1 : f(z = re iθ ) = u(r, θ) + iv(r, θ). (re iθ ) 2 = r 2 e 2iθ = r 2 cos 2θ + ir 2 sin 2θ r f(z = x + iy) = u(x, y) + iv(x, y). (x + iy) 2 = x 2 y 2 +

Similar documents
x (x, ) x y (, y) iy x y z = x + iy (x, y) (r, θ) r = x + y, θ = tan ( y ), π < θ π x r = z, θ = arg z z = x + iy = r cos θ + ir sin θ = r(cos θ + i s

n=1 1 n 2 = π = π f(z) f(z) 2 f(z) = u(z) + iv(z) *1 f (z) u(x, y), v(x, y) f(z) f (z) = f/ x u x = v y, u y = v x

z f(z) f(z) x, y, u, v, r, θ r > 0 z = x + iy, f = u + iv C γ D f(z) f(z) D f(z) f(z) z, Rm z, z 1.1 z = x + iy = re iθ = r (cos θ + i sin θ) z = x iy

z z x = y = /x lim y = + x + lim y = x (x a ) a (x a+) lim z z f(z) = A, lim z z g(z) = B () lim z z {f(z) ± g(z)} = A ± B (2) lim {f(z) g(z)} = AB z


z f(z) f(z) x, y, u, v, r, θ r > 0 z = x + iy, f = u + iv C γ D f(z) f(z) D f(z) f(z) z, Rm z, z 1.1 z = x + iy = re iθ = r (cos θ + i sin θ) z = x iy

36 3 D f(z) D z f(z) z Taylor z D C f(z) z C C f (z) C f(z) f (z) f(z) D C D D z C C 3.: f(z) 3. f (z) f 2 (z) D D D D D f (z) f 2 (z) D D f (z) f 2 (

(ii) (iii) z a = z a =2 z a =6 sin z z a dz. cosh z z a dz. e z dz. (, a b > 6.) (z a)(z b) 52.. (a) dz, ( a = /6.), (b) z =6 az (c) z a =2 53. f n (z

y = f(x) (x, y : ) w = f(z) (w, z : ) df(x) df(z), f(x)dx dx dz f(z)dz : e iωt = cos(ωt) + i sin(ωt) [ ] : y = f(t) f(ω) = 1 2π f(t)e iωt d

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

2014 S hara/lectures/lectures-j.html r 1 S phone: ,

Z: Q: R: C:

Z: Q: R: C: 3. Green Cauchy

(Bessel) (Legendre).. (Hankel). (Laplace) V = (x, y, z) n (r, θ, ϕ) r n f n (θ, ϕ). f n (θ, ϕ) n f n (θ, ϕ) z = cos θ z θ ϕ n ν. P ν (z), Q ν (z) (Fou

, ( ) 2 (312), 3 (402) Cardano

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0

29

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x


II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt

No. No. 4 No f(z) z = z z n n sin x x dx = π, π n sin(mπ/n) x m + x n dx = m, n m < n e z, sin z, cos z, log z, z α 4 4 9

main.dvi

2

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d

y π π O π x 9 s94.5 y dy dx. y = x + 3 y = x logx + 9 s9.6 z z x, z y. z = xy + y 3 z = sinx y 9 s x dx π x cos xdx 9 s93.8 a, fx = e x ax,. a =

7. y fx, z gy z gfx dz dx dz dy dy dx. g f a g bf a b fa 7., chain ule Ω, D R n, R m a Ω, f : Ω R m, g : D R l, fω D, b fa, f a g b g f a g f a g bf a

曲面のパラメタ表示と接線ベクトル

, 3, 6 = 3, 3,,,, 3,, 9, 3, 9, 3, 3, 4, 43, 4, 3, 9, 6, 6,, 0 p, p, p 3,..., p n N = p p p 3 p n + N p n N p p p, p 3,..., p n p, p,..., p n N, 3,,,,

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2)

simx simxdx, cosxdx, sixdx 6.3 px m m + pxfxdx = pxf x p xf xdx = pxf x p xf x + p xf xdx 7.4 a m.5 fx simxdx 8 fx fx simxdx = πb m 9 a fxdx = πa a =

IV.dvi

CIII CIII : October 4, 2013 Version : 1.1 A A441 Kawahira, Tomoki TA (Takahiro, Wakasa 3 )

. sinh x sinh x) = e x e x = ex e x = sinh x 3) y = cosh x, y = sinh x y = e x, y = e x 6 sinhx) coshx) 4 y-axis x-axis : y = cosh x, y = s

(2 X Poisso P (λ ϕ X (t = E[e itx ] = k= itk λk e k! e λ = (e it λ k e λ = e eitλ e λ = e λ(eit 1. k! k= 6.7 X N(, 1 ϕ X (t = e 1 2 t2 : Cauchy ϕ X (t

2012 IA 8 I p.3, 2 p.19, 3 p.19, 4 p.22, 5 p.27, 6 p.27, 7 p

notekiso1_09.dvi

(1) (2) (3) (4) HB B ( ) (5) (6) (7) 40 (8) (9) (10)

2.2 ( y = y(x ( (x 0, y 0 y (x 0 (y 0 = y(x 0 y = y(x ( y (x 0 = F (x 0, y(x 0 = F (x 0, y 0 (x 0, y 0 ( (x 0, y 0 F (x 0, y 0 xy (x, y (, F (x, y ( (

2 2 L 5 2. L L L L k.....

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4

III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F


08-Note2-web

Z: Q: R: C: sin 6 5 ζ a, b

1/1 lim f(x, y) (x,y) (a,b) ( ) ( ) lim limf(x, y) lim lim f(x, y) x a y b y b x a ( ) ( ) xy x lim lim lim lim x y x y x + y y x x + y x x lim x x 1

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)

D xy D (x, y) z = f(x, y) f D (2 ) (x, y, z) f R z = 1 x 2 y 2 {(x, y); x 2 +y 2 1} x 2 +y 2 +z 2 = 1 1 z (x, y) R 2 z = x 2 y

1 1 sin cos P (primary) S (secondly) 2 P S A sin(ω2πt + α) A ω 1 ω α V T m T m 1 100Hz m 2 36km 500Hz. 36km 1

1.2 y + P (x)y + Q(x)y = 0 (1) y 1 (x), y 2 (x) y 1 (x), y 2 (x) (1) y(x) c 1, c 2 y(x) = c 1 y 1 (x) + c 2 y 2 (x) 3 y 1 (x) y 1 (x) e R P (x)dx y 2

4 R f(x)dx = f(z) f(z) R f(z) = lim R f(x) p(x) q(x) f(x) = p(x) q(x) = [ q(x) [ p(x) + p(x) [ q(x) dx =πi Res(z ) + Res(z )+ + Res(z n ) Res(z k ) k

II (10 4 ) 1. p (x, y) (a, b) ε(x, y; a, b) 0 f (x, y) f (a, b) A, B (6.5) y = b f (x, b) f (a, b) x a = A + ε(x, b; a, b) x a 2 x a 0 A = f x (

2S III IV K A4 12:00-13:30 Cafe David 1 2 TA 1 appointment Cafe David K2-2S04-00 : C

Morse ( ) 2014

2000年度『数学展望 I』講義録

ft. ft τfτdτ = e t.5.. fx = x [ π, π] n sinnx n n=. π a π a, x [ π, π] x = a n cosnx cosna + 4 n=. 3, x [ π, π] x 3 π x = n sinnx. n=.6 f, t gt n 3 n

= π2 6, ( ) = π 4, ( ). 1 ( ( 5) ) ( 9 1 ( ( ) ) (

Z[i] Z[i] π 4,1 (x) π 4,3 (x) 1 x (x ) 2 log x π m,a (x) 1 x ϕ(m) log x 1.1 ( ). π(x) x (a, m) = 1 π m,a (x) x modm a 1 π m,a (x) 1 ϕ(m) π(x)

II 2 II


() Remrk I = [0, ] [x i, x i ]. (x : ) f(x) = 0 (x : ) ξ i, (f) = f(ξ i )(x i x i ) = (x i x i ) = ξ i, (f) = f(ξ i )(x i x i ) = 0 (f) 0.


chap1.dvi

ii 3.,. 4. F. (), ,,. 8.,. 1. (75%) (25%) =7 20, =7 21 (. ). 1.,, (). 3.,. 1. ().,.,.,.,.,. () (12 )., (), 0. 2., 1., 0,.

(1) + b = b +, (2) b = b, (3) + 0 =, (4) 1 =, (5) ( + b) + c = + (b + c), (6) ( b) c = (b c), (7) (b + c) = b + c, (8) ( + b)c = c + bc (9

p = mv p x > h/4π λ = h p m v Ψ 2 Ψ


Acrobat Distiller, Job 128

Gmech08.dvi

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

I A A441 : April 15, 2013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida )


I.2 z x, y i z = x + iy. x, y z (real part), (imaginary part), x = Re(z), y = Im(z). () i. (2) 2 z = x + iy, z 2 = x 2 + iy 2,, z ± z 2 = (x ± x 2 ) +

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10%

B ver B

重力方向に基づくコントローラの向き決定方法

ma22-9 u ( v w) = u v w sin θê = v w sin θ u cos φ = = 2.3 ( a b) ( c d) = ( a c)( b d) ( a d)( b c) ( a b) ( c d) = (a 2 b 3 a 3 b 2 )(c 2 d 3 c 3 d

pdf

main.dvi

(iii) 0 V, x V, x + 0 = x. 0. (iv) x V, y V, x + y = 0., y x, y = x. (v) 1x = x. (vii) (α + β)x = αx + βx. (viii) (αβ)x = α(βx)., V, C.,,., (1)

mugensho.dvi


[ ] 0.1 lim x 0 e 3x 1 x IC ( 11) ( s114901) 0.2 (1) y = e 2x (x 2 + 1) (2) y = x/(x 2 + 1) 0.3 dx (1) 1 4x 2 (2) e x sin 2xdx (3) sin 2 xdx ( 11) ( s

V 0 = + r pv (H) + qv (T ) = + r ps (H) + qs (T ) = S 0 X n+ (T ) = n S n+ (T ) + ( + r)(x n n S n ) = ( + r)x n + n (d r)s n = ( + r)v n + V n+(h) V

°ÌÁê¿ô³ØII


sec13.dvi

E Riemann-Stieltjes 65 teaching.html (epsilon-delta )

2011de.dvi

n Y 1 (x),..., Y n (x) 1 W (Y 1 (x),..., Y n (x)) 0 W (Y 1 (x),..., Y n (x)) = Y 1 (x)... Y n (x) Y 1(x)... Y n(x) (x)... Y n (n 1) (x) Y (n 1)

KENZOU

.3. (x, x = (, u = = 4 (, x x = 4 x, x 0 x = 0 x = 4 x.4. ( z + z = 8 z, z 0 (z, z = (0, 8, (,, (8, 0 3 (0, 8, (,, (8, 0 z = z 4 z (g f(x = g(

6.1 (P (P (P (P (P (P (, P (, P.

arctan 1 arctan arctan arctan π = = ( ) π = 4 = π = π = π = =

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y

Fubini

2.1 H f 3, SL(2, Z) Γ k (1) f H (2) γ Γ f k γ = f (3) f Γ \H cusp γ SL(2, Z) f k γ Fourier f k γ = a γ (n)e 2πinz/N n=0 (3) γ SL(2, Z) a γ (0) = 0 f c

M3 x y f(x, y) (= x) (= y) x + y f(x, y) = x + y + *. f(x, y) π y f(x, y) x f(x + x, y) f(x, y) lim x x () f(x,y) x 3 -

18 2 F 12 r 2 r 1 (3) Coulomb km Coulomb M = kg F G = ( ) ( ) ( ) 2 = [N]. Coulomb

Transcription:

1.3 1.4. (pp.14-27) 1

1 : f(z = re iθ ) = u(r, θ) + iv(r, θ). (re iθ ) 2 = r 2 e 2iθ = r 2 cos 2θ + ir 2 sin 2θ r f(z = x + iy) = u(x, y) + iv(x, y). (x + iy) 2 = x 2 y 2 + i2xy x = 1 y (1 + iy) 2 = 1 y 2 + 2iy u = 1 y 2, v = 2y, y ( ) v 2 u = 1 2 2

2 vs w = f(z), f(z = x + iy) = u(x, y) + i v(x, y) (1)f 1 (z = x + iy) = z 2 = x 2 y 2 + 2ixy... z (2)f 2 (z = x + iy) = zz = (x + iy)(x iy) = x 2 + y 2... (3)f 3 (z = x + iy) = 2iz + 6z = 2y + 2ix + 6x 6iy = (6x 2y) + i(2x 6y) f(z) = z z (1) OK (2), (3) NG e z = cos z + i sin z cos z = eiz + ie iz 2 3

3 3.1 a ( ) {z z a < ρ} {z z a = ρ} ( ) {z z a ρ} Note: z 2 = zz = re iθ re iθ = r 2 = r(cos θ + i sin θ)r(cos θ i sin θ) = (x + iy)(x iy) = x 2 + y 2 z 4

3.2 5

4... f z = z 0 def z z0 lim f(z) = f(z 0 ) z 0 f(z) f(z 0 ) f(z) f(z 0 ) ϵ > 0 f(z 0 ) f(z) f(z 0 ) < ϵ z 0 z z 0 < δ ϵ > 0 δ > 0 s.t. z z 0 < δ f(z) f(z 0 ) < ϵ 6

4.1 f(z) = z 2 z = 0 limz 2 = 0. z 0 z 2 z z f(z + z) f(z) = f (z) z +O( z) 0 as z 0 lim z 0 z2 = 0 0 = 0 + i0 lim x 0 x 2 = 0 z 2 = r 2 e 2iθ. z = re iθ 0 r 0. r 2 0 z 2 0. z < δ Then, z 2 = z 2 < δ 2. So, ϵ > 0 0 < δ < ϵ δ z < δ z z 2 < δ 2 < ϵ z 2 < ϵ z < δ = ϵ 7

5 f (z) = lim z 0 f(z + z) f(z) z f(z + z) f(z) z = f (z) + ϵ( z) ϵ( ) lim ϵ( z) = 0 z 0 w = f(z + z) f(z) = f (z) z ϵ( z) z : + ϵ( z) z f(z + z) z... f(z) = f(z 0 ) + f (z 0 )(z z 0 ) + f (n) (z 0 ) (z z 0 ) n n! n=2 f(z + z) f(z) = f (z) z + ϵ( z) z 0 as z 0 y = f (x) x + o( x) o( x) o( x) 0, x 0 dy = f (x)dx dy: 8

5.1 (z n ) = nz n 1 (z + z) n z n z n k = = = n k=0 n k=1 = n k=1 n! k!(n k)! n k n k n k z n k ( z) k z n z z n k ( z) k z z n k ( z) k 1 n 1 z n 1 = nz n 1... n 0 = 1 z 0 k = 1 z as 3z 4 z 2 + 6z (i + 2) 12z 3 2z + 6 (cf) = cf, (f + g) = f + g, (fg) = f g + fg, (1/g) = g /g 2 9

5.2 1-4-8 f(z) = 1/(1 z 4 ) f(z) = 1 (1 z 2 )(1 + z 2 ) = 1 (1 z)(1 + z)(z i)(z + i) z = 1, 1, i, i lim z a f(z). D = {1, 1, i, i} ( ( ) )) f 4z 3 ( ) 1 (z) = (1 z 4 ) 2. = g g g 2 f D def f D D f D 10

5.3 f, g f(g(z)) (f(g(z))) = f (g(z))g (z) z g ω f f(g(z + z)) f(g(z)) z f(g(z + z)) f(g(z)) w = g(z + z) g(z) = w = g(z + z) g(z) z f(g(z) + w) f(g(z)) g(z + z) g(z) = w z f (g(z))g (z) as z 0 g(z) so, w = g(z + z) g(z) 0 (z 2 ) 3 = z 6. LHS g(z) = z 2, f(z) = z 3 LHS 3(z 2 ) 2 (2z) = 6z 5 RHS 11

5.4 f(z = z(t)) z d f(z(t + t)) f(z(t)) f(z(t)) = lim dt t 0 t z(t) = x(t) + iy(t) z z(t + t) z(t) (t) = lim t 0 t = lim t 0 x(t + t) x(t) + i(y(t + t) y(t)) t t (e z ) = e z d dt it = i d dt eit = ie it = f (z(t))z (t), = lim t 0 x(t + t) + iy(t + t) (x(t) + iy(t)) t = x (t) + iy (t) ( ddt eit = ddt (cos t + i sin t) = sin t + i cos t = ieit ) θ(t) = t. d dt z(t) = d dt eit = ie it = iz(t) i 12

6 z z f(z) = z. z + z z z = z + z z = z x i y = z z x + i y 1 if y = 0 = 1 if x = 0 z 0 z 0 f def f def f 13

6.1 f(z = x + iy) = u(x, y) + iv(x, y) f (z) x f (x + iy) lim h 0 u(x + h, y) + iv(x + h, y) u(x, y) iv(x, y) h u(x + h, y) u(x, y) + i lim h 0 v(x + h, y) v(x, y) = lim h h 0 h u, v x f (z) = u x + iv x d dy (f(z = x + iy)) = f (z)i = u y + iv y f (z) = u x + iv x = u y + iv y i = v y iu y f(z = x + iy) = u(x, y) + iv(x, y) u, v u x = v y, v x = u y 14

6.2 f(z = x + iy) = z 2 = (x 2 y 2 ) + 2xyi f (z) = 2z. u(x, y) = x 2 y 2, v(x, y) = 2xy u x = 2x = v y, u y = 2y = v x f = u + iv u, v u x, u y, v x, v y : f = u + iv u, v C : f f z 0 f(z 0 + z) = f(z 0 ) + f (z 0 ) z... = f(z 0 + h + z) = f(z 0 + h) + f (z 0 + h) z h h 0. f LHS RHS 1 f (z 0 ) z = lim h 0 f (z 0 + h) z = f (z 0 ) z = lim h 0 f (z 0 + h) z + O( z) s.t. O( z)/ z 0 f (z 0 ) = lim h 0 f (z 0 + h) + O( z)/ z f (z 0 ) = lim h 0 f (z 0 + h) u x = v y, u y = v x u y, v y f u x, v x 15

6.3 1.4.3 e z = e x+iy = e x (cos y + i sin y) = e x e iy e iy = cos y + i sin y e z 1 ez 2 = ex 1 (cos y 1 + i sin y 1 )e x 2 (cos y 2 + i sin y 2 ) = e x 1+x 2 ( (cos y 1 cos y 2 sin y 1 sin y 2 ) + i(sin y 1 cos y 2 + cos y 1 sin y 2 ) = e x 1+x 2 (cos(y 1 + y 2 ) + i sin(y 1 + y 2 )) = e z 1+z 2 (z 1 + z 2 = (x 1 + x 2 ) + i(y 1 + y 2 )) (e z ) n = e nz, z 1 wz = 1 w w = 1/z (e z ) 1 = 1 e z = 1 e x e iy = (e z ) n = 1/(e z ) n = 1/e nz = e nz e x cos y + i sin y = e x (cos y i sin y) = e x e iy = e z (e z 1 )z 2. e i, (e 1+i ) i u(x, y) = e x cos y, v(x, y) = e x sin y u x = e x cos y, v y = e x cos y, u y = e x sin y, v x = e x sin y u x = v y, u y = v x x y f(z = x + iy) = e x cos y + ie x sin y. x f (z) = e x cos y + ie x sin y = e z y if (z) = u y + iv y = e x sin y + ie x cos y = i(e x cos y + ie x sin y) = ie z f (z) = e z 16 )

6.4 f = u + iv u, v C f f n f (n) f = u + iv, f = u x + iv x = v y iu y = n + im n x = u xx = v yx = v xy = m y, n y = u xy = u yx = v xx = m x. f n x = m y, Note: n, m u, v C w def 2 w = w xx + w yy = 0 u xy = u yx u v u x = v y, u y = v x (v x = u y ) u xx = v yx, u yy = v xy. v yx = v xy 2 u = u xx + u yy = 0 n y = m x 17

6.4.1 f (t) = 0 on (x 0 h, x 0 + h) f(x 0 + t) = f(x 0 ) + f (x 0 )t + f (c + ) t 2 2 x 0 < c + < x 0 + t f(x 0 t) = f(x 0 ) f (x 0 )t + f (c ) t 2 2 x 0 t < c < x 0 f(x 0 t) + f(x 0 + t) = 2f(x 0 ) x0 +h f(t)dt = x0 +h 2f(x 0 )dt = 2hf(x 0 ) x 0 h x 0 f(x 0 ) = 1 x0 +h 2h f(t)dt... x 0 h 2 u = u xx + u yy = 0 u(x, y) = 1 u(x, y) dxdy πr 2 U (x,y) (r) u (*1) (*1) 187 page. a = (a 1, a 2 ) 2r (x, y) = (a 1 + rt, a 2 + rt) where 1 t 1 2 f(a, b) = ( fxx (a, b) f yx (a, b) f xy (a, b) f yy (a, b) ) 18

6.4.2 f(z = x + iy) = u(x, y) + iv(x, y) u x + iy s.t. u(x, y) = d v x + iy s.t. v(x, y) = c u x = v y, u x u y u = u x + iu y,, v x v y v = v x + iv y v x = u y i u = i(u x + iu y ) = u y + iu x = v x + iv y = v u v u v 19

6.5 f(z) = c f(z + i h), f(z + h) f (z) = 0 f (z) = 0 f f(z) = f(z 0 ) + f (z 0 )(z z 0 ) + f (2) (z 0 ) (z z 0 ) 2 + 2 f (z 0 ) = f (2) (z 0 ) = = 0 f(z) = f(z 0 ) k f(z) = k f(x + iy) = u(x, y) + iv(x, y) 2 = u(x, y) 2 + v(x, y) 2 = k 2 20

6.6 Cauchy-Riemann f(z = re iθ ) = u(r, θ) + iv(r, θ). Then u r = v θ r, v r = u θ r r : d dr f(reiθ ) = e iθ f (re iθ ) = u r + iv r θ : d dθ f(reiθ ) = rie iθ f (re iθ ) = u θ + iv θ e iθ f (re iθ ) = u r + iv r = r 1 i(u θ + iv θ ) = r 1 v θ r 1 iu θ z(t) = te iθ, z(t) = re it parameter t θ z = (r + r)e iθ re iθ = re iθ f = f(z + z) f(z) = u(r + r, θ) + iv(r + r, θ) (u(r, θ) + iv(r, θ)) f u(r + r, θ) u(r, θ) + i(v(r + r, θ) + iv(r, θ)) = z z = re iθ u r + iv r = e iθ (u e iθ r + iv r ) = f (z) r z = re iθ+i θ re iθ = re iθ (e i θ 1) f z = f θ θ re iθ (e i θ 1) ( (e (u θ + iv θ )r 1 e ) ) iθ 1 iθ θ=0 ( ) e iθ = (cos θ + i sin θ) = sin θ + i cos θ = ie iθ... θ f (z) = (u θ + iv θ )r 1 e iθ ( i) = r 1 e iθ (v θ iu θ ) hence, u r = v θ r, v r = u θ r 21

6.6.1 1.4.10 f(z) = Arg z f(z = re iθ ) = Arg z = (u(r, θ) = θ) + i(v(r, θ) = 0) π < θ π u, v C 1 ow f u r = v θ r, v r = u θ r f(z = x + iy) = u(x, y). (v(x, y) = 0) v x = u y = 0 u(x, y) = h(x) u x = v y = 0 u(x, y) = h(x) = c c f(z = x + iy) = c f(z = x + iy) = u(x, y) + iv(x, y) arctan y x 0... case 1 x π/2 x = 0, y > 0... case 2 f(z = x+iy) = Arg z = π/2 x = 0, y < 0... case 3 x = y = 0 case 1: u(x, y) = arctan y, v(x, y) = 0. x 1/x u y = 1 + (y/x) 0. v 2 x = 0. case 2 case 3: z = yi case1 case1 22