通信容量制約を考慮したフィードバック制御 - 電子情報通信学会 情報理論研究会(IT) 若手研究者のための講演会

Similar documents
³ÎΨÏÀ

() Remrk I = [0, ] [x i, x i ]. (x : ) f(x) = 0 (x : ) ξ i, (f) = f(ξ i )(x i x i ) = (x i x i ) = ξ i, (f) = f(ξ i )(x i x i ) = 0 (f) 0.

ばらつき抑制のための確率最適制御

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0


2 1 κ c(t) = (x(t), y(t)) ( ) det(c (t), c x (t)) = det (t) x (t) y (t) y = x (t)y (t) x (t)y (t), (t) c (t) = (x (t)) 2 + (y (t)) 2. c (t) =

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d

2 G(k) e ikx = (ik) n x n n! n=0 (k ) ( ) X n = ( i) n n k n G(k) k=0 F (k) ln G(k) = ln e ikx n κ n F (k) = F (k) (ik) n n= n! κ n κ n = ( i) n n k n

1 8, : 8.1 1, 2 z = ax + by + c ax by + z c = a b +1 x y z c = 0, (0, 0, c), n = ( a, b, 1). f = n i=1 a ii x 2 i + i<j 2a ij x i x j = ( x, A x), f =


201711grade1ouyou.pdf

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt

2012 IA 8 I p.3, 2 p.19, 3 p.19, 4 p.22, 5 p.27, 6 p.27, 7 p

II Karel Švadlenka * [1] 1.1* 5 23 m d2 x dt 2 = cdx kx + mg dt. c, g, k, m 1.2* u = au + bv v = cu + dv v u a, b, c, d R

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

ohp_06nov_tohoku.dvi

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10%

f(x) = f(x ) + α(x)(x x ) α(x) x = x. x = f (y), x = f (y ) y = f f (y) = f f (y ) + α(f (y))(f (y) f (y )) f (y) = f (y ) + α(f (y)) (y y ) ( (2) ) f


.1 z = e x +xy y z y 1 1 x 0 1 z x y α β γ z = αx + βy + γ (.1) ax + by + cz = d (.1') a, b, c, d x-y-z (a, b, c). x-y-z 3 (0,

1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ =

64 3 g=9.85 m/s 2 g=9.791 m/s 2 36, km ( ) 1 () 2 () m/s : : a) b) kg/m kg/m k

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

1. (8) (1) (x + y) + (x + y) = 0 () (x + y ) 5xy = 0 (3) (x y + 3y 3 ) (x 3 + xy ) = 0 (4) x tan y x y + x = 0 (5) x = y + x + y (6) = x + y 1 x y 3 (

A = A x x + A y y + A, B = B x x + B y y + B, C = C x x + C y y + C..6 x y A B C = A x x + A y y + A B x B y B C x C y C { B = A x x + A y y + A y B B

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google

,, 2. Matlab Simulink 2018 PC Matlab Scilab 2

CVaR

(2 X Poisso P (λ ϕ X (t = E[e itx ] = k= itk λk e k! e λ = (e it λ k e λ = e eitλ e λ = e λ(eit 1. k! k= 6.7 X N(, 1 ϕ X (t = e 1 2 t2 : Cauchy ϕ X (t

1 variation 1.1 imension unit L m M kg T s Q C QT 1 A = C s 1 MKSA F = ma N N = kg m s 1.1 J E = 1 mv W = F x J = kg m s 1 = N m 1.

x (x, ) x y (, y) iy x y z = x + iy (x, y) (r, θ) r = x + y, θ = tan ( y ), π < θ π x r = z, θ = arg z z = x + iy = r cos θ + ir sin θ = r(cos θ + i s

( ) ) ) ) 5) 1 J = σe 2 6) ) 9) 1955 Statistical-Mechanical Theory of Irreversible Processes )

y π π O π x 9 s94.5 y dy dx. y = x + 3 y = x logx + 9 s9.6 z z x, z y. z = xy + y 3 z = sinx y 9 s x dx π x cos xdx 9 s93.8 a, fx = e x ax,. a =

pdf

.5 z = a + b + c n.6 = a sin t y = b cos t dy d a e e b e + e c e e e + e 3 s36 3 a + y = a, b > b 3 s363.7 y = + 3 y = + 3 s364.8 cos a 3 s365.9 y =,

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H


tomocci ,. :,,,, Lie,,,, Einstein, Newton. 1 M n C. s, M p. M f, p d ds f = dxµ p ds µ f p, X p = X µ µ p = dxµ ds µ p. µ, X µ.,. p,. T M p.

ii 3.,. 4. F. (), ,,. 8.,. 1. (75%) (25%) =7 20, =7 21 (. ). 1.,, (). 3.,. 1. ().,.,.,.,.,. () (12 )., (), 0. 2., 1., 0,.

v er.1/ c /(21)

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0

1 1.1 Excel Excel Excel log 1, log 2, log 3,, log 10 e = ln 10 log cm 1mm 1 10 =0.1mm = f(x) f(x) = n

2 1 x 1.1: v mg x (t) = v(t) mv (t) = mg 0 x(0) = x 0 v(0) = v 0 x(t) = x 0 + v 0 t 1 2 gt2 v(t) = v 0 gt t x = x 0 + v2 0 2g v2 2g 1.1 (x, v) θ

TOP URL 1

Part () () Γ Part ,

1 c Koichi Suga, ISBN

2 1 x 2 x 2 = RT 3πηaN A t (1.2) R/N A N A N A = N A m n(z) = n exp ( ) m gz k B T (1.3) z n z = m = m ρgv k B = erg K 1 R =


I-2 (100 ) (1) y(x) y dy dx y d2 y dx 2 (a) y + 2y 3y = 9e 2x (b) x 2 y 6y = 5x 4 (2) Bernoulli B n (n = 0, 1, 2,...) x e x 1 = n=0 B 0 B 1 B 2 (3) co

newmain.dvi

: , 2.0, 3.0, 2.0, (%) ( 2.

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.

Kalman ( ) 1) (Kalman filter) ( ) t y 0,, y t x ˆx 3) 10) t x Y [y 0,, y ] ) x ( > ) ˆx (prediction) ) x ( ) ˆx (filtering) )

1 I

u = u(t, x 1,..., x d ) : R R d C λ i = 1 := x 2 1 x 2 d d Euclid Laplace Schrödinger N := {1, 2, 3,... } Z := {..., 3, 2, 1,, 1, 2, 3

A

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT

(5) 75 (a) (b) ( 1 ) v ( 1 ) E E 1 v (a) ( 1 ) x E E (b) (a) (b)

ohpmain.dvi

II 2 II

Microsoft Word - 11問題表紙(選択).docx


1.2 y + P (x)y + Q(x)y = 0 (1) y 1 (x), y 2 (x) y 1 (x), y 2 (x) (1) y(x) c 1, c 2 y(x) = c 1 y 1 (x) + c 2 y 2 (x) 3 y 1 (x) y 1 (x) e R P (x)dx y 2

GJG160842_O.QXD

B [ 0.1 ] x > 0 x 6= 1 f(x) µ 1 1 xn 1 + sin sin x 1 x 1 f(x) := lim. n x n (1) lim inf f(x) (2) lim sup f(x) x 1 0 x 1 0 (

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α

D = [a, b] [c, d] D ij P ij (ξ ij, η ij ) f S(f,, {P ij }) S(f,, {P ij }) = = k m i=1 j=1 m n f(ξ ij, η ij )(x i x i 1 )(y j y j 1 ) = i=1 j

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

数学の基礎訓練I

2011de.dvi

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5.

I

I A A441 : April 15, 2013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida )

II (10 4 ) 1. p (x, y) (a, b) ε(x, y; a, b) 0 f (x, y) f (a, b) A, B (6.5) y = b f (x, b) f (a, b) x a = A + ε(x, b; a, b) x a 2 x a 0 A = f x (

19 σ = P/A o σ B Maximum tensile strength σ % 0.2% proof stress σ EL Elastic limit Work hardening coefficient failure necking σ PL Proportional

6.1 (P (P (P (P (P (P (, P (, P.101

1 Introduction 1 (1) (2) (3) () {f n (x)} n=1 [a, b] K > 0 n, x f n (x) K < ( ) x [a, b] lim f n (x) f(x) (1) f(x)? (2) () f(x)? b lim a f n (x)dx = b

8.1 Fubini 8.2 Fubini 9 (0%) 10 (50%) Carathéodory 10.3 Fubini 1 Introduction 1 (1) (2) {f n (x)} n=1 [a, b] K > 0 n, x f n (x) K < ( ) x [a

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2

meiji_resume_1.PDF


mugensho.dvi

( ) Loewner SLE 13 February

untitled

24 I ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x

II 1 II 2012 II Gauss-Bonnet II

1 4 1 ( ) ( ) ( ) ( ) () 1 4 2

= π2 6, ( ) = π 4, ( ). 1 ( ( 5) ) ( 9 1 ( ( ) ) (

x i [, b], (i 0, 1, 2,, n),, [, b], [, b] [x 0, x 1 ] [x 1, x 2 ] [x n 1, x n ] ( 2 ). x 0 x 1 x 2 x 3 x n 1 x n b 2: [, b].,, (1) x 0, x 1, x 2,, x n

D xy D (x, y) z = f(x, y) f D (2 ) (x, y, z) f R z = 1 x 2 y 2 {(x, y); x 2 +y 2 1} x 2 +y 2 +z 2 = 1 1 z (x, y) R 2 z = x 2 y

DVIOUT

I 1

p = mv p x > h/4π λ = h p m v Ψ 2 Ψ

A B P (A B) = P (A)P (B) (3) A B A B P (B A) A B A B P (A B) = P (B A)P (A) (4) P (B A) = P (A B) P (A) (5) P (A B) P (B A) P (A B) A B P

solutionJIS.dvi

第5章 偏微分方程式の境界値問題

Transcription:

IT 1 2 1 2 27 11 24 15:20 16:05 ( ) 27 11 24 1 / 49

1 1940 Witsenhausen 2 3 ( ) 27 11 24 2 / 49

1940 2 gun director Warren Weaver, NDRC (National Defence Research Committee) Final report D-2 project #2, Study of errors in T-10 gun director, 1945 there are surprisingly close and valid analogies between the fire control prediction probelm and certain basic problems in communiation engineering. Department of National Defence (CANADA) ( ) 27 11 24 3 / 49

1940 T-10 gun director 1941 2 T-10 gun director T-15 gun director Hendrik Bode NDRC (National Defence Research Committee) 2 MIT (Norbert Wiener) David A. Mindell, Automation s finest hour: Bell Labs and automatic control in World War II, IEEE Control Systems, 1995 ( ) 27 11 24 4 / 49

1940 Norbert Wiener (MIT) 1940 1942 2 Extrapolation, Interpolation, and Smoothing of Stationary Times Series with Engineering Applications 1942 12 10 20 Norman Levinson Claude E. Shannon 1948 Cybernetics Stuart Bennett, Nobert Wiener and control of anti-aircraft guns, IEEE Control Systems, 1994. ( ) 27 11 24 5 / 49

Wiener Shannon = = Nyquist Bode 1990 ( ) 27 11 24 6 / 49

Witsenhausen 2 Shannon ( ) 27 11 24 7 / 49

Witsenhausen x 1 = x 0 + u 1 x 2 = x 1 u 2 x 0 : N(0, σ 2) 0 0, σ 2, 0 v : N(0, 1) x 0 v y 0 = x 0 y 1 = x 1 + v u 1 = γ 1 (y 0 ) u 2 = γ 2 (y 1 ) E { k 2 u 2 + } 1 x2 2 k 1 2 ( ) 27 11 24 8 / 49

Witsenhausen x 1 = x 0 + u 1 x 2 = x 1 u 2 x 0 : N(0, σ 2) 0 0, σ 2, 0 v : N(0, 1) x 0 v y 0 = x 0 y 1 = x 1 + v u 1 = γ 1 (y 0 ) u 2 = γ 2 (y 1 ) E { k 2 u 2 + } 1 x2 2 k LQG 2 1 ( ) 27 11 24 8 / 49

x 1 = x 0 + u 1 y 0 = x 0 x 2 = x 1 u 2 y 1 = x 1 + v 0 u 1 = ay 0, u 2 = by 1 a, b u 1 = ay 0 x 1 = (1 + a) x 0 Ex 2 2 u 2 = E (x 1 y 1 ) = Ex 2 1 Ex 2 1 + Ev2 y 1 =: by 1 b = Ex 2 1 Ex 2 1 + Ev2 = (1 + a) 2 σ 2 0 (1 + a) 2 σ 2 0 + 1 } = k 2 a 2 σ 2 0 + (1 + a) 2 σ 2 0 E { k 2 u 2 1 + x2 2 (1 + a) 2 σ 2 0 + 1 a a, b ( ) 27 11 24 9 / 49

x 1 = x 0 + u 1 y 0 = x 0 x 2 = x 1 u 2 y 1 = x 1 + v (Witsenhausen 1968) u 1 = γ 1 (y 0 ) = y 0 + σ 0 sgn(y 0 ) u 2 = γ 2 (y 1 ) = σ 0 tanh(σ 0 y 1 ) E { k 2 u 2 + } 2 σ 1 x2 2 2k 2 σ 2 0 1 π + σ2 exp 0 2 0 2 ( ) 27 11 24 10 / 49

2 1.5 optimal linear cost UB nonlinear cost E { k 2 u 2 1 + x2 2 } cost 1 0.5 min a (1 + k2 a 2 σ 2 a)2 σ 2 0 + 0 (1 + a) 2 σ 2 + 1 0 0 0 0.1 0.2 0.3 k σ 0 = 6 Witsenhausen k = 0.2 0.9725 0.5821 2 σ 2k 2 σ 2 0 1 π + σ2 0 2 exp 0 2 ( ) 27 11 24 11 / 49

x t+1 = Ax t + Bu t y t = Cx t x 0 Λ 0 y t n t u t dt m t 2 R R ( ) 27 11 24 12 / 49

x t+1 = Ax t + Bu t y t = Cx t x 0 Λ 0 y t n t u t dt m t R max { 0, log 2 λ i } i [ S. Tatikonda, and S.K. Mitter: Control under communication constraints; 2004 ] ( ) 27 11 24 13 / 49

x t+1 = Ax t + Bu t, y t = Cx t, x 0 Λ 0 det A vol(λ 0 ) vol(λ 0 ) AΛ 0 + Bu 0 ( ) 27 11 24 14 / 49

x t+1 = Ax t + Bu t, y t = Cx t, x 0 Λ 0 det A vol(λ 0 ) vol(λ 0 ) AΛ 0 + Bu 0 ( ) 27 11 24 14 / 49

x t+1 = Ax t + Bu t, y t = Cx t, x 0 Λ 0 det A vol(λ 0 ) vol(λ 0 ) vol(λ 1 ) = 2 R det A vol(λ 0 ) AΛ 0 + Bu 0 Λ 1 ( ) 27 11 24 14 / 49

x t+1 = Ax t + Bu t, y t = Cx t, x 0 Λ 0 det A vol(λ 0 ) vol(λ 0 ) vol(λ 1 ) = 2 R det A vol(λ 0 ) AΛ 0 + Bu 0 Λ 1 vol(λ t ) = 2 Rt det A t vol(λ 0 ) R > log 2 det A = log 2 Π i λ i = log 2 λ i i ( ) 27 11 24 14 / 49

1 2 Bode 3 ( ) 27 11 24 15 / 49

A λ i Π λi >1 λ i Bode ( ) 27 11 24 16 / 49

x(t + 1) = f(x(t)) (n, ε) f : X X X d d n, f (x 1, x 2 ) = max 0 k n 1 d( f k (x 1 ), f k (x 2 )) ε > 0 K X F X x K z F d n, f (z, x) < ε F K (n, ε) K x f(x) F z F f(z) f 2 (x) f 3 (x) d n, f (z, x) f 3 (z) f 2 (z) f k = f f f } {{ } k times ( ) 27 11 24 17 / 49

x(t + 1) = f(x(t)) f : X X X d K (n, ε) F r(n, ε, K, f) 1 h top ( f) = sup lim lim sup ln r(n, ε, K, f) K Xcompact ε 0 n n f f(x) = Ax λ i >1 λ i [ R. Bowen: Entropy for group endomorphisms and homogeneous spaces; 1971 ] ( ) 27 11 24 18 / 49

dx(t) = f(x(t), u(t)), u U dt R n U = {u : u(t) U} U R n u Q R n x 0 Q u U x(t) Q ( ) 27 11 24 19 / 49

dx(t) = f(x(t), u(t)), u U dt K Q Q T, ε > 0 (K, Q) (T, ε) x 0 K Q u S U x(t), 0 t T Q ε S (K, Q) (T, ε) Q K Input u 1 S Input u 2 S ( ) 27 11 24 20 / 49

dx(t) = f(x(t), u(t)), u U dt K Q r inv (T, ε, K, Q): (K, Q) (T, ε) 1 h inv (K, Q) = lim lim sup ε 0 T T ln r inv(t, ε, K, Q) dx(t) = Ax(t) + Bu(t) dt K Q. Q. K Lebesgue. h inv (K, Q) = Re λ i Re λ i >0 [ F. Colonius, and C. Kawan: Invariance entropy for control systems; 2009 ] ( ) 27 11 24 21 / 49

A λ i d dt x = Ax e Ah x((k + 1)h) = e Ah x(kh) e Ah e λ ih e λ i h >1 e λ i t = Re λ i >0 e λ i t = exp h Re λ i >0 Re λ i ( ) 27 11 24 22 / 49

r + e C(z) P(z) y L(z) = P(z)C(z) S(z) = 1 1 + L(z) r e S(e jθ ) 1 y r ( ) 27 11 24 23 / 49

Bode r + e C(z) P(z) y L(z) = P(z)C(z) 1 S(z) = 1 + L(z) L(z) L(z) p i, i = 1,..., n Bode 1 π ln S(e jθ ) dθ = 2π π n ln p i i=1 ( ) 27 11 24 24 / 49

Bode Bode 1 π ln S(e jθ ) dθ = 2π π n ln p i S(e jθ ) 1 i=1 ( ) 27 11 24 25 / 49

x p x (x) Shannon x h (x) = p x (x) log 2 p x (x)dx x, y p x y=y h (x y = y) ω h (x y) = Eh (x y = y(ω)) x y I (x; y) = h (x) h (x y) ( ) 27 11 24 26 / 49

t x t = (x 0, x 1,..., x t ): x t, y t I(x T y T ) = T I 1 (x t ; y t y t 1 ) t=0 ( ) 27 11 24 27 / 49

u t + w t + y t p i : u t y t 1 lim T T I(uT y T ) = 1 2π π π ln S(e jθ ) dθ = ln p i [ N. Elia: When Bode meets Shannon: control-oriented feedback communication schemes; 2004 ] i Bode Shannon ( ) 27 11 24 28 / 49

1 2 3 ( ) 27 11 24 29 / 49

w t xt u t + w t x t x t ( ) 27 11 24 30 / 49

w = (w 0, w 1,..., w t,...) Gauss w t : N(0, δ 2 ), Gauss δ 0 δ w t : [ δ, δ] δ 0 δ ( ) 27 11 24 31 / 49

Gauss lim sup E (x t ) 2 γ 2 t MS magnitude γ 2 Time lim sup ess sup w x t γ t Magnitude 0 γ γ ( ) 27 11 24 32 / 49 Time

u t + x t ( ) 27 11 24 33 / 49

0 1 Rényi h 0 (x) = log µs x h 1 (x) = p x (ξ) log p x (ξ)dξ (Shannon ) δ 0 δ [ δ, δ] h 0 (x) = log 2 (2δ) δ 0 δ Gauss N(0, δ 2 ) h 1 (x) = log 2 ( 2πeδ ) ( ) 27 11 24 34 / 49

y x y 2 h 0(x y) h 0 (x y) = ess sup h 0 (x y = y(ω)) h 1 (x y) = Eh 1 (x y = y(ω)) (Shannon ) 2 h 0(x) 0 x ( ) 27 11 24 35 / 49

x y I r (x; y) = h r (x) h r (x y) y r = 1 : Shannon r = 0 : 2 h 0(x y) 2 h 0(x) x 2 I 0(x;y) = 2h 0(x) 2 h 0(x y) ( ) 27 11 24 36 / 49

0 1 x, y x y 2 (1+r)h r(x) + 2 (1+r)h r(y) 2 (1+r)h r(x+y), r = 0, 1. x 0 ess sup x δ h 0 (x) log 2 (2δ) 1 Ex 2 δ 2 h 1 (x) 1 2 log 2 2πeδ 2 ( ) 27 11 24 37 / 49

u t + x t (MI) I r ( xt ; u t u t 1) R (AI) 1 T 1 ( lim sup I r xt ; u t u t 1) R T T t=0 (MI) (AI) u = (u 0, u 1,..., u t,...), u t 1 = (u 0, u 1,... u t 1 ) ( ) 27 11 24 38 / 49

m t m t = n t, S mt <, n t mt S mt (MC) S mt 2 R (AAC) (GAC) lim sup T lim sup T 1 T 1 T T 1 S mt 2 R t=0 T 1 log Smt 2 R t=0 (GAC) (MC) (AAC) (GAC) ( ) 27 11 24 39 / 49

m t n t m t = n t + v t, n t v t N(0, ε 2 ) (MC) (AAC) (GAC) Em 2 t ε 2 lim sup T lim sup T 2 2R 1 T 1 T T 1 t=0 T 1 t=0 Em 2 t ε 2 2 2R 1 Em 2 2 log t 2 ε 2 R (GAC) (MC) (AAC) (GAC) ( ) 27 11 24 40 / 49

u t + m t Smt x t (MI) I r ( xt ; u t u t 1) R (AI) lim sup T T 1 1 T t=0 I r ( xt ; u t u t 1) R (MC) Smt 2 R (AAC) lim sup T (GAC) lim sup T 1 T T 1 S mt 2 R t=0 T 1 1 T t=0 log 2 Smt R (MC) (AAC) (GAC) (MI) (AI) Gauss ( ) 27 11 24 41 / 49

w t xt u t + x t+1 = ax t + w t + u t x 0 γ 0, w t δ w t ( x 0, w t 1, u t) I 0 ( xt ; u t u t 1) R lim sup t x t γ ( ) 27 11 24 42 / 49

w t xt u t + Gauss x t+1 = ax t + w t + u t x 0 N(0, γ 2 0 ), w t N(0, δ 2 ) w t ( x 0, w t 1, u t) I 1 (x t ; u t u t 1 ) R lim sup t E x t 2 γ 2 ( ) 27 11 24 42 / 49

a 0 R γ u γ > δ, R log 2 a 1 (δ/γ), ( ) γ > δ, R 1 2 log 2 a 2, (Gauss ) 2 1 (δ/γ) [ H. Shingin, and Y. Ohta: Disturbance rejection with information constraints; 2012 ] ( ) 27 11 24 43 / 49

a 0 R γ u γ > δ, R log 2 a 1 (δ/γ), ( ) γ > δ, R 1 2 log 2 a 2, (Gauss ) 2 1 (δ/γ) [ H. Shingin, and Y. Ohta: Disturbance rejection with information constraints; 2012 ] R a δ γ ( ) 27 11 24 43 / 49

a 0 R γ u γ > δ, R log 2 a 1 (δ/γ), ( ) γ > δ, R 1 2 log 2 a 2, (Gauss ) 2 1 (δ/γ) [ H. Shingin, and Y. Ohta: Disturbance rejection with information constraints; 2012 ] R a δ γ T 1 ( lim sup I 0 xt ; u t u t 1) R T t=0 ( ) 27 11 24 43 / 49

a 0 R γ u γ > δ, R log 2 a 1 (δ/γ), ( ) γ > δ, R 1 2 log 2 a 2, (Gauss ) 2 1 (δ/γ) [ H. Shingin, and Y. Ohta: Disturbance rejection with information constraints; 2012 ] Gauss ( ) 27 11 24 43 / 49

a 0 R γ u γ > δ, R log 2 a 1 (δ/γ), ( ) γ > δ, R 1 2 log 2 a 2, (Gauss ) 2 1 (δ/γ) [ H. Shingin, and Y. Ohta: Disturbance rejection with information constraints; 2012 ] Gauss Gauss Rényi ( ) 27 11 24 43 / 49

2 1 2 ( ) 27 11 24 44 / 49

w t u t xt + I 0 ( xt ; u t u t 1) R T 1 1 ( lim sup I 0 xt ; u t u t 1) R T T t=0 x t+1 = Ax t + w t + u t, det A 0 x 0 γ 0 w t δ w t ( x 0, w t 1, u t) lim sup t x t γ R R n ( ) 27 11 24 45 / 49

x t+1 = Ax t + w t + u t x 0 γ 0 w t δ w t ( x 0, w t 1, u t) lim sup t x t γ ( I 0 xt ; u t u t 1) R 1 T 1 ( lim sup I 0 xt ; u t u t 1) R T T t=0 R n γ α R n log 1 δ γ α = max n k a j=1 k j [ : ; 2010 ] ( ) 27 11 24 46 / 49

x t+1 = Ax t + w t + u t x 0 γ 0 w t δ w t ( x 0, w t 1, u t) lim sup t x t γ ( I 0 xt ; u t u t 1) R 1 T 1 ( lim sup I 0 xt ; u t u t 1) R T T t=0 R n [Nair et al, 2007] γ det A R log ( ) 1 δ n γ [ G.N. Nair et al: Feedback control under data rate constraints: an overview; 2007 ] ( ) 27 11 24 47 / 49

α det A n log log 1 δ ( ) n γ 1 δ γ n = 1 x t+1 = Ax t + w t + u t B = I C = I ê u = Aê ( ) 27 11 24 48 / 49

1940 Wiener, Bode MIT, Bell Shannon, Nyquist 1990 Witsenhausen Shannon Bode ( ) 27 11 24 49 / 49