =(x(t),y(t),z(t)) ( dp dx dt = dt, dy dt, dz ) dt f () > f x

数学概論I


1 4 1 ( ) ( ) ( ) ( ) () 1 4 2

< 1 > (1) f 0 (a) =6a ; g 0 (a) =6a 2 (2) y = f(x) x = 1 f( 1) = 3 ( 1) 2 =3 ; f 0 ( 1) = 6 ( 1) = 6 ; ( 1; 3) 6 x =1 f(1) = 3 ; f 0 (1) = 6 ; (1; 3)

2 7 V 7 {fx fx 3 } 8 P 3 {fx fx 3 } 9 V 9 {fx fx f x 2fx } V {fx fx f x 2fx + } V {{a n } {a n } a n+2 a n+ + a n n } 2 V 2 {{a n } {a n } a n+2 a n+

ii

α = 2 2 α 2 = ( 2) 2 = 2 x = α, y = 2 x, y X 0, X 1.X 2,... x 0 X 0, x 1 X 1, x 2 X 2.. Zorn A, B A B A B A B A B B A A B N 2

DVIOUT

2014 S hara/lectures/lectures-j.html r 1 S phone: ,

( z = x 3 y + y ( z = cos(x y ( 8 ( s8.7 y = xe x ( 8 ( s83.8 ( ( + xdx ( cos 3 xdx t = sin x ( 8 ( s84 ( 8 ( s85. C : y = x + 4, l : y = x + a,

「産業上利用することができる発明」の審査の運用指針(案)

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C602E646F63>

<4D F736F F F696E74202D C835B B E B8CDD8AB B83685D>

SC-85X2取説


Chap9.dvi

II (Percolation) ( 3-4 ) 1. [ ],,,,,,,. 2. [ ],.. 3. [ ],. 4. [ ] [ ] G. Grimmett Percolation Springer-Verlag New-York [ ] 3


y π π O π x 9 s94.5 y dy dx. y = x + 3 y = x logx + 9 s9.6 z z x, z y. z = xy + y 3 z = sinx y 9 s x dx π x cos xdx 9 s93.8 a, fx = e x ax,. a =

v er.1/ c /(21)



<4D F736F F D B B BB2D834A836F815B82D082C88C602E646F63>

Riemann-Stieltjes Poland S. Lojasiewicz [1] An introduction to the theory of real functions, John Wiley & Sons, Ltd., Chichester, 1988.,,,,. Riemann-S

Transcription:

ルベーグ積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/005431 このサンプルページの内容は, 初版 1 刷発行時のものです.

Lebesgue 1 2 4 4 1 2 5 6 λ a<b λ([a, b]) = b a 7 Fubini 1 A.1

ii 110 * 2015 6

i v vi 1 1 1.1 1 1.2 2 1.3 3 1.4 4 1.5 5 2 6 2.1 6 2.2 σ 9 2.3 12 2.4 15 2.5 23 2.6 29 2.7 34 3 0 35 3.1 35 3.2 40 3.3 L 1 44 4 1 49 4.1 1 49 4.2 1 55 4.3 1 58 4.4 1 62 5 68 5.1 68

iv 5.2 * 76 5.3 82 5.4 * 86 5.5 1 94 6 100 6.1 100 6.2 2 111 6.3 119 6.4 * 128 7 135 7.1 135 7.2 146 7.3 155 7.4 * 161 8 171 8.1 171 8.2 175 8.3 179 9 190 9.1 190 9.2 195 9.3 199 9.4 204 9.5 209 9.6 215 218 A.1 218 A.2 222 227 241 242

N := Z := Q := R := A.1 R 0 := {x R: x 0}, R >0 := {x R: x>0} R := R {, + }, R 0 := {x R: x 0} f,g: X R X g(x) f(x) g f X 0 f(x) 0 f f : X Y (image) A X f(a) :={f(x);x A} (range) range f := f(x) (inverse image) B Y f 1 (B) :={x X : f(x) B} f : X R a R {f a} := {x X : f(x) a}, {f <a} := {x X : f(x) <a} {f = a} := {x X : f(x) =a}, {f a} := {x X : f(x) a} {f a}{f >a} {a f<b} A X (complement) A c { 1 (x A) 1 A (x) := 0 (x A c ) A (indicator function)

vii (power set) P(X) X (difference) AB A \ B := {x A: x B} #A: A x + o O p R f(x) =o(x p ) lim x + f(x)x p =0 f(x) =O(x p ) R R >0 sup x>r f(x) x p < + ( ) s s R n Z 0 := n n =0 ( s 0) =1 n 1 k=0 (s k) n! 0 (x =0) sgn : R R sgn(x) = x (x 0) x Bμ σ f 1 μ a.e. f L 1 μ I := {(a, b];a, b R,a<b} { } dv v γ(m; ) m M(γ)N (γ) γ δ a a λλ (2) 1 2

viii σ(a) A σ B(R)B(R 2 ) 1 2 B 1 B 2 μ 1 μ 2 σ C0 r(rd ) C r R d R γ 5 f c f s f var + (ξ; )var (ξ; )var(ξ; ) ξ

1 1.1 Riemann Dirichlet { 1 (x Q) f(x) = 0 (x Q) cos { 1 (x Q) lim lim (cos πm! m n x)2n = 0 (x Q) (1.1) x Q Mx Z M N m M (cos πm! x) 2 =1 x Q m m! x Z lim n (cos πm! x) 2n =0 (1.1) (1.1) 1 0 (cos πm! x) 2n dx = n k=1 2k 1 2k (2k 1)/(2k) k/ k +1 n k=1 (2k 1)/(2k) 1/ n +1 0

2 1 0 Q 0 1 1.2 0 1 Lebesgue 2 f :[0, 1] [0, 1] R 1.1 (b) f [0, 1] [0, 1] 1.2 1/2 n [0, 1] [0, 1] { (x, y) [0, 1] [0, 1]: } k k +1 f(x, y) < 2n 2 n (k Z) (1.2) 1.1 1.2

1.3 3 Lebesgue (1.2) k=1 ( { } ) k k 2 +1 n f<k 2n 2 n (1.3) n (1.3) 1.3 Lebesgue (1.3) 1.3 B μ: B R μ B B [0, 1] [0, 1] B[0, 1] [0, 1] B. A B([0, 1] [0, 1]) \ A B A n B(n =1, 2,...) n=1 A n B B σ μ A Bμ(A) 0 μ( ) =0 A n B(n =1, 2,...) μ ( n=1 A n)= n=1 μ(a n)

4 1 μ 2 σ B μ() = μ B μ 2 f :[0, 1] [0, 1] R {k/2 n f<(k +1)/2 n } B f (1.3) n f f 2 [0,1] [0,1] f(x, y) dxdy = lim n k=1 ({ }) k k 2 μ +1 f<k n 2n 2 n 2 1.4 2.6 2.14 f n f g n Nx R f n (x) g(x) + + f n (x) dx = f(x) dx lim n 1.1 Fourier 8.3 1.4 1.1

1.5 5 1.4 1.1 f : R R lim n + nf(x) dx = πf(0) n 2 x 2 +1 + f(x/n)/(x2 +1)dx M y R f(y) M g(x) :=M/(x 2 +1) g n Nx R f(x/n)/(x 2 +1) g(x) lim n f(x/n)/(x 2 +1) = f(0)/(x 2 +1) + f(0)/(x2 +1)dx (= πf(0)) r lim r + r nf(x)/(n2 x 2 +1)dx + nf(x)/(n2 x 2 +1)dx (1.3) R r lim r + r dx 1.1 Lebesgue 1.5

2 A.1 2.1 σ 2.1 B R d 3 B R d σ (σ field) B A BA c BA c R d A n N A n B n=1 A n B 2.1 (union) (countably infinite) A n (mutually disjoint) n m A n A m = 2.2 R d B μ: B R 3 (B,μ) B R d (measure) σ

2.1 7 B R d σ A Bμ(A) 0μ(A) =+ μ( ) =0 A n Bμ ( n=1 A n)= n=1 μ(a n) 2.2 + σ (σ additivity) μ σ (σ additive) (B,μ) R d 1 (1.2) σ B 2.1 2.3 f : R d R B (measurable) a R {f <a} := {x R d : f(x) <a} B f B (measurable function) σ B B (measurable set) range f := f(r d ) f 2.1 {f = a} {x R d : f(x) =a} 2.1 2.3

8 2 B {f = a}, {f = b},... B 2.3 2.4 f : R d R B (simple function) B + range f f 2.2 0 g f B g y range g yμ({g = y}) f f 2.2 0 g f 2.5 f : R d R + B + μ f (integral) { } fμ:= sup yμ({g = y}); g B 0 g f R d y range g f(x) =max{f(x), 0} max{ f(x), 0} f : R d R B max{f,0} (Darboux) f f B μ σ

2.2 σ 9 max{ f,0} B 2.14 2.6 B f : R d R μ (integrable) max{f,0} μ<+ max{ f,0} μ<+ R d R d f (B,μ) (integrable function) μ f fμ:= max{f,0} μ max{ f,0} μ R d R d R d 2.14 μ R d f μ<+ 2.2 ff σ 2.3 {f <a} {x R d : f(x) <a} {f a} 2.1 f : R d R 4 a R {f <a} B 2.3 a R {f a} B a R {f a} B a R {f >a} B 2.1 {f <a} {f a} {f <a} B {f a} B {f >a} = n=1 { f a + 1 } n (2.1) (2.1) B

10 2 2.1 B {f <a} = n=1 { f a 1 } n 2.1 (2.1) c R c c R d 2.2 c R c B 2.2 (i) R d B (ii) A, B BA BA BA \ B B (iii) n N A n B n=1 A n B 2.1 R d = c B(ii) A B B A 1 := A, A 2 := B, A n := (n 3) n N A n B 2.1 A B = n=1 A n B(ii) (iii) A B =(A c B c ) c, A\ B =(A c B) c, ( A n = n=1 n=1 A c n ) c 2.1 A, B B(A c B c ) c B (A c B) c B 2.1 n N A n B( n=1 Ac n )c B 2.1 f : R d R B a <b {a f<b} B y R {f = y} B

2.2 σ 11 {a f < b} = {f < b}\{f < a} 2.2 (ii) B y R {f = y} B{f = + } = n=1 {f n} 2.2 (iii) {f =+ } B 2.3 2.1 {f = y} B 2.4 f : R d R {f = y} y range f R d 2.3 f : R d R range f f B y range f {f = y} B B {f = y} B 2.1 {f <a} = y range f,y<a {f = y} range f 2.4 A, B B (i) (finite additivity)a B = μ(a B) =μ(a)+μ(b) (ii) A B μ(a)+μ(b \A) =μ(b) μ(a) μ(b) (iii) A B μ(a) < + μ(b \ A) =μ(b) μ(a) (iv) (subadditivity)μ(a B) μ(a)+μ(b) (i) 2.2 (ii) σ μ( ) =0 (ii)(iii) A (B \ A) = μ(a)+ μ(b \ A) =μ(b) μ(b \ A) 0 μ(a) μ(b) μ(a)+μ(b \ A) =μ(b) μ(a) < + μ(a) 2.5 2.4 (iv) σ

4 1 1 λ a<b λ([a, b]) = b a 1 6.2 [a, b] b a 2 4.1 1 1 (a, b] :={x R: a<x b} a, b Ra <b 4.1 R (B,λ) (a, b] (a, b] B λ((a, b]) = b a 6.2 5.7 B R σ a<b (a, b] B λ B a<b λ((a, b]) = b a 2 1 4.1 a, b, c 1,c 2 R a<b 2.2

50 4 1 (a,b] c 1 (b a) (b 0) (c 1 1 (,0] + c 2 1 (0,+ ) ) λ = c 1 a + c 2 b (a <0 <b) c 2 (b a) (0 a) B 4.1 (i) a<b (a, b)[a, b][a, b) B (ii) I f : I R B (iii) A R B (iv) A R B A R B (i)(iii) (ii) I =(0, 1) x R [x] :=max{n Z: n<x} n N f n :(0, 1) Rx f([nx]/n) f(0) = 0 N := {k Z: 0 k < n} range f n = {f(k/n);k N} B {f n = y} = k N : f(k/n)=y (k/n, (k +1)/n] (0, 1) f n B f f n f f B (iv) BA x R { x z ; z A} f : R Rx inf{ x z ; z A} x, y R ε R >0 x z f(x)+ε z A f(y) y z y x + x z y x + f(x)+ε xy f(x) x y + f(y)+ε x, y R f(x) f(y) x y (ii) B {x R: f(x) =0} B A = {x R: f(x) =0} 4.1 (2) B B 4.1 (1) 4.1 (i)(iii)

4.1 1 51 (2) R A A = {x R: inf{ x z ; z A} =0} (3) I f : I R B 4.2 (i) A R λ(a) =0 (ii) a, b R a<bλ((a, b))λ([a, b])λ([a, b)) b a (i) 4.1 (iii) A B x A n N 0 λ({x}) λ((x 1/n, x]) = 1/n λ({x}) =0σ λ(a) = x A λ({x}) =0 4.2 1 Q (i) 4.2 (i) λ(q) =0 (0,1) 1 Q λ =0 (ii) m N A := {x R: m! x Z} A Q (0,1) 1 A λ =0 x R lim n (cos πm! x) 2n = 1 A (x) 0 (cos πm! x) 2n 1 lim n (0,1) (cos πm! x)2n λ(dx) =0 (iii) x R lim m lim n (cos πm! x) 2n =1 Q (x) lim m (0,1) lim n (cos πm! x) 2n λ(dx) =0 4.3 J B f : J R I 1,...,I n J J \ n k=1 I k (i) f J λ I k λ (ii) f J λ J fλ = n k=1 I k fλ 4.2 (i) λ (J \ n k=1 I k)=0 2.2 2.5 (ii) 4.3 I F : I R F f : I R F : I R F = f

52 4 1 F f (primitive function) 4.2 a, b Ra <b f :(a, b) R λ (i) (a, b) Rx (a,x) fλf (ii) f F lim x a F (x)lim x b F (x) (a,b) fλ= lim x b F (x) lim x a F (x) (i) c (a, b) ε R >0 δ R >0 y c <δ f(y) f(c) <εc x<b λ((c, x)) = x c x = c (c, x) = 4.3 (ii) (a,x) ( ) fλ fλ f(c)(x c) = f f(c) λ (a,c) (c,x) 2.4 (i) c x<min{c + δ, b} fλ fλ f(c)(x c) f f(c) λ ε x c (a,x) (a,c) max{c δ, a} <x c x (a,x) fλc f(c) (ii) K R (a, b) F (x) = (a,x) fλ+ K ab a = b =+ 2.4 (i) F (x) K = (a,x) (c,x) fλ (a,x) f λ lim sup F (x) K lim sup f λ f λ (n N) x a x a (a,x) (a,a+1/n) (a, a +1/n) n=1 (a, a +1/n) = 2.6 (ii) (a,a+1/n) f λ 0 F 0 F

lim x b F (x) =K + (a,b) fλ 4.1 1 53 x a F (x) K F (x) K fλ = fλ fλ = fλ f λ (a,b) (a,b) (a,x) (x,b) (x,b) λ 4.1 a, b Ra <b f :(a, b) R a = b =+ F : R R x <0 F (x) := (x,0) fλf (0) := 0 x >0 F (x) := (0,x) fλc R 4.3 (ii) x > c 1 F (x) = fλ fλ ( c 1,x) ( c 1,0) 1 4.2 (i) F (c) =f(c) 4.2 a, b Ra <b f :(a, b) R f F (i) (a,b) fλ=sup x (a,b) F (x) inf x (a,b) F (x) + =+ (ii) F f λ a = b =+ a n a b n b f F 4.2 (ii) n N ( n,n) fλ= F (n) F ( n) 2.6 (i) 4.3 (max{a, 0}) 2 a, b Ra < b (a,b) 2max{x, 0} λ(dx) = (max{b, 0})2 4.2 F lim x a F (x) lim x b F (x)

54 4 1 4.2 lim x b F (x) lim x a F (x) lim x b F (x) lim x a F (x) F (x) x=b x=a F b a 4.4 a, b Ra <b f :(a, b) R λ F (a,b) fλ= F b 4.2 a 4.5 4.2 (0,+ ) e x λ(dx) = e x x=+ x=0 =1 4.6 (i) (ii) (0,1) s>0 ( x s 1 x s +1 1 x +1 ( x s 1 x s +1 1 x +1 (1,+ ) (iii) x ) λ(dx) = 1 s s log 2 ) λ(dx) = s 1 log 2 s xs 1 x s +1 1 (0, + ) λ x +1 (i) x (1/s)log(x s +1) log(x +1) 0 <s<1 (0, 1) Rx x s 1 /(x s +1) 1/(x +1) 4.2 (ii) 0 <s<1 (1, + ) Rx 1/(x +1) x s 1 /(x s +1) 4.2 lim x (x s +1) 1/s /(x +1)=1 4.2 4.2 A.3 2.5 4.7 R Rx e x2 λ x e 2 x +1 4.2 s>0 (0,1) (1 x2 ) s 1 λ(dx) < +

a.e. 37 a.e. 47 C 69 C 70 L 1 85, 134 L 1 44 L 1 44 L p 46 p 46 σ 7 σ 6, 77 σ 103 σ 7, 73, 192 σ 100, 194 2 117 172, 184 143 139 76 65 163 103 C 71 21, 38, 76 72 9, 19, 204 9 22, 54, 156 33 7, 103 102 7, 76, 80, 103 225 76 69, 191 84 79 57, 150 1/2 147 147, 150 139, 150 150 147 66 147 42 143 130 209 164 52 52 20, 196 29, 41 176 166 29 215 176 46, 172 197 161 65, 149 137 154 197 σ 102 121 190 8, 9, 17, 19, 36, 204 36 σ 32 91 19 28 16, 19, 22

88, 202 32 203 20, 192, 196 6 129 81 C r 132 84 2 179 6 186 125 8 24, 40 11, 71 111 161 σ 115 115 115 10 84 182 183 1 167 120 122 179 203 202 203 136 224 176 174, 185 70 198 52 49 43 217 20, 24, 41 195 198 191 197 195, 206, 213 136 124, 136, 157 55, 211 190 188 177 171 174 171 177 243 97 187 178 175 69 95 59, 94, 108, 118 94, 118 128 161 57 46 149 143 1 58, 94 145 137 190 131 168 178 81 37 106 21 106, 114 106, 114 106, 114 17 89, 195, 213

244 46 180, 209 11, 68 68 71 23 17 166 153 215 106, 114 195 202 161 161 88 154 98 124, 136, 157 75, 83 83 83 83, 114 75 83 83, 211, 214 106 83 137 83, 114 114 111 108 127 34 33, 41, 206 33 203 37, 79 207 11, 71 166

1982 1989 1998 2007 c 2015 2015 7 27 1 1 1-4-11102-0071 03-3265-8341 FAX 03-3264-8709 http://www.morikita.co.jp/ PrintedinJapan ISBN978-4-627-05431-8